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PREFACE

In today’s society. technology plays an increasingly important role. Consequently,
mathematics. which lies at the heart of technology. is finding ever wider areas of
application as we seek to understand more about the way in which the natural world and
the man-made environment operate and interact. Traditionally, engineering and science
have relied on mathematical models as design tools and for the prediction of the
behaviour of many phenomena. Nowadays, mathematics is used also to model situations
in many other disciplines including finance, management, politics and geography.

The need for a higher proportion of the population to have a thorough understanding of
the foundations of mathematics is greater than it ever has been. Although the widespread
availability of computers and pocket calculators has reduced the need for long, tedious
calculations to be carried out ‘by hand’, it is still important to be able to pertorm simple
calculations and to understand the mathematical principles in order to have a sense of
control over the processes involved. You cannot learn to drive a car by being a passenger,
you cannot be good at playing the piano without a lot of practice and you cannot succeed
in sport without consistent attention to a sound basic technique. The same principle is true
of mathematics; you need to put in time and effort in order to become proficient.

The book begins with a concise summary of arithmetic and basic algebra, and a
discussion of quadratics and cubics strongly emphasising geometric ideas. Then follow
the principles of Euclidean and Cartesian geometry and the concept of proof. Next are
trigonometry, further algebra and functions and their inverses. Finally. the concepts of
differential and integral calculus are introduced.

Each chapter starts with a list of learning objectives and ends with a summary of key
points and results. A generous supply of worked examples incorporating motivating
applications is designed to build knowledge and skill. Practice is essential and the
exercises are graded in difficulty for first reading and then revision: the answers at the end
of each chapter include helpful hints. Use of a pocket calculator is encouraged where
appropriate (indicated by calculator icon). Many of the exercises can be validated by
computer algebra and its use is strongly recommended where higher algebraic accuracy
can be achieved and drudgery removed. Asterisks indicate difficult exercises. Lecturers’
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PREFACE

Resource Guides/Teachers” Manuals will be available in due course; please contact the
publisher for details.

This book has been written to give students the means of obtaining a basic grounding
in mathematics. Foundation Muthematics together with its sequel Mathematics in
Engineering and Science take the reader forward, in both content and style, from a level
close to UK GCSE mathematics, and its international equivalents, to first year university-
level mathematics. The concise and focused approach will also help the returning student
and will build the necessary confidence to tackle the more advanced ideas of Mathematics
in Engineering and Science.

The authors have between them a wide experience of teaching mathematics to a broad
spectrum of students: undergraduate and secondary students of mathematics and other
scicnces, engineering students and apprentices, mature students, those with an arts
background and those who need to advance from GCSE to first year university level.
Their commitment to developing the highest standards in mathematics education includes
involvement with the Mathematics Working Group of SEF1 (Saciété Européenne pour la
Formation des Ingénieurs), whose work has included the formulation of a recommended
core curriculum for the mathematical education of engineering undergraduates.

The growing gap between secondary and tertiary mathematics is of increasing concern
and the authors believe that there 1s a need tor a no-nonsense textbook to help students
cross over with confidence. They hope that this book fulfils that need.

Our thanks are due to Nicci for typing the bulk of the manuscript, to our students
whose comments have helped to improve the text and to the staft of John Wiley and Sons
Ltd for their help in the preparation of this book.

L R Mustoe
M D ) Barry
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Introduction

Arithmetic is the branch of mathematics concerned with numerical
calculations and is therefore at the heart of the subject. Even in these days
of computers and pocket calculators, a firm grasp of the principles and
processes of arithmetic is fundamental to the rest of mathematics.

Objectives

After working through this chapter you should be able to

e cxpress an integer as the product of its prime factors

e calculate the highest common factor and lowest common multiple of a set
of integers

e understand the rules governing the existence of powers of a number

e obtain the modulus of a number

e combine powers of a number

e cxpress a fraction in its lowest form

e carry out arithmetic operations on fractions

e express a fraction in decimal form and vice versa

e carry out arithmetic operations on numbers in decimal form

e round numerical values to a specified number of decimal places or

significant figures
e understand the scientific notation form of a number
e carry out arithmetic operations on surds
e manipulate logarithms
e understand errors in measurements and how to combine them
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1.1 INTEGERS

Factors

Examples

Example

When two or more integers, i.c. whole numbers, are muliiplied together w0 form a
product. cach of them is called a factor of that product.

1. 2x7=14 s02and 7 are factors of 14.

2. 2x3Ix5=30.s02 3and § are factors of 30. |

Notice that 30=15x2=10x 3 =6 x 5 and therefore 15. 10 and 6 are also factors of 30.

Furthermore, 14 =1 x 14 and 30 = 30 x 1, which means that 1 and 14 are factors of 14,
and | and 30 are factors of 30. It is true in general that any integer has at least two factors,
namcly | and the intcger itsclf. Any integer which has these factors only is called a prime
number.

The first seven pnime numbers are 2. 3, 5, 7, 11, 13 and 7./t is a convention not to
regard 1 us a prime mumber. We have scen that 14=2x7 and cannot therefore be
regarded as pnme; it is a composite number.

The most complete factorisation of an integer is to write it as the product of prime
factors. It is accepted practice to write the factors in ascending order. The lactorisation is
then unigue: for example. 2 x 7 is the only possible prime factorisation of 14.

We write 12=2x2x3and 231 =3x7x 11, ]

Sometimes a factor is repeated; for example, 300=2x2x 3 x5 x5, we say that the
prime factors of 300 are 2. 3 and §.

Common factors and common multiples

Fxample

If two integers have a factor in common then it is a common factor of the two numbers.

24 has the factors 1, 2. 3, 4,6, 8 12 and 24 whereas 80 has the factors 1, 2. 4. 5. 8. 10, 16,
20, 40 and 80. The common factors are 1, 2, 4 and 8. [ ]

The highest common factor (HCF) is the largest of these common factors and in the
example above it is 8.

The highest common factor of two or more integers is the largest integer which is a
factor of each of the given integers.
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Example

Example

Example

The HCF may be a prime number; since 98 =2 x 7 x 7 and 35 = 5 x 7, the HCF of 98 and
35 is 7. Earlier we could have written 24 =2x2x2x3 and 80=2x2x2x2x35,
identifying 2x2x2 as the HCF. If thc HCF of two integers is 1. the integers are
relatively prime; examples are 35 and 16.

Note that the HCF of the integers 12=2x2x3 and 72=2x2x2x3x3 is
2x2x3=12 itself. We say that 72 is a multiple of 12. Other examples are 14 as a
multiple of both 7 and 2, and 30 as a multiple of 10. 6. 5. 3 and 2. J/t is customary not 10
speak of an integer being a multiple of itself or of 1.

If an integer is a multiple of cach of two given integers then it is a common multiple
of them. For example, some common multiples of 10 and 15 are 30, 60, 90. 120 and 150.
The smallest of these, namely 30. is the lowest common multiple (LCM).

The lowest common multiple of two or more integers is the smallest integer which
is a multiple of cach of the given integers.

A useful way of finding the LCM is to use prime factors.

24=2x2x2x3and 36 =2 x 2 x 3 x 3. The most often that 2 appears is three times and
3 appears at most twice: the LCM is therefore 2x2x2x3x3=72. Note (hat
72=3x24=2x%36. |

When two integers are relatively prime their LCM is simply the product of these integers.

The integers 40=2x2x2x5 and 21 =3 x7 are relatively prime and their LCM is
40 x 21 = 840. |

It is also important to note that the product of two integers is equal to the product of their
LCM and HCF.

35=5x7 and 98=2x7x7. The HCF=7 and the LCM=2x5x7x7=490.
3I5x98=3430=7 x 490 =HCF x LCM. [ ]

So far we have dealt only with positive integers. Knowing that (—2) x (~3)=6 we could
say that the factors of 6 are 2, 3, —2, — 3. Similarly we could say that the factors of —6
are 2, 3. —2. —3: we merely note for the moment that —6 can be written as (=2) x 3 or
2x(-3).

It is useful to remember that the product or the quotient of two negative numbers is
positive, e.g. (—3)x(—2)=6 and (—15) = (=5)=3, and that the product or the
quotient of one positive and one negative number is ncgative, e.g.
(=Nx2=3x(-2)=—-6and (- 15} +5=15+-(-5)=-3.
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Exercise 1.1

Factorise each of the following integers into a product of prime factors:

(a) 2280 (b) 1210 (c) 4141
(d) 3087 (e) 14703 () 17963
(g) 64 900 (h) 3258475.

Note the following principles of divisibility:
(4) If the sum of the digits of an integer is divisible by 3 or 9 then the integer is
divisible by 3 or 9, respectively.

b) It the difference of the sums of alternate integer digits is zero or divisible by 11.
positive or negative, then so 1s the integer, (e.g. 616: 6 4+6 — 1 =11, and
616 =2x2x%x2x7x11).

Verify these principles on (a) to (g) of Question 1.
What are the LCM and HCF of each of the following sets of integers?

(a) 210, 720 (b) 1210, 2280 (¢) 72.729
(d) 96. 168. 240 (e) 48, 84, 144, 720.

Verify that ‘LCM x HCF = product’ for the pairs in parts (a) to (¢) of Question 3.
It can be shown that the smallest prime factor p of a composite (i.e. non-prime) integer N

must be no larger than /. Using this principle one need go no turther than 43 in trying to
tind factors of integers less than 2000. How many of the integers 1990 10 1999 are prime?

6* Justity the statement in Question 5 that p is less than or equal to /N.

Powers and indices

Repeated multiplication of a number by itself leads to the idea of raising a number 1o
some power.

The product 3 x 3 x 3 x3 can be written as 3% we say that the number 3 has been
raised to the power 4. We also refer to 4 as the index (plural indices) and 3 as the base.
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Raising a number to the power 2 is called squaring and raising a number to the power 3
is called cubing: hence 16 =4 x 4 = 4% is ‘4 squared’ and 27 =3 x 3 x 3=13"is ‘3 cubed’.
The laws of handling powers are illustrated by examples.

Examples 1. Any integer raised to the power | equals itself (1 is sometimes called unity).
st=5
2. When multiplying two powers of the same base we add the indices.
5% =5x5x5x5x5x5x5="5 =53

3. When dividing two powers of the same base we subtract the indices.

4. Raising a non-zero integer to the power zero gives the result 1.
33+32=9=-9=1but3?+3"=3"2=3"503"=1

5. The power of a power is achieved by multiplying the indices.
(342 = 3% x 3% = 3%+ — 38 = 302 (= (32)})

6. Power of a combination
2 x3*=02x3)¢ =6

7. Negative powers

3436 _ Ix3x3x3 b
T3x3x3x3x3x3 3x3 32

but 3% = 3% =346 =32

1 . . .
Hence 372 = 32 and we say that 377 is the reciprocal of 3* and vice versa.

1 1 1
Note that 27 =— = — and

—73 =
F-gMdgs= =8 "
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These seven rules will also apply to powers of negative integers. Note that a negative
number raised 1o an odd power gives a negative result. whereas if is is raised to an even
power it gives a positive result. Hence

(=3) = —243 but (-3)" = +729.

When several arithmetic operations are involved there is an agrecd order of precedence
with the acronym BODMAS.

In older books the instruction ‘of” was used when multiplying by a fraction, for
example “two-thirds of [2°.

(i) Brackets: quantities enclosed in brackets are evaluated separately from other
quantities.

(i) Ofs, Divisions and Multiplications are carried out next.

(ii1) Additions and Subtractions are performed last.

When two or more operations at the same level are to be carried out, the order ‘left to
right” is followed.

Examples 1. 3+4+7 means ‘divide 4 by 7 first, then add 3°.
2. (344 -+7)x5+2 means ‘evaluate the bracket first, multiply by 5, then add 2'. 10
Brackets can be used to modify the order of precedence.

Example (3 +4)-+7 means ‘add 3 to 4 then divide the result by 7°. n
The operation of raising a number to a power is called exponentiation. With this
operation included, the order of precedence may be renamed BEDMAS where the E

stands for exponentiations and “of” is absorbed into multiplication.

Example
344 x5=3+4+16x5=3+80=283

but B+4) x5=(7)7 x5=49 x 5 =245, [

Exercise 1.2

1 Expand the following:
(a) 2V %32 x5x%x7? (b) P xs52x 7
() 2x 3 x5 x23x29 (d) 22 x3x5x17%x19
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(e) 273 x 3 x 57! x 41, as a ratio of integers
€3] (22 x 3)7% x (5 x 27%)%, as a ratio of integers

(g) (25 x 32 x 17710 x 41'00y?

(a) What is N, for N=1, 107, 102
(b) What s N for N = 1073, 1076, 10799

Evaluate the following:
(@ (22+3)x7 by  2243x7
© (3} -=-2x7 (d (22 +3H) x (582 -7

1.2 FRACTIONS AND DECIMALS

Fractions

5
A fraction is the ratio of one integer divided by another; for example, =, —, —.

-2 2 2
Note that R or -3 are both written as — —.

The upper integer is the numerator and the lower integer is the denominator.
Sometimes fractions are called rational numbers.

. . . 5 .
A proper fraction has a numerator less than its denominator, e.g. —. A fraction such as

R where the numerator is greater than the denominator, is termed improper or vulgar.

I8 4
When - is written as 27 it 1s called a mixed fraction.

.. 3 6 12 30
It should be clear that the fractions —. —. -, — have the same value. They are called
571072050
equivalent fractions. This concept is used to perform a simplification known as

reduction to lowest terms. As an example

42 2x3x7 2
105 3x5%x7 5

where we have divided the original fraction top and bottom by the common factor
3 x 7 =21. We can proceed no further since 2 and 5 are relatively prime. We often call
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this process cancellation since the 3 and the 7 on the top and bottom have in effect
cancelled themselves out. Since 42 = 14 x 3 and 105 = 35 x 3, we could write

4114
ﬁzs

to cancel 3 top and bottom. Since 14 =2 x 7 and 35 =5 x 7 we write

442
55

by cancelling 7.

Arithmetic with fractions

Examples

The examples below illustrate the basic processes of addition, subtraction, multiplication
and division.

To add two fractions with the same denominator we add the numerators and place the
result over the common denominator; a similar result holds for subtraction.

To add two fractions having different denominators we first find the LCM of these
denominators then replace each fraction by its equivalent having the LCM as its
denominator.

To multiply two fractions put the product of their numerators as the numerator of the
result, and the product of their denominators as the denominator of the result.

To divide one fraction by another, invert the second fraction and multiply.

| 1+2_3
4474
1 2 5 8 13

e T e 20 is the LCM of 4 and 5

2 4+5 20+20 0 (20 15 the LCM of 4 and 5)
1 3 5 6 11

3. e == 20 is the LCM of 4 and 10
iT00t p " (0isthe LCMof 4 and 10)

22 _ 11 (40 1is the product of 4 and 10)
T30 40" 20 SHep

g 4202

5 3715 157 15

5 4X%_4x2__

s T3 7 5x3 1S
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6 4 5_4><5_ 2x2x5 _ 2 _2
15 6 15x6 Sx3x2x3 3x3 9
21
. 4 % 2
We could write — x — = =
( Le2-d)
3003
. 4 5 4 6 4 %6 2x2x2x3 8
B e A e
15 6 15 5 15x5 Ix5x%x5 25
o 2.3_2 4.8
T 373737379
5771 1 150 ]
9 == =5t =
5—6 52 5(7 5 1 5—4

) 3 4] \7 &8/ \U2 12) \s6 36

7 .19 7 56 1x7x8

_ET%—EXE—BX4XIQ
Tx7x2 98 4l

T 3x19 57 57

Exercise 1.3

1 Express the following as fractions in their lowest terms:

@ 5040 ) 6182
40320 —616

© 29 %32 x 17 @ (—42) % (308) x (230)

¢ 2% 33 x5x 11 (—60) x (121) x (—69)°

2 Separate out the integral part (i.e. whole number) and the fractional part for the improper

7 1
fractions in Question | (c.g. 3= 22)

3 Carry out the following additions, expressing the improper fraction results as mixed
fractions.

(a) +

|-
W W
N
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6'

[ N S 7 l 5 3
(c) E+'2-+1—+3—8 (d) 3Z+28+4§
5 3 3 8 7 61

Evaluate the following, expressing the improper fraction results as mixed fractions, noting
that some may be negative.

P2 I
@ 153 b 35— 4——67
15 .1 2 5
Z_3-41% o 262-13 Lyl
© 2535415 (d) s B g+,
75 61 11 131
€)  o—

8 6 4 12
1o 1n s 17
() (22—35) (4i 35)+<3§_'E>'

Evaluate the following:

¥ 373 11724719717
L 3. ,7 N .2 2

6"
2 5 77 4\ (24 6
5% ) (100 _) ® (?Ti) ' (E_ﬁ)'

Express the following as proper fractions or as mixed fractions:

;
i 0
@ (b)
5 1 N
772 1176
13 1 201 1o
4-—72 422 e
576
(© ————: 81 31 ) =+ 85 4
Z_14- - —_2L =
HZ—lag+1g 3e-2 x
21 1 17 8
576 3 ’a 327°% YTe s
(€) = f) — x | =
3157 > b2 23 4l
6 “8 24 7 99
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7*  Simplify the following expression:

] 5 13?2
14— -3
2375 2 (!
I 3
24

Decimails

Fractions whose denominators are powers of 10 are called decimal fractions, or decimals
tor short. They have a special notation. For example, the fractions

2 31 3 407 21 6

10 100" 1001000 1000 " 1000
are written respectively as

0.2.0.31.0.03.0.407.0.021, 0.006.

Note that 0.2 could be written as 0.20, 0.200, etc.. but it is not usual to include these
trailing zeros unless there is good reason. ¢.g. to emphasise the precision of a result.
Improper fractions can be dealt with similarly; for example,
24 357 357

00 g4 20— 24357
1000 * 1000

Each digit has its special place; the last number above is 2 tens + 4 units + 3 tenths + 5

3 5 7
hundredths + 7 thousandths, ie. 2 x 104+4 x | + — 4 — 4+ ——,
undredths + ousandths, i.e. 2 x +4x1+ 10+ 100+ 1000

These place values are important when carrying out arithmetic. For example,

2,46 + 13.1 = 15.56 12.46 + 0.328 = 12.788
2246 - 13.1 =936 1.2 x 1.3 = 1.56.

Multiplying by 10 bhas the effect of moving the decimal point one place to the right:
24357 x 10 = 243.57,

Multiplying by 107 moves the decimal point two places to the right, i.e. 2435.7, and so
on.
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Examples

Examples

Dividing by 10 moves the decimal point one place to the left, and so on; for example,
24357 = 10 = 2.4357.

[n order to cope with very large or very small numbers. it is useful to employ scientific
notation, i.c. to writc a number in the form a x 10" where  is the exponent and ¢ is a
number between 1 and 10 which is called the mantissa. Examples are:

243.57 = 2.4357 x 1P
and  0.0024357 =2.4357 x 107,

We can convert decimals to fractions and sometimes vice versa. To convert a fraction to a
decimal, we first replace the fraction by its equivalent using a denominator that is a power
of 10.

3 9 9
231 =21 225 =22 _9x2 9
100 100 4x25 4
4 4 x2 8 31 31 x 25 775
575x2 7008 40 40 x 25 1000 = 477 .

It is not possible to convert some fractions to an exact decimal equivalent. For example.
1 25

37911
a single repeated digit or a repeated group of digits.

have no exact equivalent in decimals. In such cases the decimal torm contains

| .

i:().333 333... =03

R RTERTY = 0.1

g =0 =0.

Tlf = 0.090 909.... = 0.09
2 . .
—7:().285 71428... =0.285714
where the dots placed over the digits indicate the sequence to be repeated. ]

We can approximate a decimal by rounding it off. The number 2.346 is said to contain
three decimal places (3 d.p.) or (3D): of the two nearest numbers with two decimal places,
namely 2.34 and 2.35: 2.35 is the closer, so 2.346 is rounded off to 2.35 (2d.p.).

To go one step further, 2.35 lies between 2.3 and 2.4: hence 2.35 is rounded off to 2.4
(1d.p.). The convention is that if the last digit i1s 5, 6, 7. 8 or 9 we round up, otherwise
we round down.
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The number 2.35 has 3 significant figures (3 s.f.); the number (0.235 has 3 significant
tigures, 0.0235 also has three. The number 2350 has 4 significant figures if we are sure that
the number in question is closer to 2350 than to either 2349 or 2351, However, when we
say that the distance of the Earth from the Sun is 93 million miles (i.e. 93 000 000 miles)
we mean that the distance is nearer to 93 million miles than to either 92 million miles or to
94 million miles, so there are really only two significant figures. namely 9 and 3.

We can round off a number to a specified significant figure accuracy using the
convention mentioned carlier. Hence 12.3456 is rounded to 12.346 to Ss.f.. to 12.35 to
4s.£..124 (3s.£), 1210 250 and 10 to 1.t

Exercise 1.4

1

Convert the following decimals to fractions in their lowest form:

(a) 0.0625 (b) —2.262 (c) 3.375 (d) —0.8125.

Express the following fractions as decimals and display repeated digits:
3 [ 10

(b) (c)

@ % 5 0

(d) ]
7

Express the following decimal quantities in scientific notation and give the number of
significant figures:

() —0.3152 (b 2579.31 ©) —0.0003434

(d) 8575 000.

Convert the following numbers expressed in scientific notation back into conventional
decimals:

(@)  2412x10* (b) ~3.142x 10" (¢) 62484 x10 ©

(d —67x10 '

Explain the difference between 0.4696 and 0.469 600.

Express the following in the reduced number of significant figures stated:
(a) 6.28345 (5s.t., 4s.f, 3s.f, 2s.0)
(by  —32925x 10" (4st, 3sf, 251

(a) Round up the number 00.444 45 progressively, digit by digit until only one
significant figure is left.
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4 )
(b) Repeat the process using 5 = 0.4 and 5s.f. to start.

8 If we wish to divide the number 60 in the ratio 5 to 7, written 5:7, we tirst add 5 to 7 to get

5 7
12 then 60 x = 25 and 60 x o= 35. The required ratio is therefore 25:35.

(a) Divide 80 in the ratio 2:3.
(b) Divide 80 in the ratio 1:4:5.

9@  Numbers can be expressed as percentages, i.e. fractions whose denominators are 100, for
example,

770
L= = T0%
0= 100 0%

where the % symbol is read ‘percent’.

(a) Express the following fractions or decimals as percentages:
1325
—.2.2.7: 04,0835, 1.12.
5834

(b) Express the following percentages as fractions in their lowest terms:

23%, 4.12%. 62.5%.

1.3 FRACTIONAL POWERS AND LOGARITHMS

Fractional powers and roots

It is easy to calculate that 3° =243, Then we say that 3 is the fifth root of 243, written
(243)'7% or/243. Note that

(243)1/7(243)"%(243)/5(243)' 3 (243)'° = (253) /9% = 243,

Similarly, 128 =27 so that 2 =(128)"/7 is the seventh root of 128. written/128.

We call the third root of a number the cube root; hence 2 is the cube root of &, since
2% — 8. The second root is called the square root; 2 = (4)”2 (or 4'?) and written V4. We
do not write ¥4.

You may remember that (=2) x (=2) = 4, i.e. (=2)* = 4, so we could say ~2 =472,
Indeed. every positive number has in fact got rwo square roots (and two fourth roots, two
sixth roots, and so on). The convention is that 4'/ means the positive square root of 4.
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Note that
21/5 % 4\‘/5 — (2 % 4)]/5 — 8\/5

2 1/3 1|/3l
1/3 Sy _ < N - _
a0 0 =(T) = (5) =3

and that

that

(327 =B x9'P =87 x 4! =220 =2 x 223 =2,

Powers which are fractions greater than 1 can be treated as follows:

35/2 — 32+l/2 — 32 X 3|/2 — 9\/3.

Finally, 234 = (23)'/* = QU4
For more complicated cases we can use a pocket calculator. Thus to find (1.2)* we
enter 1.2, press the x* button on the calculator then enter 3 and press the button again.
Similarly, to find (1.2)"" we put v=0.4 and repeat the procedure. It does not matter
whether or not x is a whole number. If y is not a whole number then x must be positive.

Exercise 1.5

Determine the fotlowing roots exactly without resorting to a calculator:

@ 9% ® 64 © (25"
(d) (729)~%/8 ©) (343/8) 2/ ) (11/5)°

4
Again, without using a calculator, simplify the following. Note that 4/7 is equivalent to 7
etc.

@ (9 x 107820 b ey
(©) (2.5 x 107H!? @ (@/ND"H ™ x 1072
() 6x1072=(4x 107 ® (361728977 x4/17.
Given that 2 = /2 x V2, 3 = /3 x /3, etc. show that

L1 11
, - \/5_ b — ==-+3
(a) 53 (b) 773 V3

31

© (V3-DW3+1)=2 (d) V3 =2-43
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(e) 23+ =6+ f

/2
n 73—(‘;1) VEEN

4  Use the x* button on your calculator to find (5.236) where v=0.4 (0.2) 1.4, ic. 0.4t0 1.4
in steps of 0.2. Repeat the same process for x =0.1417. What do you observe?

5 Retaining 4s.f., find
0.5 -1.2
(@ (197 x(0.6)7> oy (UOL3V T x(6.237)
(11.574)5

0n.s

(19 x 109 x (3.1412)'7*

372
105/2{3.7 _ (6.] X I;BQ)I
(7.3

495017
olp —0)g
liquid, determine  to 4s.f. if n =3.12 x 1075, g=9.81, 6 =1.051 and p=11.972.

(c)

173
gl 6 Given the formula r = ( ) which relates to a sphere falling in a viscous

7  Determine 7 on your calculator to 7d.p. How good are the approximations
(a) 22/7 (b) 3.142

in absolute terms and as a percentage of the calculator value?

8 Determine which of the following exist and evaluate them when appropriate.
@  V—d=(-4" b Y362 =(-362)""°
4 1/4 5 1 -1\
: V=652 = (—652 Vo = ——
© (=652) @ Voges (9865)
)  (=0.321)""
Logarithms

In the relationship 10¥ = 1000 we see that 10 must be raised to the power 3 to equal 1000;
we say that 3 is the logarithm of 1000 to the base 10 or, symbolically, log;, 1000 = 3.
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Similarly, since 2° = 32, we can say that 5 is the logarithm of 32 to the base 2 and write
log> 32 = 5. Note the following six results which are demonstrated with logarithms to the
base 2.

1. The logarithm of the product is the sum of the logarithms.
For example, 2% x 24 =23 =27 {e. 8§ x 16 =128.
Now log, 128 =7, log, 8 =3 and log, 16 =4,
so that log, 128 =log, (8 x 16)=log, 8 + log, 16.

2. The logarithm of the quotient is the difference of the logarithms.
For example, 2° =22 =2°72 =23 jc 32 -4 =8.
Now log, 8 =3, log, 32 =5 and log, 4=2,
so that log, 8 =log,(32 ~4) =log> 32 — log, 4.

3. The logarithm of thc power of a number is that power multiplied by the logarithm.
For example, (2¢4)° =243 =212 je. (16)" =4096.
Now log, 4096 =12 and log, 16 =4,
so that logs 4096 = logs (16)" =3 log, 16.

4. The logarithm of [ is zero.
For example, 2" =1,

so that log, | =0.

5. The logarithm of the base is I.
For example, 2' =2,

so that log, 2=1.

6. The logarithm of a reciprocal is (— 1) multiplied by the logarithm,

1

1
For example, Fimir i 273,

Now log, 8 =3,

1 1
so that log, (8) = log, (21) =log,(27*) = =3 = —log, 8.

In Chapter 2 these results are generalized for any base.
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Exercise 1.6

1

3

Write the following results using logarithms:

@  3'=8l by 5'=125 (€ 7 =49

)y 4'=64 € 6'=1 iy 8'=8

(g) 1077 = — (hy 4'=2 (i) PRI
100 2

Write the following results without using logarithms:

(a) log; 343 =3 (b) logs 25 =2 () logy 3=1

|
@ logi1=0 (@) log(,(g(—):_z

l I 1 1
() log, (5) =73 (h) logy, (3) =73

Illustrate the six results on page 18 using logarithms to the base 10.

I
(f) logzs 5= 5

Surds

As we have seen, decimals are particular examples of fractions and some fractions, e.g. 3

2 N .
and -, cannot be expressed exuactly as terminating decimals. Not every number can be

expressed exactly as a fraction. Consider the number /2; a calculator with a ten-digit
display will produce the result 1.414 213562, which can be expressed as the fraction

1414 213 562
1000 000 000

This is not an exact answer, however; if this number is entered into your calculator and
squared, the result is displayed as 1.999999999. To quote the original number exactly.
we leave it as +/2 and it is perfectly acceptable to write it in this form unless an
approximate answer is wanted. such as an answer correct 1o 3s.f. or 2d.p. Numbers such
as V2. V3. V5. V6 are called surds: they are examples of irrational numbers. a wider
class of numbers which cannot be expressed as fractions.
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Example Express the following numbers in their simplest form:
(a) v24 (b) V8 (c) V324
(d) v30.
Solution:

(a) Since 24 =4x 6 then V24 = V4 x V6 =26

(b) 8=12x2x2sothat V8 =22

(¢c) 324=18x 18 and /324 = 18

(d) 30=2x3 x5 and ~/30 is therefore already in its simplest form. |

Multiplication of surds

The product (2 + V35 — 2) can be evaluated by the usual method:

R+VIE=V2)=2x5+/3x5-2x+2 -3 x2
=10+ 5V3 - 2V2 - V.

Sometimes it is possible to simplify the resulting expression:

B4+2V3)4 - V5 =3x4+2V5x4-3xV5-2V5x+3
=12+8/5-3/5-2x5
=2+ 5V5.

In some special instances the surd parts cancel out:

B+V)B3 -V =3x34+V2x3-3xV2-V2xV2
=943/2-3/2-2

= /.

Rationalising the denominator

It is often the case that a surd in the denominator of a fraction is unwelcome; by a simple
manipulation it is possible in effect to transfer the surd to the numerator.
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As an example, since /5 x +/5 = 5 then

ERREN Y
V5 5xV5 5

[n a similar way, since
B-V2)3+v2)=7
then

2+V3_2+V3 3442
3-V2 3-V2 3+V2
Qe VIG VD) 64333420246
(3 - V23 +V2) 7 '

Exercise 1.7

1 Simplify the following as far as possible:

() 45 by V125 (©) 48
(d /300 e V108 V1728
(@ V252 (hy V10935

2 Evaluate the following products, simplifying where possible:
@ (- V2WV2 by V34 +2V3)
© (V2432 +4) ) (V24+3)2v2-5)
€@  (3V2-4)5v2+6) O @2-V5
@  Q2+3V5) ) (6+2V3)(6 - 2V5).

3 Multiply each of the following by a similar expression to make the product free from
surds; find the product in each case.

@  (3-V6) ®  VT+5 ©  (3vV3-2v2)
4 Rationalise the denominator and as far as possible simplify each of the following.
5 1 7
(a —= by = (©) —=
» 5 5 VE
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4\,/3 l \1/3
(d) (©) —= ) ~
V2 V64 V6
2 13 . 3
(g) ; h) . ()
3I-V3 VS+ V3 3V/5-5
L 2+V3 3V2 -1 /3+1
Q) — (k) \/_7 ] v_/_
V34l 5-22 V32
2V6 () |
(m) ERp (n) ir'~_-t" (0) -
V6+5 V5 -2 (V5 +2y
|
)

(V34202 - 1)

1.4 ERRORS AND THE MODULUS SIGN

Errors

When measurements are made there is a limit on their accuracy. For example, when
measuring a length using a ruler graduated in millimetres we are unable to be more
accurate than the nearest (0.5 mm.

If a length has a true value of 127.8 mm and we measure it as 128 mim the actual error
is (128 — 1272.8)mm = 0.2 mm. In general,

actual error = measured value — true value.

If the measurement is greater than the true value then the actual error is positive; it the
mcasurcment is smaller than the true value then the actual error is negative.

The fractional error or relative error is found by dividing the actual error by the true
value: if expressed as a percentage then it is called the percentage error. In the example

Y

above the fractional error is 'l'(2')7.8 and the percentage error is (T(Z)'I;S x I()())"sb.

In practice. of course. we do not know the true value. we merely estimate it via the
measured value. When there is uncertainty in a measured quantity it is customary to quote
it in the form,

measured value 2 maximum error,
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Hence, if we measured a temperature as 100.3°C and we can rely on the thermometer
reading to the nearest 0.1 °C then we can quote the result as

100.3 £ 0.1 °C.

The magnitude of the actual emor is called the absolute error. In this example the
maximum actual error is +0.1 °C and the maximum absolute error is 0.1 °C.

Modulus sign

The absolute value of a number ignores any sign. Hence the absolute value of —3.81s 3.8
and the absolute value of 6.3 is 6.3. We denote the absolute value of a number by placing
it between two parallel vertical lines, | |. Hence | —3.8] = 3.8 and [6.3| = 6.3. Thesc lines
constitute the modulus sign. It is a very common symbol in mathematics.

Strictly speaking, we should define the relative error as

actual error
exact value

and the percentage error as (100 x relative error) %.

One important result involving absolute values is the triangle inequality. so called
because it corresponds to the geometrical statement that the sum of the lengths of any two
sides of a triangle is greater than or equal to the length of the third side. It can be stated as
follows:

The absolute value of the sum of two numbers is less than or equal to the sum of
their absolute values, or in symbols

la +b] < lal + 1b]

where a and b are the two numbers.

Example
a b a+b la + bl lal + |b|
4.2 35 1.7 2.7 7.7
4.2 -35 0.7 0.7 7.7
-4.2 35 -0.7 0.7 7.7
-4.2 -35 -17 1.7 7.7

In the measurement of the temperature quoted carlier. the maximum absolute
error is  |£0.1]°C=0.1°C: the maximum relative emor is approximately
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0.1
‘ =0.000997 (6d.p.). Given the uncertainty in the measurement, it is not

100.3
sensible to be too precise about the relative emror and we would more reasonably quote it
as 0.001. The maximum percentage eror is approximately 0.01%. Note that we have had
to replace the true value by the measured value to calculate these errors, hence they are
approximations only. When the actual error is small in size compared to the measured
value, these approximations will be quite close to the truth.

Arithmetic with measured values

Example

Example

Let one measured quantity be 10.0+ 0.2 and a second be 40.0+0.5.

The largest value that the sum can be is 10.2 4+ 40.5=250.7 and the smallest value is
9.8 +39.5=49.3. Given this range of possible values we quote the sum as 50.0x0.7.
(Note that 10.0 + 40.0 = 50.0). The absolute error is 0.7 =0.2+0.5.

If we subtracted the smaller quantity from the larger quantity, we could get a result as
large as 40.5 — 9.8=30.7 or a result as small as 39.5 — 10.2=29.3. We quote the
difference as 30.0+0.7. (Note that 40.0 — 10.0=30.0. The absolute error is
0.7=02+05) [

The general result of addition and subtraction of two measured values is as follows:

The absolute error in the sum or the difference of two measured quantities is the
sum of the individual errors.

The general result for multiplication and division of two measured values is as follows:

The relative error in the product or the quotient of two measured quantities is
approximately the sum of the individual relative errors.

A similar result is true for percentage errors.

The largest value that the product of the two measured quantities above can take is
10.2 x 40.5=413.1 and the smallest is 9.8 x 39.5 =387.1; the value calculated from the
measurements is 400.

The maximum relative emor in the product is

387.1 — 400

‘4]3.1 — 400
400

200 \ =0.03275or ;

‘ =0.032 25.

Now the sum of the individual relative errors is

0.2 0.5
‘W’ + |% =0.02 + 0.0125 = 0.0325.
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Furthermore, if we divide the larger quantity by the smailer, the largest value that
40.5 9.5

the quatient can be ts Yy 2 4.1327 and the smallest value is ?—0—2 =~ 3.8725, whereas the

value calculated from the measurements is 4. The symbol >~ means ‘is approximately

equal to'. The maximum approximate relative error is

413274 0.1327
} 3 | = 22~ 00332
or 3'87245 = 4| _0 1375 ~ 0.0319. =

Exercise 1.8

1

i 2

3

Two lengths of 20cm and 50cm respectively are measured respectively as 21 cm and
52 cm. Calculate the actual and fractional errors in each measurement. Find the actual
errors in the sum and difference and the relative errors in the product and quotient. Verify
the general rules on page 24.

The square root of 3 is quoted as 2.24 (24d.p.). Estimate the absolute and relative errors,
quoting both to one signtficant figure.

Calculate the absolute error in the product, the relative error in each measurement and the
relative error in the product for the following pairs of numbers:

(a) 10 cm measured as 9.8 cm, and 25 cm measured as 25.1 cm

(h) 40 cm measured as 41 cm, and 12.5 crm measured as 12 cm

(c) 30 cm measured as 29¢m, and 20 cm measured as 19.5cm.

(1) Verify the triangle inequality for the numbers a = £7. b = +20.

(b) By putting # = —c we can obtain the result |a — ¢| < |a] + |c|. Verify this result in
the cases ¢ = 9. ¢ = L14,

A cube has sides of 2 ¢cm, measured as 2.01 cm. What are the actual and relative errors in
the measured volume? How does the relative error in volume relate to the relative error in
length?

The radius of a sphere is measured as 10 cm but the measurement could be subject to an
error of £0.5 cm. What are the actual and relative errors in its surface area and is volume?
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7 The measurement of the pressure of a gas is subject to a percentage error of 2%, the
volume is measured to an accuracy of 3% and its absolute temperature to an accuracy of
5%. Find the approximate percentage crror in the gas constant, found by multiplying the
pressure by the volume and dividing by the absolute temperature.

= 0.814 862 — 0.814 860

7 8" Evaluate 0.699322 . If the numbers quoted are correct to the number of

decimal places shown, estimate the maximum relative error in the result. Comment on
your answers.




SUMMARY

Fundamental theorem of arithmetic: any integer can be uniquely
expressed as the product of prime factors.

Highest common factor (HCF): the HCF of two integers is the largest
integer which divides exactly into them both.

Lowest common multiple (LCM): the LCM of two integers is equal to
their product divided by their HCF.

Modulus or absolute value: the magnitude of a number: the modulus of x
1s written |x|.

Powers
0" cannot be found " =1
a® x a’ =a**" a*+=a’ =a*™"
(a*)) =a*>* g i=Nak
Fractions:

A fraction is a ratio of integers N/M where M # 0.

If [V]| < |[M| then the fraction is proper.

It |[N| > |M| then the fraction is vulgar.

If all common factors of N and M are cancelled then the fraction is
in its lowest form.

Decimal places (d.p.): the number of digits (or figures) after the decimal
point.

Significant figures (s.f.): thc number of digits in a number which are
relevant to its required level of accuracy.

Scientific notation: a number in the form a x 10" where 7 is the exponent
and «. the mantissa, is a number between 1 and 10.

Surds: expressions involving the sum or difference of rational numbers and
their square roots.

Logarithms:

logan=xifb*=n logn™ = mlogn
log(nm) = logn + log m log(n/m) = logn — log m.

Error: in an approximation to a number error is defined by the relationship

error — approximate value — true value.
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Answers

Exercise 1.1

Exercise 1.2

Exercise 1.3

(a) 2x2x2x3x5x%x19 (b) 2x5x11x11

(c) 41 x 101 (d) Ix3xTxTx7

(e) 3x13x13x29 " 11 x23x71

@) 2x2x5x5x11x%x59 (h) Sx5x 11 x17x17x41

2280 Sum of digits = 12; divisible by 3; 2+8 — 2 — 0 =28, not divisible by 11.

1210  Sum of digits =4, not divisible by 3; 1 + 1 — 2 — 0 = 0, divisible by 11.

4141 Sum of digits = 10, not divisible by 3; 44+ 4 — 1 — 1 = 6, not divisible by 11.
3087 Sum of digits = 18, divisible by 9; 3 + 8 — 0 — 7 = 4, not divisible by 1.
14703 Sum of digits =15, divisible by 3: 1 +7 4+ 3 —4 — 0 = 7, not divisible by 11.
17963 Sum of digits = 26, not divisible by 3; 1 +9 4+ 3 — 7 — 6 = 0, divisible by 11.
64900  Sum of digits = 19, not divisible by 3; 6 +9 —4 = 11, divisible by 11.
3258475 Sum of digits=34, not divisible by 3; 3+5+4+5-2-8-7=0,

divisible by 11.
(a) LCM = 5040, HCF =30 (b) LCM =275880, HCF= 10
(©) LCM =5832, HCF=9 (d) LCM = 3360, HCF = 24

(e) LCM =5040, HCF =12

(a) 210 x 720 = 151200 = 5040 x 30
(b) 1210 x2280=2758800=275880x 10  (c) 72x729=52488 =5832x9

1993, 1997, 1999 are all prime

(a) 17 640 (b) 231525 () 1500750
(d) 19 380 (e) 123/40 $1) 25/147456
(g) 1
(a) 1 in each case
(b) 1 in each case. x° = 1 for x as close to zero as one wishes but 0° is not defined.
(a) 49 (b) 25 () 161 (d) 558
1 281 1836 196
(a) - (b) - =5 (c) = () -



ANSWERS

1 21 31
17 13 150
11 201 1
(d) 10 ﬂ (e) 68 6-|_6 () 258|_8
8 43 194
‘ (a) G (b) -7 13—2 (t) 25_5
7 215 23 gl
@ 4a © -5==%2 O -
i 3 17
8 273 17
7 253 95
6 (a) 38 (b) 330 (<) 202
4 1349
(d) 5 ) —2—1 ()] - m
7 1699 731
968 968
Exercise 1.4
i 131 3
1 (a) E (b) =2 m (c) 3 3
13
(d) - F)
2 @ 0.0375 (b)  0.0666. .. or 0.06
©)  0.909090909 or 0.90 (d)  0.4285714286. .. or 0.42857i
3 (a) —3.152x 10" (4s.f.) (b)  2.57931 x 10° (65.f.)
(©) —3434x 107 % (4s.f) () B.575 % 10° (45.1)
4 (a) 241200000 ) —3.142
(€) 0.0062484 (d) ~0.67

$ The ‘00’ in 0.469 600 are significant digits which means that 0.469 600 is accurate to

within % x 1078,
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6 (a)  6.2835, 6284, 6.28, 6.3
(b) -3.293x 10°, —3.29%10%, —3.3x10°

7 (1) 0.4445, 0.445, 045, 0.5
(b) 0.4444, 0.444, 044, 04

(a) 32:48 (b) 8:32:40.

(a) 20%, 37.5%, 66_% %, 125%; 40%, 83.5%. 112%
23 412 103 625 S

® 150" 0000 ~ 2500 1000 — 8
Exercise 1.5
1 @ 27 () 16 © 15 dy  1/243
€)  4/49 ) 1 (2 02 (hy 004
2 (@ 48 b 18 ©  0.05
) 49/1600 or 0.030625 @ 150 O 419

4 xV increases with p for x > |, e.g. x=35.236 and decreases with vy for x < I, e.g.
x=0.1417. (Forx > l,x" <xfory<land x" > x,y > l;x < 1.x¥ > x for y < 1 and
X <x,y> 1)

5 (a  5.340 by 475810 ° () 98I18x1072
6 r=3498x 10"

7 n=3.1415927 to 7d.p.
22/7=3.142857 1 to 7d.p.
22/7 — 1=1.264x 1072, 0.040% of calculator value
3.142 — 1 = 0.407 x 1073, 0.013% of calculator value

8 (@ No (by —7.127 (c) No (d) —-0.1589 (e) No
If x > 0 then /—x, ¥/—x, &—x, etc., do not exist but &/—x = —¥/x, I/=x = —3/x, etc. do.

Generally (—x)'"* cannot be found unless y is an odd integer.

Exercise 1.6

1 () log, 81=4 (b) logs 125=3 (©) log; 49=2

(d) logy 64 =3 (e) loge 1 =0 (H) logg 8 =1
] 1 1

1 .
(g) Iogm(m) =-2 (h) [0g42 = 5 (l) log4 (2) = —E
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(@  7'=343 by  5°=25 (c) 3'=3
| ,
d 4= 6= — f 25172 =
(d) (c) i (f) 5
(’) 8"1/* 71 (h) x]~|,"4 l
& 2 3
Exercise 1.7
()  3V5 (b)  5V5 () 43
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(f—z)(ﬁ+1)_«/6—2\/§+f3—2:2f_\/6+2_\/§

) G-H2-1) -

Exercise 1.8

1 Actual errors are | em, 2 cm; fractional errors are 0.05. 0.04. Absolute error in sum is
3cm, in difference 3 cm. Relative error in product is 0.092, in quotient 0.094,

2  Absolute error is 0.004, Relative error is 0.002.

3 Absolute error in Relative errors in Relative error in
product the measurements product
(a) —4.02cm’ —0.02, 0.004 —0.0161*
(b) —8cm? 0.025, —0.04 —0.016
(©) —345cm? —0.03, —0.025 —0.0575

* This number is approximate.

5 Actual error in length is 0.1 cm. Actual error in volume is 0.120 601 cm”.
Relative error in length =0.05 and in volume >=0.015075 =~ 3 x relative error in length.

6 95cm < radius < 10.5cm. 1134 < surface area of 1257 < 1386.
3591 < volume of 4189 < 4849.
—0.098 < relative error in surface area < 0.102 >~ 2 x relative area in radius.

—0.143 < relative error in volume < 0.158 =~ 3 x relative error in radius.
7  Percentage error is approximately 1%.

8 Calculated value =~ 0.000 003 178
0.000 000 5 + 0.000 000 5

Relati i tor is = 0.
elative error in numerator is 0.000 002 0.5
Maximum absolute error in result is 0.000 003 178 x | 0.5 + W
0.629 322

< 0.000 001 6

and the result can be quoted as 0.000 003 4 0.000002. This error is approximately two-
thirds of the quoted result, which renders the result worthless. This illustrates the danger
in quoting too many figures in a calculated result.
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Infroduction

Objectives

At the simplest level. algebra can be regarded as generalised arithmetic.,
replacing numbers by letters as variables and allowing us to make general
statements about the relationships between them as formulae or in the
form of equations or inequalities which have to be solved. Formulae are
used in every walk of life: the calculation of interest on a loan, the area of
shapes to be cut from sheets of metal or the period of an oscillation. Ohm'’s
law states that the current flowing through a resistor is proportional to the
potential difference across its ends and this can be concisely restated as a
formula. A thorough understanding of the simpler algebraic processes is
vital for later work.

After working through this chapter you should be able to

evaluate algebraic expressions using the BEDMAS convention
expand expressions using the laws of algebra

interpret formulae

rearrange a formula o make another of the variables the subject
distinguish between an identity and an equation

obtain the solution ol a linear equation in one unknown

recognise the Kinds of solution for two linear simultancous equations
understand the terms direct proportion. inverse proportion and joint
proportion

solve simple problems involving proportion

interpret simple inequalities in terms of intervals on the real line
solve simple inequalities

interpret inequalities involving the modulus of a variable
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2.1 MANIPULATION OF SYMBOLS

In Section 1.3 we stated in words six laws of logarithms. A more compact statement
employs the language of algebra. The laws are restated in words and the algebraic
equivalent placed underneath. The base of the logarithms is «. If z = @* then x = log, =.

1. The logarithm of a product is the sum of the logarithms.

log, (xy) = log, x + log, v

2. The logarithm of a quotient is the difference of the logarithms.

log, (x/¥) = log, x — log, v

3. The logarithm of the power of a number is that power multiplied by the logarithm.

log, (x") = nlog, x

4. The logarithm of | is zero.

log,1 =0

5. The logarithm of the base is 1.

log,u=1

6. The logarithm of a reciprocal of a number is (— 1) multiplied by the logarithm of that
number.

1
log, (—) = log, | —log,x = —log,x
X

Not only is the algebraic statement more compact than its counterpart in words, but it is
also a general statement from which particular results may be deduced. For example, if
we consider Jogarithms with base 10, and have x =3, v =2, the the second law becomes

log,((3/2) = log,, 3 — log,y 2

In this chapter we lay the foundations for a systematic use of the algebraic method.



36 BASIC ALGEBRA

Algebraic quantities are denoted symbolically by letters. The quantity may have a fixed
value; for example, the acceleration due to gravity is denoted by g; it is customary to use
letters at the start of the alphabet for fixed values. The quantity may be able to take
several values; for example, the time that elapses from a given starting point is denoted
by £ it is usual 10 employ letters at the end of the alphabet for quantities that take several
values. Some special numbers arc denoted by letters: for example, you will have met the
number 7 and in Chapter t0 we introduce the number e.

Sometimes we have several related quantilies or we wish to allow the possibility of
generalising our results to situations with more quantities. Then we use the idea of a
subscript, e.g. x;, x,. x;, where 1, 2 and 3 are the subscripts.

Algebraic expressions

Examples

An algebraic expression is a combination of numbers, algebraic quantities and arithmetic
symbols; for example, 2x + 5x2 — 15xy. The conventions we use are illustrated by the
following examples.

Convention Meaning

2x 2 multiplied by x or 2 times x

542 S times v squared

=23 minus 2 times x cubed

15xy 15 times x times y

:)—' ora/h alternative ways of writing g -~ b
af(3h) a divided by the product of 3 and 4.

Notice how we amit the multiplication sign.

In the examples above, the numbers 2, 5, =2, 15 and 3 are called the coefficients of
x, %2, x} . xv and ab respectively. Conventionally they are placed in front of the algebraic
quantities.

It is usefu! to simplify algebraic expressions: the following examples illustrate the
rules.

I. Where the terms are similar they are collected by adding and subtracting the
coefficients. Consider the expression 14x — 3x+ 5x. Now 14 — 34+ 5=16, o the
expression can be simplified (o 16x.

2. Where the terms are not similar they cannot be combined by simply adding or
subtracting the coefficients. The expression 14x — 3y 4+ 5= cannot be simplified
further. But partial simplification is sometimes possibie. In the expression
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Powers

14x — 3y + 5y — 8x we can treat the terms in x and the terms in v separately to arrive
at 6x+2y. (You might find it helpful to rewrite the expression as
14x — 8x + Sy — 3v)

. Different powers of a variable cannot be treated as like terms. The expression 3x + 4x?

cannot be simplified since the terms in x and x? are not considered as like terms. The
expression can be rewritten in a different form which has some benefits; see Section
2.4.

4. Multiplication and division follow the rules for manipulating numbers. For example,

axb=ub=ba=bxa

3ax7Th=3xTxaxb=2lab

ax (=b)y=—ab, (—a)x b= —ub, (—ua)x{(—b)=ab

a _ a_—a -a _a
- b B’ —b b
4 1
- ¢ 2
2><6xyX2><x =J/ZW>< £:4x><2x:8x2
z 3y z By

Txab 1lxab Tab ¢ Tubh

c? ¢ @ “Tlab 1lape

7
=—. B
lle¢

Note that cancellation follows the principles laid down for numbers in Chapter 1.

Just as 5° means 5 x5 x5, so we write a” as a shorthand for a x a x a. The rules we
illustrated in Chapter 1 for powers of numbers can be generalised and expressed
compactly using algebraic notation. Note that «' is simply a.
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Examples

Exercise 2.1

1 a xa*" =" a+d=ad""
(@) = A =1a#0
2 a"":l
at

3. (ab)" = a"b"

s .

a xa' =a « =a = dt
R ~ 2 S

(@) =a' (3xy) = Ot B

Fractional powers are also a generalisation of the case for numbers. The square roots of x
are written /X or ¢!  and. in general, the ath root of a is written «'". When n = 1,
(a'"")" = &' = a. The notation ¢” ¥ can mean the pth power of the gth root of a, ie.
(a' 9Y" or the gth root of the pth power of a, i.c. (a”)' Y. provided the roots exist,

An algebraic expression can be evaluated by substituting specific numerical values
for the algebraic quantities. For example, the value of ¢* when a =2 is 2' =8, the value
of the expression 3x —2v 44z when vy=1., y=-2. z=-3 iv given by
Ix 1 =2x(=2)+4x (- -3+4-12- -5

Simplify the following to a single logarithm:

(a) logp 100 + log,,(1/20) (b logs 6 +loge 4 — 3 logg 2
(«©) log, 20+ log, 3 — 2 log, 2 (d) 4 log,(1/3)

1 1 1
€ S log,(4/9) ] 3 log,(27/8) + 4108 16.

Simplity the following by removing the logarithms:
)
(a) log,, 1000 (h) ,‘log“, 1000 + 2 log,,, 100 — 6log,, V10

(©  log,a* —6log,a'* + 2log,a.
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3* On your calculator find ¢* when x = 1. This should give ¢' = 2.718 281 8, i.e. ¢, the base
of natural logarithms. Now find log ¢, which is in fact log,, . Store this. Find also In 10,
i.c. the natural logarithm of 10 or log, 10. Hence find log;, ¢ x log, 10.

4  Simplity the following algebraic expressions into their simplest form. You may always
assume that the contents of a bracket must be evaluated first of all. A full set of rules
tollows later in the chapter.

(a) S5ab x 6a*h (b) 3a2bh x 2ab

(©) (4 x 3ab) + (6ab?) (d) (a/b) = (b/c)

(e) Qab/c) x (2¢/a) () (2abjc) x (6a*c/b) x (bc/8a)
(@) (6y0z/p) x (19p/3%) + (38z732p~)

thy (@)’ (i {tabyy '

(j) (abc')'/} @bt )2/3.

5 Witha = 1.h=4.¢c =27, evaluate the following:

(a) 6a* + 2bc — 2¢'/3 (b) 3Vab ~ (3(')]/4 + (2[72)”5
3/2 273
() /ﬁ (d) (16bc) "3
a
20} Y ,
(©) {“33’ O le-11)x b

6  Write down algebraic expressions for the following quantities:

(@) Minus one-third of the square root of x plus ¥, the whole expression divided by
the square root of z cubed.
{b) The ratio @ to A multiplied by the fourth power of ¢ with | added to the total.

() The expression in (b) with 3 taken away from it and the result squared.
(d) The sum of x and y, all squared, divided by the sum of the squares of x and y.
(¢) One minus the expression in (d).

7  Reduce the following expressions to their simplest form:

A 16 3/4 (b) (25) -1/2
a) 81 9

(¢y  Pxly=bxy (d) 108x%22 = Oxz

(e)  xL2 15072 () 0 x (i
bl 2 LR N g/2 2"+l - 2"

() (Prz Y x (22T s o) (b TR



40 BASIC ALGEBRA

Expanding bracketed terms

To expand expressions involving brackets, each term inside the brackets is operated on
by cach term outside the brackets. For example,

S(Tx =3)=5x7v -5 x 3y =35x—I5»
- 2Ax+z2)=-2¢-2:
—3a—-b)=-3xa-3x(-h)=-3a+3

We can symbolically represent the key rules as
a(b+c)=ab +ac a(b — ¢) = ab — ac.

Note the example

cx+a)=cx+ca=xc+ac=(x+a)

Example Simplify the expression 2(x + 3y) — 3(2¢ — v).
The expression becomes
2¢ + 6v — 6x + 3v

and then

—4x + Oy, [ |

When two bracketed expressions are placed next to each other they are assumed to
multiply together.

Examples L (=33~ H=xxB)-3xB)+xx (- +(-3)x (-4
=3¢ -9y —dr+ 12 =3 — 13x 4 12

2. (2a + 3b)3a - b) = 6a” + 9ba — 2ab — 3b*
= 6a° + 9ab — 2ab — 3b*
= 64> + Tab - 3b’ [

Recall that the product ab is the same as ba, just as 2 x 3 and 3 x 2 have the same value.
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Convention often puts the letters in alphabetical order. but we sometimes do not follow
it until we have obtained the final result.
We may generalise the ideas by producing statements such as

(a=-blc~dy=ac - bc—ad + bd

but it is not a uscful exercise to try to remember such statements. It is far better to
understand how they are obtained so that you can carry out such manipulations in specific
cases.

Three kinds of product which are widely met are the following. These are worth
remembering.

@+ b’ =(a+bla+h) =a* +2ab+ b
(a = by =(a-Wa—-b)=d’ =2ab+ b
(@+ba—-b)=(-b)lla+b)=da - b

You may verify them for yourself.
Note that the order of precedence of operations is the same as for numbers. so the
acronym BEDMAS applies. For example,

5+ 3y

means that x is squared then multiplied by 3 and by y, the result being added to 5. On the
other hand (5 + 3% )y means Sy + 3¢y,

Adding and subtracting fractions

Examples

The rules are parallel to those for numerical fractions.

a b a+bh
1. —t o= -
c c C
5 @ b _3a 2b 3a+2b Each fraction is replaced by an equi-
2c 3¢ 6¢  6¢ 6¢ valent fraction whose denominator
is the lowest common multiple of
3 4 b _ad b _ad+ch the original denominators.
¥ ¢ d cod cod cd

4 a+b_ad ch _ud +cbh
" ce de cde cde”  ede
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b ax b _ax+h

>3 R R B
6 a +h _3a+2hx_3a+2bx
o2y 3 oexd 6xd T 6x?
h 2 b 2+ b
@@t b ik .
2y x? xi xH? x%y3

Exercise 2.2

1 Multiply out the following algebraic products in full, collecting together all like terms.

(a) 2x=3)}x—-1) (b) Gx+4)3x— D(2x+ 5)

() (2x + y)(3x — ) (d) (x4 2)x? +2)

(e) (2x + y»)3x — 1) () (2x + yX2x = y)x — )

(g (z+alz+b) (h) (x+Ix+2)+(x+3)x+4)
M Gx=yCx—y) =3~y () 2+ )+ 4x(y — 2) + 3p(x + 22).

2 Expand the following expressions:
(a) 6(x — 1)+ 3(x+4)+ 5x (b) 2x—54+93 -5x)+ 11
(c) 19x 4+ 6(4 — 23x) + 74
(d) 2,18y —5.65 — 6.14(9.51y — 2.11) (retain 2d.p.)

© (2o 3_E) as & fracti
7 ? 3 —ﬁ n (as a fraction)
5 1 20 7 ,
) 14(— ——) + 3(——+—> (g) 4(x — 5y + 2(x - x%)
x 2 x 2

{h) 2xy — 6+ x(4 —y) + 14y(2x — 17)

() X (24 x) +5(6 — x%)

) x(2 =z 4 2,(5 + 2x,2)) — 2(x; — 2})
k) xC4+x0)+2G-x0)+2G+1x—x?)

9.72 1 5.18 . _ .
)] |l — —4.18x ) + I (express this as a decimal to 2d.p. with
X ‘ * n=3.14 and ¢=2.72).

3 Prove thata® 4 b* = (¢ + b)(a® — ab + b?). Now replace b by — b and find an expression
for u® — b3,
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4  Fully expand the following expressions:

(@ (= Dx=3) (b)  (2a—1)4a—2)

() (s + 3)(s — 20 (d) (ay ~ Dxy + 1)

(e) (3 —xW5x+2) ) (x— Dix—2)x—3)
(g) =D -2+ +3x—DHx -5 +x—-6

) (=29~ 5P —q) M

) (x+ 1)® and identity the coefficient of X

5  Write down single-fraction expressions for

w 420 n L2 @ 4.0
( ¢ ¢ 2 3¢ T

@  “+Pi o L4l
a c. 7 £ 7
¢ C 2¢ 5S¢
a b a b ¢
) 2 O .
© 3t W 37t 5itea
© 4l o Lyl
x x2 0y 3x  4x2
) a 4 b ¢
8 2x  3x2 4y
b
7  Write in its simplest form the expression ad — with
(a) a=x,b=x*c=1 (b) a=3xb=5"¢=x
) a=x.b=y ¢ =3y (d) a=-—-x.b=-22¢c=—x
(e) a=z.h=z"c=z" (f) a=x"2b=x¥¢=x¥?
g) a=x"3 b =x¥ ¢=x7 (h) a=x—-1,b=x+1,c=x
(i) a=xwb=xrc=y Q) a=3x+1,b=-2x+1,c=x+1.

8 Given that

a+c__ad—+—ch
b d bd

simplify the following sums of fractions, cancelling where necessary. For example, with
a=xb=x*c¢=1.d=xthe formula becomes

Ix 1 2

AR
xx¥ x x
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(a) a=xb=xc=x,d =3x°

(b) a=x—-1lb=xc=2x-1.d =2x

{c) a=x+1,b=c=x—-1.d=x+1

(d) a=2x+1,b=3x—Lc=x+1l.d=2x—1

(e) a=1-3x,b=3—-4x,c=x+6.d=9—x

(H a=a, +ax.b=b +bhyx c=c +ox.d=d +dyx
(g) a=l+xb=l-xc=14+x2d=(1+x)(1~x)
(h) a=1-x2b=2+x2c=1—-x.d=1+x

(i a=x.b=y.c=xd=y

() a=Jx.b=1/yx.c=xd=x",

9 Using a common denominator, simplify

X 3x+5
(x — D2+ l)+(x—2)(x2+ 1)

leaving the numerator as an expanded expression.

10 Multiplying top and bottom is a common practice with algebraic fractions, e.g.

o 1 X(ax—b)_ ax —b
ax+ b (ax+ 0" (ax— b)) a?x2 - b2

Now find the expressions for the following unknowns in brackets

1 A

(a) = (A)
x—1 x =1
Ix+2 A
(®) 2x—1 (2x—Dx-—1) “)
(c) : = 4 (4)
(x—Dix—2) " (x— Dx—2)x = 3)
b A
PRy Sy “
Jx A B
* — —
(e) Sty x—? ¥ (A4, B)
! A
{fH {A).

3/A—2/v 9x—dy

11 Express the following as a single fraction over a common denominator:
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12*

3 5 | 2
@  c+2T ® T4

x x—3 y y

3x—1 2x—1

> 2 d 3 P e
© 2+ @ TR

=1 ] ax+b bx+a
() X ”2+.’T2 o ex+d dite

Prove the following results:
-2

@ @z W -y =
Y

(b) (-”““+—vz)_ N
yz — 23 Stz ozy—2)

2.2 FORMULAE, IDENTITIES, EQUATIONS

Formulae

Example

A simple formula such as

T:2n\/ﬁé

shows how the periodic time of a simple pendulum, 7, is given in terms of its length, /,
and the (constant) acceleration due to gravity, g. Another example is Einstein’s famous
formula:

E =mc

where E represents energy, m mass and ¢ the velocity of light. A formula relates
algebraic quantities to each other. Some of these quantities are called variables because
they can take a range of values. In the pendulum formula T is typically measured in
seconds (s} and can in theory have any positive value. Likewise / is often measured in
metres (m) and again can have any positive value. The acceleration g=9.81ms ? is
tixed, or constant, and this being so means that knowing the value of 7 we can find the
value of / or vice versa. Variables with values that are known are called knowns and
those whose values are not known are called unknowns.

The area of a circle is given by

A=mnr
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where A4 is the area and r is the radius of the circle. If the value of « is taken to be 3.14,
find the areas of the circles of radius

(a) 4cm (b)) 2m.

Solution

(a) When r=4cm then 4=3.142 x 4> =50.272¢cm”.
(b) When r=2m then A =3.142 x 2> = 12.568 m".

Note the units of the area ot the circle. | |

[t is important when writing down a formula to realise that the units in which the values
of the variables are measured must be compatible. If we wished to measure the radius of
the circle in centimetres and the area in square metres, the formula would have to be
modified to read 4 = (0.01)> 72

Exercise 2.3

asn

() Calculate the period time 7 of a simple pendulum of length
() I m () 1.3m
Giy  1.4m. (T =2nJ/T7g). (g =9.81 ms™7)
(b) Older clocks and chronometers were based on the simple pendulum principle. As

the temperature of the environment increases, the metal in the pendulum expands
and its length increases. 7 correspondingly changes. In opposite scasons, i.c.
summer and winter, how would clocks tend to run (i.e. fast/slow)?

Given that ¢ = 3 x 10¥ms ™', and using Einstein’s formula £ = mc?, calculate the energy
in joules stored in | kg of material. (For mass, length and time the basic units are kilogram,
metre and second.)

The surface area (S) and volume (V) of a sphere are given by

. - 2 . 4 3
(1) S =4nr () V= inr’ .

() When the radius »= [0.5m, determine S and V.
(b) If r is reduced by 1%. by approximately what percentage do S and V¥ reduce?
(¢)  If$=100m", find » and hence V. (Retain 4s.f.)
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4 A right circular closed cylinder of radius » and height 4 has total surface area given by
S = 2nr(r+ H). Find S when r=10cm, #=93cm.

5 The energy stored in a capacitor, capacitance C farads. charged to a potential of ¥ volts is

U oo . 6 .
5 CV? joules. When C'=3.58 x [0 " © and V' = 898 determine the energy stored.

For a lens of focal length /. together with object and image distances « and r, the variables
are connected by the formula

anoo)| |l
=)
o

(a) Find fwhen v = 30m and v =20m,

(b) Find © when f = 10m, v = 40m.

Transposing formulae

The necd to rearrange formulae is particularly important when it comes to making one of
the variables in an algebraic expression or formula into the subject of that formula. For
example, T is the subject of the formula

T =2n/l/g.

This form of manipulation or rearrangement is called transposing a formula.

For example, the area 4 of a rectangle of length / and breadth b is given by the formula
A = Ib. We have measured the area to be 4 m” and the length to be 2.5 m; to find a value
for the breadth we need to transpose the formula to b = A//, from which we readily find
that b =4/2.5 = 1.6 m.

The following procedures may be used for transposing formulae:

(1) The same quantity may be added to or subtracted from both sides.
(i) Both sides may be multiplied by or divided by the same quantity.

Note that the same operation must be carried out on both sides.

But this must be treated with caution. If we have formulae in which all quantities have
positive values only, there should be no problem: this is usually the case with physical
quantities. However, since both (—x)* and (+v) =¥ then squaring may cause
difficulties. We shall meet this situation later.
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The operations can become second nature after regular practice. Then short cuts are
often taken.

Given the formula @ = b — ¢ we add c to both sides to obtain @ + ¢ = b. Alternatively,
given a = b + ¢ we subtract ¢ from both sides to obtain @ — ¢ = b. In effect, as ¢ is
transferred to the other side it changes sign.

b
Given a = — we multiply both sides by ¢ to obtain ac = b. Alternatrively, given a = bc
¢
we divide both sides by ¢ to obtain b n effect, as c is transferred to the other side it
(&

changes position from top to bottom or vice versa.

Examples 1. Recall that the focal length fof a lens is given by the formula

11 1

FTate

where u is the distance of the object from the lens and v is the distance of its image
from the lens. First we combine the fractions on the right-hand side so that

| v u vtu

f uv ww  wv

then we invert both sides to obtain

uv
To4u

s

(We could test the validity of the lens formula by measuring the object distance with a
lens of known focal length, calculating the image distance from the formula and
comparing the result with the measured image distance.) First we return to the original

1. . .
formula, subtract — from both sides to obtain
u
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then by inverting both sides we arrive at

_Y
=i/
. Return to the pendulum formula. To make / the subject, square both sides to obtain
/
T2 =4n° -
g

Now multiply by % to remove the terms multiplying /, i.e.
T

sz(é):émzxéx(%):[,sothatl:

2
Sam

. We take a formula from electrostatics:

_ 4142

= r>0.
2 k]
4neyr

To change the subject of the formula to », multiply by the +? factor in the denominator
on the right to obtain

2 UAH
E=—%
g 4me,

then divide by E to obtain

2= 919>
4neyE

or

12
r =+ 99 \ _ (99
4me E dmeyE
taking the positive square root. We can do this because r is positive, since it is a
distance. L]

Sometimes it is not possible to transpose a formula to obtain the required subject.
Consider the formula

1 —T(a+2b)

C T2
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We wish 10 make T the subject. First we multiply by 77 to obtain

then we add T(a + 25) to both sides and produce

T =1~=T(a+2b)

TP+ Tla+2b) = 1.

It is not possible to separate 7 from the lefi-hand side to obtain a formula with 7 only on
the left-hand side and «a, b and ¢ on the right-hand side. Deeper mathematics is required to
isolate T.

Exercise 2.4

Transpose the following formula to make the specified variable (or variables) the subject,
or maybe conclude that such a transposition is not possible.

(a)
(b)
(c)
(d)
()

()

(2)

(h
(i)
W
(k)

]

(m)

(n)

(0)

PV = RT

E = me*

Power = resistance x (currenl)3
32x— 1)+ 56— 3x) =5~ 1!

318 (9.2 —x)+2.64 (3.03 —550)=75

1 /x 1 l/x

3(5‘6)*7(ﬁ“2’):°
! 3 17

g(m)“(_z): 7
X X X

(1 4+ 02a + 3b) = 5S¢t
(2 + 00 =2)=2rt—-10

-

9]

(m. then ¢)
(current)
(x)

(x, to 2D)

(x, as a fraction)

(x)

@)
()

(G, then r)
0
x)

{x)

(x)

(a, then p)
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Bo

8l

#i

Hi

N 4\
(M (*3M> = (ﬁ“\) ()

() TNT+ay=(h—-—TXc—-T) (a, then T)
(r) T +a)=(h—-THc—T? {u, then T)
() (1 =xH)2 —-xH) =" —3x —x (x)
() (=2 -3 -n=06—-1+7 ()
(u) (1=2 -3 -nN=111l = 0)+7 (N
b + h) R}
{v) LLPJ) =(b"+2bg+p7)— plb+p) )
(W)t = a4y (x)

Determine the height 4 of a closed right circular cylinder whose total surface area S is
100m> and whose radius # is 2m. Use S = 2mr(r + A).

Power measured in watts is dissipated in an electric circuit according to the formula
P = VI where V is the clectric potential difference (volts) and [ the current (amps).

() Determine the current flowing through a 60 watt light bulb given V' = 240 volts.

(b) If V' = RI, where R is the electrical resistance of the bulb coil (ohms), determine R.

Electrical resistors, 8. Ry, Ry, connected in parallel have a composite resistance R where

l 1 1 |

RRTRTR
(a) Determine R where R, = 10Q (ohms), R, = 20Q, Ry = 30Q.
(b) If R=12Q and R, = Ry = 40Q what must be the value of R,?

In the motion of a train along a straight track with uniform acceleration «, the distance s
covered by the train obeys the law

.
S =ul + —z—al“

where u is the initial speed.

(a) Obtain ¢ in terms of the other variables.
(h Working in metres and seconds, obtain ¢ (ms 7) when u= [0kmh ™', s = 100m,
1=100s.

It an explosive force W makes a crater in the ground of radius r and p is the density of the

ERLE
) = (. a constant.

soil medium, then r(w
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(a) Express W in terms of the other variables.
(b) IfC=p=1andr=10, find W

i 7  The stopping distance of a car measured in feet when its speed is measured as v in mph, is
given by d=1.08¢ + 0.057¢%.

(a) Find d when v = 60 mph.

(b)*  Use trial and error, incrementing upwards one unit at a time, to find the maximum
speed of a car to the nearest | mph if it has to stop in 300 feet.

8 Celsius and Fahrenheit temperatures are related by the formula

C _F-32
57 9

(a) What Fahrenheit temperature corresponds to 100°C?
(b) What is the Celsius equivalent of 80 °F?
©) When do the Celsius and Fahrenheit temperatures coincide?

Identities
An identity is a statement that two algebraic expressions are absolutely identical.
Whatever values are given to the variable quantities involved, the resulting numerical
values of the expressions are equal.

Example

+2)x+3)=x>+5x+6
is an identity. If, for instance, we put x = 3 we obtain
5 x 6 on the left-hand side and 9 + 15 + 6 on the right.

Both numbers are 30 and the result is true. Similarly, putting x = —4 gives (—2) x (—1)
and (—4)2 + 5 x (—4) + 6; since both numbers are equal to 2 the result is again true.
(You can verify the identity by multiplying out the left-hand side in its general form.) M

Notice the use of the = sign to emphasise equivalence.

Strictly speaking, we should rewrite results like (a + b)(@ — b) = a* — b? as identities,
namely (a + b)(a — b) = a* — b?, since whatever values of ¢ and b are used, the left-hand
side and the right-hand side are equal.
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Equations

Example

Sometimes we can use an identity to determine unknown coefficients. For example,
suppose that

X 42x+1l=x+2ax+2a+b

then the coefficients of x on each side must be equal. Hence 2 must equal 2a, from which
we deduce that a is equal to |. The constant terms on each side must be equal so that
2a + b must equal 1, and since ¢ has the value | it follows that / has the value —1.

An equation is a statement that two quantities are equal. It is usual for such an equation
to contain at least one unknown quantity. In the case of an equation in one unknown the
equation will only be valid if the unknown is assigned one or more of certain special
values, which are called solutions of the equation; sometimes they are called roots of the
equation.

For example, the equation

x+2=5

has only one solution, or root, namely x = 3. For no other value of x will the left-hand
side of the equation be equal to 5. The value for x is said to satisfy the equation. The
process of finding all the solutions of the equation is called solving the equation.

The most simple form of equation in one variable or unknown is the linear equation.
In its standard form it is wntten ax = b. Provided « is non-zero, the solution can be
obtained from the formula x = b/a, produced by dividing both sides of the equation by a.
This means there is only one solution. Notice that the manipulation of equations follows
the same rules as transposition of formulae. You should be clear what distinguishes a
formula from an equation.

Solve the equation
4x+5="Tx—4.

Transfer 4x to the right-hand side of the equation (by subtracting 4x from both sides) to
obtain

S=Tx—4x—4.

Now add 4 to both sides: this transfers —4 to the left-hand side, so that

S+4="7¢x—4x
le. 9 = 3x
or 3x=9

Hence x=3. N
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Simultaneous equations

Example

If we have an equation of the form
x4+ 2v =3,

neither x nor v can be found without knowledge of the other: for example, if x= -3,
—~5+2y =3 s02v=8and y=4.

But if a second simultaneous equation 4x — 3y = 1 is introduced, a solution can be
found.

We write
Xx+2y=3 (1
4x —3v = 1. (2)

Multiply equation (1) by 3 and equation (2) by 2 then add them to give
Ix+6v+8x—6y=3x+8&=9+2

hence llx =11 and x = 1.

Substituting into either (1) or (2) gives y = 1.

It is not surprising that two simultaneous equations are needed to find two unknowns
uniquely. but this information may not be sufficicnt, as the following examples will show.

Consider the sets of equations

@ x4+v =1
x+y =2
by x+y =1
2x+2y =2

The first set of equations is algebraic nonsense and the second set gives repeated
information. We say that set (a) is inconsistent; the cquations can never be solved. On the
other hand, set (b) has infinitely many ‘solutions’, for example, x=0.y =1, or
x=1l,y=00orx=2v=—-1. ]

In general, we require an equation for each unknown. Hence with three unknowns we
require three simultaneous equations, with the proviso that we may find no solution or
infinitely many possible solutions.
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Example

Exercise 2.5

1

Consider the system of equations

Ix+v+z=14 (1
2x—y+2z=15 2)
x+2y—-3z=-17. 3)

We can, for example, eliminate z temporarily by multiplying equation (1)} by 2 and
subtracting it from equation (2). More concisely, (2) — 2 x (1) gives

2x—y+22)-23x+y+2)=—-4x—-3v=15-2 x 14 =—13.
Changing sign throughout, i.e. multiplying both sides by — 1, we obtain
4x + 3y = 13. (4)

We can also eliminate z by adding 3 x equation (2) to 2 x equation (3), or more concisely
3x(2)+2x%x(3), to give

(6x —3y+62)+(2x+4y —62) =8x+y=3x15-2x17=45-34=11.
S0 we have
8x+y=11I. (5)

Equations (4) and (5) can be solved to give x = 1.y = 3 and any of the equations (1), (2)
or (3) shows that z = 8. Tt is usually advisable to check your results in the two equations
other than the one just used to find z. [ ]

This is a good illustration of a wider principle in that three linear equations in three
unknowns can be solved, provided each of the three equations represents a totally
independent and consistent piece of information. In fact this result can be extended
upwards to greater numbers of linear equations in the same number of unknowns.

Establish whether the following are identities or equations. Solve any equations for x.
(a) (=)l +x+24+xH=1-x

(b) (l—x) (1 +x+x2+x)=1-x

(c) =2 =14 - 7x

(d)  x(xZ+1D)+6(7+ 1) —x*(x+6)—(6x+11)=0

(e) X2+ +6(x* + 1) —x3(x+6)—(llx+6)=0
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2 In the following identities compare coefficients so that the unknown constants can be
found. For example,

X+ 2+ 1=x* 4 2ax + a + b gives
a=1and2a+b =1 sothatb=—1.

(a) P raltt@+bx+a+rb+e=x +3x +2x+ 1

n

1\? m
(b) (x——) =x"+k+5+3

X
© HE=@x-1)4ax—1)+b
@) 2(x+y)2—(x—y)2+3(x+y)—(x—y)—:—x2 +axy+yz+bc+cy

(e) x+1Y - =32+px+gqg

3 The identity a(x + 1)(x +2) + b(x + 1) + ¢ = 2x* — 5x + 7 is given.

(a) Expand the brackets and determine a, b, ¢ (the coefficients of x%, x and the constant
term).
(b) Alternatively, let x = —1 then x = —2 in order to read off ¢, b and 4 in turn.
4 Given that

x3+3px2+qx+rs(x+a)3

equate the coefficients to show that
(@ ¢=3a by r=a.

How are g and » related?
5 Determine a, given that
4t — 41 — 28x% — 8x + | = (4x° + 3x + )(x* + ax + 1).
6  Identities involving powers can be compared as follows. If, for example,
(xy)x /vy = X2, then x*yx"y " = x2.
Then

¥ =% and =1, sothata=b=1.
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80

Determine the powers in the identities that follow:

b
(@) (x4 «{) =5 (b ¥y lt=1 (x#y)

© eyl = a0y (d) (xy)“(xz/.\»)"(é) =1

(In (d) determine the relationship between a and c.)

© (2@ (i) =2
Xy

O @) ) ) =
: #
(g) (X2/3ﬁf') (anyﬁ/}Zb) =7
Z
) Y @QPY (/) = 4y
In physics use is made of dimensional analysis so that physical quantities are expressible

in terms of powers of the basic quantities, mass [M], length [L] and time (7]. By equating
identical powers on both sides of the equation, find x, y and z to satisfy

mP
[L]ZZ[T]2:

W

N
i.e.notethat 3 =-x+4+y—2z [L]
“l=-x -2 [T}

0= x +z [M]

M]IL] «
=[L] -
T (]

The wind force F acting upon a large high-sided vehicle is believed to be proportional to
its exposed area 4, the relative velocity of the wind V' and the density of the air p, i.e.
FocAPVep.

My 1LY
DEGENGRE

(b)

In dimensional analysis
(Fl=MLT7 =T =[]  [pl=IML7)
By writing
[MLT ] = (LT 'PIL2F ML)

obtain values for p and ¢ and r.
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9 Determine the unknown variables, i.e. solve the simultaneous equations, in the following

cases. If the equations cannot be solved, state the reason why.

(a)
(b)
()
(d)
(e)

0

(hm

()

M

Hint: in (m) divide by xyz throughout and work with

10" Solve the sets of equations given below by using one equation to reduce the number of

Ix+2y=5
6x+2y+3z=19
4x —-5v=4

6x+ 10y =35
9z —11b=4a
3z+5b=2a

3.52y +4.61z = 19.81
—2.56y +7.81z = 25.02

x—3y=2
—2x+6y=-4

Ix+2y+52=22
—2x—6y+Tz=7
Sx+3v—-5z2=-4

3 2
Z4+Z=5
Xy
5 1
T—6 -
y Y
3x+2y+4z=28
X+y+4+z=3
x+2z=2

variables in the other equations.

(a)

(<)

ab+c¢ =11
b—c=1
2b+3¢=12
2 +27 =9
13x2 -3y =1
x(x —2y)=5.

given y =1

givenx=1y=2

find

QN

QIS

(retain 3d.p.)

(g)

)

k)

(m)*

(b)

x—3y=2
—2x+ 6y = -2

6p+59—14r=—12

p+g+r= 15
p—qg+2r= 16

x+y=3
¥ -yt =-3

xw+2xz+3yz=06

=3xy+4dxz+ llyz=12
—2xy —5xz+ 15z =8
xyz =1

1
z

= | —_
| —

@ +b+c=4
ala+b)y+c=2
b—1=0

In the following M, N and P are integers lying between 1 and 9.
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(d) M +N =10 (e) M+ 2N +3P =10
MN =12 MN =6
(] M+N+P=6
MNP = 6.

2.3 PROPORTIONALITY

Examples

The simplest relationship between two variables is one in which one of the variables is
proportional to the other.

The variable y is said to be directly proportional to (or sometimes simply
proportional to) the variable x if y = Cx where C is a constant, called the constant of
proportionality. It is also possible to write the direct proportion relationship as v « x but
we shall not use that notation here.

It follows from this definition that if the value of x is doubled then the value of v is
doubled, if the value x is divided by 5 then the value of v is divided by 5 and so on. The
converse is also true.

As an example, suppose that y = 3x. When x = 2,y = 6; when x = 4,y = 12; when

6
X=—,y= g) If we halve the value of v to 3 then the value of x is also halved, to 1.

5
Two examples of direct proportion are the potential difference across the ends of an
electrical conductor and the current flowing through the conductor, and the load placed
on a spring suspended vertically and the extension produced in the spring.
Other forms of proportionality exist. The variable v is said to be inversely
proportional to the variable x if
C
Yy =—
. X
where C is a constant. Here, for example, if the value of x is doubled then the value of y is

halved and vice versa. An example of inverse proportion is the pressure of a fixed mass of
an ideal gas and its volume, when the temperature of the gas is held constant.

1. The potential difference across the ends of a conductor is 6 volts when the current
flowing through it is 0.5 amp. Find the potential difference across the ends when the
current is 0.35 amp then find the current flowing through the conductor when the
potential difference is (.8 volt.

Let the potential difference be ¥ (volts) when the current is i (amps); then V' = Ri
where R is a constant (called the resistance and measured in ohms). Then
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6=Rx05 so R=12 and the relationship is V =12i If /=035 then
V' =12 x 0.35 = 4.2, so the potential difference is 4.2 volts.
When V'=0.8 we have the result that 0.8 = Ri = 121, so

08 8 1
=12 T 1207 15 AP

It is possible o use an alternative method if the value of R is not required. Let the
potential difference be V| (volts) when the current is i; (amps) and be V, (volts) when
the current is i, (amps). Then V| = Ri| and ¥, = Ri, so that

V V.
R=-1=-22
I L
Hence
V, x iy Vy, x i
Vo=—= and i, =———
2 i 2 v,

Check that these two formulae give the same values for the problems we have just
solved.

The pressure of an ideal gas is 1 x 10° pascals (Pa) when its volume is 0.8 litre. The
gas is compressed to a volume of (0.5 litre; what is its pressure? At what volume would
the pressure be 2.5 x 10* Pa? Assume constant temperature. k
Let the pressure of the gas be p (Pa) and its volume be V (litres). Then p = — where
k is a constant. Therefore v
k

1 x10° = —
* 08

s0o k=0.8x 10° =8 x 10*. When

8 x 104
V=05p=or ~ =16x 10°= 1.6 x 10°Pa
0.5
and when
4

p=25x10°25x 10° = XVIO

SO
g§x10* 8 32
y=""21 2 2% 37 itres.

T25x10° 25 10
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Again, we note an alternative method. If

k d k
=— an =—
P v, P2 v,
then
k=pV, =pV,.
Hence
4 v
v, PN d P B u
P> B Vs

Other forms of proportionality

Example

For the simple pendulum we had the formula

T =2n 1
g

where T is the period (in seconds), { is the length of the pendulum (in metres) and g is the
constant acceleration due to gravity (9.81 ms ™ ?).
We may write this relationship as

T=CJl or T=c¢I"?

2
where C is the constant T 0.641 (3d.p.). We say that 7 is proportional to the square
root of /. Ve

4
The volume of a sphere of radius a is given by ¥V = 37{(13. We say that V is proportional

to the cube of a. If @ is measured in metres (m) then ¥ is measured in cubic metres (m”).

In both these examples we can work out values directly from the formula since the
constant has the same value for all cases. Whatever sphere we deal with, the constant of
proportionality is always the same, namely 4n/3. However, in the case of the pressure
and volume of an ideal gas the constant of proportionality depends upon temperature and
upon the gas under consideration. In the case of the electrical conductor the constant of
proportionality depends, among other factors, on the material from which the conductor
is made.

When an object falls through the air, the upwards resistance to its motion is proportional
to the square of its speed. On measuring the speed on two occasions separated by 10s it is
observed that the speed has doubled. By how much has the resistance increased?
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Let v be the speed of the object in metres per second (m s~ ') and R the resistance in
kiloNewtons (kN). Then R = cv* where ¢ is a constant. Hence R, = c¢v? and R, = c13.

Therefore
2
R R R, ©
5 = 5 and R_ = 3
v 1n

Since /v, = 2, we get R, /R, = 4, so the resistance has quadrupled. It is worth noting
that if such an object were allowed 1o fall for long enough (by being dropped from a
sufficiently great height) then its speed would not continue to increase without limit. At
some point the resistance would reach a value equal to the weight of the object: then the
speed of the object would remain constant at the terminal speed. ]

Simultaneous proportionality

In physics it is known that the gravitational force of attraction between two objects varies
directly as the mass of the first object, directly as the mass of the second object and
inversely as the square of the distance between the objects.

The phrase ‘varies directly as’ is another way of saying ‘is directly proportional to” and
the phrase ‘varies inversely as’ means the same as ‘is inversely proportional to’.

Hence if the mass of the first object is m (kg), the mass of the second object is m, (kg),
the distance between them is » (m) and the gravitational force of attraction is 7 (kN) then
we may say that

i F=km where &, is a constant
(1) F =km, where &, is a constant
(ili) F = ky/r? where k; is a constant.

We can combine these three relationships into a single statement:

F= Gmlmz

2

where G is a constant. G is known as the universal constant of gravitation; its value is
approximately 6.67 x 10 ~''Nm? kg ~?. We can reassure ourselves that the combined
formula is correct. For example, statement (i) really means that m, and » do not vary. In
the combined formula, if m, and r are constants,

constant x m,; X constant

(constant)2
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F = constant x m;

which is statement (i).
Check that (i1) and (ii1) are also embraced in the combined formula.
Example

Find the force of attraction between two masses, one of 107 kg and the other of 5 x 10% kg,
which are approaching each other, at the instant when they are 10°km apart. If the
distance between them is halved, what happens to the force of attraction?

6.67 x 107" x 10° x 5 x 10*  6.67 x5 x 107}
F:«-— y ~ = —

10% x 104 LO¥
=667 x5x 107" =3335x 107N

Since the force of attraction is inversely proportional to the square of the distance apart,
halving the distance results in a fourfold increase in the force, which will then be

4x3335x10°""N=1334x 107" N.

Exercise 2.6

% 1 The pressure P in a tank of water is proportional 10 depth A below the surface. Find the
tormula relating the pressure in pascals and the depth in millimetres, and complete the
table below.

Pressure p (P) 24525 5886
Depth # (mm) 250 400
i 2

The pressure of a fixed mass of an ideal gas expanding at constant temperature is directly
proportional to its density. Find the formula relating the pressure in pascals to the density
in kilograms per cubic metre, and complete the table below.

Pressure p (Pa) 10 10°
Density p (kgm ) 0.09 0.18
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3

) S

w7

The frequency f of vibration of a stretched string is inversely proportional to its length 4.
Find the formula relating the frequency (Hz) to the length (m), and complete the table
below.

Frequency / (Hz) 250 320
Length A4 (m) 1.5 0.6

Using the data of Question 3 find the effect of increasing the length by 25%, 50%, 150%.
Also find the effects of increasing the length from 300 m to 400 m, and of decreasing the
length from 200m to {50 m.

The distance s fallen by an object released from rest is proportional to the square of the
elapsed time 1. When r=4, s=7.85m. Find the distance fallen when (i) r=28s (ii)
t=165s. Find the time at which the distance fallen is 100 m.

The power P watts (W) in an electrical circuit is proportional to the square of the current i
amps (A) flowing through it. When i =3 A, P=90 W. What is the effect of increasing the
current to 4 A? If the power is 50 W, what is the current in the circuit?

The velocity of sound v in a gas is proportional to the square root of the pressure p in the
gas and inversely proportional to the square root of its density p. Write down a formula
relating v to p and p. Given that =328 when p = 10° and p = 1.3, find the value of p
when © =300 and p=1.25. Also find the value of p when p = 3 x 10* and v =350,

A satellite is in geostationary orbit above the Earth, i.e. it is always directly above the same
point on the Earth’s surface, hence its period of orbit is the same as that of the Earth,
namely 86400 s. The formula relating the period T in seconds to the radius r of the orbit in
kilometres (relative to the centre of the Earth) is

where the universal gravitational constant, G = 6.67 x 107! Nm?kg ~? and the mass of

the Earth, M = 6 x 10 kg. What is the value of »? If the satellite is moved into an orbit
where r=40000 km, find the effect on 7.
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9 The velocity v of sound in a solid is related to the Young’s modulus £ and the density p of
the solid by the formula

E
v= |-

1Y

If = is measured in metres per second (ms~') and p in kilograms per cubic metre
(kg m ) what are the units of £7?

10* Gravitational acceleration g at a point is inversely proportional to the square of the distance
r of that point from the centre of the Earth. If the gravitational acceleration at the surface of
the Earth 1s g, write down a formula for g in terms of ». The Earth may be considered as a
sphere of radius R.
What is the effect on the period of a simple pendulum if it is moved from the Earth’s
surface to a point at altitude 1km? You may assume that R=6400km and that
2 =9.8Ims °

2.4 FACTORISATION

Algebraic expressions often need to be factorised so they can be simplified, perhaps
to solve equations. Manipulative skill and experience play an important part. Looking
for factors is often based on trial and error, and we must always remember that
certain expressions do not factorise, i.e. they do not decompose into multiplied
components. Even when factors can be found it may be very difficult to discover
them.

From earlier work we can see that

(a+ b)a — 2b) = &® + bu — 2ab — 2b?
=a’ —ab - 20°.

It is a much harder task, starting from the expression a> — ab — 2b? to deduce that it can
be written as the product (¢ + b)a — 2b). This is the art of factorisation.

In the following examples we look essentially for the highest common factors of the
terms in the expression.
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Examples

1. Factorise 27x% — 18x°.
The HCF of the numbers 27 and 18 is 9; the HCF of x* and x? is x*. Hence

27 — 18%% = 9x°(3) — 9’ (2x)
= 9x(3 — 2x).

2. Factorise 20x + 4x°.
The HCF of 20 and 4 is 4 and of x and x* is x. Hence

20x + 4% = 4x(5) + 4x(x?)
= 4x(5 + x°).

3. Factorise dxy + 8v* + 10x%y.
The HCF of 4, 8 and 10 is 2 and of xy, v* and x*v is v. Hence

4xy + 817 + 107y = 20(2x + 4y + 55, |

Quadratic expressions

Example

An expression of the type ax® + hx + ¢ is called a quadratic expression (in x). The only
requirement is that ¢ must be non-zero. Examples are —2x° + 5x + 6. 2x* — 7, X% 4+ 3x. If
possible, a quadratic expression can be factorised as the product of linear factors.

First we consider the case where the coefticient of x> is 1. The process is one of
systematic trial and error.

Consider the expression x> — Sy + 6. Try (x — x)(x — /) as a possible factorisation.
Multiplying this out gives (x — 2)(x — ) = M= (x4 Px + 2ft.

Comparison with the original expression implies that the numbers % and /§ must obey
the equations

o+ f# = minus the coefficientof x =35
aff = the constant term =6.

By trial and error we see that the numbers 2 and 3 clearly satisfy these equations. Hence

PS4 6=(r—2x—-3)=(x— 3¥x — 2). |
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It is worth remarking that if the constant term is positive then % and f# have the same
sign, positve it the coefficient of xis positive and negative il it is negative. 1t the constant
term s negative then % and f have opposite signs: af the coefficient of x s positive then
the lurger-sized number is positive and vice versa.

Example Fadv+dI=(v+ Dix+3) Varv—6= (x4 3INr—2)
r=dv+3=(x- 1}y -3 Fox-6=(x+ 2~ 3) |

Cenain forms of the quadratic expression have simple factorisations which are worth
leuarning:

P 42ax+ad =@x+a)
x=2ax+ a* = (x — a)
¥ —a = (x+a)x - a).

Examples \ s
P e+ 9= 43
Vo4 = -2

¥ =25=(+ S -5). n

If vou can “spot” a factor then it allows a simplification of the factonsation process. In

general, i (x — a) is o factor of an expression then putting x = @ makes the value of the

expression equal to zero. For example, x* — Sx + 6 = (x — 2)(x — 3). If we put either

x — 2 or x — 3 the expression x° — Sy + 6 is zero.
Example Consider the expression v' — 1207 4+ 34y — 48 We see that ¥ = 2 makes the value

of the expression 8 — 12 x 4 + 88 — 48 — 0.
Henee x° — 1207 4 44x — 48 = (x — 2) x (quadratic).

In the sccond pair of brackets we can fill in some gaps. x' — v x ¥ and —48
— =2 x 24, Then x' = 12%° + 44x — 4% = (v — 2}x7 + 2v + 24) where 2 has to be

determined.
Looking at the terms in x° on the right-hand side, we obtain =23 + xv”; on the left-
hand  side  we  have  —I12¥. hence 2= -10 and &' — 1267 4 44x - 48

= (x = 2 = 10x + 24).
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Example

The quadratic expression can be factorised by the method outlined earlier as
(x — 4)x — 6), s0 x> — 12x? + 44x — 48 = (x — 2)(x — 4)(x — 6). |

The situation where the coefticient x? is not | is more tedious and requires greater care.

Consider the expression 14x? + 65x — 25. We could try dividing by 14 and proceeding as
before but this leads to difficult arithmetic. It is better to note that 7 and 2, and 14 and 1
are factor combinations of 14 and that 5 and 5, and 25 and [ are factor combinations of
25. The factors to try are

(7x +5), (7x — 5), (2x + 5), (2x — 5) and so on

until the combinations of (7, 2) or (14. 1), (5, 5) or (25, 1) are exhausted. Eventually we
see that the factors are

(14x —5) and (x+95). |
But suppose we have the expression 14x° 4+ x 4+ 25; none of the possible combinations

will work and we must accept that there are no factors. In Section 4.2 we shall see how to
determine this possibility in advance of any trial and error process for the factors.

Algebraic fractions

Examples

The simplification of algebraic fractions is often helped by factorisation, For example,

bx ox 3

253 + 4x = 2x(x2 4+2)  x242°

x—2
1. Simplify the fraction ,—Y——
X —x—2

The denominator can be factorised into the product (x — 2)(x 4 1). Hence, cancelling

1
the factor (x — 2) top and bottom, we obtain the result R
X

,
x~—=5x+6
2. Simplify &0

L

Factorising the numerator and denominator and cancelling we obtain

(x—2)(x—3)_x—2
(=3¢  x=3
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Sxy + x

The fraction can be written to allow cancellation:

Scy+x x(Sy+1)  Sy+1
x +x3y x(2+xv) 24w

2 442
. N G x+y
4. Simplify (——2——)(2—)—)
xr—v)
There are no common factors between the denominator and the numerator, indeed the
numerator cannot be factorised further. The fraction is in its simplest form.

5. Write the following expression as a single fraction:

2 n 3
X2 4+4x+3  5x2—5x—10"

First we factorise the denominators to obtain

) 3
e+ D) s —2)

The HCF of the denominators is 5(x 4+ 3)(x + 1)(x — 2). Hence the expression
becomes

2 x 5(x —2) 3(x +3) 10(x —2) + 3(x +3)
S+ 3+ Dx—2)  Sx+ Dx —2)0x +3) 5G4+ 3)x+ Dix—2)
1 —-204+3x+9
TS+ 3)x 4 D(x - 2)
_ 13x — 11
TS(x+ 3+ Dx—2)

No cancellation is possible between the numerator and the denominator and we cannot
simplify the expression further.

6. Write the following expression as a single fraction:

_ w42 4
Txl4x=2 -1
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Here is the solution:

E= 3x+2 N 4
T+ -1 (x—-Dx+1)
(Bx+2)x+ 1) 4(x +2)

T+ —Do+ D) TG+ - D+ D)
_Br+ 2+ D44 +2)

(x+2)x = 1Dx+1)
3+ 2x+3x+2+4x+ 8

(D= Dix+1)

_ 32 4+ 9%+ 10
T+ 20— e+ 1)

. |
Exercise 2.7

1 Factorise the following expressions where possible or conclude that there are no simple

factors.
(@ X —Tx+12 (b)  9x* =100
() 49 -7 (d) 4’ —4x-8
(e) 210 + 13x -2 (H 33¢% —35x - 12
(2) 8 —27pg +94° (hy X 42x43
(i) ¥ — 11 +26x— 16 () 300 — 1270% + 1 74x — 77
(k) 6x3 — 17x° — 6lx + 132 () Im(m + 2n) — 2mn — 4n®
(m) x—yP+x -y m  Gp+glg-p)+4¢ -p’
2 Express as a single fraction, factorising and cancelling where possible:

x+4 1 1
(a) ) =1 (b) -

x+3 y+1 (x4 1)

3 Sx Sx + 1 2

() + (d) +

x4+ 1 4 4+4x+ ] 2—x-2 x2-4

1 | ]
(e) ~( - - )
S\w+1l yv+6

1 2
(x— D{x+ l)(x—2)+ (x — lx + D)(x —3)

)
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x+1 x+2 x+3
R T R I TR L L e Ly ¢
w Pt N Ja+3ivb 2
P-4 ptyq a—b Ja+ b
L om(l+ 1) e
v I+ m 721 +n
The identity

1 _ 4, B
x—De—2)"x—=1 x-=2

can be written as
- 1 =A(x—2)+B(x—l)
(x—1)x—=2)  (x—~Dx=2)

1e. A(x — 2)+ B(x — 1) = 1, by comparing numerators.

(a) Comparing coetficients of x and the constant term. determine 4 and B.
(b Instead, try setting x = | and x = 2 in tum, reading off 4 and B.

Repeat the procedures in Question 3 for the following identities finding A4, B, C as
appropriate.

x+ 1 4 B
@ o2 TyS1 T2
(b) l -4 , 8
G+ D2 +S) G+ D) (2x+9)
A 5x+ 6 A B
i §VE TN Tl MV Gk yopriy
(d) ] = A + B + ¢
(x—IDx—2x—3) x—-1 x—-2 x-3
2+ 1 a4 B C
@ T DTG a1 Txt2 T xr3
(f)* ©oxt3 -4 5, C
x4+ Dx+3)Nx—1 2x+1 x+3 x-—1
X+ Dx+27 x+1 x+2 (x+2)

In (g) the identity must hold for all x, e.g. x = 0. Use this fact to find B, knowing 4 and C.
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5*

6*

The following expressions all have factors which involve small integers. Step sensibly
through the integers between —4 and 4 to identify factors of the following expressions:

(@ £ H+22-5-6 b)) =142 +35x-6
© X =3x+2 (d)y =37 43—
(e) =23 — 1352 + 14x + 24

Show that x4+ Il and x — 6 are each factors of the expression

x4+ Txt — 61 — 1637 + 300x + 396

and that the other factors are in (a).

By letting @ = A show that ¢ — b is a factor of
@b — )+ b (c — a) + Ala — b).

Hence show that the expression is equivalent to —(a — P} b — c)(¢ — a).

2.5 SIMPLE INEQUALITIES

An inequality is a statement about two quantities which are not equal. As an example *5 is
greater than 3" which is written 5 > 3, where the symbol > means ‘is greater than’.
Numbers can be represented by points on a line called the real line. Figure 2.1 shows a
section of the line with some numbers indicated on it.

Figure 2.1 The redl line

We see that the number 5 lies to the right of the number 3. which is the gcometrical
equivalent of the statement 5 > 3. Conversely 3 lies to the left of 5; we say that 3 is less
than 5 and we write 3 < 5. There are two other symbols that we introduce here: < means
‘is less than or equal to’ and > means ‘is greater than or equal to’. Hence 4 < 7 and
4 <4,7>4and 4 > 4 are all true statements.

As with equations, inequalities can be unravelled by applying some simple rules:

(i) I the same quantity is added to or subtracted from both sides of an inequality then the
inequality is still true,

For example, given that 5> 3,54+4>3+4and 5—-2 > 3 - 2.
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Example

(i) If both sides of an inequality are multiplied by or divided by the same positive
quantity (i.e. a quantity > Q) then the inequality is still true.

5 3
For example, 5 x 2 > 3 x 2 and i

(iii) If both sides of an inequality are multiplied or divided by the same negative quantity
(i.e. a quantity < 0) then the inequality is no longer true. but if the inequality sign is
reversed the resulting inequality is true.

For example, 5 x (—2) is not greater than 3 x (—2) since — 10 lies to the
of left —6.

5
However, 5 x (—2) < 3 x (—2); similarly, 4 < =
When an inequality is multiplied (divided) by a negative quantity, it reverses all three
components of the inequality: left-hand side, inequality sign and right-hand side. Hence if
6 > —2 then —6 < +2.
We may summarise the results algebraically as

(i) ifa>bthenua+c>b+c
(i) fa<bthena+c¢ <b+c
(iii) if @ > band /2 > 0 then Za > ib
(iv) if a > b and 2 < O then ia < ib

Other results which are of use are

(v) ifa>bthena—5b> 0, and vice versa

(vi) if ab > 0 then either a > 0 and b > 0
ora<0and b < 0

(vil) if ab < O then either a > 0 and b < 0
ora<0and b > 0.

(a) Show that if g > b then &® > P it b > O but a® < b? if u < 0.
(b) If «? > h2, is it true that g > H?

Solution

(a) If b > O then it follows that ¢ > 0. And if ¢ > b,

axa>axb and bxa>bxb
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so that @ > ab > b%, ie. a> > 2. If a < 0 then b < 0 also. Hence if ¢ > b,
axa<axb and bxa<hxb
so that &? < ab < bH%, from which we conclude that a? < b2

(b) fa=—3and b =2thena’ =9,»> =4 and ¢’ > #°. But a < b. Hence the claim is
talse. ]

Intervals on the real line

Suppose we wish to find the values of x for which the inequality
S—4x>3x42

is true,
We add 4x to both sides so that

S>T7x+2

then we subtract 2 from both sides to obtain
3>Txor7x <3

finally, we divide both sides by 7 giving

3

X <
This represents an interval on the real line which is depicted in Figure 2.2(a). Figure

4
2.2(b) depicts the interval x > — 5 If the inequality includes the = option, we say that

the endpoint is included and the interval is closed at that end; the symbol @ is used to
indicate this, whereas if the endpoint is not included we use the symbol O and declare the
interval open at that end.

O— *—
3 _4
! (a) 3 (b)

Figure 2.2 Intervals on the redl line
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(a) (b)
Figure 2.3 Finite intervals on the real line

Figure 2.3(a) depicts an interval open at both ends; it is the interval where x < 3 and
also x > —2: we write these two inequalities as one statement:

-2 <x <3

Figure 2.3(b) depicts an interval closed at both ends, it is the interval where x < 2 and
also x > —4; we write the inequalities as one statement:

-4 <x<2,

Inequalities and the modulus sign

The absolute value of x is written |x|. The equation |x| = 2 has two solutions x = 2 and
x = —2. What interpretation can we put on the inequality |x|] < 27 It is, in fact, the
interval —2 < x < 2. In general the inequalities |x| < ¢ and —a < x < «a are equivalent. It
follows that the inequality |x| > « represents two intervals: x > ¢ and x < —a. Refer to

Figure 2.4.
—-a<x<d |x|> u |x|> «a
O + ~—O ~—0O - O

—d 0 a — Q a

(0 (b)
Figure 2.4 Intervals described by the modulus sign

We can rewrite inequalities involving the modulus sign as the following example
shows.

Example Rewrite the following incqualities without using the modulus sign:

() 2x—1] < 4 (b) Bx+2] =1 () 13 —x|=5.
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Example

Solution
(a) The first step is to write the inequality as
—4 <2x—1 <4
If we add 1 to each component we obtain
-3 < 2x < 5.

Dividing throughout by 2 gives

3 - 5
— - <) -.
2573
(b) Either Ix+2=1lor3x+2=-1
SO 3x=-1or3x=-3.
1
Therefore x = -3 and x = —1 are the solutions.

(¢) Either J—x>50r3—-x<-5
SO —x>2o0r —x < -8,

We multiply both sides of each inequality by — 1; remember to reverse the sense of the
inequality signs. Therefore x < —2 or x > 8. |

We can also rewrite inequalities to include the modulus sign.

Using the modulus sign rewrite the inequality 4 < x < 7,

Solution

We first find the centre of the interval 4 < x < 7 then the distance from the centre to
either end of the interval.
The centre of the interval is

1 1

1
The length of the intervals is (7 — 4) = 3; the distance to either end is 15.
1
< 15 is the restatement.

1
He x—5=
nce |x 5

If we wish to avoid fractions, we may multiply all values by 2 to obtain

|2x — 11] < 3. |
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Exercise 2.8

1 Resolve the following inequalities:

(a) x+7>-3 (b) Sx+5<2

(c) 3x—-5>2 (d) x+2<2x—4
(e) [2~x>6 f) Tx—8>10x+3
() S+4x <3x—2 (h) 2—x<5—6x
(i) 1] —x < 3x+2 1)) 9—15x<6x—19

(k) 3—2x < 5x—4.

2 Express the following in modulus form:

(a) 2<x <8 (b) I<x<ll
(c) -S5<x<6 (d) 6 <3xr <24
(e) 3< 2x <11 (f) 9<5x+3<15
(2) a<x<b (h) J<ax <5,

3 Express the following as inequalities for x:
(a) jx =51 <6 (b) x4+ 11 > 10
(c) [2x — 1] < 4 (d) |15 —=3x] <6

©) |%+ 15] > 15.

4* If ¢ > 0 write |ax + b| < ¢ as an inequality in x and draw a sketch to represent the result
on the real line.



SUMMARY

Algebraic expressions are evaluated in this order: Brackets, Exponentia-
tion, Division/Multiplication, Addition/Subtraction
Expansion of expressions follows the Distributive laws:

a(b +c¢) = ab + ac

(a + b)e = ac + be.

Note that |
(@ + b)* = @® + 2ab + b*, (a — b)* = a* — 2ab + b?,
(a = b)a+b) = a® — b

A formula relates one algebraic quantity, the subject, to the others

An identity states that two algebraic expressions are always equal to each
other; an equation is true for one or more values of the unknown(s)

Simultaneous equations: two linear simultaneous equations in two
unknowns are inconsistent if they have no solution; if they are consistent
they either have a unique solution or infinitely many solutions

Proportionality: defining C to be a constant, we can say that
y is directly proptional to x if y = Cx

C
v is inversely proportional to x if y = .
z is jointly proportional to x and y if z = Cxy.
Inequalities

a>bimpliesa+c>b+c
a<bimpliesa+c<b+c
if a> bandif A > 0then Aa > Aib; if A < 0 then Ja < /b

ab > 0 implies eithera > 0,b > 0ora < 0,b <0
ab < 0 implies eithera > 0,b <0ora < 0,5 > 0.
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e Intervals: inequalities can be represented by intervals on the real line.
e Inequalities involving |x|

|x| < aisequivalentto —a<x<a
|x| > a is equivalenttox < —aorx > a

|x] = a is equivalent to x = —a or x = a.
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Answers
Exercise 2.1

1 @
d)

(d)
(g)
)]
5 (a
(d)

(c)

(e)

(d)
(g)

Exercise 2.2

1 (a)
(©)
(e)
(&
()

log,, 5 (b)
log, 81 (e)
3 (b)
304362 (b)
ac/b? (e)
3py~2? (h)

1/(abc) = (abc)™ :

216 (b)
1/144 @)
—%«/?Hyz

__

x2 +y2
8/27 (b)
1242 (e)
x-3/2y-3/22—3 (h)
26 —5x 43
6x* +xy —y?

6x% +3xy—2x—y
22 +za+b)+ab
6x° — 5xy — 3x + )7 + 3y

14x + 6

logs 3
log,(2/3)

2

6a’b?
186
a2

3/5

c?/15
2

(b)
(d)
0
(h)
)

(b)

(©) log, 15
(f) log,3
(©) -3

(c) 2/b

() 3a%bc/2

(i) (ah) =a Vb

() 17/3
0 4
ac®
5 !
(x+y)° 2xy
x2 +y2 - x2 +y2
(c) bx
(f) y7/12

18x* + 63x2 + 37x — 20
B4zt xz+ 2

43 —dxty —x? +y°
2x2 4 10x + 14

Txy — 3xz + Tyz

33 —43x
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() 98 —119x (d  60.57y — 18.61

7 130
€  65H/924 —95/308 ® 5+ %
10:3) 222 +x — 10) (h) 4x +29xy — 238y — 6
Q) X —=3x2+30 G) 2z +2z1 4 52

28.62
K) x5 4 11x% + 43 + 452 + 2x M — - 12.76x
(a) x2—4x+3 (b) 8a —8a+2
(c) 52+ st — 612 ) 2 —1
(e) —5x2+ 13x 4+ 6 (f) B —6x+11x—6
(g  x+3x—-33x+60 (hy  p*—8piqg+ 17pg® — 104°

(i) x* +4x’y + 6x%)7 + 4y + 3
G) x5 4 5x* 4 10%% + 10x2 + 5x + 1; the coefficient of x* is 10

a—>b 3a - 2b ad — bc
(a) . (b) ” () P
(@) a+b+c ) Sa+ 2b © 4a + 3b — 24c¢

¢ 10¢ 12¢

10a + 6b + 5¢ ax* +bx+c dax + 3b
@ T304 © B ) C12x?
(@) 6ax? + 4bx — 3¢
& 120
(@) x4 B 345 © 2 @ Lt

3y X
1 x+1
© 142 © 41 © w2
X P

. , x+2
(i) X + Xy (6] P

4x (4x = 3) 22+ 2

— 3} P
@ 3 () 2x S P Y}

Tt 4 2x =2 Xt — 49x + 27
@ Hmohacn © @o3e-n
(ﬂ xz(azdz+b2('2)+x(a|d2+azd‘ +b‘C2+b2C|)+aldl +b‘C|
(bl + bzx)(dl + dzx)
2 +x41) (23 +x—3) . x 4 x%y

e L LI h S
() cre-n ™ “roery W 32
€} 2x
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Exercise 2.3

Exercise 2.4

10

11

4x° — 5

(v = Dix = 2)(x* + 1)

(a)
(c)
(e)
(H

(a)

()

(e)

()
(b)

a4 1

x—=3

A= Jx(Jx-p) =x -y
3Vx+ 2,

6x> +x—9

x(x —3)
2 45y — |

=2 —x+ 1

X}

(1) 2.006s (it) 2.287s

(d)

(H

(iti} 2.374 s

Faster in winter, slower in summer

9% 10'° joules

@ () 1385 m’ (i)
(b) S by 2% approx. V by 3% approx.

()  ¥=9403m’

6472 cm?

1.443 joules

(a) 12m (b)
(a) V=RT/P (b)
©) current = (power/resisluncc)'/2 (d)
(e) 1.68 H
(2) 7/23 (h)

3 —x—=2=0C3x+2x—=1)
ab — ' =bla — b)

5x— 4 Jx(5x — 4)

(ad — be)(xX? — 1)
(cx + d)dx + ¢)

4849 m*

13.33m

m=FE/c ¢c=(E/m)?
19/7

65
2618/69 or 37—
/69 or Pz

B 2a 4+ 3b
T 2u+3b—-5¢
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Exercise 2.5

N bW N

ANSWERS

. 2.4+ u—5) ‘ o= GmM\'"?
(1 [ =" )] =—.r=

i Mm F
k) (2b/ac)'” M 13
{m) —-1/2 (n) —48/13
©)  a=—pb + D/E — p=all =,/ +b)
P -2
@ (ble = T) = TV T.T = —

a=(hc—-T)—c¢ T =—-
q ¢ a+h+c¢
b=T)c—~TY-T

N a = ( )((_T ) -, T not possible
(s) 2 (1) —1/11 (u) not possible
(v) bp (w} x=1-v
5.958 m
(a) 0.25 amp M 960 ohm
(a) 5.455Q (b) 00
(a) a=2s—u)/r (h) —3.556 x 107 ms?
(a) W = constant x pr* (b) 1000
(a) 270 feet
{h) 63 mph (64 mph will not stop in 300 feet)
(u) 212 °F (b} 26.67 C
() -40
(a) Identity (b) Equation: x=0 or |
(¢) Equation; x =2 (d) Equation; x = 1
(¢) Identity
(a) a=3hb=—-1.¢c=—1 (b) k==-2m=1.n=0
(¢) a=2.h=1 (d) a=6b=2.c=4
(e) p=3.¢=1

a=2.hb=~1lc=14

g =27
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Exercise 2.6

5 a=-11
6 a=b=1 (b) a=b=0
(c) a:l,b:% (d) a=c,b=0
(e) a=c=4,b=0 () a=—1,b=1,c=2
(g) z=2/3,b=-7/3 (h) a=4,b=2,c=2
7 @ x=-l,y=4,z=1 (b) x=y=z=1

9 (@ x=1 )] z=3
(c) x=13/14,y = -2/35 (d) z/la=7/13,bja=1/13
(e) y=1.002, z=3.532
H The second equation repeats the first, but with a factor of — 2,
(2) Multiply the first equation by —2 to obtain —2x + 6y = —4, which has the same
left hand side as the second equation. The equations are therefore inconsistent.
(h) x=1l,yv=2,z=3 (1) p=8g=2,r=5
) x=y=1 &) x=1y=2
4] Cannot be solved. The first equation is equivalent to the sum of twice the second
equation and the third equation.
(m) x=y=z=1
10 (a) a=b=3,c=2 ) a=—-1,b=1,c=2
©) x=l,y=-2o0orx=-~1l,y=2 (d) M=3N=4
(e) M=3N=2P=1
(f) Integers 3, 2, 1, M, N, P are all interchangeable, e.g. M =3, N =2 P=1 or
M=3N=1P=2
1 P=938lh
P 3924 5886
h 400 600
2 P=55x10°p
P 10* 5x 10

P 0.018 0.09
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Exercise 2.7

F=150/h

f 100 320
h 1.5 0.46875

Reduction in frequency to 80%, 66%%, 40%, 75% reduction, 33_%% increase.
(i) 31.4m (1) 125.6 m; 14.3 s approx.
=160W, f amp

L—k\/y orv~[ k and y constants; 8.044 x 10%, 0.287

42 300km (note units), 7=79500s ~22.1h

kgm 's™?

o o , 6401
g=g R/ T= ZnR \/;0 increase by a factor 6400

(@  (x—4)Nx—3) )  (3x—10)(3x + 10)

(©  7x*r-1) (d  Hx-2x+1)

(e) No factors ) Bx —4)(11x+3)

(g) (p —39)(8p — 3q) (h) No factors

() {x — 1)x — 2)}(x — 8) Q) {(x — D(5x — T)6x — 11)
(k) (x—d)x+3N6x—11) M (m + 2n)3m — 2n)

(m) (x—px+py+1)

(g —pp* +plg +3)+g(g + 1)]

1 x
: b —
@ 5 ®) 7
11x+3 v Sx2 4+ 13x + 4
il Mt d)

© (2x + 1)? « (x+2)(x+ Dx =2)
(e) ———l—— H 3x 7

Y Tt DE+6) (4 D — Dix = 2)(x — 3)
© 3 +2x+ 14 ) 3q

B e+t P +9p —q)

i 5Vbh— Ja W mt mt

a—b O+ +0 " 1T+p
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3 A=-1,B=1

1 2
(a) A=—-4B=7 (b) A=§,B:—§
(©) A=-7,B=13 (d) A:%,B:—I,C:
I 5 3
(e) A:—i,B::S,C:E (f) Az—l,Bzz,C:
(g) A=1,B=C=-1
5 (@ (x+3)x+Dx-2) ®  (x=3 - 1x+2)
©  (x—=DHx+2) @ -1
(e) (x4 3+ 1)(x - 2)(x —4)
Exercise 2.8
1 (a) x>—10 (b) x < —=3/5
(c) x=17/3 (d) x>6
&) x<6 ) x < —11/3
g x<-7 (hy x<3/5
€)) 9 <4xorx>9/4 )] 4 <3xorx>4/3
k) x> 1
2 (a) x—=5] <3 (b) x—=7<4
(c) x—% <]2-l (d) x—5] <3
(e) 12x+ 7| < 4 ) 15x -9 < 3
() x—(”;b)’<b;a ) Jax—4] <1
3 (a) —1l<x <1l b) x< =21, x> —1
(c) —%<x<§ (d) —%<x<%

(e) x < ~120,x > —60

[ JE-SICN

— /|al ¢ /lal
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Intfroduction

Objectives

The simplest relationship between two variable quantities is a linear one,
which can be represented pictorially by a straight line. Even when the
relationship is not linear, we often transform it to a linear version in order
to use the straight line representation, from which we obtain information
about the relationship by experimental observation of the variables. The
relationship between the speed of an object falling under gravity and the
time of travel is linear, as is the relationship between the load applied to a
spring and the extension it produces, according to Hooke’s law.

After working through this chapter you should be able to

understand the Cartesian coordinate system for graphs
plot points on a graph using Cartesian coordinates
obtain the gradient and intercept of a straight line from its graph

find the equation of a straight line which passes through a given point with
a known gradient

find the equation of a straight line through two given points

recognise when two lines are parallel

recognise when two lines are perpendicular

understand the significance of ill-conditioning

obtain the solution of two simultaneous linear equations in two unknowns
interpret simultancous linear inequalities in terms of regions in the plane
recognise how to reduce a relationship to linear form

plot a log-linear relationship and a log-log relationship

use log-linear and log-log graph paper
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3.1 GRAPHS AND PLOTITING

The first steps in determining the relationship between two variable quantities are often o
carry out experiments and collect data on pairs of values of the two variables, then to put
them on a graph or scaled picture.

As an example. suppose that we wish to study the relationship between the frequency v
of a wave in kiloHertz and the wavelength x in metres. Experiments yield the following
results.

X 200 300 400 500 600 750 800
¥ 1500 1000 750 600 S00 400 375

The conventional approach is to choose two axes, which are lines intersecting at right
angles at a point called the origin. Suitable scales are placed on the axes and the points
are plotted as in Figure 3.1.

Each pair of values from the sct of data corresponds to a point on the graph. To plot the
point corresponding to the first pair of values we designate, by convention, the horizontal
axis as the x-axis and the vertical axis as the y-axis. We move along the horizontal axis a
distance of 200 units to the right then parallel to the y-axis a distance of 1500 units

ol
1500 + .
100 + .
e
L]
500 1 .
..
200 400 600 800 x

Figure 3.1 Plotting a graph
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upwards. At the meeting point we place a mark to represent the point. Similarly for the
second point we move along the horizontal axis a distance ot 300 units to the right then
parallel to the y-axis a distance of 1000 units upwards. Other points are treated in a
similar way. In drawing a graph it is wise to choose the scales on the axes sensibly so that
they use as full an extent of the graph (squared) paper as is consistent with reading the
values easily. The scales for the two axes need not be the same, so be careful when
interpreting information trom the graph. such as rate of increase.

The value of x for any point is called the x-coordinate and the value of v is called the
y-coordinate. A common notation for a point in general is (x. v); examples from the data
are (200, 1500), (400, 750). In older textbooks the x-coordinate is called the abscissa and
the y-coordinate the ordinate.

The axes divide the coordinate plane, called the x-v plane, into four quadrants as in
trigonometry. Figure 3.2 shows the quadrants and a point in cach. Note that in the first
quadrant both coordinates are positive and in the third they are both negative; in the
second the y-coordinate is positive whereas the x-coordinate is negative and the reverse is
true in the fourth quadrant.

SECOND QUADRANT ¥ FIRST QUADRANT

]
(25)e 5S¢
4

T ®(2.3)

THIRD QUADRANT -5 FOURTH QUADRANT

Figure 3.2 The quadrants of the plane

Remember the rule: upwards is positive, to the right is positive. By implication,
downwards is negative, to the left is negative.

To obtain a continuous reading we try to draw a smooth curve through or close to the
points, as in Figure 3.3.

Here is an example of rcading information from graphs. Figure 3.4 is obtained by
plotting the points below and drawing a smooth curve through them.
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(2) (b)
Figure 3.3 Drawing a graph

From the graph we can estimate that at x = 21, y is approximately 7.5, written y =~ 7.5
atx =33, y> 1325 atx=14,y~ 125 and at x = 6,y ~ 37.

The first two estimates were made at values of x within the given range and the last two
estimates were made outside. Reading within the range of the tabulated data is known as
interpolation, a reasonably safe process numerically; reading outside the data is called
extrapolation. Extrapolation is more suspect but it is sometimes the only available
option.

40 ¢

30 4

T
>

5

Figure 3.4 Reading values from a graph
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Plofting from an equation

Sometimes we are given an equation and in order to draw a graph we generate pomts by
using the equation. For example, consider the equation

2
y=2-x"

We select the values shown below.

The points are plotted in Figure 3.5.
A smooth curve can be drawn through the points. The number of points we choose

depends on the nature of the curve and the degree of smoothness sought.

ﬁ_
—f—+ A A—t——+- X

Figure 3.5 Plotting a graph from an equation
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Exercise 3.1

B 2

A beaker of boiling water, initially at a temperature of 100°C, is left to cool in a room
whose temperature is 20 -C. It is stirred frequently and the times when it reaches certain
specified temperatures are recorded below.

T(CO) 100 8 60 50 40
¢t (min) 0 10 24 34 48

Draw the graph of temperature against time and interpolate from it the time when

(a) T=90"C (b) T=65"C.
(<) Similarly, estimate the temperature after 5 min.
(d) By continuing the graph, extrapolate to the time when the temperature falls to

30 °C. Estimate its value in minutes.

Mark out a graph scaled from —1 to +1 on the y-axis and from 0 to 360 on the x-axis.

(a) Using equally spaced points at 20° intervals, plot sin x*. Put your calculator in
degrees mode and press the SIN button.

(b) Complete the picture by noting that sin 90° = |, sin 180° =0 and sin 270° = — 1.

9 Skeich the curve.

(d) What would happen if you repeated the process as far as 72077

Repeat Question 2 using your calculator for

(D cos x° (b) tan x .

Plot the graph of y = 2 — x* and, using the same axes, plot the graph of y = x.

(a) Estimate from the graph the x and y coordinates of the two meeting points.

(b) The exact solution should satisfy the equation x = 2 — x*, Check your estimates in
this way.
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3.2 THE STRAIGHT LINE

An important class of relationship between two variables is the linear relationship,
whose graph is a straight line. As an example, consider

y=73x+4

We chose the values shown below.

y =2 1 4 7 10 13 16

And we have plotted the results in Figure 3.6(a).

b

+
r
A
x

Figure 3.6 Intercept and gradient

The graph is a straight line drawn through the plotted points. The value of the y-
coordinate when x=0 is called the y-intercept or, more simply, the intercept of the
straight line. In this example the intercept is 4.
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In Figure 3.6(b) we have constructed some triangles which help to demonstrate that the
gradient of the straight line is the same, no matter where it is measured (which is why the
line is ‘straight’).

The triangles demonstrate that, if we move from any one point on the line to any other,
the increase in the y-value is three times the increase in the x-value. In this example the
gradient is 3. Plot the line for yourself, draw a triangle where you wish and verify that the
gradient is 3.

As a second example, consider the relationship

y=15-2x

The values below are used to plot the graph in Figure 3.7(a).

(a)

-2

+—t x =X
4
24

(b)

Figure 3.7 Graph of y =5 - 2x
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The graph is again a straight line. The intercept is 5. As x is increased. v decreases at
double the rate. The triangle we have drawn in Figure 3.7(b) apparcntly shows that the
gradient is 4/2 = 2; however, because we wish to demonstrate that v decreases from left
to right. we say that the gradient is —2.

In gencral, the equation of a straight linc can be written as

y=mx+c

where m is the gradient and ¢ is the intercept.
A straight line is uniquely determined by any two points upon it. For example, supposce
we seek the equation of the line passing through the points (—2. 1) and (3. 11).
Substituting the first pair of values into the general equation. we obtain

1 ==-2m+c¢
and substituting the second pair, we obtain
11 =3m+ ¢
Subtracting the first equation from the second, we obtain
10 =3m — (=2m) = 5m.
It is straightforward to obtain the solution
m=2 and =5
s0 the required equation is
y=2x+3.

There are two special classes of line. Lines parallel to the x-axis have general equation
v = ¢ (gradient zero). Lines parallel to the y-axis have general equation x = b (gradient
infinity) see Figure 3.8.

Note in particular that the x-axis has the cquation » = 0 and the y-axis has the cquation
x=0.
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0, ¢)

0. b)

(@) (b)

Figure 3.8 Lines parallel to the axes

In Figure 3.9(a) we show the lines y =4 and y = —2. Figure 3.9(b) shows the lines
x = —1 and x = 3, which are parallel to the y-axis. It is necessary to take care with such
lines; it is not possible to regard their equations as special cases of the general equation of
a straight line. (What value to give to m is not clear.)

y x=-1 y x=3
+
=4 t
7 y
1 T
o ., . X 0 x
-1 3
]
y=-2
-2
1
L

(a) )]
Figure 3.9 Lines paraliel to the axes

Figure 3.10 shows four examples of straight lines. In diagrams (a) and (c) the lines
have a positive gradient and the general direction is ‘south-west’ to ‘north-east’ whereas
in diagrams (b) and (d) the gradient is negative and the lines slope in a general ‘north-
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(a) (b)

o <0 )
/ AN

(c) () m<0

Figure 3.10 Examples of straight lines

west’ to ‘south-east’ direction. You may have deduced that when a straight line passes
through the origin, the intercept is zero and its equation is simply y = mx.

Exercise 3.2
1 For each of the following straight lines determine the gradient and the intercept (on the
y-axis). Draw the graph in each case.
(a) y=3x-5 (b) y:—g+l (©) 2y +3x+1=0.
2 Determine the equation of the straight line which

(a) passes through the points (1, 3) and (2, 6)
(b) has intercepts on the axes at the points (0, 2) and (5, 0).
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4*

Which of the following sets of points are collinear, i.e. lie on a straight line?
(a) 0, 5), (=2, 1), (0.5, &) (b) 0,2), 2, 1,4, 3)
(c) ©0,4), 9, ), (-6, 6)

First plot a graph to estimate m and c¢ in the equation y = mx + ¢ for the cases where the
points are collinear. Obtain the exact values by evaluation.

A line perpendicular to the straight line y = mx + ¢ has gradient —1/m. Starting with the
straight line passing through the points (0, 0) and (3, 4), determine the equation of a line
distance 5 units from the origin at its closest point, the point (3, 4). What are the
coordinates of its intercepts on the axes?

Forms of the straight line equation

We have stated that the general equation of a straight line is y = mx + ¢. There are in fact
several other forms of the equation which can be used in different circumstances.

Given a point on the line and the gradient

Let the given point 4 be (x;, y;) and the gradient of the line be m. Consider a point £ on
the line; see Figure 3.11(a). Let the coordinates of P be (x, y). The point N is such that
APN is a right-angled triangle as shown with AN parallel to the x-axis and NP parallel to
the y-axis.

y y
0

P (

P/ [

A A $
N P 4; In

4 R
~

(a) (b)

Figure 3.11 Finding the equation of a straight line
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Example

The y-coordinate of N is y|, the same as for A; the x-coordinate of N is the same as for
P, namely x.

Now the ratio PN/AN is the gradient of the line. namely m. The length AN is the
difference between the x-coordinates of N and A, i.e. x — x;. and the length AP is the
difference between the y-coordinates, i.e. v — v,. Therefore

The equation of the line is
Y=y =mx—x).

Find the equation of the line with gradient —2 passing through the point (1. —3). Here
m=-2,x; = 1 and y; = —3. The equation is

y=(=3)==2(x-1)
e y+3=-2x+2 or y=-2vr—1 ]

Given two distinct points on the line
Let the two points be P(x).y)) and (Xx». vy): sce Figure 3.11(b). The gradient of the

straight line segment PQ is gS' The point § has the coordinates (x,. v)). found in a similar

s :‘2;': Since this is the same as the
Xy — Xy

gradient of the line segment AP, we obtain the result

way to the coordinates of V. The gradient of PQ i

Y=y _Wr-4

X — X Xy — X

Thercfore

y=y = (h—.—fy—l)(x - X))

X2 =X
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Example The equation of the line passing t

y=(=3) 4-(-3)

x—1 = =2-1
. y+3 7
e = —
x—1 =3
) y+3=—c(x-1
7 7
and y:—:‘;'.l-}"}——
. 1 2
1.€. v _gx—g.

Given the intercepts on the axes

hrough the points (1, —3) and (-2, 4) is

Let the intercepts be a and b as shown in Figure 3.12. In the formula for the previous case
we have (x;.y,) = (¢, 0) and (x5, ¥,) = (0. b). Hence

b_
y—- 0= (a_—)(x - d)
ie. y=——(x—aq)
b
Le. v=—-x+b
a

Figure 3.12

N\

Intercept form of a straight iine
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A common version of this equation is found by writing

(x—a)= —£+l

8|~

£=_
b

from which we find that

If we put x=0 the equation becomcs'E: 1. so y = b: similarly if vy = 0.x = a.

Example The line with intercepts of 2 on the x-axis and —3 on the y-axis can be written
vy o
3 i 3= 1

Multiply by —6 to obtain

=3x+2y=-6
ie. 2y=3x-6
or y= gx -3. ||
2

‘General’ equations
The general equation has the form

ax+hy=c
or
Ix+my+n=0.

Consider the equation 2x + Sy = 10,
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Then
Sy=—-2x+10

2
F=——x+ 2,
or b% 5r+

2
This line has gradient —3 and intercept 2.

Example The line with equation
4 3
==X — =
=7t

can be written

Ty =4x -3
or 4x—-T7y—-3=0
ie. 4x —Ty=3. |

Exercise 3.3

1 Determine the equations of the straight lines which pass through the following sets of
pmms:

(a) 2,0 and (-1, 5) (b) (—=11.4) and (6, 3)

(©) (9, 6) and (3, 3)

(d) (2.624, 3.979) and (—15.127, —22.345).

2 In the form al +"—) = 1 write down the equations of the straight lines with the following
intercepts:
(@) (6, 0y, (0, —=95) (b) 9,0).(0, 5)

(c) (6.3275, 0) (0, —17.613).

In each case rewrite the equation as Ix +my +n = 0.

3 Determine the following lines:
(a) perpendicular to the line x + y = 1 and passing through the origin

(b) perpendicular to the line 3x — y = 10 and passing through (4, —1).
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4 Determine the equations of the following lines:

4 7
(a) a line passing through the origin and the point (—-gg)

(b) a line of gradient 2 which passes through the point (2.125, 4.275).

5 Draw on the same axes the following straight lines:

(a) y=2x+1 (b) Ix+4y =95 () 16x — 12y = 17.

6 Hooke’s law states that the extension X of a helical spring beyond its natural length is
directly proportional to the tension 7 in the spring. The following data are obtained.

X (mm) 2 4 6 8 10
T (kg) 15.2 304 38

(a) Fill in the gaps in the table.
b If the length of the spring when unstretched is 130mm and Y represents the
stretched length, determine the constants a and # where

Y =aT + b.
7  The cost of a domestic repair facility consists of a call-out charge (£C) and an attendance
fee of p pence per minute.

(a) Write down in a formula the full charge £F made to a customer for an m minute
call-out plus attendance.

(b) If the attendance, but not the call-out, is VAT-rated at V%, write down the
modified formula.

() A plumber charges £60 for call-out, 94p per minute attendance and VAT is rated at
17.5%. How much does a customer pay for a 45 minute visit in accordance with
(b) above?

8 Boyle’s law states that, for a given mass of ideal gas, the product of pressure P and
volume V is constant, i.e. PV = C. The following table gives pressures in newtons per
=D . .
square metre (Nm ~~) and volumes in cubic metres (m™).

P 6000  7.000 8.000  9.000
Vo394 2.738 2.129

Determine C and find the volume when P—8Nm 2.
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3.3 INTERSECTION OF TWO LINES

If we seek the solution of the simultaneous linear equations
2x—y=-4 and x+2y=28

then we have two approaches: graphical and algebraic. The algebraic approach may be
subdivided into two methods, variations on essentially the same idea.

Graphical approach

First, we arrange the equations into the forms
X
y=2x+4 and y= —§+ 14

and draw on the same axes the graphs of the lines representing these equations. We find,
as in Figure 3.13, that the lines intersect at a point given by x = 4,y = 12, These values
represent the unigue solution of the equations.

Figure 3.13 Intersection of straight lines
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Algebraic approach

Eliminate one variable

Consider again

x—y=—4 (1)
X+ 2y =28, 2)

If we multiply equation (1) by 2 we obtain

4x — 2y = —8. (3)
Adding equations (2) and (3) gives

5x =20

from which we find that x = 4. Substituting this into equation (2) gives

442y =28
so that 2y =24
and therefore y = 12.

Note that we could have eliminated x by multiplying equation (2) by 2 and subtracting
equation (1) from this new equation. Try it.

Substitute for one variable

If we rewrite (1) as y = 2x + 4 and substitute this into equation (2) we obtain

x+22x+4)=128

ie. x+4x+8=28
SO 5x =20
therefore x=4

and we can substitute this into the form y = 2x + 4 to find that y = 12. Note the similarity
between substitution and elimination.

Graphical methods: advantages and disadvantages

A disadvantage of the graphical method for practical solution of simultaneous linear
equations is the problem of accuracy. If the coefficients are not so simple and the
intersection point does not have integer coordinates, it will be difficult to obtain an
accurate solution.
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But the graphical representation does have the advantuge of pointing out difficulties
that may arise.

lil-conditioning

¥=2.01x+ 1.99

y v=Ea+d
/ veval
// & )
(a) (b) (c)

Figure 3.14 Pairs of lines: (a) parallel, (b) coincident and (c) nearly coincident

In Figure 3.14(a) the two lines are parallel, i.e. they have the same gradient, so the
corresponding ecquations have no solution. In Figure 3.14(b) the lines are coincident, so
each point on the common line represents a possible solution. In Figure 3.14(¢) the lines
are nearly coincident, the point of intersection is difficult to determine accurately and a
slight change in some or all of the coefficients can lead to a completely different solution;
this is the case known as ill-conditioning.

When the lines are perpendicular (Figure 3.15) the point of intersection is relatively
casy to find accurately by graphical means. If the lines are v =mx+¢; and

1 = nm>x + ¢, then the condition that they are perpendicular is mm, = —1.
y
y=myx+o
X
yYEmay 4+,

Figure 3.15 Perpendicular lines
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2

Exercise 3.4

B 4"

5*

Given the equation

_ r—x) , (x —x))
Lo = (x, —xz)yl (xs —xy) 2

what does L(x) = a constant represent?

A quadrilateral is bounded by the straight lines
x+v=2, x=0, 3x—4v=4 x+y=28.

Draw the graphs of these lines and determine the coordinates of the vertices.

Determine the points of intersection of the following pairs of lines:
(a) y=2x+3and y+3x+1=0
b Ilx-Sy=2and 3x—5v+15=0.

Determine as best you can the intersection points of the following pairs of lines:

(a) y=20lx+19%and y = 2x 4 |
(b) y=2.00lx+199 and v = 2x + 1.

Draw the graph of an arbitrary line y = mx 4 ¢ (¢ # 0). On the same axes draw the line
y = —x/m, i.e. a line perpendicular to y = mx + ¢ drawn from the origin. If the two lines
mieet at (x,, ¥,) determine x; and y, in terms of m and ¢ and write down the minimum
distance of y = mx + ¢ from the origin.
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3.4 LINEAR INEQUALITIES

Oz

x <0 ~*>°/ ) 7 ///////// X

/// ¥ <0

@ (b)
Figure 3.16 (@) x>0and®) v >0

The y-axis is the line along which x = 0. To the right are points (x, y) such as (2, 1),
(3, —4) etc. They have the common feature that x > 0; the region is shown shaded in
Figure 3.16(a). To the left of the y-axis is the region where x < 0. Hence the x~y plane is
divided into three distinct, non-overlapping regions: x < 0, x = 0, x > 0. Similarly the x-
axis, where y = 0, is the dividing line between the regions v > 0 and y < 0, as shown in
Figure 3.16(b).

Figure 3.17(a) shows that the line x =3 divides the plane into the three regions
x < 3,x =3 and x > 3. In Figure 3.17(b) the line y = —2 is the boundary between the
regions y > —2 and y < —2. Note that these results apply in the context of points in the
plane. In general the inequality y > mx + ¢ can be depicted by drawing the line
v = mx + ¢ and deciding on which side of it lie those points that satisfy the inequality.

y y

7

GV (b)
Figure 3.17 (o) x >3 and(b) y > -2
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(a) (b)
Figure 3.18 (o) y <3x+2and (o) y > —4x

Figure 3.18(a) shows the line y = 3x + 2. On one side of it lie the points (x, v) for
which y > 3x 4 2, and on the other side lie those points for which y < 3x + 2. The origin
does not lie on the line and it serves as a simple test case. Since 0 < 3 x 0 + 2 the points
‘below’ the line satisfy the inequality y < 3x + 2, shaded in the figure.

1
In Figure 3.18(b) the line y = — 5,\: passes through the origin, so we need another test
1
point; (1, 1) will be suitable. At (1, 1), 1 > 3 x 1, so the points which satisfy the

I
inequality y > Tk lie ‘above’ the line, as depicted.

y

A +3y-6=0 // g

N+ I-6>0 2 L

125

-3
X X
3 o
\ 2r-3y+6 <0
\

(@) (b)
Figure 3.19 (@) 2x+3y-6=>0and (b) 2x -3y +6 <0
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To find the region for which ax + by + ¢ > 0 needs more thought. Figure 3.19(a)
shows the region 2x 4+ 3y — 6 > 0, determined by using the line 2x + 3y — 6 = 0 and the
test point (0, 0). In Figure 3.19(b) we have depicted the region 2x — 3y + 6 < 0,
determined by using the line 2x — 3y + 6 = 0 and the test point (0, 0).

Inequalities involving modulus signs

The relationship y = [x| depicted in Figure 3.20(a) consists of two straight lines; y = x for
x>0andy = —xforx < 0. Thus 3| =3 and | — 2| = —(—2) = 2, as we know already.
Figure 3.20(b) shows the graph of y = |x — 1]|. We have used the values below.

X ~2 - 0 1t 2 3
x—1 =3 -2 -1 0 1 2
=1 3 2 10 1 2
y y
y= x| y=lx-1|
1
X X
|
(a) (b}

Figure 3.20 (@) y=|x|and (L) y = |x — 1]

Note that this graph is effectively the graph of v = |x{ displaced to the right by 1 unit. To
solve the inequality [x] < 2 we can use the graph of y = |x|.

In Figure 3.21(a) we have superimposed the graphs of y = 2 and y = |x|. The graphs
intersect at two points: when x is positive the intersection occurs at x = 2, and when x is
negative the intersection occurs at —x = 2, i.e. x = —2. Hence the regions is -2 < x < 2
shown shaded in the figure. Remember that we are in two dimensions and the region
where —2 < x < 2 looks quite different from the interval —2 < x < 2 on the real line.
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Example

(a) (b)

Figure 3.21 (@) x| <2and ) (x- 1] <2

1
To solve the inequality |x — 1| > 2 we refer to Figure 3.21(b). The graph of y = |x — 1|

consists of the lines y = (x — 1) forx > 0and y = —(x — ) ory = | — x forx < 0; either
line gives y = 0 at x = |. Again, there are two intersection points. For x positive we solve

1 3 1 1
x—1 +§ so that x = 5; for x negative we solve —(x — 1} =3 so that x = 3 For the

1 1 3
inequality [x — 1| > 3 to be true, therefore, either x < S OFX > 5. Note how the use of the

graphs helps us with the algebraic solution.

Since we do not use the graphs to determine the points of intersection, we need not
draw them accurately. When the graphs are roughly correct but not as accurate as could
be, we say that we sketch the graphs rather than plot them. Sketches can be good
approximations to the true graph or less accurate, depending on the use to which they are
put. We shall return to this idea quite often.

Consider now the inequality |x| < —é—x + 2. We can solve this by a graphical approach. In
Figure 2.22(a) we have plotted, using the same axes, the graphs of y = |x| and
y= %x + 2. Where the line y = —;-x + 2 lies above the graph of y = |x| then |x] < %x +2;
the region is shaded. 1

The graphs intersect at two points. For positive x the point is where x = Ex +2,i.e.

1 1 3
7X= 2 so that x = 4. For negative x the point is where —x = 7% + 2 so that — Thin 2or

4
x=-3 We could have determined the points graphically but it would have been
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(b)

Figure 3.22 (a) jx~ 1| <jx+2and () Ix -1 >1x

. : . 4 . 4
difficult to obtain accurate values, especially the value x = — 3 Hence if —3<x< 4

1
then |x| < ix+ l. |

1
Example We now consider the inequality |x — 1{ > 7% In Figure 3.22(b) we have superimposed

]
the graphs of y=|x— 1] and y = 7% When x is greater than | the graphs intersect

1
at the point where x — 1 = 5% re. at x = 2. When x is less than 1 the intersection
| | 2 1
occurs where —(x — 1) =—x, i.e. x—1 = ——=x, s0o x = —. Then |x — 1] > =x if either
2 2 3 2
2
X < 3 or x > 2. These regions are shaded in Figure 3.22(b). a

Exercise 3.5

1 Sketch the following regions:

(a) x> =3 (b) y<4
(c) x > —3.y < 4 (i.e. both are satisfied)
(d) y>2x+1 (e) 2x+3vr+2<0

(H 2—y+3x<2y—x+5.



114 STRAIGHT LINES

2 In linear programming a feasible region is defined as a region in which a number of
inequalities hold. Draw the feasible region where the inequalities x >0, y >0,
2x + 5v < 7, Sx + 2y < 7 are satisfied simultaneously.

3 Shade in the region where the following inequalities hold simultaneously:
x+y+1<0, y—=2x+1>0, y<0.

P

4  Sketch the following graphs:

(@ y=-kx+H (by y=|2x—1
(© y=kl+kKk-1 d  y—Ixl-—lx-1
() x=[+1 O y=k+U+l+x—1

5 Copy Figure 3.21 and shade the regions defined by the following inequalities:

(a) x| <y <2 (b) y>x—1lLx>0
(c) 2<y<|xl.x<0 (d) 0<y<lx—1].x>§.
6 Draw sketches like Figure 3.21 to depict 5|9
(a) 2x+ 1] >3 (b) X—E <§.
7* For which values of x do the following inequalities hold?
(a) x—1] <2x-=5 (b) 2x] <x+6
(©) 2 —-3x)]<5—-x (d) x4+ 1) < |x—1]
(e) 2—x| <|34x| <6 () x| +1x = 5] > 10 — |x — 3].

8* [Illustrate graphically the inequalities in Question 7.

3.5 REDUCTION TO LINEAR FORM

There are many examples of laws and models in which there is a non-linear relationship
between the dependent variable v and the independent variable x. In such cases the graph
of y against x is a curve rather than a straight line. However, in some practical cases we
can transform the relationship or use special graph paper so that a straight line graph
results.

We consider first the idea of a transformation. We shall sometimes use natural
logarithms. You may prefer to use logarithms to the base 10. This is unimportant, but you
must be consistent.
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Examples

Power law, y = ax”.

Here y is assumed to behave like a power of x. The power may be positive or negative
and may not be an integer. Taking logarithms we obtain

Iny=Ilna+nlnx

and we plot In y against In x to obtain a straight line graph with slope » and intercept In a.
We can therefore find the value of n directly; the value a can be found using the INV and
LN keys.

The power law occurs widely in science and engineering:

(a) ¥V = K+/T, where V is the velocity of sound in a gas and T is its absolute temperature:
K is a constant.

(b) O = Cr*, where Q is the quantity of viscous Auid passing through a narrow pipe of
radius » under constant pressure against gradient; C is a constant.

The power law may be modified to include cases such as v — b = a(x — d)", i.e. a shift of
origin to the point (6. d).

Exponential law, v = ¢*

Here y behaves like a constant raised to the variable power x. This law occurs in
processes involving growth and decay. Taking logarithms gives

Iny =xlna.

We plot In y against x to obtain a straight line graph.

Some examples are

@ R=P(1+ T(C)B)

where K represents the return upon the principal £ in £, $, etc., invested for » years at
¢%; n need not necessarily be an integer.

) T—T.=(Ty—T)e ™"

is Newton’s law of cooling for the temperature T of a liquid at time ¢ which cools
from an initial temperature 7, at t = 0 in an environment where the temperature is 7.
K is a constant and e=~2718 is the exponential base. By putting
v=T-T.,a=T,—T, the formula becomes v =ae ¥ Taking logarithms we
obtain In y = Inu — Ar. Plotting In y against ¢ gives a straight line graph.

Quadratic forms

You cannot transform the general quadratic form y = ax* + bx + ¢ into a linear form but
it is possible to deal with reduced quadratic forms, such as v = ax? + c and y = ax? + bx.
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Graph paper

3 . ))
In the first case plot In (v — c) against In x. In the second case observe that = = ax 4+ b and
x

v .
plot — against x.
X

You can use conventional graph paper in conjunction with the transformations above to
plot straight line graphs. The quantities a, b, In «, etc., can be estimated from the straight
lines and fitted to the data so that an algebraic relationship between x and y can be
established.

With special graph paper you can overcome the need for taking logs; it allows you to
plot the x and y data directly. The paper is designed to adjust the scale as necessary, in
effect taking the logarithm for you. We will describe two types of paper.

Log-linear paper

Example

The scale is linear horizontally and logarithmic vertically. Two cycles of 10 are shown in
Figure 3.23, but typically the paper comes in 2, 3 and 4 cycles to represent powers 107,
10" and 10% in the data respectively. To use it for an exponential law plot, observe first the
number of powers of 10 through which y varies, so the appropriate number of cycles can
be chosen, then just plot directly on the paper. You will see that the plotted points lie on a
straight line, but remember the slope of the line is not equal to the parameter £ in the
experimental relationship v = ae ™ .

A radioactive element decays into a more stable element by emitting rays and particles. If
m is the mass of the element remaining after time ¢ and m, is the mass at time ¢ = 0, then
the law

m = mye ™
models the amount m of the element remaining at time ¢, where & is a positive constant.

The following data represents the remaining mass kilograms of an element at different
times recorded in days.

t (day) 0 200 400 1600 1500 2000 3000
m (kg) 10 8.099 6.560 3.485 2.058 1.215 0.423

Depict the data on a log-linear graph.
The points are plotted in Figure 3.23 and a straight line drawn through them. Observe
that the straight line fits the middle data points relatively well. .
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Example

m
10 1
A 9
8
7
Y 6
5 N 5
\\ 4
™~ N
N N )
\ |
! g
8
7
M,
6
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<

AN 4
N 5
2
0.1 I

0 200400 600 1000 1400 1600 2000 3000

! ——

Figure 3.23 Log-linear graph

In an attempt to assess the declining purchasing power of money, we can use log-linear
graph paper to gauge unit costs at some future time, provided the rate of inflation is
assumed constant. To illustrate this, take 1995 as a baseline, i.e. P =1 in 1995, and an
4 n

optimal headline inflation rate, e.g. 4%. Using R = P(l + m) we can determine (on
the calculator using the x¥ button) that after 25 years, in 2020, prices will have risen by a
factor of 2.666.

We put the potnts (1995, 1) and (2020, 2.666) on a graph and draw a straight line
through them; see Figure 3.24. We can then read off remaining inflation information from
the graph, e.g.

1975 0.45
2015 2.16

An overall aggregate of 4% inflation means that goods purchased for £1 in 1995 cost 45p
in 1975 and will cost £2.16 in 2015. However, we know that the headline inflation rate
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Figure 3.24 Inflation graph

changes all the time, so the figures mean little, but you do have the flexibility to adjust the
average headline inflation rate as you choose and you can read off projections from the
straight line so drawn. |

Log-log paper

To depict general power law relationships we require log-log graph paper. A 3 x 2 cycle
is shown in Figure 3.25, representing a variation of 10* in each variable, though the graph
paper can be obtained in a variety of combinations, e.g. 2x 3, 3 x3, 3 x4.

Example A gas expands adiabatically according to the law PV¥ = C. The following data are
obtained, where P is measured in pascals (Pa) and V in cubic metres (m™). Plot the data on
3 cycle x 2 cycle log paper and draw a straight line through the points. Estimate 3 and C.
Estimate from the graph the value of P when ¥'=25 and the value of ¥ when P=1.
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P(Pa) 100 220 0.844 0417  0.060  0.0451  0.0171
v (mY) | 3 6 10 20 50 100

Taking logarithms, the refationship becomes log P + 7 log V' = log C, i.e.
logP = —vlogV +4logC.

The data plotted from bottom right to top left shows that y &= 1.38, C = 10.0. We did this
by taking two well-spaced values (P,. V) and (P,. V5) so that

P, +yInk,=InC
InPy+3InlV;, =InC

and eliminated in turn In C and ;.

In order to plot the points with reasonable accuracy it is important to know the number
of significant figures of cach quantity, not the absolute accuracy.

The data are plotted in Figure 3.25 together with the straight line. We shall use
logarithms to the base 10, 1.e. the LOG button on a calculator.

When =1L P=10,logV =0,logP = 1.
When VF=100,P =0.0171.logV =2.log P = —-1.767.
The gradient is (—1.767 — 1}/(2 — 0) = —1.38 (3s.t.) so 7 = 1.38 3s.f.).

We can find log C by using the equation log P = —7log V' + log C together with a pair
of values for P and V and our estimated value of ;. Alternatively, we can note that when
V=1,PV =P=C so that C=10. From the graph we find that when
V =25p=0.116 and when P = [, V' == 5.2. (The more accurate values, obtained from
a calculator, are 0.118 and 5.3 respectively.) |

Exercise 3.6

In the following examples corresponding data pairs (x,y) are observed where v is 4
function of x.

(a) v = ax’ + bx + ¢, ¢ known {b) ¥ = Inkx’
(c) v=cx +dy? (&) v = axe
(e) X2 +v= axzy\'

What would you plot against what, in order to obtain a suitable straight line graph?

Redraw the log-linear straight line for a mean headline inflation rate which corresponds to
unit costs in 1955 being 119% of their 1995 values (see the example on p. 117). What is the
mean inflation rate and how will 2040 prices compare 1o those of 1995 on that basis?
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3 The following data represent the density p in em * of water measured at temperatures
between 40 "C and 100 C.

T 40) 60 80 100
po 09922 09832 09718  0.9584

Assuming that p = p, + a7 + i, where p, = 0.9922 and ¢ = T — 40, plot a graph of

) — ) . . . -
4‘__,_/9 against ¢ to obtain estimates for o and fi.

4 Inthe seventeenth century the astronomer Johannes Kepler postulated his famous third law
(a result later proved mathematically). This stated that the squares of the periodic times of
the planets which orbit the Sun were proportional to the cubes of their mean distance from
the Sun. Using data from the table below and assuming that 7 o ", plot In 7 against In »
on log-log paper and obtain an estimate for b,

Planet Orbit period. Mean distance from sun,
T (years) F (km x 10%)
Mercury 0.24] 58
Venus 0.616 108
Earth 1.000 150
Mars 1.881 228
Jupiter 11.85 778
Saturmn 29.44 1427
Uranus 83.94 2870
Neptune 164.7 4500
Pluto 2482 35900

5 Draw a straight line graph to represent the relationship between object distance u and
image distance ¢ of a lens whose focal length f'is 20 em, given the law

6* The ungular momentum # of a spinning clectron takes the value

= igl(ql + DY b/2n

where b is a constant to be estimated. If estimates of 4 and g are known. explain how they
can be used to estimate b from a straight line graph.



SUMMARY

Graph: a scaled picture which shows the relationship between two
variables

Cartesian coordinates: the point (x, y) is a distance x from the y-axis and
distance y from the x-axis
Equations of a straight line:
A line with gradient m and intercept ¢ has equation y = mx + c.
A line through (x,,y,) with gradient m has equation
y=yn=mx—x)
The general equation is ax + by +c =0

Parallel lines have equal gradients, i.e. m, = m,

Perpendicular lines have gradients that multiply to give -1, ie.
mymy, = —1

Ill-conditioning: a system of simultaneous linear equations is ill-
conditioned if small changes in the coefficients lead to relatively large
changes in the solution

Simultaneous inequalities define regions of the x—y plane where the
coordinates of the points satisfy the inequalities

Reduction to linear form: a relationship can be rewritten in a form that
allows a straight line graph to be drawn

Log-linear relationship: by taking logarithms the relationship y = ax”
becomes logy = loga + nlogx and we may plot logy against logx. The
gradient is n and the intercept is loga

Log-log relationship: the relationship y = ka* becomes

logy = logk + xloga and we may plot log y against x

Special graph paper can be used to make direct plots of log-linear and
log-log relationships
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Answers

Exercise 3.1

Exercise 3.2

(a) 4.6 minutes (b) 20.0 minutes
() 89.2°C (d) 72 minutes
(d) waveform is reproduced; we say that sin x is periodic

sin x* and cos x” have a period of 360°; tan x° has a period of 180"

Meeting points (-2, —2), (1, 1).

(a) (b)

— (. 1)

5/3.0
( ) 5.0)

/ 0. -5)

(c)

(-13,0)

0,-1/2)

X
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2 (@ y=73x b) 2¢+ 5y =10

3 @ Yes, y =2x+5 (b) No
(c) Yes, y= —x/3+4

4
0 25
(T 0)\
B
4 Ix 25
OP =5 units. The line of which OP is a part is y = —35 LineAB is y = ——4£+ R Both
lines pass through P (3, 4).
Exercise 3.3
5 1

¢ =——(x—2 b =—(57 -

T @ vy ;0=2) b)  y=367-%
1

(c) y= E(x + 3) (d) y = 1.4830x + 0.0876
2 () —’é—%: lor —Sx+6y+30=0

(b) g+§: lorSx+9y—45=0

X y

(c)

- = . —6.23 86=
62375 17613 1 or 17.613x — 6.2375y +109.86 =0
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3 @ y=x (b) x+3y=1
45° 60°
i e
\ "
/ @, -1
x+yv=1 /
4 (a) v=-7x/4 (b) 80x —40p+1 =0
5 (1711, 13/11)
/s,
%
5
~—— (32/25.29/10%)
{-29/8. =25/4)
6 (a) 7.6,22.8 (b) Y =3.8T 4130
. pm ., pm V
p F = 77 —C+ = —
7 @ 00 & F=Ct (‘ + 100)

(c) £109.70
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8 (C=19.164 ¥V=2396 when P=8
Exercise 3.4

1 L(x) is a linear expression and L(x,) = y|, L(x,) = y,. L(x) =a constant must therefore be
the straight line passing through the points (x;, y;} and (x,, y,).

2
(0.2)
47 17 171
3 (a) (_5’ g) (b) (2.125, 4.275) or <§ 26)
4 (a) (=99, —197) (b) (=990, —1979)
5

y=-x/m y=mx+c

—mc C C
o) = (1 Fm ] +m2> oy em

. 4 . . ..
P is ——— units distant from the origin

1+ m?
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2x+5y=17

(LDH

-~ 5x+2y=7

(0,0

x+y+1=0

4 (a

L0

(b)

(/2,0
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©) y=1-2xx<0
=1, 0<x<l
:2X—1,,\'>]

(e)

x=yv+1

x=-(y+1

(d)

¥

= -1, x<0
=2x—1,0<x <1
=1, x> 1

—

()

y = =3, x < —1

y=2—-x,—1<x<0
=2+x O<x<l
= 3x, x> 1

(-1.3) (1,3)
(0,2)
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reas are shaded.

(a)

V 2k

L

—_
O
=

(d) ///
T\ Q/ . (0 X\j -
=
J
|

S\
T~

(e)



132 STRAIGHT LINES

Exercise 3.6

V- ; Y —
1 (2 —— against x, - —ax+b
x )
h) vagainst Inx, y=2Inx+Ink
(c) é against x2, )% =a+ b
1% : y
(d) In= against x, In==bhx+Ina
X X
(e) : inst ! l + :
e —against -, —+—=ua
y I T

2 Mean inflation rate = 5.67%; 2040 prices approximately 12 times 1995 prices.
3 2= —-40x1074 B~ -25x10""
4 H=~150

5 v

1/u
1/2(\

2

h
6 Plot ol against |g).
q!



4 QUADRATICS AND
CUBICS



Intfroduction

Objectives

There are many relationships in which one variable can be expressed as a
power of another. One variable is often expressed as a sum of two or more
powers of the other. The simplest examples of this are the quadratic
relationship and the cubic relationship. The distance an object travels
under a constant acceleration is a quadratic expression in the time of
travel. Cubic curves are used in the computer-aided design of roads and
three-dimensional structures to achieve a smooth transition between one
component and another. The study of quadratics and cubics will provide
an introduction to the characteristics of more complicated relationships.

After working through this chapter you should be able to

sketch the graph of a quadratic expression
relate changes in a quadratic expression to transformations of its graph
locate the vertex on the graph of a quadratic expression

state the criterion that determines the number of roots for a quadratic
equation

factorise a quadratic expression and hence solve the related quadratic
equation

express a quadratic expression as the sum or difference of two squares
use the formula to solve a quadratic equation

state the formulae for the sum and the product of the roots of a quadratic
equation

sketch the general shape of a cubic expression

identify local maxima and local minima on the graph of a cubic expression
recognise a point of inflection on the graph of a cubic expression
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4.1 THE QUADRATIC CURVE

The characteristic feature of a straight line is that it has no bending; anyone driving a car
in a straight line path does not have to tumn the steering wheel. A simple curve which does
have a sense of bending associated with it is the graph of the relationship y = x? shown in
Figure 4.1(a). The graph can be drawn by using a table of values.

The data points are plotted and a smooth curve is drawn through them. However, the
accuracy achieved by this process depends upon the number and location of the data
points and the smoothness of the curve that is drawn.

Two features are noteworthy (refer to Figure 4.1(b)).

y Y

(a) (b)

Figure 4.1 The graph of y = x?

(i) The curve has a vertex at the origin which is its minimum point.
(ii) The curve is symmetrical about the y-axis; we say it is an even function.

Since (—x,)° = xj it follows that the values x, and —x,, lead 10 the same value of v; Figure
4.1(b) shows this with the example x, = 2. This illustrates the point that a positive
number has two square roots; for example, —2 and + 2 both square to 4, so 4 has the two
square roots —2 and 2. The number 0 has the sole square root 0, and since no number
squares to a negative number, a negative number has no square roots.

Figure 4.2 shows some examples of the more general relationship y = ax? where a is a
constant. In diagram (a) the constant is positive and the effect of increasing the value of a
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(a) (b)

Figure 4.2 The general relationship y = ax?

is to compress or extend the curve horizontally; if ¢ > 1 the curve is compressed relative
to v = x%, whereas if « < | the curve is extended relative to y = x°.

In diagram (b) the constant is negative and the curves are ‘upside down’ with a
maximum at the origin. It is generally true that the curve of y = —ax? is the mirror image
in the x-axis of the curve y = ax?.

Figure 4.3 shows two examples of curves having the general form y = ax® + ¢ where ¢
is a second constant. Diagram (a) represents the relationship v = x? + 2 whereas diagram
(b) represents v = x> — 1. Notice that both curves are identical in shape to y = x? but their

y Y

. Vet

(a) (b)

Figure 4.3 The relationship y = ax?2 + ¢
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position relative to the x-axis is different. In each case the curves have effectively moved
vertically; in (a) the curve has been moved upwards by 2 units whereas in (b) the curve
has been moved downwards by 1 unit.

In diagram (a) we see that the curve does not meet the x-axis whereas in diagram (b)
the curve crosses the x-axis twice, at points A and C. In fact A is at x = —1 and C is at
x = 1; the lowest point B is where x = 0 and this value of x is halfway between those at
the crossing points. This is always the case where there are two crossing points.

To complete the picture we say that the curve of v = x* (Figure 4.1(a)) touches the
x-axis, at the origin.

y y
A
B ¥c B
e t x t } ¢ } X
1
S 3 ] -2 -1 | 2
(a) (b
'I 2
Figure 4.4 (o) y = (x +§) and (D) y = (x — 1)?

12
Figure 4.4(a) shows the curve of the relationship y = (x + 5) . B is the point on the

x-axis (v =0) where x = —5; in effect the curve of y =x? has been displaced
1
(horizontally) to the left by 5 unit. The point C is where the curve cuts the y-axis, i.e.

A
x=0,s50y= (2) =7 Figure 4.4(b) shows the curve y = (x — 1)%. B is the point on the

x-axis where x = 1, this time the horizontal shift has been to the right by 1 unit. The point
A is where x = 0, hence y = 12 = 1. In each case the curve is symmetrical about a
vertical line through the point B.

What happens if we move the curve of v = x* both vertically and horizontally? By
analogy with the earlier examples we might expect that the curve of the relationship
v = (x — 1)’ + 2 could be obtained by displacing the curve of y = x? to the right by | unit
then displacing the resulting curve upwards by 2 units.

Figure 4.5(a), plotted from a table of values, shows that our supposition was correct.

1

A
- 1
Figure 4.5(b) shows y = (x — —2—) -2 " and here the curve of y = x? has been displaced
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y y
3
2 [
2 x -1 \Jz x
)
(a) (b}

2
Figure 45 (@) y=(x—1+2and (b) y = (x—%) —2%

1 1
first to the right by 3 unit and then downwards by ZZ units, When x = —1,

A R T A
y:(—l—) —23:2——22:0; when x=2,y=<l—) —2520; and when

2 4 2
A B B
—0y=(-12) —2i=l 0l
TERY (2) 3°3 °3

In the case of v = (x — 1)2 + 2 we see that no matter what value we give to x, the
expression (x — 1)* cannot be negative. The smallest value it can take is zero and this
occurs when x = 1; this is where the value of v is also least, i.e. a minimum, and its value
there is 2.

2
In the case of y = (x — 5) — 24_1 a similar argument leads to the conclusion that y

1 1 1
takes its least value of —22 when x = 7 Note that x = 2 is halfway between the values

x = —1 and x = 2, as we might have expected.
Using the methods of Chapter 2 we can expand the two expressions in x. In the first
example

y=(x—-17+2
becomes

y=x>—2x+1+2
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Exercise 4.1

y=x—2x+3.

In the second example

NN° 1
p=x—=-) 2=
, ( 2) ;

becomes

v=x *.\'+1—21:x2 —x—=2={(x+ I)x—2).
: 4 4
The curve crosses the x-axis at x = —1 and x = 2, as in Figure 4.5(b).

If we are given these forms of the relationships it is not easy to tell that the first curve
does not cross the axis whereas the second curve crosses twice, nor is it obvious where
these crossing points are. In the next section we discover ways of finding such
information.

The gencral quadratic expression has the form

axt + by +c

where . b and ¢ are constants but ¢ # 0.

The graph of the (quadratic) relationship y = ax® + bx + ¢ is called a quadratic curve,
sometimes a parabola.

The curve of such a relationship can be built up from the knowledge we have gained in
this section. If ¢ > 0 the curve is similar in shape to v = x*: if ¢ < 0 it is similar to

2
y=—x°

The following tables represent relationships of the form v = ax’>. Write down « for each
case,

X -3 -2 -1 0 | 2 3

(a) y 45 20 5 0 5 20 45
{b) vy —108 —48 —-12 0 12 —48 —108
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2 Verify that the curve of the form y = ax® that passes through the point (2, 12) must be
v =3x2, i.e. @ = 3. Find the value(s) of
(a) y when x = =2 (b) ywhen x =35
(©) x when y =3 (d) x when y = %
Sketch the curve.

3 Find the curves of the form y = ax? which pass through the following points:
(a) (—3,3) (b) (5, 50)
(©) (2.3, 6.5) (@ (0, 0).

Find the appropriate value of a in each possible case.

4 On the same axes sketch the curves
(a) y= 241 (b) y = 23
(c) y=2(x>+1) (d) y= -2 +1,

5§ For each curve in Question 4 write down the coordinates of the points when the axes are
crossed. State clearly when an axis is not crossed.

6  Accepting that y = —2(x + 1)* + 3 = —2x —4x + L is the curve of y = —2x? moved so
that its vertex is (—1, 3), identify the following in equivalent terms:

(@  3x—1Y+4 b =9x+3)P +11.

7 Provethatx®> +6x+ 11 = (x + 3)* + 2. What is the least value that y=x246x+ 11 can
have?

8 In the previous question the coefficient of x, i.e. + 6, was halved to give + 3. Then the
expression x + 3 was squared and a constant added to produce an expression equivaient to
the original one. Write the following expressions as a squared term plus a constant (the
constant may be negative).

(@ xX44ax+5 by 2 +dx—2

(€©)  x*+10x+10 (d x*—6x+10
(e) —x2 = 2x+2 " 3x*+6x+4
& X2 43x+1 (h) 2x* — 8x + 5.

9 If the curve v = (x + 3)° + 2 is shaped exactly like the curve v = x* with its vertex at

(-3, 2), write down the minimum value attained in Question 8 parts (a) to (d) and parts (f)
to (h) and the maximum value in part (e).
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10* For the quadratic curve

y= <+ pPX +q

repeat the procedures of the previous two questions and identify the criteria p and ¢ must
fulfil for the minimum value of y 10 lie above, on or below the x-axis.

4.2 QUADRATIC EQUATIONS AND ROOTS

Example

The graph of v = ax? + bx + ¢ crosses the x-axis where 1 = 0, i.e. where

ax® +bx+c=0.

This equation is a quadratic equation becausc of the x° term; hence @ cannot be zero. In
Figures 4.1(a) and 4.5 we see that there can be 0. ] or 2 crossing points. There cannot be
any more than two, as we shall discover.

The key 1o finding the values of x which satisfy a quadratic equation lies in the result
that if the product of two numbers is zero, either one or the other or both of them must be
zero, i.c.

if ab=0 then either a=0orb=0o0ra=b=0.

Figure 4.6(a) shows the graph of the relationship v = (x+ 1)}{x~2). Now
(x+1x—=2)=0where t+ 1 =00orx—2=0.1i¢c. where x= -1 orx=2.

However. the curve in Figure 4.6(b) also crosses the x-axis at x = —1 and x = 2. lts
cquation can be expressed as v = (v + 12 — x). Note that

(x+1)2-x)=0 where x+1=0 or 2—-x=0
which gives the stated values of x. u

Note that the curves cross the y-axis at different points. The curve in Figure 4.6(a)
crosses where v = (0 + 10 — 2) = =2, whereas in Figure 4.6(b) it crosses where
v =(0+ 1)2 - 0) = 2. In general, three points are necessary to specify a quadratic curve
uniquely. (Remember that only one straight line could be drawn through two given
points.)
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Example

Examples

2
-1 \ 2 x 2 x
-2

(a) (b}
Figure4.6 (@ y=(x+Nx-2)and ®) y =(x+ H(2 - x)

Note also that the curve of y = a(x + 1)(x — 2) always crosses the x-axis at x = —1 and
x = 2, whatever the (non-zero) value of a.

Expand the expressions
1) 3x+DR2+x
(i) —=3(1 —x)(2 + x).

Where do the graphs of (i) y = 3(x + N2 +x), (i) y = =3(1 — x)(2 4+ x) cross the x-
axis?

) 3x+D2+x)=32x+2+x24+0)=3(2+3x+2)=3x24+9x+6
(i) =31 ~0)2+x)=-32-2x+x—x)=-3(-F —x+2)=324+3x—6

Curve (i) crosses the x-axis at x = —1 and x = —2.
Curve (ii) crosses the x-axis at x = | and x = —2. ]

If we can factorise a quadratic expression then we can determine where the graph of the
corresponding relationship crosses the x-axis.

1. The expression 2x* + 2x — 12 factorises into the product

(2x — A (x +3) = 2(x — 2)(x + 3).
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Hence the relationship y = 2x% 4+ 2x — 12 can be rewritten as
y=2(x—-2)}x+3)

and the curve crosses the x-axis at x=2 and x= —3.

2. The expression —18 + 12x — 2x? factorises into the product —2(x — 3)2. Hence the
graph of v = —18 + 12x — 2x? touches the x-axis at x = 3.

3. The expression x* + 6x + 10 does not factorise and the graph of
y=x>+6x+ 10
does not touch or cross the x-axis. [ |
When the factors of a quadratic expression ax® + bx + ¢ are easy to determine, we
therefore have a simple means of finding the roots of the corresponding quadratic
equation

ax®> + bx+¢ = 0.

It the factors are not easy to find, or if there are no factors to find, we need an alternative
approach.

Completing the square

Consider the expression X2 + 4x + 3. Take the coefficient of x (+4) and halve it (+2).
Consider the expression (x + 2 =x? +4x +4; this is quite close to our given
cxpression. Then write the given expression as (x + 2y together with a constant added
or subtracted to achieve an identity:

A 43=x+2) -1
Now x? +4x+3 =0 when (x +2)° = 1 =0, so

(x+2)° = 1.
Taking square roots, we have two options:

x+2=1 and x+2=-1

giving the solutions x = —1 and x = —3.
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Example Using the method above find the solutions of the equations
i) xXX~4x—-5=0
(i) > +4x+5=0.

Solution

(i) Consider the expression x? — 4x — 5. Half the coefficient of x is — 2. We can rewrite
the expression (x — 2)* as x* — 4x + 4, so

X —dx—5=x~dx+4-9=(x-27>-09.
The equation x> — 4x — 5 = 0 becomes

(x—2f-9=0 or (x-2=9=3%
This means that

x—2=3 or x—2=-3

sox=5o0rx=-—1.
(i) ¥ +4x+5=(x+2)7+1.
Then x? + 4x + 5 = 0 becomes

(x+2)F = —1.

Since no number has a square of — 1, the quadratic equation has no solutions. W

Formula method

The technique of completing the square is put to more use in deriving a general formula
for the solution of quadratic equations.
The equation

ax? +bx+c=0

can be rewritten by dividing by a4 (non-zero, remember) as

b
x2+7x+5=0.
a a
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Note first that

b :_ »
2a) T 4a*

and that

b » ¢ b
a 1?0 4a?

so that

(.+ h)z_’_(‘_ b
T a 4’

Hence

4

- b _ b ('¥h:-—-4(l('
T TalE T aT s

If b* < 4ac then we can proceed no further and there are no roots to be found
if b > 4ac then we take square rools to obtain

Vi - dac

b
¢ 2a

X+

or

x_—b:b\-‘p—‘iac

2a

. However,
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Examples

This means that there are two roots:

—b+ Vb2 —dac ~b — /B ~ dac

Thus a quadratic equation can be solved, provided > > 4ac, to give two possible
solutions. The all-important quantity > — 4ac is called the discriminant. It is given the
symbol A (Greek capital D) for short. But A must be non-negative (A > 0} for the
formula to yield real values of x. For the time being, refer to cases when A is negative as
complex.

1. Consider the equation
—14x* +x+25=0.
Change the signs throughout to give
14 —x =25 =0.

Apply the formula

1+ /1 41400
X=——F,
28
te. x = 1.3725 (4 d.p.) and x = —1.3011 (4 d.p.).

2. We consider the equation
14x* + 65x — 25 = 0.
The formula gives

L 65k V4225 3 1400
T 28

_ 6575 S
T R Ve

In other words the sledgehammer has cracked the nut but it is worth noticing that A is
a perfect square in this case. In fact this always happens whenever a quadratic
factorises. |
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Example

Example

In the equation
9 —24x+16 =0

we note that ¢ = 9. b = ~24 and ¢ = I6.
The formula produces the result

0 2

&
W |

L HEVST6-576 24 =
B 18 18 18

*©

9,
we say that v = 3iva repeated root.

In fact the equation could be rewritten as

Bx—4y¥ =0
. 4. : 2
showing that x = 3 the only solution. Note that the curve 3 = (3x — 4)° touches the
. 4 -
X-aXis at x = 3 but does not cross it. since v = 0 for all values of x. [ |
It is useful to note that the expression ax® + bx + ¢ takes its least value when x = — %
a
. L . . b .
if a > Uit g < 0 then the expression takes its greatest value when x = — 3 In either
2a
Al - . . . b
case the curve y = ax= + hv + ¢ is symmetrical about the vertical line v = — Y
a

The discriminant A provides a ready check on the nature of the roots of a given quadratic
equation.

If 5 < dac there are no roots, if b = 4ac the root is repeated, and if b > 4ac there
are two distinct roots.

What is the nature of cach root in the following equations?
(i) -1 +5=0

(i) 4¢ - 12x+9=0

(i) 4 = 12x+ 15 =0

Inall casesa=4d4and b= —12.
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Solution

|
(i) c=S5and A =144 — 80 > 0; two roots (in fact they are x, =3.% =§)

(i) ¢ =9and A = 144 — 144 = 0: repeated root (in fact ¥ = %)
(ii) ¢ = 1S and A = 144 — 240 < 0; no roots.

Roots and coefficients

Suppose that we write a quadratic ¢quation in the form

.~ b Iy
4-ox4-=
a a

0

and suppose that this cquation has the solutions x = x and x = ff. Then we know that it
can be written as

(x — 2)x— fi) =0.
If we expand the left-hand side of this cquation, we obtain
Coax—-fix+aff=0
or
¥ = (x+ i+ aff = 0.

Comparing this equation with the original equation, we see that

a+ﬂ=—g and aff =

RIN

Examples 1. The equation with solutions x = 2 and x = 3 can be written as

(x=2x-=3)=0
F=5%+6=0.

Herea=1.b=-5.¢c=6.
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- : =3 .6
The sum of the roots, % + f3, is _(_l;) = 5 and the product of the roots is 1= 6,
as can easily be seen.

2. The equation 14x’ +65x —25=0 has a = 14,h = 65, c = —25. Hence the sum

65 2
of the roots is — ;—4 and the product of the roots is — i

5
We found carlier that the roots were —5 and T4: call them x and f respectively.
Then

5 705 65 b

S TN A T
2+ p T Tt g
5 25 ¢
i = =5 _— = = — = —,
# 4T 714« u

We can use the root properties above to determine equations with roots related to those of
a given equation.
For example, if the roots of the equation

al +bhx+e=0

are denoted % and f. we can find the equation whose roots are 2x and 2.
This equation can be written as (x — 2x)(v — 2ff) = 0, which can be expanded as

=20 — 2y + 202 =0

le. X2 = 2(x + Pix + dufs
b c . .
We know that o + 8 = —— and 2f§ = —. so thc new equation can be rewritien as
u a
,  2b  4c

+—+—=90
d a

or ax? + 2bx + 4c = 0.
You could use the formula method 1o verify that the roots of this equation are indeed as
claimed.

Example If the equation ax? + bx + ¢ = 0 has roots 2 and f3, find the equation whose roots are %
2
and f°.
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Solution

This equation can be written as
(x—aNx =) =0

ie. X — (4L =0

Now

P

2 = (1) = ((‘_1):

¢

Tal o

a

Also, since (x + )’ = 22 + [ + 2xf. it follows that
=+ B - 2af

( /7): ¢
= (-2} —2¢
u u

_ b — 2ac

2
a=

The equation we seek is therefore

or

@t — (b2 —2ac)x + ¢ = 0. |

You could use this approach to find the equation whose roots are 2 and 3, predict the
equation whose roots are 4 and 9 and verily directly that this is s0.

Exercise 4.2

1 Expand the following:
(a) (x —Sx—15) (b) (2x 4+ 9)(3x —5)
(c) —4(x — 3)(2x + 5) (d) (x =52+ 3)3x = 7).

2 Factorise the following quadratics or conclude that there are no simple factors.

() 2% 4+ 5x — 42 (b 3 +x+9
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T

w1 6

(c) 45 — 15x— 4 (d) 6x2 — 53x — 70
() xX*—x+16 () x* —11x 4+ 30

(g) x*—1lx431 (hy  3x2+18x+30
(i) 3x? + 18x + 27 (0 3x? + 18x + 24

Consider y = x* 4+ 8x + ¢ for ¢ = 12 (1)17, i.e. ¢ in steps of | from 12 to 17.

(a) Sketch the curves for the cases g = 12, 15, 16, where factors can be easily found.
Where is the x-axis crossed or touched?

(b) For the non-factorising cases ¢ = 13, 14 verity by sketching that the x-axis is still
crossed.

(c) Establish that the graph cannot touch or cross the x-axis when ¢ > 16.

By halving the coefficient of x and completing the square, solve the following equations:
(a) X45x+6=0 (b) X —x=30=0
(c) XH+17x+72=0 (d) x* —42x + 440 = 0.

With the following quadratic equations, divide the first by the coefficient of x° then
proceed as before.

e) 6x2 +x—2 (N 2¢2 —3x—20
(g) 1x? +20x +9 (h 10x* + 3x — 18.

Use the formula to determine the roots of the following quadratic equations, if they exist.
If no roots exist, say so and give the value of the discriminant.

(@ x2=13x=21=0 (b) XX = 13x+21=0
() X 4+5+60=0 (d) I —1llx+17=0
(e) 16 — 19y — 52 =0 i 176 4 6xv — 97 =0

(solve for the ratto x/v)
In the following case find z? then take the square root as appropriate:
™) A -7241=0
Now do the same for n* and take the cube root:

(h) wl—6w' +3=0

Factorise the following quadratic expressions, noting that in the corresponding quadratic
equation A is a perfect square.
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(a) 187x% + 141x — 76 (b) 345x% —412x — 29
(c) 10807x2 — 113x — 11 124 (d) 189x? — 386x + 65
()  —71x* +2632xy — 185)?

7 When the quadratic equation ax? + bx + ¢ = 0 has real roots, x and f8, we can write
ax? + bx 4+ ¢ = a(x — 2)(x — /) = 0. When « and f are surds, instead of simple fractions,
the expression a(x —x)(x — f§) is usually called the synthetic factorisation of
ax? 4+ bx + ¢. Find synthetic factorisations of the following:

(@ ¥ —91x+20 (b)  2x? — 240xy + 3y?
(c) 2> — 522 + 2z 4 2. noting that (z — 1) is a factor.

8 For the following equations, without solving, write down the sum of the roots, the product
of the roots and the sum of the squares of the roots.

(a) X—-12x—4=0 (b) 22 4+x=19=0
(©) 23— 5x—4r =0 (d)* - (m*+ Dx—x*/n=0.

@  Write down the quadratic equations whose roots are respectively double those in each part
of Question 8.

10* If the quadratic equation ax* + bx +¢ = 0 has roots a and f, show that the equation
whose roots are 3o and 38 is

ax® +3bx +9¢ = 0.
What is the form of the quadratic equation whose roots are kx and kf3, k # 0?

11* The quadratic equation ax® + bx + ¢ = 0 has roots x and f§, neither of which is zero.
Determine the quadratic equation whose roots are 1/x and 1/fi. Verify the result by
1
comparing the quadratic whose roots are 3 and 4 with the quadratic whose roots are 3
1

and -
an a

12* Following from Questions 10 and 11, determine the quadratic equations whose roots are
(@  «/ff and f/« (by  1/0? and 1/4°.
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4.3 COMMON PROBLEMS INVOLVING QUADRATICS

Quadratic equations with one meaningful solution

Example

Even when a quadratic equation has two real roots, only one of them may make sense in
the context of the problem which gave rise to the equation,

The length of a rectangle is 2 m greater than its width, If the area of the rectangle is 8 m*
find the lengths of the sides.
Solution

If we let the width of the rectangle be x m then the length is (x + 2) m. Hence the area is
x(x + 2ym? and therefore

x(x+2)=28
ie. ¥ +2x—-8=0
or x+4dHx-2)=0.
The roots are x = —4 and x = 2. However, x = —4 makes no sense in the context of a
length, so the only meaningful solution is x = 2. Hence the width of the rectangle is 2m
and its length 4 m. L]

Simultaneous equations

Example

If we have two equations in two unknowns, x and y, we may ecliminate one of the
variables by substitution. In the next example the resulting equation in the other unknown
is a quadratic.

Solve the equations

x+y=9 (1)
xy = 18. (2)

Solution

Rearranging (1) we obtain

y=9—x
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and substituting this into (2) gives

x(9—x)=18
50 that
9x — x> =18
or X =9+ 18 =0.

Factorising the left-hand side gives
x—=3Nx—-6)=0.

The solutions are x = 3 and x = 6.

When x = 3, v = 6 and when x = 6, v = 3. as can be found using (1) or (2).

Whichever equation we use to find y, we usc the other equation to verify the values.
|

Note that if the problem had been to find two numbers of sum 9 and product 18, there
would have been only one answer namely, the numbers 3 and 6.

A geometric problem which gives rise to the same equations is to find the dimensions
of a rectangle whose area is 18 m” and whose perimeter is 18 m. If adjacent sides have
lengths xm and ym, the perimeter is (2x + 2y)m and x4y = 9; the area is xv m?
therefore xy = 18. Refer to Figure 4.7.

X

Figure 4.7 Finding the side lengths of a rectangle

Examples 1. To find the dimensions of a rectangle whose area is 36 m* and whose perimeter is 24 m,
we proceed as above and obtain the equations

xy =36 (1)
x+y=12. (2)
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Rearranging (2) to v = 12 — x and substituting in (1) gives

x(12 —x) =136
ie. ¥ —12x+36=0
or (v — 6) = 0.

The only solution is x = 6. and we can readily see that y = 6 also. Hence the rectangle
is in fact a square of side 6:m.

12

- . . ~ . R . .
. To find the dimensions of a rectangle whose area is 21 m~ and whose perimeter is 18 m,
we follow the now familiar steps and obtain the equations

xy =21 (n
Xx+r=09. (2)
Hence r=9—-x
and X9 —x) =21

or xXX—9x+21=0.

This equation has no real solutions: the discriminant
A=9"—4x21 =81 -84 <0.
No such rectangle exists. |
Finally, we use the result that a quadratic expression ax? + bx + ¢ achieves its least

. - h . .
vilue if @ > 0, or its greatest value if ¢ < 0, when x = — o This result follows because
a

5 b :
ax- + by +c = a{x2 +-x+ (,
u a
N h 2+(' b’
X+ — —-— 1.
2ua a A4

by : .
The least value the expression (.r + oy can take is zero and this occurs when x = — —.
u a

=d

. . - e b
Then the lcast possible value for the expression within braces {} is { — 4~,} For any
a  4a?
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Example

other value of x we would add something on and make it larger. At this special value of x,
we have

h? _ 4ac — b

2 L bed ¢ b
ax +hx+e=ai-——sp = —— =
! a 4q 4a

4q?

If @ > G this value represents the least value of the original quadratic expression, since
the corresponding quadratic curve is U-shaped.

If @ < O then this value is the greatest value of the original quadratic expression, since

the curve is N-shaped.
If we return to the quadratic formula

—b+ Vb — dac
Ir =
2a

b o o :
we see that x = 5 when h* = 4ac, which is the condition for the equation to have
equal roots. a

What is the maximum arca that can be enclosed by a rectangle whose perimeter is 18 m?
Solution
If, as usual, we let the lengths of the sides by xm and ym then
x+y=09.
Suppose that the area is A m? then
xv=4
and the elimination of y tfrom these two equations leads to the quadratic equation
X9 —x)=A4.
Now the expression
2

x(9 - x)=9x — x

is a quadratic for which the coefficient of x* (denoted a) is negative. Here ¢ = —1. b =9
. b
and the greatest value of the expression occurs when vy = — 55 =5 4.5. Hence

y=9-45=45. a 2
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The maximum value of xy = (4.5)(4.5) =20.25. Therefore the rectangle of maximum
area is a square of side 4.5m and the maximum area is 20.25 m>. |

In general. two positive numbers whose sum is fixed have a maximum product when they
are equal. Notice that the two expressions x + v and xy do not really change their values if

x and y are interchanged because

x+yv=v+ux and xv=yx

They are said to be symmetrical in x and y. If one of these expressions has a fixed value it
follows that the other has a maximum or a minimum value when x = .

Intersections of a line with a parabola

Example

Example

When a straight line intersects a parabola the coordinates of the points of intersection can
be found by solving a quadratic equation.

Find the points of intersection of the straight line vy =x+ 1 and the parabola
i
v=x"—x—2

Solution

Where the curves meet, the value of x gives the same value of y from both formulae.
Hence

X ox-2=x+1
ie. F-2x—-3=0

or (x+1Dx—-3)=0

hence x = —1 and x = 3 are solutions.
When x = —1, y = 0 and when x = 3, v = 4; see Figure 4.8(a). |

Note that if the resulting quadratic equation has equal roots when the line touches the
parabola and is said to be a tangent to the parabola at the point of intersection. In Figure
4.8(b) the line y =x — 4 meets the parabola y =+’ — 3x at x = 2. If the quadratic
equation has no real roots then the line does not meet the parabola at all. Sometimes the
equation found by solving simultaneously the equations of two parabolas reduces to a
linear equation (no x* terms).

Where do the parabolas v = x* ~ 2x and v = x> + 4 meet?
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y=a7-3x

4
y=v-4 /
(a) (b)

Figure 4.8 Intersections of a line with a parabola

Solution

Solving the equations simultaneously we obtain

P 44=x -2

Le. 2y =—4
or x=-2.
When x = —2,y = 8. Hence the parabolas meet at the point (—2, 8). |

Quadratic inequalities

Consider the inequality v > x* + 4. We know that y = x* +4 is the equation of a
parabola. The points for which v > x> + 4 lie in the shaded region of Figure 4.9(a). The
region below the curve is where v < X2 + 4.

To unravel a quadratic inequality it is often uscful to solve a related quadratic equation.

Example For which values of x is x> —x —2 < (?



4.3 COMMON PROBLEMS INVOLVING QUADRATICS 159

Example

(a) (b)

Figure 49 (@ y>x2+4and (b) x2-x-2<0

Solution

First we solve the quadratic equation

P2—x=-2=0.

The left-hand side will factorise, so we may write

(x—2)x+1)=0.

Hence x =2 orx = —1.
From our knowledge of the shape of the curve y = x*> — x — 2 we can state that the
required interval is —1 < x < 2. Refer to Figure 4.9(b). [

Sometimes we can use the diagram to lead us towards the solution. As with straight line
inequalities, the curve separates the x-y plane into two regions of opposite inequality.

For which values of xis x + | < x> —x — 27
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Solution

Consider first the equation
x+1=x —x-2.

We have seen in the example on page 157 that the solutions are x = —1 and x = 3.
Reference to Figure 4.8(a) shows that the two regions are x < —1 and x > 3. ]

The technique of completing the square can be used to verify some inequalities.

Example Show that for all values of x

2 42x+3>0.

Solution

Since
P+2x+3=Gx+1)°+2

then the least value that the quadratic expression can take is 2, whenx = — 1. Since 2 > 0
it is clear that the expression is always greater than zero. |

Exercise 4.3

1 A rectangle of area 154 m” has one side 3 m longer than the other. What are the lengths of
the sides?

2 A picture frame is designed so the ratio of length [ to breadth b is the same as the ratio of
length plus breadth to length, i.e.

Ry

b~ 1
Let x = //b and find the value of this ratio; it is called the golden ratio.
3 Solve the simultaneous equations
x+y=20, xy =91.

Why are the solutions for x and y interchangeable?
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m 7

A positive number x and a negative number y add together to produce the number 6. When
multiplied their product is — 160. What are x and v?

A medieval German riddle was to find two numbers whose sum is 12 and whose product is
40. By obtaining a quadratic equation prove that no real numbers can satisfy the
requirement.

Solve the simultaneous equations

x4+2v=5 42—V =1

L

A rectangular enclosure of sides xm and ym, as shown in the diagram, is being
constructed from 20 m of fencing adjacent to an existing garden wall which forms one
side. If the area enclosed is to be 48 m* what are x and \?

In an optics problem to determine the focal length f of a lens, the following equation arises:
f(f=2=1>+10.

(a) Show that f = —5.

However, in the original calculation the parameter x = 1/f was used, having emerged
from the lens equation.

(b) Divide the original equation by /2, since /" # 0, and obtain the two solutions for x.
What do you conclude for f?

When heated, a metal rod expands according to the excess temperature 7, which for values
of T > 40 satisties a quadratic equation of the form

107°T2 + 107°T = K.

Determine T when K = 1.
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10

N

w12

For the general quadratic ax? + bx + ¢ establish the identity

Yy bxto= x+£2+(4ac*b2)
ax X cC=d 2a 4a2 .

What is the minimum value of the expression

. b 2+(4a(:—b2)
x 2a 442

and what conditions must be fulfilled for it to be positive, zero or negative? For what
value of x is it a minimum?

For the following quadratics identitfy whether their graphs point up or down and find the
coordinates of their maximum or minimum. In cach case draw a rough sketch but do not
plot the graphs.

(a) x4+ 2x+7 (b) 3 —5x+4
(c) —19x2 + 21x 4+ 45 (d) 5.612x% —23.125x 4+ 79.322.

13* Given the following choices A to F for the maximum or minimum of the general quadratic

14

ax® + bx + ¢, decide whether the equation ax® + bx + ¢ = 0 has real distinct roots, real
equal roots, or no real roots.

Positive Zero Negative
Maximum A B C
Minimum D E F

The graph of y = 6 — x and v = x> + x — 2 is drawn below.

R
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(1) Determine the coordinates of their intersection points.
(b) What inequality holds in the shaded region?

(c) Where does the curve have its minimum value?
- M 5 3 . ki .

15 The straight line _\':x+2 15 a tangent to the parabola y =x- 4 1. Via a sketch
determine the point of contact.

16 Where do the parabolas v = 3x> — Sv — 2 and ' = —x* — 4x + 12 meet? Draw a sketch
and shade the region of points (x.1) which satisty the inequality

7 A 12 <y < 37— Sx -2,
17 The parabola whose equation is v = ax® + by + ¢ passes through the points (0,4), (1,0)

and (6, 10). Substitute for x and v and obtain three linear equations for ¢, b and c¢. Solve
them and determine the equation of the parabola. Draw a sketch.

4.4 FEATURES OF CUBICS

An expression of the form
ax® +hx* +ex+d

where a. h. ¢ and d are constants is a cubic expression. The simplest examples are x* and
—x*. Figure 4.10 shows the graphs of v = x* and v = —x. They could be plotted from a
table of values.

The curves here are related to each other in that reflecting the curve of Figure 4.10(a) in
either the x-axis or the y-axis gives the curve of Figure 4.10(b). Note also that
(—x)' = —x*. Notice that there is no minimum or maximum. The values of y steadily
increase left to right along the curve v = x* whereas the values of v steadily decrease left
to right along the curve v = —x'. Anyone driving along a road shaped like y = v} from
the south-west would experience a change in the direction of bending at the origin; the
car would have to be changed from turning to the right to turning to the left as it went
through the origin: the reverse would happen for the case v = —x*. The feature at the
origin is called a point of inflection.

Unfortunately. these curves are not typical of cubics in general in the way that v = x?
and y = —x° were typical quadratics. However, the following rule applies:
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(a3 1h)

Figure 4.10 (a) y — x* and (b) y — ~x3

All cubic curves with a > 0 start in the south-west quadrant and end in the north-
east quadrant, whereas those with a < 0 start in the north-west quadrant and end in
the south-east quadrant.

Before we look at graphs of more general cubics there are some features of the curve
v = x" that we should point out. First, there is only one value of x which corresponds to

cach value of v, i.c. cube roots are unique. For example, if v = —8 then x' = —8 and the
only solution is v = V=8, i.e. v — =2,

First we make a comparison between the curves of v = x° and v = x°, as in Figure
4.11. Notice that whereas v = v is symmetrical about the v-axis, 3 = % is not. At the

Figute 4.11 Compatring y — x? and y — x3
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Example

origin the two curves meet and as x increases the curve y = x? increases more rapidly in
the early stages. then the curve v = x* begins to *catch up’ and the two curves meet again
atx=1(1?=1and I’ = 1). For x > 1 the cubic curve begins to "accelerate away’ and
the gap between the two curves widens. For negative values of x, x* is negative whereas
¥ is positive.

Certain cubic curves can be obtained from the curve y = x* by horizontal or vertical
translation. Consider the curves shown in Figure 4.12. In diagram (a) the graph is
v=x'—1: the curve of y=x’ has been displaced downwards by [ unit. When
x=0,r=—land whenx = 1.y =1 -1 = In diagram (b) the graph is y = (x — N
the curve v = x* has been displaced to the right by 1 unit. Whenx = 0,y = (—1)’ = —1
and whenx =1,y =0 =0,

/ l/
(a) (b)

Figure 412 (@) y=x>—land (b) y =(x = 1)*

Although both curves cut the axes at the same points, they are quite different from each
other. In general it is necessary to specify four points through which the cubic curve
v=ax’+ bx? + cx + d passes in order to determine the tour coefficients a. b. ¢, d.

We sketch the curve v = (x — l)3 + 2.

Note that when x=0.y=(-1’4+2=—-142=1 and that when x=1,v=
0+2=2

Using the ideas above we can obtain the curve from v = x* by moving it | unit to the
right then 2 units upwards: see Figure 4.13.
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B v=lv— )2
y=e=1)

R /Y,
' [

(a) (h) ()

3

Figure 413 (@ y=x%® y=(x—1’and (@) y=(x—-17+2
Note that v = 0 when (v — 1)" = —2. 80
(x— 1) =J(=2) = —1.2599 (4 d.p.).
Hence x=1+Y(—2)= —0.2599 (4 d.p.). |

Cubic curves in general

Remember that the general cubic curve is v = ax’ 4+ x> + cv + . Figure 4,14(a) shows
the curve

r=(r+ Dlv— Dix - 2).

When x = —1,x = [ orxv = 2 then 1 = 0 and these are the only values of x for which the
value of ¥ does equal zero. When x =0, = (1) x (—1) x (-2) = 2.

When travelling along the curve trom left to right we notice first a local maximum just
before v = 0 then a point of inflection | in lact at ¥ = +—i than a local minimum
between x = | and x = 2. These features, in that order. are typical for a cubic curve with
a >0,

Figure 4.14(h) shows the curve

r=(+ 2 = 2)(1 = ).
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to
2

[HY] (h)

Figure 4.14 (@) y=(x+ 1)x - Iix—2)yand (B) y = (x + 2)x = 2)(1 — x)

When x=-2, x=2 and x=1, then and only then does v=0: when
y=0r=(2)x(=2)x(])=—-4.

When travelling along the curve from left 1o right we encounter first a local minimum
then a point of inflection, then a local maximum. This order is typical for a cubic curve
with ¢ < . How 1o locate precisely tor which values of v these features occur is dealt
with in Chapter 1.

The expanded formulae for the curves are respectively v=x' —2x? —x 42 and
v =—x" 4+ v2 +4v— 4 This form makes it difficult to determine where the curves
cross the x-axis. But to factorise the cubic expresstons into their original forms would
not be simple either (if we did not already know the answers). In general, cubic curves
do not readily yield their features without the use of the calculus-based methods of
Chapter 11.

How many times does & cubic curve cross the x-axis? Figure 4.15(a) shows the curves
r=x'—2¢¥ —y+3and v =¥} — 2x* — v — 1. Each curve crosses the x-axis once only:
they have been obtained by displacing the curve of Figure 4.14(a) vertically upwards by |
unit and vertically downwards by 3 units respectively.

The curves do not appear to be a constant distance apart. bunching together as x
becomes more negative and as v becomes more positive. However. the vertical gap
between them remains constant as v varies. (Plot some points and see for yourself.)

Figure 4.15(b) shows another possibility: on this occasion there is one crossing point
and one point at which the curve touches the x-axis. In fact this curve is

y=(— 1) x4+ 1)
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(a) (b)
Figure 415 (@) y=x>—-2x2—x+3(b) y =(x — 1¥’(x + 1)

In summary a cubic curve can either (i) cross the x-axis three times, (ii) cross the x-axis
only once, or (iii) cross the x-axis once and touch the x-axis once.

Exercise 4.4

1

Sketch the following curves on the same set of axes:

(@ y=-x M y=1+02-x?
© y=-+3y -V

What can you say about the curves?

Determine the unique solutions of the following equations:
(@ 3x-21+2-0 ) 95 +3x) —11=0
and find values of x to satisfy

27 , 64
() (1+x2)3:§ @ 25— 10xr+¥ =

S—x

3" Which of the following are true or false about cubic curves of the form

v=ax’+ b +ex +d?

(a) A cubic must always have at least one real root, i.e. the x-axis crossed at least once.
(b) A cubic has three roots.
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(c) A cubic has two roots only when one of them coincides with a tangent point on the
X-axis.
(d) Cubic curves always have individual maximum and minimum points.

4  Sketch the curves

(@)  y=@+Dx+2)x—1) b)  y=—x(x-3)
5 On the same axes plot the graphs of y = x?, x* and x* for the values —2 <x < 2.

6 A cubic expression is best computed using nested multiplication. This reduces
to a minimum the number of arithmetic operations requircd. As an cxample,
3 -2 + 1x+50={(3x — 2)x+ 1i]x+ 50, as you can check. Use nested
multiplication to complete the table below.

x -2 =1 0 | 2

7 When x is large (positive or negative) the highest power term in a cubic expression

predominates. Illustrate this by finding the ratio 3—)1-3 in Question 6 for the following
values of x: *

x = %10, £10%, +10°.
8 Giventhaty =x* — 2x* 4+ ax + b = 0 when x = | and x = 2, what are the values of « and
b?
9 Given the identity
(x = 3) —(x—4Y =32+ x+d

select values of x to eliminate one or other of the terms on the left-hand side and hence
find ¢ and d.

10" On the same axes, sketch the cubics
y=x(x+ )x—2) and y=(x+2)x~-1)x—4).

Determine their two intersection points and express the region enclosed between the
curves in terms of an inequality.

X e



SUMMARY

Quadratic expression: an expression ax’ + bx + ¢: a, b, ¢ constant. Its
graph can be obtained from that of x* by a combination of scaling,
translation and (if @ < 0) reflection in the x-axis.

b
Quadratic curve: has its vertex at x = ~ 55 this is the lowest point if
a > 0, the highest point if a < 0.

Quadratic equation: ax’ + bx + ¢ = 0 has no roots if b* —4ac <0, a
repeated root if > — 4ac = 0 and two roots if b’ — dac > 0.

Solution of a quadratic equation: the main methods are as follows.
Factorisation
CHbx+c=(x—-a)(x- f). so the roots are x = o, x = .

Completing the square

rz+bx+c+(.r+g) +%2+c.

Formula

_=bx Vb — dac

X
2a

Sum and product of roots: for the quadratic equation ax’ + bx 4+ ¢ = 0
we have:

Sum of roots a+[3=j
a

Product of roots aff = S
a

o Cubic expression: an expression of the form ax® + bx* + cx + d.



e Cubic graphs: generally unlike the graph of x*.

If @ > 0 the graph starts in the south-west quadrant and ends in the
north-east quadrant.

If @ < 0 the graph starts in the north-west quadrant and ends in the
south-east quadrant.

e General cubic graph: travelling from left to right we meet the following
sequences of points.

a=>0 a<(
local maximum local minimum
point of inflection point of inflection

local mimimum local maximum
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Answers

Exercise 4.1

2 () 12 (b) 75 (c)

(b) -1.2

lor — 1 (d) —Oor — —

(1.3

1
3@ 5 b 2 () 12287 (to4dp) (d) Anya
4 y=27+ 1)
y=x+ |
y=x-3
y=-2rT+ |
5 (a) (0, 1); x-axis not crossed (b) 0, =3), (£v3,0)

(€) (0, 2) only; x-axis not crossed (d) O, 1), (£1//2.0)

6 (a) v = 3x%, centre (1, 4)

(by  yv=—9x% centre ( — 3, 11)
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8 (@ (x+2Y+1 (b))  (x+27 -6
©  (x+5°-15 @ (=371
@ ~(x+1%+3 ) 3+ 1)+

5 2

(®  (r+3/27 - (hy  2x-2)y°-3

9 (a 1 (b) -6 (c) —15 (d) 1

5
(e) 3 (H 1 (&) ~a (h) -3
p P

10 Centre (—z,q - 2)
The minimum is above, on or below the axis according to A > 0, =0, <0 where
A=y ~p2/4.

Exercise 4.2
1 @  x*—20x+75 (by  6x?+17x—45

(©) —8x2 + 4x + 60 () 6x3 — 35x% + 4x + 105

2 (a) (x +6)2x—17) (b) no simple factors
) (x—4)dx+ 1) (d) (x— 10)(6x + 7)
(e) no simple factors (f) (x — 6)(x —5)
™) no simple factors (h) 3(x* + 6x + 10) i.e. no simple

factors

(i) 3x+3) 0 3 +dx+2)

Graphs of y = x* 4+ 8x + ¢
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10

g =12 crosses x-axis at x = =2, —6
g =15 cross x-axis at x = —3, -5
g = 16 touches x-axis at x = —4

24 8x4+g=(x+4) +(g—16) > 0 when g > 16 for all x

()
(c)
(e)

(g)

(a)

(©)
(e)

(g)
(a)

(c)
(e)

(a)

(b)

(c)

(a)

(c)

(a)
(c)

-2, -3

-8. -9
2
2" 3

%(13i\/253)

No roots, A = =215
]
m(—l9:t«/68])

+0.38197, £2.61803
(1lx — 4)(17x + 19)

(101x — 103)(107x + 108)
(=7lx 4+ 5y)0x —37y)

) Qpp—

(b)
(d)

)

(h)

(b)

(d)
®

(h)

(b)
(d)

( 91 JW)( 91 \/W)

2 2 2 2

2(x—60+

(z— Dz—2+V6)(z—2— 6)

12, —4, 152
5 23 209
4 47 16

¥ —24x—16=0
46 —5x—2x2 =0

ax* + kbx + ke =0

~/14394)(r g Y1439
X . _

2

(b)

(d)

(b)
(d)

—-5.6
20, 22
4. -2
2
6 3
5 2
|
(13 % V85)
No roots, A = —83.
; ]
L (234 9V72)
v 17

(3£ v/6)'F = 1.7598,0.8196

(I5x+ 1)(23x — 29)
(7Tx — 13)27x — 5)

I 19 77
2 27 4
—m(m® + 1), -, At 420 4+ )

X4x—38=0
dn =2’ + x=x3/n =0
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Exercise 4.3

1

12

11

ex* +bx+a=0

x=3)x—4H=x-Tx+12=0,s0x=3.4

1 1
12( —3)( —4_1) =CBx—1)4x—1)

=12 —=7x+1=0,50x =

2y,
(a) x— (uﬁg)x+ 1 =0 (b)

1 or |
3%
Axt— (P2 - 2acx)+a2 =0

ac

I11m and 14m

1
5(1+ﬁ):1.618

7 and 13; the solutions for x and y are interchangeable because each can play either role

—10 and 16 or vice versa

A = —16, no solution possible
x=l,y=2o0orx=29y=-12
x=8y=6orx=12,y=4

1
X=-z 0 or f = -5, infinity

T=91.61 (only solution)

4ac — b?
inimu; aa
Positive dac > b*
Zero 4ac = b?
Negative 5 > dac

b
X =

2a
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12 (a) (1, 8) (b) (E,E)

F1

(c) (0.553, 50.803) (d) (2.060, 55.500)

\\//

13 (a) Distinct real roots (A)
(b) Equal real roots (B)
©) No real roots (C)
(d) No real roots (D)
(e) Equal real roots (E)
(f) Distinct real roots (F)

14 (a) 2, 4), (—4, 10 (b) (x, ) satisfy the inequality x> + x ~2 <y <6 —x

1 1
© ("2‘ ‘22)
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15 y=x141

v=x+3/4

(0, l/
/ |

16 y=3x2~5x—21

P(-1.75,15.94)

y:—x2—4x+ 12

. 3 15
Coordinates of P are (—l 3 ISR).

17 a=1,b=-5c=4
y=x}-5x+4

(6. 10)

©.4)

(1.0)
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Exercise 4.4

2.0
0,0

(b)

(@)

Al are quasi-parallel in that they are replications of y = —x3 centred on the points
indicated.

AN '

=\—3 2 b = = — —5

(a)X(3)+ ()x3(9>

1
(©) x ==+ (d) x=1

(a) True. if ¢ > 0, the graph is in the NE quadrant if x >> 0 (large, positive) and in
the SW quadrant if x < 0 (large, negative). The x-axis must be crossed. Likewise
for a <0 but with the SE and NW quadrants for x> 0 and x <« 0.
(b) False, e.g.
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(c) True, e.g.

(d) False, e.g. x°

(a) y (b) y

(-1.0)

(<2, 0) [\

\ (o x
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6 x =2 -l 0 1 2
y —4 34 50 62 88
7 09867 1.0867 forx = £10 respectively
0.9937 1.0070 for x = £100 respectively
0.9993 1.0007 for x = $:1000 respectively
8 a=-1,b=2
9 ¢c=-21,d=37
10
y yv=(+2)(x-D(x-4)
y=x(r+ D {x-2)
X

x=+J5-1
(x, p) satisfy x(x + Dx —2) <y < (x+2)(x — D(x —4)



5 GEOMETRY



INTRODUCTION

OBJECTIVES

The classification and properties of basic shapes in two and three
dimensions has always been an essential ingredient of our knowledge of
the world and our ability to solve real-life problems. Today, with an
increasing role for computers in design, geometry is again coming to the
fore as the need for the more economical use of scarce materials becomes
more acute. Increasingly impressive computer simulations rely on the
properties of plane shapes and solids.

After working through this chapter you should be able to

recognise the different types of angle

identify the equal angles produced by a transversal cutting parallel lines
identify the different types of triangle

state and use the formula for the sum of the interior angles of a polygon
calculate the area of a triangle

use the rules for identifying congruent triangles

know when two triangles are similar

understand radian measure and convert from degrees to radians and vice
versa

state and use the formulae for the area and circumference of a circle
calculate the volumes of the regular solids
calculate the surface areas of the regular solids
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5.1 SHAPES IN TWO DIMENSIONS

The first step is to introduce some basic geometric concepts. The fundamental concept is
that of a point.

A point occupies a position but has neither dimension nor size. It is represented by a
dot for clarity but the dot is not the point itself. It is usually designated by a capital letter.

A line has length as its only dimension: it has no thickness. It may be represented by
the path of a pen on paper. In theory a straight line is unlimited in extent.

A ray is that part of a straight line extending from a given point in one direction
whereas a straight line segment is that part of the straight line between two specified
points on it. A line segment is designated by the letters of its endpoints; thus the line
segment with endpoints 4 and B is designated AB.

A surface has two dimensions but no thickness: if any two points on a surface can be
connected by a straight line, all of whose points are on the surface, then surface is called a
plane. In everyday language the plane is a flat surface. In the first three sections we
confine our attention to geometry in the plane.

When two lines intersect they have a point in common—the point of intersection; if
they never intersect they are said to be parallel.

When two rays have a common endpoint they form an angle. The rays form the sides
of the angle. The common point is called the vertex of the angle. The angle can be named
by its vertex capital letter with a circumflex overhead, e.g. 4, or by a smaller letter inside
the angle, e.g. x, or by three capital letters, e.g. BAC; see Figure 5.1.

B

A C

Figure 5.1 Notation for angles

Generally speaking, BAC and CAB are alternative notations for the same angle. The
magnitude of an angle is measured by the amount of rotation from one ray to the other. A

full rotation takes a ray back to its starting point. A degree is s of the full rotation
about a point. In this notation thirty degrees is written 30",

There are several classification of angles which are important. An angle of 907 (or one-
quarter of a full turn) is called a right angle; it is marked b_. An angle between 0° and
90° is called an acute angle; an angle between 90~ and 180 is called an obtuse angle.
An angle of 180" (one-half of a full turn) is a straight angle and one between 180~ and
3607 is a reflex angle; see Figure 5.2.

When two angles are complementary their sum is 90 and when two angles are
supplementary their sum is 180°.
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b N ST

Acute Right Obtuse Straight Reflex

Figure 5.2 Types of angle

Four angles are formed when two straight lines intersect; those which have a common
endpoint and share a common ray are called adjacent whereas those which have only a
common vertex are called vertically opposite, or just opposite.

In Figure 5.3(a) angles a and b are adjacent, as are angles b and ¢, ¢ and d, and 4 and a.
Angles a and ¢ are opposite as are angles b and 4. Notice that opposite angles are equal.
In this case the adjacent angles are supplementary.

The adjacent angles in Figure 5.3(b) are not supplementary. The angles marked in
Figure 5.3(c) are not equal; they are called vertical angles.

When two lines intersect to form four right angles they are said to be perpendicular;
see Figure 5.4. We write ABLCD.

(b) (c)

Figure 5.3 Pairs of angles

B

Figure 5.4 Perpendicular lines
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Parallel Lines

Parallel lines are indicated by arrows, as shown in Figures 5.5, 5.6 and 5.7.

A line which intersects a set of two or more lines is called a transversal. Two sets of
equal angles are produced when two parallel lines are intersected by a third line.

In Figure 5.5(a) the marked angles are equal; they are corresponding angles. They are
on the same side of the transversal and on the same side of the parallel lines. In Figure
5.5(b) the angles marked with the same letters are equal; each pair consists of
corresponding angles.

In Figure 5.6(a) the marked angles are equal; they are alternate angles. They are non-
adjacent angles between the parallel lines and on opposite sides of the transversal. In
Figure 5.6(b) the angles marked with the same letters are equal; each pair consists of
alternate angles.

Two lines are parallel if any pair of corresponding angles are equal or if any pair of
alternate angles are equal. Two lines are parallel if they are parallel to the same line. Two
lines are parallel if they are both perpendicular to the same line.

D S

(a) (b)
Figure 5.5 Corresponding angles

a/ b
b Ja
(a) (b)

Figure 5.6 Alternate angles
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Figure 5.7 Supplementary angles

In Figure 5.7, the angles a and & are supplementary. This fact can also be used to test
whether two lines are parallel.

Triangles

A triangle is a closed figure with three sides which are straight line scgments. It is
labelled by a capital letter at each vertex. If one of the angles at the vertices is 90° the
figure is a right-angled triangle: if all angles are acute we have an acute-angled
triangle. if onc of the angles is obtuse the triangle is obtuse-angled: see Figure 5.8.

= c

(a) (h (<)

Figure 5.8 Types of triangle: (Q) right-angled. (b) acute and (c) obtuse
Here is an imporiant result concerning the sum of the angles:
The sum of the angles of any triangle is 180° (two right angles).

In a right-angled triangle. the side opposite the right angle is the hypotenuse. An
important result concerning right-angled triangles is Pythagoras® theorem. This states
that the square of the length of the hypotenuse is equal to the sum of the squares of the
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lengths of the other two sides. With reference to Figure 5.8(a) the theorem can be stated
as:

(ACY = (4B) ~ (BCY

The theorem will be proved in Chapter 6.

Somctimes the lengths of the sides of a4 tnangle are labelled by lower case letters
opposite the corresponding angle: see Figure 5.8(a). In this case the theorem can be stated
ane

If all three sides are equal the triangle is called equilateral. In Figure 5.9(a) the sides AB.
BC and AC are cqual; the angles BAC, ABC and BCA are equal. Note that if all three
angles of a triangle are equal then it is equilateral and its sides are of equal length. Each
angle is 60 .

A triangle with two sides equal is called isosceles. The unequal side is the base and the
opposite angle is called the vertex angle. The two other angles are equal. In Figure 5.9(b)
the sides 48 and BC are equal; the angles B4C and BCA are equal. If two angles of a
triangle are equal then it is isosceles and the sides opposite these angles are equal. A
triangle with three unequal sides is a scalene triangle: see Figure 5.9(¢).

~
~

1 A

(R ib) <)
Figure 5.9 Types of triangle: (@) equilateral, (D) isosceles and (¢) scalene

A useful result can be found by introducing the idea of an exterior angle of a triangle.
It is formed when one of the sides is extended. Hence, in Figure 5.1004) the angles PAC
and ACQ are examples of exterior angles. The angles we have discussed up o now are
interior angles, of which BAC iy an example.

An exterior angle is equal to the sum of the two opposite interior angles. Figure 5.10(b)
shows an example: angle ACQ is equal to the sum of angles BAC and ABC.
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(@) (b)
Figure 5.10 Exterior angles

Special lines in a triangle

A line segment that bisects an interior angle of a triangle is called an angle bisector; see
Figure 5.11(a) where the line segment BD bisects the angle ABC.

A line segment that joins a vertex to the midpoint of the opposite side is called a
median of the triangle. In Figure 5.11(b) BD is a median; the lengths of the line segments
AD and DC are equal and we could write 4D = DC. Note how we mark the equality of
these lengths. (If more than one pair of lengths on a diagram are equal, we may also use a
single short line | or a treble |||.)

If a line bisects a side at right angles it is called a perpendicular bisector of that side;
in Figure 5.11(c) PQ is a perpendicular bisector of AC.

B\

(a) (b) (c)

Figure 5.11 Bisectors

An altitude of a triangle is a line segment from a vertex which is perpendicular to the
opposite side. In Figure 5.12(a) BD is an altitude. In Figure 5.12(b) the triangle is obtuse
and the altitude lies outside the triangle; it meets the opposite side produced.
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B

[ ] k
D A C

(a) (b)

Figure 5.12 Altitude of a triangle

Polygons

Any closed geometric figure whose sides are straight line segments is a polygon. As we
have seen, a three-sided polygon is a triangle. If all the sides of a polygon are equal it is
called equilateral; and if all the angles are equal it is a regular polygon. The perimeter
of a polygon is the sum of the lengths of its sides. Figure 5.13 shows some examples of

polygons.
() (b

() (d)

Figure 5.13 Examples of polygons: (a) pentagon, (b) quadrilateral with reflex angle.
(¢) regular pentagon (x=108") and (d) regular octagon (y=135")
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Quadirilaterals

Diagram (b) is an example of a polygon with u re-entrant vertex: cach of the other
diagrams shows a convex polygon.
We sometimes quote the angle sum in the following way:

The sum of the interior angles of a polygon is (2n — 4) x 90° where n is the number
of sides.

A quadrilateral is u polygon with tour sides: see Figure 5.14. Rectangles have all four
interior angles equal to Y0 . Squares are rectangles with all sides equal. A rhombus has
all sides equal.

If a quadrilateral has opposite sides parallel it is a parallelogram: it is a consequence
that the opposite sides are of equal length. Furthermore, one pair of opposite sides being
parallel and of equal length is sufticient to determine a parellelogram. Note that the three
previous cases are all parallclograms, To indicate that two lines are parallel we use the
symbol II: for example. in Figure S.13(a) AD Il and BA 11 CD. When only one pair of
opposite sides are parallel, the figure is called a trapezoid.

. p S ) ?
J , j / /
i ! /
| , /
a! N [/
B ( B ( B C
) th) ()
A D
\
8 (
(1] [I9]

Figure 5.14 Some quadriaterals: (a) rectangle. (b) square. (¢) rhombus. (d)
parallelogram ond (e) trapezoid
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A line segment joining opposite vertices is a diagonal: in Figure 5.14(d) the diagonals
are AC and BD. In a parallelogram the diagonals bisect each other: in a square they are
also perpendicular.

Areas

N —F —»

(61} (b
Figure 5.15 Areqs

The area of a rectangle is the product of its length and its breadth. In Figure 5.15(a) the
arca A of the rectangle is given by A4 =/,
In Figure 5.15(b) the rectangle has been divided into two equal triangles. The area of

1
cach triangle is clearly Elw. In triangle BCD the side BC is the base and the side CD is the
altitude or height. The arca of any triangle can be found by a similar principle. In Figure

|
5.16(a) and (b) the arca of the tnangles ABC is 2ah:

1

'Iheareaofauiangleisszasexheighz.
A
/‘ ’
[}
[}
|
1 h
h [}
I l
I
PR |
B D ¢ ] C D
o —d —
(a h)

Figure 5.16 Areq of a triangle
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In the first case the area is the sum of the areas of triangles ABD and ADC, ie.

1 1 1
EBD x h+ EDC x h= iBC x k. In the second case the area is the difference between

1 1 1
the areas of the triangles ABD and ACD, i.e. EBD X h— ECD X h = EBC x h.
Since a parallelogram can be divided into two equal triangles its area is bh; see Figure
1
5.17(a). In the case of the trapezoid shown in Figure 5.17(b) the area is E(a + b)h.

The area of a general polygon can be found by dividing it into triangles and adding the
areas of the triangles, as shown in Figure 5.17(c).

Take any interior point O, then draw straight lines from that point to each of the
vertices as shown. The angles at O add up to 360°, i.e. four right angles. We now add
together the angles in all the triangles such as AAOB. In all there are » triangles, one for
each edge, so the total angle sum is 2n right angles.

The sum of the interior angles = the sum of the triangle angles minus four right angles,
i.e. (2n — 4) right angles, as we stated earlier.

ad

(a) (b)

(c)
Figure 5.17 Further areas
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If the polygon is regular then each interior angle is

2n — 4
n

4 .
= 2 — — right angles
n

e.g. a regular pentagon has five angles of 108°.

Sometimes regular polygons can form patterns known as tessellations, as in Figure
5.18. Only certain kinds of regular polygon can actually form neat joints like those
shown.

NN/

(a)

(b)

(c)

Figure 5.18 Tessellations: (a) friangles, (b) squares and (¢) hexagons (honeycomb)
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Exercise 5.1

1 Determine the magnitudes of the marked angles in each of the following cases:

X 30°
130°
v
&l x
(@ (b)
/*\
(v 50°

4

() (d)

(Remember that the sum of angles in a triangle is 180°.)

2 4B, CD and EF are straight lines passing through the axis O’ at the angles shown, The
straight line PQ has variable angle a. For what values of % is PQ unable to meet the other
lines?
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D

o’ 0

I
K V1
[ ]
B C
7 N
| |
The dashed lines in the diagram are all perpendicular to BC. Find ABC and check the sum
of the angles of AABC.

4* (a) The line segment AB contains an interior point 2 where AP: PB=3:4. 1If
AB =28 cm, what are AP, PB?

(b) In this triangle PQ is parallel to BC. How long is PQO?
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6

7

Q

(c) The triangles ABC and CDE are isosceles with CA=CB and CD=CE.
AC=3 c¢cm, CE=5 cm and DE=6 cm. How long are the other sides?

D

(d) The triangle ABC has sides AB=11 cm, AC=5cm and BC=9 cm. On 4B
produced (i.e. drawn from 4 to B and extended beyond) is a point P, which is
5.5 cm from B. A further straight line PQ is drawn parallel to BC and meets AC
produced at O. Draw the diagram and calculate the length of AQ.

The following triples represent side lengths of triangles. Determine which of them are
right-angled.

@ (3,45 b  4.56) (© V2,V3, V3
(d) 4,7, 1) (e) (5,12, 13) H (6, 7, V85%)
(g) (24, 7. 25) (hy (9, 12, 15)

What conclusion can you draw from parts (a) and (h) of Question 5?7

ABC is an equilateral triangle of side 10 cm. 4B is produced to D so that BD =AB. Prove
first that ACD is a right-angled triangle then calculate the distance CD. How far is the point
P from CD?
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8 Write down the sum of all interior angles and hence determine all the angles in the
following polygons:

110°

(a)
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C
13
5
A s
ta)
A 8 D
6 10
B
¢
BDC =90°
(c)
10
[§)

9  What is the arca of each of the following figures?

D 25

A r 52

B
P s vertically below D) and AP =7

(h)

(a)

Find x* + 17 from AAPC.
(b)

4.05 B

ABCD is a parallelogram

(dy

Apply Pythagoras™ theorem to APBC and determine x.
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11

12

13

14

(<) Hence find y.

(d) What is the arca of A4BC?

Construct a triangle whose sides are in the proportion 8:6:5 and show that its measured

area agrees with the result in Question 10.

An isosceles triangle has two equal sides of x units and a base of length y units. What is its

area in terms of x and ?

(a) What is the area of an equilateral triangle of side «?

(b) Extend this result to find the area of a rectangular hexagon (six sides) of side «.

ABCDEFGH is a regular octagon of side 1 unit. By removing the areas of the shaded

triangles trom the square XYZ7, find is area.

7

G

H

r

A

2]

16 How many sides does a regular polygon need to have before the vertex angles exceed

1507

16  Construct a regular hexagon by first drawing a circle, centre O. Move the compass point (o
A. Then mark off B along the circumference. an amount equal to the radius O4. Move the

C

s
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compass point to B then mark off C, etc. Proceed until you return to A then draw the
straight lines 48, BC, etc.

17* Three regular polygons meet at a common vertex. If polygon 1 has a sides then its vertex
4

angles equal (2 - —) right angles. Assuming that polygon 2 has b sides and polygon 3
a

has ¢ sides. show that:

1+1+1_1
a b ¢ 2

Polygon
(h

Polygon
(2)

Polygon
3)

18* Using the result of the previous exercise, explain what happens when:
(a) a, b, c are all equal (b) a=12,b=6
(c) a=3,b=c (d) a=6,bhb=7

5.2 CONGRUENCE AND SIMILARITY

Two shapes are congruent if one is an exact duplicate of the other, in that they have the
same size and shape. One could be superimposed exactly on the other.

If two circles have the same radius then they are congruent. Things are more
complicated for triangles.
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Congruent triangles

When two triangles are congruent, corresponding sides in the triangle are equal and
corresponding angles are equal. Figure 5.19 shows two triangles which are congruent.
You can verify this by tracing a copy of either triangle and confirming that it is possible
to superimpose this tracing exactly on the other triangle.

D

F
Figure 5.19 Congruent triangles

Sides 4B and DE are equal in length, as are sides BC and EF and sides AC and DF.

Angles ABC and DEF are equal in magnitude as are angles BCA and EFD, and angles
CAB and FDE.

To emphasise which sides and which angles correspond, we say that triangles ABC and
DEF are congruent; then the first two letters in each case, 48 and DE, represent sides of
equal length, the third letter in each case shows that the angle at vertex C is equal in
magnitude to the angle at vertex F.

Figure 5.20(a) shows two congruent triangles marked to demonstrate which sides are
equal in length and Figure 5.20(b) shows the marking to indicate which angles are equal
in magnitude.

L7 7

R

(a) (b)
Figure 5.20 Indicating congruence
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Tests for congruent triangles

Three sides (SSS)

How do we test whether two triangles are congruent without tracing over one of them?
The tests presented here are based on the idea that the information given is sufficient to
construct onc triangle. and only one triangle, apart from its position and orientation.

Four such tests are presented then each is examined. A triangle of unique size and
shape is specified by stating the magnitudes of one of the following sets:

e Three sides (S8S)
e Two sides and the included angle (SAS)
e Two angles and the side joining them (AAS)
¢ Right angle, hypotenuse and another side  (RHS)

In Figure 5.21(a) triangle ABC is constructed by drawing the side 4B to a specified
length; its position is not important. With centre at B an arc of a circle is drawn having
radius equal to the second specified length. With centre at 4 an arc of a circle 1s drawn
having radius equal to the third specified length. The two arcs meet at C.

Note that we cannot merely specify any three values and expect to draw a triangle. In
Figure 5.21(b) the arcs drawn from B and 4 do not meet, so no triangle can be drawn.
Note also that the order in which we use the specified lengths is unimportant; it is allowed
to turn over the tracing of one triangle to make it coincide with the other triangle.

& B

() (b)

Figure 521 Constructing a triangle: SAS

Two sides and an included angle (SAS)

Refer to Figure 5.22(a). Side 48 is drawn to one of the specified lengths; side 4C is drawn
to the second specified length so that it makes the required angle with AB. The ‘free’ ends
B and C are joined to form the triungle. Again, there is the possibility of a ‘mirror image’,
Figure 5.22(b).
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B

(@) (b)
Figure 5.22 Constructing a friangle: SAS

Two angles and the joining side (AAS)

The side AB is drawn to a specified length; this immediately gives us two vertices. 4 and
B. A line AE is drawn tfrom A at one of the given angles and a second line 4D is drawn
from B at the other given angle. As shown in Figure 5.23(a). these lines meet at €, the
third vertex.

Right angle, hypotenuse and side (RHS)

The side A8 is drawn to the smaller of the given lengths. The line BD is drawn at right
angles to AB. An arc is drawn of a circle centre 4 having radius equal to the larger of the
given lengths. As shown in Figure 5.23(b). the urc meets the line BD at C, the third
vertex.

We can use the idea of congruent triangles to demonstrate some useful results.

D

—.

(1) th)

Figure 523 Constructing a triangle: (a) AAS and (b) RHS
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Example

Similarity

If two sides of a triangle are of equal length then the angles opposite them are of equal
magnitude. In Figure 5.24 the isosceles triangle ABC is such that AB = CB.

A D C
Figure 5.24 Angles opposite equal sides are equal

From vertex B the line which bisects angle ABC is drawn to meet the opposite side AC
at the point D.

Consider the triangles ABD and CBD. We are told that 4B = CB and the side BD is
common to both triangles. Since ABD CB’D by construction the triangles are
congruent according to SAS. Hence BAD = BCD as required.

Note also that ADB = CDB, so each must be equal to 90°. Hence BD is perpendicular
to AC and the angle bisector BD is also an altitude of triangle ABC. And AD = DC, so BD
is the perpendicular bisector of the side AC; it is also a median of the triangle. |

The converses of these last two results are also true: (a) if a triangle has two angles of
equal magnitude then the sides opposite them are of equal length, and (b) if a triangle has
all its angles of equal magnitude (and therefore equal to 60° because their sum is 1807)
then its sides are of equal length.

Two shapes are similar if one is an enlargement of the other; they have the same shape
and their corresponding angles are equal.

An Ordnance Survey map is a scaled-down representation of a geographical area. A
popular scale is 1:50000, which means that two points a distance of 1 cm apart on the
map represent two points on the land a distance 50000 cm (i.e. 0.5 km) apart.

If three points P, (2, R on the land form a triangle which we may assume lies on a plane
surface then their corresponding points on the map form a triangle with the same angles.
(If the points P, O, R are a great distance apart then the curvature of the earth will modify
this result.)
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Example

Figure §.25 Similar triangles

Figure 5.25 shows the triangles POR and ABC, which is our representation of P, O, R
on a scale 1:2 (we use a simple scale for ease of understandmg)

Since corresponding angles are equal, i.e. PQR ABC, QRP = BCA, RPQ = CAB,
the triangles POR and ABC are similar. The lengths of corresponding sides are in the
same ratio, i.e.

AB _BC _4AC 1

PQ QR PR 2

ABC
To emphasise which sides correspond, we may write that triangles POR are similar.

C
For example, R tells us that the angle at

B
., PQR .
vertex C (BCA) is equal in magnitude to the angle at vertex R (ORP).

We may summarize by saying that if two triangles 4ABC and PQR are such that

AB  BC A
PQ @-Z_P then the triangles are similar and ABC = PQR BCA _QRP and

CAB = RPQ. ) )
Conversely, if two triangles ABC and PQR are such that ABC = POR, BCA = QRP

AB BC CA4

PQ QR RP’

Sometimes it is not immediately obvious that two triangles are similar.

AB AB
tells us that P—Q— is the given ratio and 7

and CAB = RPQ then the triangles are similar and —

In Figure 5.26 ABC is a right-angled triangle and BD is perpendicular to AC. Consider
triangle ABD. It has a right angle at D and DAB = CAB. Since two of its angles have the
same magnitude as two of the angles of triangle ABC and since the angle sum of any
triangle is 180°, the third angles must be equal in magnitude, i.e. ABD = ACB. Hence
triangles ADB and ABC are similar.
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Example

D

A B

Figure 5.26 Triangles ADB, BDC annd ABC are similar

Now consider triangle BCD. It too has a right angle at D and DCB = ACB. Since two
of its angles have the same magnitude as two of the angles of triangle ABC then
CBD = CAB, hence triangles BDC and ABC are similar,

The idea of similar triangles can be used to estimate heights.

Figure 5.27 shows a pole DE placed vertically in the shadow of a vertical tree BC. AC is
the shadow cast by the tree BC and AF is the shadow cast by the pole DE. It should be

BC AC
obvious that triangles ADE and ABC are similar. Hence — = — and therefore
DE AE
AC
BC = DE x —.
*4E

B
D
[] ]
A E c

Figure 5.27 Estimating heights
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Suppose we use a pole DE of length 2 m and we measure the lengths AF as 4 m and
40
AC as 40 m. Then BC = 2 x i 20 m. We therefore estimate the height of the tree to
be 20 m.
1 1
Note that the area of the triangle ABC = E(AC x BC) = 3 x 40 x 20 = 400 m? and the

1 1
area of the triangle ADE = E(AE x DE) = 5 x 4 x 2 =4 m?. The ratio of the areas
(100: 1) is the square of the ratio of the lengths (10:1). |

In general, if two geometric figures are similar then the ratio of their areas is the square
of the ratio of two corresponding lengths.

Exercise 5.2

Show that in the parallelogram ABCD

(a) triangles ABD and DBC are congruent, which we write as AABD = ADBC.
(b) AADC is isosceles.

Show also that if DBC = 45°, then ABCD is a square.

2 Consider the following diagram. Show that A4BC and ADEC are congruent.
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3

3 D

In the diagram from Question 2 draw straight lines from B to the midpoint of AC, say F,
and from D to the midpoint of EC, say G.
Show that

AEGD = AAFB.

To what triangle is ACGE congruent?

A parallelogram can be described as a four-sided polygon with two sides equal and
parallel. Consider the four points ABDE in Question 2, noting that AB and ED are equal
and parallel.

(a) Show that
AACE = ABCD.

(b) Compare the sides £D and BD.
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Given that D and £ are the midpoints of A8 and AC, show that:
(a) triangles ADE and ABC are similar

1
(b) DE || BC and DE = EBC'

& ABCD is an irregular quadrilateral and E, F, G and H are the midpoints of the sides as
shown.

Draw in DB, HE and GF.

(a) Using the results of Question 5, what do you conclude about the relationship
between HE and GF?

(b) What sort of quadrilateral is EFGH?
(©) Had we started with AC, EF and HG, what could we have concluded?

7 ABC is aright-angled triangle with BAC = BCA = 45°. Identify a triangle in the diagram
which is congruent to ADEC.

A
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8 What is the ratio of the areas of ADEC to AABC in Question 7?7

9 ABCD is a parallelogram and the lines ED and FC are perpendicular to CD.

B

N-————-+

Show that:

(a) the triangles DEA and CFB are congruent
(b) EFCD is a rectangle
(c) ABCD and EFCD have the same area

This proves the result that the area of a parallelogram is equal to its base (DC) multiplied
by its height (ED or FC).

10  ABCD is a parallelogram. Show that triangles AEB and DFC are congruent.

A B

11 A rhombus is a quadrilateral with all sides equal, or if one prefers, a parallelogram with
two adjacent sides equal. ABCD, shown below is a rhombus. Show that all four triangles
AHB, BHC, CHD, DHA are congruent. What is the value of angle 4H5?

A B
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12 Draw a straight line 4B and mark its midpoint £. Draw another straight line CD, not
parallel to 48, whose midpoint is also E, as in the following diagram.

D

Show that:
(a) NAED = ACEB and AAEC = ADEB
(b) ADBC is a parallelogram

Now show that the vertically opposite angles in a parallelogram are equal, e.g.
ACB = ADB. Deduce that adjacent angles in a parallelogram, e.g. ACB and CBD, are
supplementary (i.e. add up to 180°).

5.3 CIRCLES

A circle is the set of all points in a plane which are the same distance from a fixed point
in the plane. The fixed point is the centre of the circle. The length of the perimeter of a
circle is called its circumference (but we often use ‘circumference’ to mean the
boundary) and a straight line segment from the centre to any point on the circumference
is the radius of the circle.

A straight line segment from a point on the circumference through the centre to another
point on the circumference is called a diameter. The length of a diameter is twice the
length of a radius. In Figure 5.28(a) O is the centre, AOB is a diameter and OP is a radius.
Often we speak of a circle of radius 4 cm when we mean that the length of a radius is
4 cm. In the same way we speak of a circle of diameter 8 cm.

Note that two circles which have the same radius are congruent. Two circles which
have different radii are, nonetheless, similar.

A diameter divides the circle into two equal parts called semicircles; one half of a
semicircle is a quadrant. The interior of the circle together with the circle itself is
called a disc.
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Radius

-
4
=]
tn
o

Secant
F \_‘/ G

Tangent at the point E

(a}) (b)
Figure 5.28 The circle

A straight line segment connecting two points on the circumference is a chord; CD in
Figure 5.28(b) is a chord. A chord that is not a diameter divides the circle into two
unequal parts; the smaller is called the minor arc and the larger is the major arc. A line
which intersects a circle twice is called a secant; FG is a secant. Where a line touches the
circle (i.e. has only one point in common) it is a tangent. Figure 5.28(b) shows the
tangent which has £ as its point of contact; we call it the tangent at £. A tangent is
perpendicular to the radius from the centre of the circle to the point of contact.

A
A
.
. 0
0
BU?
B8 c

(a) (b)

Figure 5.29 Circles and triangles: (a) incircle, the triangle circumscribes the circle;
(b) circumcircle, the triangle is inscribed within the circle
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The region inside the circle is also divided into two parts by a chord. The smaller part
is called the minor segment, shaded in Figure 5.28(b), and the larger part is called the
major segment. The major segment always contains the centre of the circle.

If a polygon is drawn around a circle in such a way that all its sides are tangents to the
circle, we call it a circumscribed polygon. In Figure 5.29(a) ABC is a circumscribed
triangle to the circle. We also refer to the circle as being inscribed relative to the
triangle. In Figure 5.29(b) the situation is reversed, the circle circumscribes the triangle
and the tnangle is inscribed in the circle.

Two circles with the same centre and different radii are concentric; see Figure 5.30(a).

The area inside a circle cut off by two radii is called a sector; see Figure 5.30(b). In
fact. the ant produces two scctors; the smaller sector is shown shaded. Unless otherwise
stated, we usually specify the sector which contains an acute angle at the centre, in this
case POQ.

A very important result is that the ratio of the circumference of a circle to its diameter
1s constant. This ratio is wnitten 7 and has an approximate value of 3.14159; in some
situations we make use of the cruder approximation of 7 In fact the exact value of n
cannot be expressed as a fraction and therefore not as a finite decimal. The circumference
of a circle is equal to 27r where r is the radius. It can also be shown that the area of a
circle A is equal to =%,

(&) (L))

Figure 5.30 Centres ond radii: (a) concentric circles have the same centre but
different radii; (b) two radii divide a circle into minor sector (shaded) and mgjor
sector (unshaded)

The circumference of a circle = 2n X radius

Area of a circle = x X (radius)?
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Examples 1. A circle of diameter 20 cm has radius 10 cm and circumference 27 x 10 cm =20
7 cm=062.8 cm (3 s.f.). Its area is m(100) cm?, i.e. 314 ¢cm? to the nearest integer.

2. Find the area of the region between two concentric circles whose radii are 5 cm and
10 cm. This region is called an annulus or a ring.

The area of the larger circle = n x 10> = 100% cm?

The area of the smaller circle = 7 x 5% = 257 cm?

Therefore the area of the annulus is 757 cm?.

In general, if the larger radius is r, and the smaller radius is »; then the annular area is
-k =n(r? - 1) |

A tangent to a circle is a straight line drawn from an exterior point T to the circle and

which touches the circle at a point on the circumference P. PT must be perpendicular to
the radius OP; see Figure 5.31(a).

(D~ ({=

Figure 5.31 Circles and lines: (a) one tangent and (b) two equal tangents

In Figure 531(b) OP and OQ are equal—they are both radii—and angle
OPT = OQT = 90°; OT is a common line. The triangles OPT and OQT are therefore
congruent, so the tangents 7P and 7Q are equal.

Circular Measure

In Figure 5.32(a) 4B is the arc of a circle whose centre is O and whose radius is . If the
length of the arc AB =r, then OAB is defined to be an angle of magnitude one radian.
Therefore if a sector of a circle contains an angle of one radian, its arc length is equal to
the radius of the circle.

In general, if the arc length of a sector of a circle of radius r is s and the arc subtends

an angle of () radians at the centre of the circle, then 6 = é:; see Figure 5.32(b).
r
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A

{a)

(b)
Figure 532 Radian meaosure

Since the circumference of the circle is 2nr, the angle subtended at the centre (i.e. |

. s 2nr . . .
revolution) is - = — = 2 radians. Thus 1 revolution = 2 radians = 360", so
r r

7 radians = 180"

180°
| radian = -

2573

The notation for one radian is 1°. To convert an angle in degrees to radian measure we
. n . . . 180
multiply by %0 ) Toconvertan angle in radians to degree measure we multiply by - )

Examples 1. Conven the following to radians:

(a) 180 (b) 45 «(c) 60 (d) 30 (e) 120 (f) 900"

Solution

) (L as) (7Y
(a) 180 =n (b)y 45 —(180)(45) _(4)

r ‘ _ r ¢ \*

1
—~~
- |
\/’_

180
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Example

n < (2r\ . n ¢ .
) |m==G%x1m)=(7)(nqm._G%xom)_wm

2. Convert the following to degrees:
m\* 3n\¢
@ () ® (3)
sr\*
o (%)
Solution

m\' . 3\ 3 .
- = 9 ) - - =3
(a) (2) 0 (b) (—) a x 180 135

s57\° (5 . :
(c) (z) = (3 X 180) =150 ]

The length of arc of a sector of a circle of radius r which subtends an angle 0 at the
centre is given by:

s=r0

The area of the sector will be a fraction of the arca of the circle, i.c. a fraction of nr2. If

the angle at the centre is @ then this fraction is o *© the area of a sector is given by:

1
_-i-rzﬂ

Find the length of arc of a sector of a circle of radius 3 ¢cm which contains an angle of
65 . What is the arc of the sector?
First we convent the angle to radians:

n\*
65 —65(@)

Then the arc length is

n

s=3 x65(]80

) =3.403 cm
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and the area is

4 :-2'. x 3 xﬁS(%) = 5.105 cm’M

Exercise 5.3

il 1 Find the shaded areas in each diagram.
(a) (b)
Inner radius = 6 ¢cm
Outer radius = 8 ¢cm
(c) (d)
P
A 2
AP =25 ¢cm

PO = 14¢cm
2
PB =11 3 o™

PAQ =325
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2 What is the area of this figure? The curved arcs are semicircles.,

Y5

10cm

3  This circle has radius 12 om and PT= 35 cm. How far is 7 from the centre of the cirele?

4’
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(a) The circle depicted has radius r. What is the magnitude of the shaded area in
terms of »?
b) The largest circle that can be drawn inside the shaded region touches the original

circle and has common tangents. What do you notice about its tangents and in
particular the relative distances of centre and tangent points from the origin? Use
your observations to find the ratio between the radius of this new circle and the
radius of the original circle.

A circle of radius 3 cm is inscribed on an isosceles triangle ABC. D, E, F are the points
where the circle touches the sides of triangle ABC.

Use Pythagoras’ Theorem to find the length of the sides of triangle 4BC by
(a) determining A0
(b) setting BF = BD = x units and considering triangle ABF

Determine the lengths requested in the following examples:

(a) BC, given y =17 (b) AB, CD
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(c)

x, given r=35,
r, given x = 10

7* The equilateral triangle ABC has perpendiculars drawn from each vertex to the midpoints
of the other sides. These meet at a common point /; note the related symmetries.

(a)
(b)
©
(d)

B

Show that the smaller triangles, /FB, etc., are similar to ABEA.
What is the ratio of their respective areas?
Show that 7 is two-thirds of the way down BE using the similar triangles in (a).

Assuming that a circle can be drawn, centre /, which touches the sides of ABC at
D, E, F,ie. inscribed in A4ABC, determine the ratio of the circle’s area to the area
of AABC.

8* Now consider the circle which circumscribes an equilateral triangle as well. Determine the
ratio area of inscribed circle : area of triangle : area of circumscribed circle.
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1]

9*

10*

LR

NS

Determine the equivalent ratio for a square, i.e. area of incircle : area of square: area of
circumcircle.

Incircles and circumcircles also exist for any regular polygon. Determine the equivalent
ratio for a hexagon, i.e. area of incircle : area of hexagon:area of circumcircle.

Determine the unknowns in the following cases:

(a) (b)

Angle 6. area A

Area A, arc length s

(c) (d)

& (&)

Angle €, arc s Radius r, area 4
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5.4 SHAPES IN THREE DIMENSIONS

Polyhedra

A solid is a portion of three-dimensional space bounded by plane (i.c. flat) and/or curved
surfaces. Practical examples of solids are a box, a ball and a wedge.

A polyhedron (plural polyhedra) is a solid bounded by plane surfaces only. A box and
a wedge are two examples.

If every face is a rectangle then the polyhedron is known as a cuboid or box; see Figure
5.33(a). If every face is a square then the solid is known as a cube. The plane surfaces are
called faces, the lines where two faces meet are called edges, and the points where the
edges meet are called vertices. A line which joins two vertices that are not in the same
face is a diagonal; see Figure 5.33(b). If every face is a paralielogram then the solid is
known as a parallelepiped, Figure 5.33(c). (The cuboid is sometimes called a rectangular
parallelepiped.)

-—

/lh \

(a) (b) (c)
Figure 5.33 Four-sided prisms: (a) cuboid, (b) cube and (c) parallelepiped

In Figure 5.33(a) the length of the box is /, the breadth (or width) 5 and the height A;
these are the three dimensions of the box. In the case of the cube, /= = h. Each of the
solids in Figure 5.33 has six faces, twelve edges and eight vertices.

In Figure 5.34 the box ABCDEFGH has faces ABCD, EFGH, ABFE, DCGH, AEHD
and BFGC:; edges AB, BC, CD, DA, EF, FG, GH, HE, BF,AE, CG, DH; vertices 4, B, C,
D, E, F, G, H; and diagonals AG, BH, CE, DF.

A prism is a polyhedron with two ‘opposite” faces which are polygons of the same size
and shape and parallel to each other; these faces are called bases. The other (lateral) faces
are parallelograms. If the lateral faces are rectangles then the solid is a right prism; the
lateral faces will be at right angles to the bases.

Figure 5.35(a) shows a right triangular prism and Figure 5.35(b) shows a right
hexagonal prism. Each of these solids stands on a base whereas the prism in Figure
5.35(c) rests on one of its lateral faces. If a prism is cut by a plane parallel to the base, the
cross-section of either exposed face is congruent to that base; see Figure 5.36(a).
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F G

A D

Figure 6.34 A box

.

(a) (b) (c)
Figure 5.35 Prisms

(a) (b)
Figure 5.36 Features of prisms
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Cylinders

The area of a base is also the cross-sectional area of the prism, and the length of an
edge joining corresponding points on the base and the upper face is the height of the
prism, & in Figure 5.36(b).

A pyramid has a polygon as its base; the other faces must be triangles which meet at a
point called the vertex of the pyramid. Figure 5.37(a) shows a pyramid on a rectangular
base ABCD. The sloping faces ABE, ADE, BCE and DCE are triangles meeting at the
vertex E.

(a) (b)
Figure 5.37 Pyramids

The height of the pyramid, A, is the distance of the vertex from the base. In Figure
5.37(b) the pyramid has a square base. The line segment £F is perpendicular to the base:
it is the altitude of the pyramid. Its magnitude is the height 4. In this case, the base is a
square and F is the centre of the base.

The tetrahedron has four triangular faces; see Figure 5.38. It can be regarded as a
pyramid on a triangular base.

A regular polyhedron is a solid all of whose faces are regular polygons with the same
number of edges meeting at each vertex. One example is a cube in which all faces are
squares and three squares meet at cach vertex. A regular tetrahedron has equilateral
triangles for all its faces.

We shall confine our attention to a right circular cylinder, commonly called a cylinder,
A cylinder is a solid with its bases as parallel circles and the line joining the centres of the
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Cones

Figure 5.38 Tetrahedron

circles being perpendicular to the bases. The length of this line is the height of the
cylinder and the radius of either base is the radius of the cylinder. For the cylinder shown
in Figure 5.39 the height is 4 and the radius ». Any cut parallel to a base exposes circular
surfaces. The cross-sectional area is the area of a base.

_—
Figure 5.39 Cylinder

A cylinder may be thought of as the limiting case of a prism when the number of sides
increases indefinitely. The limiting case of a pyramid with a regular polygon as a base is a
cone.

A right circular cone, commonly called a cone, has a circular base. A fixed point called
the vertex lies vertically above the centre of the base and the conical surface is swept out
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Spheres

by a straight line segment with one end at the vertex and the other end tracing out the
circumference of the base.

Alternatively, the cone can be formed by rotating a right-angled triangle about one of
its shorter sides. This side becomes the altitude of the cone and the other short side forms
a radius of the base. The length of the altitude is the height of the cone and the length of
the hypotenuse of the triangle is the slant height of the cone; see Figure 5.40.

14

r C

Figure 540 Cone

A sphere is the three-dimensional analogue of the circle. It is a solid such that every point
on its surface is the same distance from a fixed point called the centre. This fixed distance
is the radius of the sphere. It can be formed by rotating a semicircle through a complete
turn about its diameter.

A segment of a sphere is formed when the sphere is cut by one plane or two parallel
planes; see Figure 5.41.

T T

00

L ST

Figure 541 Spheres
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Surface areas and volumes

We quote standard formulae for surface areas S and volumes V of some of the solids we
have mentioned.

Box: the surface area of a box is the sum of the areas of its six faces which form three
pairs; see Figure 5.33(a). It is given by

S =2(b + bh + Ih)

The volume of a box is given by

V =1Ibh
Cube: in this case /=5b = h and the formulae simplify to
S=6r.  v=r
Prism: if the area of the base is A and the height &, then
V =A4h
Pyramid: if the area of the base is 4 and the height £, then
1
V= §Ah

Cylinder: refer to the cylinder shown in Figure 5.42(a). The base has area n/* where r
is the radius of the base. Thus

V = nrh

The total surface area is

A =2ar + 2nrh

2nr

-

(a) (b)

Figure 5.42 Volume and surface area of a cylinder
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Cone

To find the total surface area we note there are two identical circular faces at the top and
bottom along with a vertical side. Imagine a soup can and suppose that we cut the label
along a vertical line AB. The label can be spread out into a rectangle, Figure 5.42(b); it
has a length equal to the circumference of the base, namely 2nr, and a breadth equal to
the height of the cylinder, namely /. Its area is then 2nrA. Hence the total surface area is
given by

A=2ar +2nrh

The volume of a cone of radius r and height % is given by

1
V:gm‘zh

1
Note that, like a pyramid, the volume is given by 3 x base area x height.

To find the curved surface area of the cone in Figure 5.43(a) we cut the conical surface
along the edge 4B. The surface is then opened out to the circular sector in Figure 5.43(b).
The sector is a part of the circle of radius /. The full area of the circle is n/% The arc
length BCB' is 27r, since it was the circumference of the base of the cone. However, the
circumference of the circle in Figure 5.41(b) is 2n/. The area of the sector shown is

2
therefore the fraction (En—;) of the area 7, i.e.
b

2 -
(%) x 7l = nrl

A
!
/
A S—— ¢ BDB
c

(a) (b)
Figure 543 Volume and surface area of a cone AB = CD = DE = FA, BC=EF
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The total surface area of the cone is therefore

A=+ arl

Sphere

The surface area of a sphere of radius r is given by
S = 4nr?
Its volume is given by

V:énr3
3

Exercise 5.4

1 Here are a tetrahedron and a parallelepiped with the same linear dimensions.

(a) How many tetrahedra (plural of tetrahedron) are needed to build the
parallelepiped?
(b) Are the linear dimensions of these tetrahedrons exactly the same?

[
'
1

2 This solid consists of a cuboid 10 em long of square cross-section, 4 cm x 4 cm, with two
prismatic endpieces, each 6 cm long.

-7

'00ag)
=
=
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B

8*

For the composite solid, determine:

(a) the volume (b) the surface area

A metal cuboid with linear dimensions /, b and 4 cm is heated to a higher temperature and
the linear dimensions all increase by 1%. To the nearest percent find the increase in:

(a) the volume (b) the surface area

A cone of height 3r and radius r rests on top of a hemisphere of radius #. In terms of » find
the volume of the composite solid.

A girder 8 m long has a symmetric cross-section as shown. If the girder is made from
reinforced steel of density 8 kg cm™3, determine its weight in kilograms.

20 cm
I t3 cm
8 cm
X
fF—————f t3em
10 cm (x=4cm)

A spherical meteorological balloon holds 70 litres of helium. How many more litres need
to be pumped in to increase the radius by 3.1%? (I litre = 100 cm®)

A hexagonal prism of igneous rock crystal of density 3.7 g cm™ is 30 cm long and each
hexagonal side is 4.6 cm in length. What is its weight?

This figure represents a globe, a three-dimensional map of the Earth with some longitude
lines drawn in, the 45° N parallel and the equator. The equator is usually a great cirele,
i.e. one whose centre is the centre of the globe; any parallel of latitude is a small circle.
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If the radius of the Earth is », show that:

(a) the radius of the 45° N small circle is r/ﬁ
{(b) the distance trom longitude 0° to longitude {80 following the 45° N parallel is

/2

(c) the distance between the two points in (b) is only nr/2 when travelling over the
North Pole (about 30% less)

This demonstrates the principle of great circle travel that ships and aircraft follow. Try it

by stretching a string over a globe, e.g. from London to New York or Sydney.




SUMMARY

e Angles:
Acute <90°
90° <  Obtuse angle <180°
180° < Reflex < 360°

o Parallel lines: three sets of equal angles are generated when a transversal
cuts parallel lines. They are vertically opposite, corresponding and alternate

e Triangles: the sum of the interior angles is 180°. Triangles may be
classified by the number of equal, sides:

Scalene: no sides equal
Isosceles: two sides equal
Equilateral: all sides equal

e Congruent triangles: look for equality in one of the following sets.

Two sides and the included angle

Two angles and the side joining them
Three sides

Right angle, hypotenuse and another side

e Similar triangles: corresponding angles are equal; the lengths of
corresponding sides are in the same ratio.

e Area of a triangle: % x base x height
o Interior angles of a polygon: sum to (2n — 4) x 90°



e Sectors and arcs:

n° = 180°

Arc length = rf

Sector area = %r’G

e Properties of a circle: If the radius is » then

Area =
Circumference =

e Volumes of solids:
Cuboid:
Tetrahedron:
Pyramid:
Sphere:
Cylinder:

Cone:

o Surface areas of solids:

Sphere:
Closed cylinder:
Closed cone:

nr

2nr

base area x height

%x base area x height

%xbaseareaxheight

4
5 TIIJ
n’h

%nrzh

4
2nr? + nh
ar? + nrl
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Answers
Exercise 5.1
1 (@ 215° (b) 25 (c) 110° @ x=060°, y=70°

2  a=x, PQ will not meet AB; « =x+ y; PO will not meet CD; a =x+y+2z, PO will not
meet £F

3 ABC=90"—x, ACB = 90° — y, sum = 180"

4 (a) AP=12 cm, PB=16 cm
(b) 20/7 units
() AB=3.6cm, BC=3 cm, CD=5 ¢m
D ¢

11

A s c 0
40 AP 165 3

AC 4B~ 11 "2
AQ=7.5cm

5 (a Yes (b) No (c) Yes (d) No
(e) Yes H) Yes (2 Yes (h) Yes

6 A triangle whose sides are (3x, 4x, 5x) is right-angled.

7 CD=1732c¢m, Pis 5 cm from CD

8 (@ A=110°,C=70°

(b) B =285, C=190°
() B=C=FE=F=140°, D =80°
(d)  A=45,B=110°,C =130°, D= 120°, E = 110°, F = 70°, G=315°
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9 @ 30 (b) 924 (DP =24)

() 74 (d) 8.186 (3 d.p.)
10 (a) 25 (b) 53/16=3.313 (3 d.p.)

(©) 3.745 (3 d.p) (d) 14.98 (2 d.p.)

1/2

12 (o2

2 4

3a? 334
3w Ve ORI
4 2

14 2(1+42)
15 (a) 12
18 (a) all equal 6; hexagons meeting (i.e. honeycomb)

(b) ¢=4; dodecagon (12), hexagon (6) and square (4) meeting

(¢) triangle and two dodecagons

(d) hexagon, heptagon (7) and regular 42-sided figure meeting

Exercise 5.2

2 ACGE = ACFB (and FB | EG)
3 ACFB

4 AE=BD and AE || BD
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Exercise 5.3

6

n

12

10

11

(a) equal and parallel

(b) parallelogram

(¢) AC=2EF=2HG and AC || EF || HG

ADEB
1:4

AHB = 90°

Total of all angles is 360°, so result follows.

(a) 25n/6
©) 11.126 (3 d.p.)

31.73 cm® (2 d.p.)
37 cm

(@ (1 —mn/4)
(a) 5 ¢m

(a) 18
(c) r=5x=9r=6,x=10

(b) 1:3
(d) 7:3v3
1:4

n:4:2n

3n/4:3/3/2:m

(a) s=10.996, 4 =16.493
(c) 0 =4"=2292",5=20

(b)
(d)

(b)

(b)

(b)

(c)

(b)
(d)

287
31.62 cm? (2 d.p.)

21
v2-1_ 0.1616 (4 d.p.)
V241

AB=AC=10cm, BC=12 cm

24, 21

IE:IB=IF.IA=AE:AB=1:2

1=9549°, 4=17.5
r=34=9
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Exercise 5.4

(a) 6

(a) 224 cm®
(a) 3%
Snr

780.8 kg

6.71 litres

6.102 kg

(b)
(b)

(b)

Yes
261.19 cm?

2%
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INTRODUCTION

OBJECTIVES

The development of mathematics relies on the framework provided by
proof. Many of the mathematical procedures we carry out can take place
with the knowledge that underlying what we do is a bedrock of proof.
When we obtain a solution to a particular equation we are sure it is the
unique solution because the method has been proved to yield a unique
solution. Yet it is easy to take for granted that the proof is there. It might
be an exaggeration to say that the whole of trigonometry rests on
Pythagoras’ theorem, but in reality it is not much of an exaggeration. An
appreciation of the main methods of proof helps us to make our own
mathematical arguments rigorous and it gives us confidence in drawing
conclusions from the application of mathematics in our area of
specialisation.

After working through this chapter you should be able to
distinguish between an axiom and a theorem

understand how a theorem can be derived from a set of axioms
appreciate the development of a corollary from a theorem
follow the proof of Pythagoras’ theorem

understand the proofs of the theorems on concurrency of sets of lines
related to triangles

understand the proofs of theorems relating to equality of angles related to
circles

recognise the methods of reductio ad absurdum, induction and negation
understand the logical development of a proof

appreciate the economy of effort in a proof

appreciate the absolute nature of a proof

understand the distinction between a necessary condition and a sufficient
condition
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6.1 DEDUCTIVE REASONING AND PYTHAGORAS’ THEOREM

Examples

The philosophy of mathematics rests upon proof, and the aim of this chapter is to set in
place some of the building blocks of proof. We will keep the arguments simple, although
some proofs are often difficult,

We will accept reasonably-held definitions and properties as well as seemingly
fundamental truths or results. For example, we accept that every second integer, positive
or negative, is exactly divisible by 2. Similarly we accept that every third integer is
exactly divisible by 3.

By doing this we can assemble building blocks into bigger mathematical structures
called theorems. The theorem in the first example has important consequences for
mathematical analysis and computer science. We prove it by deductive reasoning. At a
more basic level, certain fundamental truths are called axioms; see the second example.

1. The product of three successive positive integers is always exactly divisible by 6, i.e.
the result of dividing the product by 6 is an integer. For example,

2x3><4_4 7><8x9_

. 4
6 6 8

Proofi Take the first integer in the sequence to be #. Then consider the product
nn+ 1)n+2)=K.

We can draw two conclusions:

(a) Either both # and »n + 2 or, exclusively, # 4+ 1 must be even; therefore 2 divides XK.
(b) The number 3 divides every third integer, so it divides one, and only one, of n, n+ 1
and n + 2; therefore, 3 divides K.

Any number divisible exactly by 2 and 3 is also divisible by 6, so the result follows.

2. Archimedes’ axiom states that, given any real number x, there exists an integer whose
value exceeds x.

This is easily proved. Let N be the largest integer not greater than x, so N < x and

x — N < 1. Now consider N+ 1; obviously N+ 1 > x, but N+ 2 > x and the result is

proved. ]

In other words, Archimedes’ axiom claims there is no largest integer. One way of
thinking of the result is to imagine the integers as equally spaced benchmarks on an
infinitely long ruler which represents the set of all real numbers, called R. Refer to Figure
6.1.

As x is any point upon this line, benchmarks must exist to the left and the right, i.e.
there are integer values both above and below. The axiom is concerned only with integers
above x.
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X
| | | | 1 | | [ I
I I | I | [

S 0 1 2 3 N N+l
Figure 6.1 Integers

The first example demonstrated that the results of a theorem may not always be
obvious; almost invariably they lead to further results, and this is how mathematics is
built up.

In geometry we have already used some deductive reasoning with congruence and
similarity, and we have used the axiom which states that the interior angles in a triangle
must add up to 180°.

Perhaps the most important theorem in the whole of mathematics is Pythagoras’
theorem. In its familiar form with reference to the right-angled triangle PQOR shown in
Figure 6.2, then Pythagoras’ theorem states that the square on the hypotenuse PR is equal
to the sum of the squares of the other two sides, PQ and QR. In other words,

PQ* + QR = PR?

This can be interpreted in Figure 6.2 as the sum of the areas of the two smaller squares is
equal to the area of the largest square.

Figure 6.2 Pythagoras’ theorem
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Example

A x E y B
z F

H

D G C

Figure 6.3 Proving Pythagoras® theorem

To prove Pythagoras’ theorem we use the construction shown in Figure 6.3, where ABCD
is a square. The points E, F, G, H are marked out at equal distances along the sides, i.e.
AE =BF =CG =DH =x and EB = FC = GD = HA = y. ABCD therefore has side
xX+y.

Now we examine the interior of ABCD. First of all, A=B=C=D= 90°, and the
triangles EBF, FCG, GDH and HAE must be congruent, having two sides and the
included angle equal. It follows therefore that the third sides must be equal, i.e.
EF = FG = GH = HE = z, say.

So EFGH is a rhombus. It looks as though it could be a square. We establish this to be
true.

Note that the straight angle AEB = AEH + HEF + FEB = 180°. Now FEB = AHE
and AHE + AEH = 90° so that AEB = HEF + 90°. Therefore HEF = 90°.

The same reasoning shows that EFG = FGH = GHE = 90°. EFGH must therefore be
a square of size z.

We now compare areas:

The area of ABCD = (x +y)2 =x’ 4+ 2xy+*
But the area of ABCD = 4 x area of AEFB + area of EFGH

=4 x %)ry—!-z2 =2y +7
Therefore x% + 2xy + y* = 2xy + 22
Cancelling the term 2xy we obtain the result
?+ y2 =7

and the theorem is proved. ]
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The entire theory of trigonometry is based upon Pythagoras’ theorem as is the theory of
coordinate geometry and the measurement of distance in two and three dimensions. We
will use the theorem many times.

It is worth noting that when the numbers x and y are integers, z is not usually an integer.
If x, y and z are all integers they form a Pythagorean set.

Examples 1. Pythagorean sets: four examples of Pythagorean sets are:
x y z
(a) 3 4 5 (F+4=5
(b) 5 12 13
(c) 7 24 25
(d) 12 35 37

Integer or fractional multiples of these sets also form Pythagorean sets; for example, 6,
8, 10 and 6, 17.5, 18.5.

2. Using Pythagoras’ theorem: in Figure 6.4 H lies vertically below G and both the
triangles are right-angled. Use Pythagoras’ theorem to find the distance AG.

First, (EC)* = (ED)* + (DC)’ so that (ED)? = (EC)? — (DC)* = 20% — 122 = 256.

1\’ I 1\

Therefore ED =16 and FD=34. Also FG* = (225) — 18 = ISZZ = (135) .

Then FG = 13%, so GH =FH — FG =32 — 131: 181.

2 2
F 18 E D
12
2% 20
c
G
20
F +
A H B
- 60 >

Figure 6.4 Using Pythagoras’ theorem
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But AH = AB — HB = AB — FD = 26, therefore

24 1/2
AG = VAH? + GH? = ((26)2+ (18%) ) =31.91 ]

Exercise 6.1

The product of an integer one less than a given integer and an integer one more than the
given integer appears to be one less than the square of the given integer, e.g.

7Tx5=62-1=35 8x10=9"—1=280

Prove that this result is always true by labelling the given integer N and forming the
product described.

Show that N — 1 is a factor of N* — 1 where N is a positive integer. Hence prove that an
integer one less than a perfect cube, e.g. 63 or 124, is composite, i.c. not prime, with only
one exception.

(a) Prove that the product of four consecutive integers multiplied together is

always divisible by 24.

(b) What is the greatest common divisor of five consecutive integers multiplied
together?

Identify which of the following are Pythagorean sets:

3 1

3,8-,9-

(a) 14, 48, 50 (b) 8597
(c) 09,12, 1.5 (d) 9, 17, 20
(e) 8,15, 17 (H 21, 28, 35

A ladder 5.2 m long is put up against the wall of a building with its foot set 2 m out from
the base. How far up the building does it stretch?

Determine the unknowns in the following diagrams. A is vertically above B in part (b).
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(a) (b) A

7 Right-angled triangle ABC is isosceles, AB =AC.

(a) What are ABC and ACB?
(b) What is the ratio BC/A4B?

8 Determine the unknown lengths in this figure.

B 6.1 ¢

9  This circle has radius » and area nr°. Determine the areas of both the inner square and the
outer square as drawn and deduce that © must lie between 2 and 4.
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—— i . AE  BF FI
* _ - all i i — —
10% The cut-off points in this figure are all in the same ratio, N = FC IE etc., and the
inner shaded square has exactly half the area of the outer square. What is the cut-off

ratio?

6.2 THEOREMS IN CLASSICAL PLANE GEOMETRY

Deductive reasoning, in which one result leads to another and so on until an end result
emerges, was well understood in classical times. Classical plane geometry is based upon
this kind of reasoning, as we saw in proving Pythagoras’ theorem. We shall reinforce the
deductive reasoning process by proving other theorems which will be useful later when
the geometry is put into practice.

Starting with the triangle and relying upon no more than the concepts of similarity and
congruence, we can prove several important theorems. Some construction, or drawing,
may be necessary.

Examples 1. The bisectors of the angles of a triangle meet at a point, the incentre, which is

equidistant from each side. In triangle ABC we bisect CAB and AEC, as shown in
Figure 6.5. The bisectors of the angles can be assumed to meet at a point /. Draw the
lines /D and [E perpendicular to A8 and BC respectively.

Look now at the triangles /BD and /BE. Since DBl = EBI and the angles at D and £
are 907, the triangles are similar.

Notice too that /B is common to both of them. Hence A/BD = AIBE, i.e. the
triangles are congruent, so /D =[E.

The same reasoning applies to the triangles /4D and /AF, where F is the foot of the
perpendicular from / to AC, so that AIAD = AIAF and ID=[F.
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Figure 6.5 Angle bisectors are coincident

Hence /D =IE=IF and I is a point equidistant from each side; / is therefore the
centre of a circle which touches each side with ID, /E and IF as radii.
Draw IC and observe that for the triangles /EC and /FC

)y [IE=IF
(i1) Iq is common
(iii) IEC = IFC =90°

Hence AJEC = AIFC so that /CE = ICF and BCA is bisected.

You can see that the argument must go the other way too. Namely, if a circle which
touches each side is drawn inside the triangle and has centre /, then the lines /4, IB, IC
bisect the angles at the vertices 4, B and C. By drawing the picture as shown in Figure
6.5 the triangles /BD and /BE have two sides and a corresponding right angle in
common. Therefore /BD = IBE so that ABC is bisected, and so on.

We conclude from the two-way argument that the bisectors of the angles lead to an
interior touching circle and that any interior touching circle leads to angle bisection.
Because angles are bisected uniquely, the interior circle must also be unique.

. The perpendicular bisectors of the sides of a triangle meet at a point, the

circumcentre. Refer to Figure 6.6(a). First bisect the sides 4B and BC perpendicularly
at the points D and E, and let these perpendicular bisectors meet at 0. Now draw the
lines AQ and BO, two of the dashed lines in the figure. For the triangles AOD and BOD
notice that

(iy AD=DB
(iiy ADO = BDO = 90°
(ii) OD is common

With two sides and a common angle equal AAOD = ABOD, it follows that 04 = OB.
Now draw the line segment OC, and consider the triangles BOE and COE. Then
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(b)

Figure 6.6 Perpendicular bisectors meet at a point

(i) C{f:EB )
(it) CEO = BEO = 90°
(iii) OF is common

Hence OC = OB and therefore OC = OB = OA. Therefore OC, OB annd OA can be
regarded as radii of a circle centre O passing through A, B and C; see Figure 6.6(b).
We draw the perpendicular OF to C, where F is not yet known to be the midpoint of
AC. However, we do not know that for triangles AOF and COF

(i) OF is common
(i) A0=CO
(iii) AFO = CFO =90

Hence A4OF = ACOF and therefore AF =FC, so F is the midpoint of AC. The
perpendicular bisectors OD, OF and OF therefore meet at a point, namely O. ]

We have now established the result that there is a circle which passes through
the vertices of a triangle. Putting it more generally, there is a circle passing through
any three non-collinear points (i.e. not on the same straight line) in a plane. Is is
unique?
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Start with three non-collinear points which form a triangle ABC. Take O to be the
centre of a circle passing through 4, B and C. Clearly, O4=08=0C. Now draw
bisectors from O to meet the sides AB, BC, AC, at D, E, F. You can then prove that
AAOD = AAOD and that ADO = BDO = 907, etc.

B

Figure 6.7 Perpendicular bisectors meeting outside the triangle

Note that if ABC is an obtuse triangle then the point O lies outside the triangle, as in
Figure 6.7.

The following two theorems are stated without proof. They can be proved by methods
similar to those used in the previous examples.

e The altitudes of a triangle are concurrent (i.e. meet at a point). The point where they
meet is called the orthocentre (Figure 6.8).

Figure 6.8 Orthocentre of a triangle
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e The lines joining the vertices of a triangle to the midpoints of the opposite sides (i.e. the
medians of the triangle) are concurrent (Figure 6.9).

A

Figure 6.9 Medians are concurrent

G is called the centroid of the triangle, i.e. the point about which a cardboard cut-out of
the triangle 4BC would balance. In the eighteenth century Euler proved that the points O,
H and G all lie on a straight line, called the Euler line.

Circle Theorems

The classical theorems involving the circle are proved using deductive reasoning together
with certain other triangle properties.

Example ‘Angle in a segment’ theorem: in Figure 6.10 4 and B are two points on the
circumference of a circle centre O. The point C on the major arc 40B is chosen so the
radius OC is interior to ACB.

Figure 6.10 ‘Angle in a segment’ theorem
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Observe that the triangles ACO and BCO are each isosceles because 4O = CO = BQ, all
radii of the circle. Hence

0AC =0CA and OCB = OBC

Now we produce CO to D. Via the exterior angles of the triangles and the isosceles
properties of the triangles, we see that

AOD = OAC + OCA = 20CA
DOB = OCB + OBC = 20CB

Adding the equations, we obtain
AOB = 2(0CA + OCB) = 24CB

In other words the angle at the centre of circle (subtended by the points 4 and B) is twice
the angle subtended on the circumference (at the point C). |

The only condition we put on C was that the radius OC had to be inside ACB. This meant
that at any point C on the circumference the angle at the circumference is half that at the
centre no matter where C placed, provided OC was inside ACB. )

It can also be proved that there is no need for OC to be interior to ACB (see Figure
6.11). In other words

Figure 6.11 Angle at the centre is twice the angle at the circumference

- 1 -
ACB = EAOB

for any point C on the major arc AB.
The theorem also holds on the minor arc AB (Figure 6.12). In this case ACB = —AOB
where ACB is obtuse and AOB reflex. 2
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¢
Figure 6.12 Angle in a minor arc

Figure 6.13 Angles in the same segment
Corollary (follow-on theorem). Two angles in the same segment of a circle are equal.

For the proof we refer to Figure 6.13, where C and D are two points on the major arc 45.
We see that

AOB =24CB and AOB =24DB
Therefore ACD = ADB. The corollary is proved. |

Look now at Figure 6.14. From the ‘angle in a segment’ theorem

n 1 n 1 -
ACB = EAOB (obtuse) and ADB = EAOB (reflex).
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Examples

D
Figure 6.14 Cyclic quadrilateral

Adding these equations
A A 1
ACB + ADB = 5360D = 180°

The points 4, B, C, D form a quadrilateral, the vertices of which lie on a circle. We say
that they are concyclic or that ABCD is a cyclic quadrilateral.

Because the angles in a quadrilateral add up to 360" and ACB + ADB = 180°, it is also
true that DAC + DBC = 180°.

In other words, the opposite angles in a cyclic quadrilateral add up to 1807 and are
therefore supplementary. Conversely, if a quadrilateral has the property that opposite
angles are supplementary then it is cyclic.

1. A further consequence of the ‘angle in a segment’ theorem is found by reference to
Figure 6.15. Observe that the triangles PXQ and RXS are similar because SPQ SRQ
{being subtended on the chord SQ) and PQR PSR (vertically opposite angles are
equal).

The similarity means that RX /PX = XS/XQ, so

RX x XQ = PX x XS

which is the intersecting chords theorem.
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Figure 6.15 Intersecting chord theorem

2. In Figure 6.16(a) GH is a tangent to the circle at 4 and AOC is a diameter of the circle
(whose centre is ). We shall prove that the angle between the chord 4B and the
tangent is equal to the angle in the alternate segment, i.e.

BAH = ACB

Remember that ACB is equal to any other angle in the segment ACB, so we can make
our task easier by placing C at the opposite end of the diameter from A4, which is, of
course, the case in Figure 6.16(b).

First we note that

BAH + BAC = 90°
and that

ACB + BAC = 90°.

C C
B
B
0oe oe
D
G A H G A H

@ (b)
Figure 6.16 Alternate segment theorem
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Therefore
BAH = AC.

If Disin thq minor segment (Figure 6.16(b)) and the chord is AB then we need to
prove that GAB :ABLA)A. i .

Now GAB+ BAH = 180" and BDA + ACB = 180°, since ABCD is a cyclic
quadrilateral. And since BAH = ACB, it follows that GAB = BDA.

This is the alternate segment theorem. |

We conclude with a statement of two results involving tangents to a circle.

Tangent Theorem

In Figure 6.17 it can be shown that C7'= CX, i.e. the lengths of the tangents from a given
point to a given circle are equal. The theorem is left for you to prove.

Figure 6.17 Tangent theorem

Tangent—chord Theorem

With the notation of Figure 6.18 the theorem states that CP x CQ = CT?. This is also left
for you to prove by verifying that triangles CTP and CQT are similar using the alternate
segment theorem. The tangent—chord theorem is a consequence of an earlier theorem, and
is therefore a corollary of that theorem.

Figure 6.18 Tangent chord-theorem
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Exercise 6.2

1 Complete the proof on page 249 to establish the perpendicularity of the bisectors of sides
AB, BC and AC of triangle ABC; the bisectors are drawn from O, where O4 =0B = OC.

2* Prove that the altitudes of a triangle are concurrent via the following approach. The dotted
triangle PQR, drawn exterior to ABC, has the property that QP is parallel to AB, RP is
parallel to AC and RQ is parallel to BC.

A
RT ________________________________________ 7 Q
\ ’
\ 7
’
\ ’
\ s
\ ’
\ ’
4
\\ F ,
’
\ E ’
\ ’
\ ’
\ s
\ ’
’
\ 7
A ’
\ s
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7
B D S C
\ s
\ ’
\ ’
\ e
N ’
A ’
\ ’
\ /
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\ /
\ ’
\ 7/
’
‘o
A\
P

(a) Establish that RACB and AQCB are parallelograms and that DA bisects RQ
perpendicularly.

(b) Establish similar properties for BE and CF.

(© What is the circumcentre of triangle POR?
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3 A and B’ are the midpoints of sides BC and AC respectively. To prove the medians of a
triangle are concurrent, use similar triangles to establish that:

1
(a) A'B' = EBA and A'B’ is parallel to BA

(b) G is at the point of trisection of A4" and BB, i.e.

GA' = %AA' and GA' = %BB’

1
Draw CC’ where C' is the midpoint of B4 and show that G lies on CC" with GC' = §CC’.

n 1 -
4 (a) Prove the ‘angle in a segment’ theorem, i.e. ACB = EAOB for the case where BC
is a diameter of the circle,

—=

(a) (b)
(b)  Note that ACD = ACB + BCD and AOD = AOB + BOD. Hence prove that
- 1 -
ACB = 5 AOB.
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©) (d) If AB is a diameter, what is the value
of ACB?
C
B
7 A
Prove that ACB = %AbB, reflex.

5* Determine the length YQ in this diagram, where RX=4, XS=3, PX=35 and XQ is the
diameter of the small circle upon which lies Y. The triangle XYS is isosceles.

6 Prove the tangent—chord theorem.

7* In the figure shown here the line DE is parallel to the base BC of the triangle ABC. AC'is a
tangent to the circle at £.
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Prove that:

(@) CED=EFD
(b)y  BCA+ EFD = 180°
(c) B, C, E, F are concyclic

8 In the following diagrams determine the unknown angles or lengths:

(©) 24°

.

(d) BN
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(e)
60°

50°

6.3 ARGUMENTS IN ARITHMETIC AND ALGEBRA

In arithmetic and algebra you have used the following symbols:

equal to (or equals)

greater than (strictly)
less than (strictly)
greater than or equal to (but not less than)

less than or equal to (but not greater than)

RN IV AV

approximately equal to

These symbols qualify arithmetic or algebraic expressions, but on their own they do not
prove anything unless a logical structure is imposed upon them. We can, however, use
them to explore simple ideas and properties that lead to useful results. Again we will
assume intuitive results to underpin our arguments.

We know that if the number « is less than the number b we write ¢ < b. The inequality
is unaffected by adding or subtracting a third number ¢ to or from both sides, i.e.

if a<b then a+c<b+c and a—c<b-—c¢

Also we can multiply or divide such an inequality by any positive number ¢ > 0, i.e.

b
<=
¢

if a<b then ac < bec and

ol R
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Such reasoning may seem obvious or even trivial, but it can be developed to prove results
that are much less obvious. Consider the following examples.
Example If a, b, ¢, d > 0 are such that

a a+b b

then — < — < —.
= c Set+d  d

oS

Qo

We start by cross-multiplying the given inequality, which is perfectly acceptable since
¢ >0 and d > 0. Hence
ad < be
Add ac to each side to obtain

ad + ac < bc + ac
alc +d) < cla+ b)

Now divide first by ¢ and then by ¢+ d to obtain

a a+b

- <

¢ c+d

We have assumed intuitively that ¢ + d > ( because ¢ > 0 and d > 0. Similarly, by adding

bd to both sides of the inequality ad < bc we can prove that

at+b b
c+d<d
|

Hence we have proved the result required.

To illustrate the result consider the particular example

113

<=

2 24

Then the result claims that
1 - 1+13 13
R Nt
2 2424 24

1 7 13
< — < —, which is true.

le. - s
2 13 24
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Example

Example

Example

We can use the same ideas to justify the belief that if x > | then x" > |, where n is a
positive integer power, and that x" > x™, if m and n are positive integers and n > m.

We know that if a>1 and b> 1, then ab> 12=1, hence if x> |, then x2>x,
(multiplying by x) so that x> 1.

Every successive power is a factor of x larger than its predecessors so the result is
clear. Also x" = X" x x™, therefore, because # — m >0, x"~™ > | hence x" > x".

You should note that we are close to a proof but have not actually established that

x" > 1, given that x > 1, where » is an integer >1. ]

Inequalities are useful in limiting the search for the factors of a large integer N.
Prove that a composite integer N must possess a tactor which does not exceed +/N.

Solution
Assuming that N=ab, where a and b are integers, then one of the following is true:

(a)a>\/1v,b>\m (b) a </N,b>+N
(©) a>N,b<+/N (d a <N, b< N

In the case of (a) it follows that ab > N, which is not true. Similarly in case (d) ab < N
which is only possible if @ = b = /N and N is a perfect square.

Apart from the special case in (d) either (b) or (c) must apply, so one of the factors
cannot exceed VN. |

In a search for factors of integers N < 1000 you need go no further than 31 since
(31)? = 961 < 1000 while (32)* = 1024 > 1000.

The geometric mean of two numbers is less than or equal to their arithmetic mean.

Solution

If x and y are two numbers then %(x + y) is the arithmetic mean and [ /xy is the geometric
mean.

We know that the square of any number must be non-negative, so consider the quantity
(a — b)z, where ¢ and b are any two numbers.

Since (@ — b)* > O then a? — 2ab + b* > 0 so that «? + b2 > 2ab, whatever the values
of @ and b. If we take a” =x, b* =ysothat x, y > 0, and /x > 0, /¥ > 0 then the result

] 1 .
can be written as E(X +y)= Jxyor Xy < z(x + v), and this proves the result. |
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Exercise 6.3

The result can be demonstrated by inserting some numbers:

1
V3 x :«/655(3+2) or 2.449 < 2.500

(a) Establish that

G) 4 - 7 3 (i) 2 7 5 8 3
1 - << — < =< =< — <=
7 1 4 5 7 2 9 7
(b) Rank the following fractions in increasing order of size:
2 3 8 4
3' 5T 11t 7

(c) Noting that 71 =47 + 24 and that 145 =97 448, prove that

4 71 1

- < — <

9 145 2
(d) Verify all the above results on your calculator.

1
Given that [ /xy < i(x +¥), and that x>0, v> 0, x+ v < 1, prove that

11
-+~->4
X oy

If x> 1 prove that
|
(a) x+-2>2 b x(24+3)=37 + 1
X
. 9
If x > 3 determine the smallest value of x + —.
X
(a) Prove that
X>14+nx-1

when n =2, 3. 4and x > 1.
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(b) If we can assume that the result in (a) holds for a chosen positive integer n, prove
that

X (4 D= 1)

1
(©) If 0<y<1, by setting — = x and assuming the result in (b) to be true for all
y

positive integers, prove that 0 <" < 1.

5 (a) Show that ? < atc << provided only that b, d >0, with no conditions on a
b b+d d
and c.
(b) If we relax any of the conditions on b and 4 as well, e.g. with a= —1, b=1,
c= =3, d= =2, show that Zi; 1s no longer necessarily sandwiched between
g and 2

6* Referring to the result in Question 5 with ¢ =2, =3, ¢=x, d=x, where x> 0, draw
some conclusions about the fraction

_x+2
T x+43

Sketch a graph of y to demonstrate the result.

)7

6.4 THE METHODOLOGY OF PROOF

Deductive reasoning based upon the principles so far examined can be organised into
systematic arguments. These can be applied, repeatedly if necessary, to prove
mathematical theorems and establish results. We shall clarify the reasoning process by
considering necessity and sufficiency before looking at two methodologies of proof,
namely reductio ad absurdum and proof by induction.

First of all we will need to formalise into a tighter framework some ideas that we have
already been using. This will make subsequent reasoning simpler and reducible to
symbolic treatment.

A proposition is a mathematical statement or property with a precise meaning which
can be demonstrated true or false, e.g. the number 8 is greater than 7. Suppose that two
propositions are being considered and suppose that it is the case that if one of these were
true it would inevitably follow that the other one were true too; then we say that the first
proposition implies the second. For example, if the first proposition is the number 8 is
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greater than 7, and the second proposition is the number 8 is greater than 6, then the first
implies the second. In the essence the first proposition ‘swallows’ the second, i.e. it

1
totally includes all its provisions with spare capacity, e.g. the number 65. We will see

that the existence of spare capacity will form the basis of counter-examples which can
disprove propositions.

Necessity and sufficiency

Example

Example

Examples

If a proposition p implies a proposition ¢, then we write p = g or ¢ < p. The converse
(or opposite) to this would be p # ¢ or p does not imply q.

Let p:x=4, i.e. the proposition p states that a given number (x) is equal to 4. Also, let
g:x> =16, i.e. the proposition g states that the square of a given number (x) is equal to 16.
Evidently p = ¢ because 4> = 6.

But (—4)>=16 as well so g # p. Putting the argument verbally, for x* =16 it is
sufficient that x =4, but not necessary as —4 does equally well. |

Sometimes two propositions can imply one another as the following example shows.

pilxi=4 g:x*=16

We see that p = ¢ and ¢ = p because both propositions mean precisely the same. When
this is true, we write

peyg

The < sign, implies and is implied by, has wide usage in mathematics. We say that for p
to hold it is both necessary and sufficient that g holds, and vice versa. More briefly,
p holds if and only if ¢ holds. |

When more than one proposition is involved we can extend the principles of
implication as follows. If p = g and ¢ = r, then p = r.

1. If a positive integer is divisible by 4, this is sufficient to guarantee that it is even, but it
is not necessary since, as an example, 6 is even but it is not divisible by 4.

2. pix>38 g:x>17 Fix>6

Here p => gand g = r, 50 p = r. |
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Mutual implication is governed by similar guiding principles, i.e.
if peog. gor then por

Closely related to arguments of necessity and sufficiency is the use of the words some,
any and all. In the first example of this section we found some x, namely —4, with
(~4)2: 16. This was quite sufficient to disallow an implication.

. 1 - .
[t is true in Figure 6.19 that ACB = EAOB. Now AOB is fixed, but C is any point on the

major arc AB. The result is therefore true for a/l points C, i.e. C can be anywhere on the
major arc AB.

A

Figure 6.19 Angle at the circumference

Reductio ad absurdum

Example

Known by its Latin name, which means reduction to the absurd, the method is based upon
assuming false a result that we wish to prove true. The reasoning is then followed through
until a contradiction is obtained.

Prove there is no largest prime number.

Solution

We start by accepting the counterproposition P: a largest prime number exists. Call this
number p. There is now a finite number of prime numbers, namely 2,3.5,.... p.
Multiply them all together and add 1 to the total to obtain

g=2x3x5x--xp)+1
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g is an absolutely enormous number, but it must exist by virtue of Archimedes’ axiom.
Two possibilities arise for ¢, namely
(a) ¢ is prime
(b) ¢ is composite
For case (a) ¢ > p. This would invalidate P in that p is the not the largest prime number.
For case (b) ¢ must have factors. But ¢ is odd and not divisible by 3, 5,7, ..., p because it
is one more than an exact divisor of each. If ¢ does have factors they must exceed p. If the
smallest factor is r, then #» is prime, otherwise » would factorise further.

Either way we have
(a) ¢ prime, ¢ > p and P is invalid
(b) g composite, ¥ > p, r prime and P is invalid

We must therefore reject the proposition P and conclude that there is no largest prime
number.

Proof by induction

Example

We know that if p = g and ¢ = r then p = ~. If we make the reasonable assumption that
we can extend this argument to a chain or sequence of propositions p;, p,, ..., p, where
Py = P2, Py = P3. ..., P, then we can conclude that p; = p,. The method of induction
operates as follows:

(i) p, 1s assumed to be true
(1) p,,, is proved to be true when p, is true, i.e. p, = p,.;, for any n > 1

(iii) p,, separately, is proved to be true directly

It follows then that

Py = P2 pZ:p.%"'*pn—l:pn‘ pn=>pn+l""

Stepping forward through the integers, the result holds for all a.
Sometimes the method may be modified if p, is not true. For example, n" > n! for
n=2.3.4,.. 1" is not greater than 1! so we must state that p,, is true for n > 2.

Prove that
1
1+2+3+---+n=5n(n+ 1)
. o . 1
i.e. the sum of the first » positive integers is equal to En(n + 1).

Before proceeding, note that we can easily verify the result for a particular value of »,

1
egn=314+2+4+3= ) x 3 x 4 = 6. You should be fully aware that verification works
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Negation

for specially chosen cases only and it could not possibly be carried out for all values of n;
verification is not proof.
Proof

By the method of induction

1
i p1+24+34+---+n= En(n + 1) is assumed to be true for some value of n.
(i) We must show that p, = p,.,. but what is p, ;7 Clearly it is a faithful replication of
p, with n+ 1 replacing n, n + 2 replacing n+ 1, etc. Therefore we have the result

Pt 1243 (k1) = 5O+ D+ 2) *)

If we add (n+ 1) to equation (*) then the left-hand side becomes
14243+---+n+n+1)

and the right-hand side becomes
1 n 1
S+ D+ (4 D) = (n+ 1)(§+ 1) =5+ 1)n+2)
We have thus produced the requirements of p, |, s0 we may write p, = p,,,-

(iii)) Now we show that p, is true. When n=1, the equation becomes

1
| =5 x 1 x 2 =1, which is clearly true.
The result is therefore proved. |

Less formally, proof by induction consists of the following reasoning process:

(i) Establish or recognise a pattern that appears to be true with » (assume p,).

(ii) Step forward by whatever means to the next stage to obtain the same pattern but with
n being replaced by n+ 1 (p, = p,y))

(iii) Verify the pattern for a chosen n, usually n=1; i.e. prove p,.

Associated with the notion of a proposition p being true is the property that it is not true.
We write g, called p bar, as the proposition that p is not true. In every sense it has to be
the complete opposite of p. For instance

if p:x > 6, ie. xisanumber > 6

then p:x <6, ie.xisanumber < 6.
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In other words p is the exact opposite to p in such a way that p and 5 together exhaust all
possibilities, which in this case is the set of all real numbers R.

The next example demonstrates the principles; x will be used to denote a real number,
x € R, i.e. x belongs to the set of real numbers and » will denote an integer.

Example P P
x>7 x<17
n even n odd
n not divisible by 5 n divisible by 5
—2=<x<3 x<=2orx>3 |

Note that the method of reductio ad absurdum aims to establish the truth of p by assuming
P to be true. The implications of p being true are followed forward until a contradiction
occurs. When this happens we know that 5 must be false and therefore p must be true.

Our aim in this book is to use the principles of proof and propositional logic only as far
as we need them in foundation level mathematics. If you are intending to study discrete
and decision mathematics, possibly as a preparation for computer science, you will need a
deeper treatment than we offer here.

The following example shows how to use negation and implication in mathematical
reasoning.

Example For the two propositions p and g determine whetherp = ¢, p < ¢, p = ¢q,p < g, etc., or
whether none of them are appropriate. Here x, y denote real numbers, i.e. x, y € R, and n
is a positive integer, i.e. n € N,

p q 4 q
(a) x=1 =1 b) xy=0 x=0
() x#3o0rx# -3 *=9 (d) nis even nt >0
(e) nis odd n is prime ) x>8 x<8
(g) x<—6 x< =17 (h) x>3 x¥>9
i) 5<x<6 5<x<6 G) ¥4+x—12=0 x=3o0r —4
(k) P>x x> 1 (H x2>y2 x>y>0

Solution

(@ x=1=>x=1,ie p=q,but p & qas x= —1 is the exception.
(b) p < g because xy =0 means that either x =0 or y=0.
(c) p:x =3 or x= —3 in which case ¥’ =9; also if x’ =9, x=+3,50 p < q.
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(d)

(e)
()
(g)
(h)
(1)

Q)

(k)

For any x € R, 2 > 0, so this is true for any integer » by default. However n? > Qtells
us nothing about n. Therefore p = ¢.

The prime numbers exclude n =1 and include n=2, so p % ¢ and p & q.

p and g are exactly opposite statements, so p=gq.

Any number < —7 is automatically < —6, so p < g.

If x> 3, then x° > 3x > 9 (because x> 0), so p = ¢. Butif x < —3, x> > 9, sop ¢=q.
pareal number x lies between S and 6, including S but not 6. )

¢ :a real number lies between 5 and 6 including 6 but not 5.

Though very nearly the same, p and g are different statements, each possessing an
exceptional case not covered by the other. So p % ¢, p ¢ ¢.

Solving x* +x — 12 gives (x +4)(x — 3) =0, i.e. x=3 or —4. Conversely, if x=3 or
—4then X’ +x — 12=0,50 p & g.

If x> 1 then ¥° >x because x>0. However, if x <0 then x°

therefore p < ¢ only.

> x automatically,

If x>y>0 then x>y leads to x> > xy (multiplying by x>0) and to xy> )’
(multiplying by v>0). Hence x3>x_v>y2 and therefore x2>y2. However,
16 = (—4)2 > (—3)2 =9. But —4 ¥ —3 and neither number is >0. Hence p < g

but p # g¢. |

In this book use will be made of the concepts of proof so far described. We will rely upon
arguments of the form developed here. We introduced propositional logic to formalise
and sharpen up our arguments and to open the way into the symbolic logic which
underpins computer science. Should you undertake such a study you will need further
logical symbols but for the remainder of this book you will find that the development to
date is more than enough.

Exercise 6.4

1

The following examples relate two propositions p and ¢. In each case determine whether
P = 4.p < q,p < g ornone of these: x and y are real numbers and # is a positive integer.

P q
(a) 2 =5x+4=0 x=1

b)  x4+1=0 x=—1
(©) n is odd n* is odd

(d)
(e)

x=2orx=-3 LHx—6=0

x>95 x>4
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5*

14 q
(f) Vi=x y=4x
() —3<x<?2 —l<x<l
(h) x+3=0 x=4
) 2<x<3 2<x<3
() 2<x<3 2<x<3
k) x<y X <y3
0)) X<y <yt

Under what circumstances is it true that x + v < (x +y)2?

For the following propositions, either establish the truth or give a counterexample to
establish falsehood.

(a) n* — 1 is never a prime number, for any positive integer n

(h) x<+/x2+1, foranyxeR ©) X4+ <@x+phxy>0
(d) 2+ <(x+1)hxnyeR

(e) A quadratic equation always has two equal roots

(f) If x>yand y>5, thenx>5 (g) ¥ —5+6>0,xcR

hy x=-T7=x2-2x—63=0 (i) x=-7T&x*-2x-63=0

Gy xX*4+2x+2=1

(a) By writing # = 2m, establish that the square of an even integer must be divisible by
4.
(b) If n has a factor f, i.e. n =fg, prove that £ % and g* are factors of n’.

It is known that certain numbers, e.g. +/2, are not rational. For /2 we prove the result by
writing

Vit
q

where p and ¢ are integers with no common factor and one of them at most is even.
Square p and use the result in Question 4(a) to obtain a contradiction.

If two numbers a and b are multiplied together and the product ab =0, then either a or b,
or both, must be zero. Factorise x* —* and use this property to prove that no two
different numbers x and y can have the same cube,



6.4 THE METHODOLOGY OF PROOF 273

10

11*

12*

Many integers of the form
N =n*+n+4l

are prime. By taking n =40 obtain a contradiction to the hypothesis that they are all
prime. Is there another value of »n which makes # composite?

Use the method of induction to prove the following (» is an integer. x € R).

(a) 2">n, n>1
(b) (1+x)">1+nm,n>1,x>0
(c) n>n'n>1

1 2
(d) l3+23+33+---+n3:(En(n+l)) =(14+2+43+---+n)

Prove that
1 —x"

I —x

=l4x+x2 440
Multiply up by the denominator and use the method of induction.

Establish that
1 1 1
e+ 1) r r+1

Hence obtain a compact form for
1 1 1

5+T+---+(n— )n
proving the result the method of induction.
1 ] 1 I 1
If N is the smallest integer for which 7 <5 % 107", write 30 = 5N X 3R and prove

11
that T < 2 x 107" for any n > N.

An arithmetic series of the form a + (@ +d) + (¢« + 2d) + --- + (¢ + (n — 1)d) has the
sum

S, = g[Za + (n — D).
Prove this result by the method of induction. Hence determine the sum of the following
series:

(a) 245+84---+32 (b) 41 +36+31+--+6
(c) 541 -3-7—----39.

0 —



SUMMARY

Axiom: a fundamental statement which is assumed to be true

Theorem: a statement which can be derived from axioms

Corollary: a statement which follows from a theorem

Pythagoras’ theorem: in a right-angled triangle the square of the length of
the hypotenuse is equal to the sum of the squares of the lengths of the other
two sides

Triangle theorems:

The bisectors of the angles meet at a point

The perpendicular bisectors of the sides meet at a point
The medians meet at a point

The altitudes meet at a point

Circle theorems:

The angle subtended at the centre by an arc is
twice the angle it subtends at the circumference
The angle between a tangent to a circle and

a chord to the point of contact is equal to any
angle in the alternate segment

Sufficient condition: p is a sufficient condition for ¢ if ¢ is true when p is
true

Necessary condition: p is a necessary condition for ¢ if p is true when ¢ is
true

Methods of proof:

Reductio ad absurdum
mathematical induction
negation
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Answers

Exercise 6.1

10

Exercise 6.2

Exercise 6.3

(N-1D(N+1)=N -1

N—1l=(N-DWN?*+N+1); with N=2, N— | =1 is a trivial factor and 7=2" — 1
is prime

(a) Every second integer is divisible by 2, every third by 3 and every fourth integer
is divisible by 4.

(b) 120.

All except (d)

4.8 m
(a) V105 = 10.247 (b) V181 = 13.453
(a) 45° (b) V2

AC=6.798, AD=8.152, AE="1.619

V24 1222+ 1) =4.6116 or 0.2168

(c) H must be the circumcentre of triangle POR

(d) 90°, a right angle

YO =225

(@  70° b 22 () 57°
(d)  65° (e)  60°

o 2.3 2 8

®  7<3<3°]

6
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2 x+4+2
6 - <
3 x+3

<1,ifx>0

Exercise 6.4

1 @ peg b poeg ©) pegq (d peg
ey p=gq () p=q @ p=>9q (h) neither
(i) p=gq )] neither (k) peyg 98] neither

2 x+y>lorx+y<0

3 (a) False: n=2 gives n° — | =7, which is prime
p

(b) True
(c) True
(d) False: if x=1,y= — 2, LHS is 5, RHS is 1
(e) False: x> +x — 2=0 has roots x=1 and x= —2
() True
(2) False: LHS <0 for2 <x <3
(h) True
(i) False: x> — 2x — 63 = 0 has roots x= —7 and x=9
()] True
7 Yes, n=41
0 1-lontd
n n

12 (a) 187 (b) 188 () -204
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INTRODUCTION

OBJECTIVES

®

The name trigonometry derives from the Greek words trigonon ‘triangle’
and metron ‘measurement’, It is the basis of surveying and navigation.
Indeed, it pervades every aspect of our lives. When an orienteer uses a
map, when a toolmaker consults an engineering blueprint, when NASA
engineers program a computer on a space probe, each of them relies upon
trigonometry.

After working through this chapter you should be able to

define the sine, cosine and tangent of an acute angle
state and use the fundamental identities derived from Pythagoras® theorem

define the three reciprocal trigonometric ratios, secant, cosecant and
cotangent

state and apply the CAST rule

relate the trigonometric ratios of an angle to those of its complement and its
supplement

state and use the sine rule for a triangle
state and use the cosine rule for a triangle

calculate the area of a triangle from the lengths of two sides and the
included angle

solve a triangle given sufficient information about its sides and angles
calculate the angle between a line and a plane

calculate the angle between two plancs

find the general solution of simple equations involving trigonometric ratios
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7.1 TANGENT, SINE AND COSINE

Since the time of Thales in the sixth century BC the problem of estimating the height of a
tall and distant object has been solved by the use of similar triangles. Figure 7.1(a)
depicts the essential idea.

PQ represents a tower which casts a shadow QC on level ground. A8 is a stick placed
vertically into the ground so that the points C, 4 and P lie on a straight line. Triangles

POC

AgC are similar, so
PO QC
AB ~ BC

from which the height PQ can be calculated (we used the term estimating earlier because
measurements of 48, BC and QC will be somewhat inaccurate).

R
F
D
A
A
C [ [] s
C B ] C B E G
(a) (h)

Figure 7.1 Estimating heights

AB
It follows from the similarity of the triangles that BC= _Q_g Figure 7.1(b) shows an

angle RCS and three line segments AB, DE, FG perpendicular to CS. Using similar
B DE FG Al '
RC' CE and G are all equal.
This constant ratio is a property of the angle and is called the tangent of the angle, or
tan for short (this is the name of the button on your calculator). .
In the right-angled triangle shown in Figure 7.2 we focus attention on the angle ACB
or, more simply, C. We may write

triangles we see that the ratios

.. AB opposite
tanC = — = —
an CB  adjacent
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Examples

Opposite

Adjacent

Figure 7.2 Definilion of tangent of an angle

where we have labelled the side opposite the angle C as opposite; the side opposite the
right angle is, as usual, the hypotenuse and the remaining side is the adjacent.
Reference back to Figure 7.1 allows the definition of two other constant ratios
associated with le. From Figure 7.1(a) notice that 48 _ PO and that 8 _co
associated with an angle. Fro g . otice i P a = p
These ratios are respectively the sine and cosine of the angle C, written sin and cos for

short (again, these are the names of the appropriate buttons on your calculator).
From Figure 7.2 we may write

- AB it .. CB adj t
Gin & — __opposite _adjacen

= C=—=—"—
CA  hypotenusc €os AB  hypotenuse

1. At a point 50 m horizontally from the foot of a tall building, the angle of elevation of
the top of the tower is 35"; what is the height of the building?

28°
35°

C 35m B

D
C 50m B

gm -

(a) (b)

Figure 7.3 Diagrams for () the first example and (b) the second example
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In Figure 7.3(a) AB represents the tower and ACB is the angle of elevation, We need to
find the length AB.

Now

@ = tan@. so AB = CBtan C
= 50 x 0.7002

- Figure 7.3(b) represents a cross-section of a roof in which the span CD is & m and the
angle ACB is 28°.1f CB is 3.5 m calculate the rise AB and the angle ADB.

AB
From triangle ABC, tan C = 3c % that 4B = BCtanC = 3.5tan28" = 1.86 m.
Also
AB 186

tan ADB = 2 = 222 — 0.4136.
an BD 45

Hence ADB = 22.5" (using INV TAN).

. A 25 m ladder has to reach a window 22 m from the ground (which is assumed level).
At what angle to the horizontal should the ladder be set and how far from the wall
should it be placed?

In Figure 7.4(a) AC is the ladder and A8 is the window. The required angle is
ACB.

B 22 -
Then sinACB = 1({/4 %5 = 0.88, s0 ACB = 61.6" (using INV SIN).

The required distance is CB = ACco0s61.6" =25 x 0.47497 = 11.87 m.

25m
22m

(a)

Figure 7.4 Diagrams for (a) the third example and (b) the fourth example
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4. Figure 7.4(b) represents a cross-section of a symmetrical frame with CB=BD =10 m,
BE =3 m and ACB = 20°. Find the lengths CA and AB.

The first step in finding AC is to find BCE and then ACE. Now

~ BE 3 -
INBCE = — = — s at BCE = 17.46°.
sin BC CB loso that BC 17.46

Hence ACE = ACB + BCE = 20" + 17.46° = 37.46¢.
Now CE = CBcos BCE = 10¢c0s 17.46" = 9.54 m. Then

-Cég = cos ACE so that CA = cosC:4Eé’E = cosgﬁ/'é46° =12.02 m.
Finally
AB = AF — BE
= CAsin ACE -3
=731-3
=43l m ||

Graphs of sine, cosine and tangent

Figure 7.5 shows the effects on the values of sine, cosine and tangent of increasing the
angle from 0° 10 90°. The point C is fixed and 4 moves along the arc of a circle.

A
5
A4
\A;
/ AZ
] N
N 1
('B B B B, B

5 4 3 2 |

Figure 7.5 Varying the angle
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As the angle ACB increases, the lengths CAy. CA. CoAs CA . remain constant (equal to
r say) but the heights A0 By, By 4385 ABy. AsBs increase 1o 7. hence the sine of the
angle increases from O to 1. The lengths CB,. (82, CBi. CB,. CB« decrease from r to
zero. Hence the cosine of the angle decreases from 1 1o (). Since the length of the opposite
side is increasing and the length of the adjacent side is decreasing. the tangent of the
angle 18 increasing—without limit.

Figure 7.6 shows the graphs of sine. cosine and tangent.

1 1
1+
90° 9)¢ 90°
(] C] 2]
(RY} ih) )

Figure 7.6 Grophs ot (q) sine. (b) cosine ond (c) tangent between 0 and 90

Some useful results

Figure 7.7¢a) depicts a right-angled isosceles triangle. I the lengths AB and CB are | then
trom Pythagoras” theorem we deduce that the hypotenuse has length /2. Tt follows using
ACB as an example that

| 1
sind5® = —, c¢0s45° =—. 1an45° =|
V2 /2

Figure 7.7(b) depicts an equilateral triangle ACD. B is the midpoint of CD and AB is a
median. the perpendicular bisector of CD and the biscctor of CAD. If the lengths of the
sides of the tnangle ACH are 2. then the length CB is 1 and. via Pythagoras’ theorem, the
length of 48 is V3.
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A

I

1 i 1
(1) b

Figure 7.7 Ratios of speclal angles

D

Using triangle ACH and the angle ACB. we see that

Using CAB we obtain

V:

B

tan 30" =

Sl-

1
sin 30" i cos30 =
It is no coincidence that sin60 = cos30 and cos60 = sin30 . Consider Figure 7.8
where ¢ is measured in degrees:
. AB B
sinf = Ca =c¢on(90 =) and cosll = i~ sin(90 — )

We highlight these important results:
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sin(90° — 0) = cosl, cos(90° — 6) = sinf

When the sum of two angles is 90 the angles are called complementary, hence we may
think of the cosine as the complementary sine.

A

C B
Figure 7.8 Complementcry angles

Two identities
Reference to Figure 7.8 shows that

. AB B AB
sinl) = 1 cosll = 7k tantl = CB

s0 that

sin @
tanl) = ——
cos(

Furthermore. since AB% + (B° = (42, dividing through by C4° gives

(.43 :+(CB .
CA ca/)
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or

sin® 0 + cos® 0 = |

These results are true for any angle. not simply angles between 0 and 90 .

Ratios for obtuse angles

We saw in Chapter 5 that some triangles contain obtuse angles, i.e. angles of magnitude
greater than 90 but less than 180 . In the next section we shall need to calculate sines
and cosines of these angles. It you use your pocket calculator you will find that
sin150 = 0.5 and cos 1200 — —0.5. What do thesc results mean? In Scction 7.4 we
consider ratios for angles of any magnitude, but for the moment we concentrate on acute
and obtusc angles only.

In Figure 7.9 the point /2 lies on a circle of radius 1 umt, centred at 0. As P moves
anticlockwise from A to B the angle ) increases from 0 1o 180 .

In Figure 7.9(a) the height of P above the x-axis. PN = OPsin{) = sinl) and the
distance ON = OP cos ) = cos 8, so the coordinates of P are (cost). sin fh).

Now consider Figure 7.9(b) where the angle 40P is obtuse. Clearly PN =
OPsin¢g = sing and ON = OP cos ¢p = cos ¢h. The coordinates of P are (cos ¢, sing),
i.c. (—cos(180 — ). sin(180 — 1)).

y y
£ P
DSk
l 1) 9 A Bl A \ A
£\ N x N 0 X
(a) 14}

Figure 7.9 Ratios of acute and obtuse angles
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Exercise 7.1

The x-coordinate is negative because P is to the left of the v-axis. If we are being
consistent we should expect the coordinate of £ to be (cos €. sin0). We theretore notice
that the sine of an obtuse angle is positive and the cosine is negative. If we define the
tangent to be the ratio sine:cosine then the tangent of an obtuse angle will also be
negative. In fact we can make the following general definition

since this detinition is completely consistent with our earlier definition for an acute angle:
see Figure 7.2,
We have the following definitions for an acute angle t

sin(180° — @) = sin 0 cos(180° — ) = —cos @
tan(180° — ) = —tan(

Convert the following angles from degrees 1o radians:

@ 60 (by 135 € 210
) 300 © 144 () 405
(g) 900

Convent the following angles from radians to degrees:

(a) (n;5y (b) (3ny (<) (4n/9)
() (77/36) «©) (a2 )} (/)
(g) (=3rn/2y

Express the following angles in radians:
(a) 46.251 (b 97.929 (<) 305.06
Express the tollowing angles in degrees:

() N (c) 1.646° ) 4.844°
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4 Using your calculator, determine the sine, cosine and tangent of the angles in Questions 1,
2 and 3.

5 Given 0 to be an acute angle, the accompanying diagram shows that

. \4 X y
sinl ==, cos0 ==, tanfl ==.
r r X
P
P x r r
r y r y
X g B v 0O X A -

Adding 7/2, as in the second diagram, we can find the sine, cosine and tangent of
(0 +m/2), by using the sign convention with the supplementary angle P'OB, i.e.

sin(d + n/2) = T cos0
,

cos((0 + n/2) = = sin (}
-

tan()

tan(0) + 7/2) = — =
=

Repeat the process to find the sin, cos and tan of

(a) 0+n (b) 0+2n (©) -0
(d) n/2—40 (e) T —{( () 1+ 3n/2
Give your answers in the form cos(¢ + n/2) = —sin{), etc.

6 Use your calculator to determine values of sin ) at 107 intervals between O and 180" (n").
L y \ me. vals b
Use the results of the propertics in parts (a). (b) and (¢) of Question 5 to extend the graph
to —3n < 0 < 3n. Do the same for cos ¢ and tan 0.
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10

Depict the following angles on a diagram:
(a) 382" (b) — 104 (©) 510°

and write down the equivalent angle betwecen (° and 360 with the same sin, cos
and tan.

1
Using the values sin30 = 5 = cos 60", etc., show that

(a) sin 60" cos 30" + cos60 sin30" = 1
2 |
(b) sin” 60" + 5 sin“ 45" =1
()  (tan45" +sin 60 )cos30 — tandS’) +sin* 45 =0
In the illustrated Pythagorean triangle, sides 3, 4, 3, find ) by pressing INV SIN or SIN~!

on the calculator. What is ¢? Do the same for the Pythagorean triangles whose sides are
5,12, 13 and 8. 15, 17.

Use the identity sin’ 0 + cos? 0 = 1 1o establish the following identities:
sin’ 0

l +cos

(b) (I +sin) — cos 0)(1 — sint) + cos () = 2sinlcos )

(a) | —cosf) =

(c) (1 —sin” 0)(1 + tan? 0) = |

S5sin0 -3 4 —5cosl

(@ 4+ 5cosl) Ssin0+3
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4
. . sin” 0
(e) (tan0 — sinH(tan ¥ 4+ sinf)) = 5
cos ()
() sin 0 — cos* ¥ = (sin® — cos )1 + sin 0 cos 0)

7.2 SOLUTION OF TRIANGLES

Sine rule

Given certain information about a triangle, in the form of the lengths of one or more of its
sides und the value of one or more of its angles. it may be possible to deduce the unknown
sides and angles. The special case of a right-angled triangle can be solved using the
information in the previous section, Here we develop some rules for a general triangle.
Finst, we recall a result from Chapter S.

The sum of the angles of a triangle is 180°.

Now we develop some rules to help us in our task.

In a wnangle the lengths of the sides are proportional 1o the sines of the angles opposiie
them. We prove this result by considering separately the cases of an acute-angled triangle
and an obtuse-angled triangle.

In Figure 7.1y AM ix drawn perpendicular to BC and in Figure 7.10(b) AM is
perpendicular to BC produced.

In Figure 7.10(a) we find from wiangle ABM that AM = ¢sin 8 and from triangle ACM,
AM = bsin(. so

csinB — bsinC (1)

In the case of Figure 7.10(b). since A(.:B and .-l‘("M are supplementary angles.,
s ACH = sin ACB = sinC, s0 AM = ¢sinB = bsinC as belore.
Equation (1) can be divided through by b¢ 10 give

sin B _ sinC
b ¢
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Figure 7.10 Sine rule
Similarly, by drawing the perpendicular from B to 4(", we can show that

smC  sind

¢ a

Pooling these results we have the sine formula or sine rule:

sind sinB sinC

a b ¢

By inverting cach fraction, we obtain another version of the formula which may be more
straightforward to apply 1n some circumstances:

a b ¢

—

sindA_sinB sinC

Example In the triangle ABC, C=47.8=234 and a =125 mm. Calculate b and c.
First, we use the angle sum to determine the third angle. Hence

A=180 —47 —34 =99
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Applying the sine rule

125 _ b o«
sin99¢  sin34°  sin47"’

Then
b =125sin34"/sin99 = 70.8 mm and ¢ = 125sin47"/sin99" = 92.6 mm

(You might like to draw carefully the triangle from the information given and see
whether the answers above are sensible.) [ |

Cosine rule

As with the sine rule we consider two cases, they are illustrated in Figure 7.11.
Using Pythagoras’ theorem on triangle ACM,

(AM)Y? = (ACY: — (CMY = b* — ¥
Using Pythagoras’ theorem on triangle 4ABM,
(AM)* = (4B)’ — (BMY’
From Figure 7.11{a) this becomes

(AMY = % — (a — x)°

=
M

(a) (b)

B a-—ux

Figure 7.11 Cosine rule
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Hence
B =t = (a— x)l
= —dt 20y — 47
so that A =d* + b~ 2ax

From triangle ACM,

x=bcosC
Then
A =d* + b —2abcos C

Now we consider the case of an obtuse angle.
Using Figure 7.11(b)

2

(AM)* = (ABY — (BM) = ¢* — (a + )

Hence
- = —(a + )
=t =@ = 2ax — ¥?
s0 that ?=a + b+ 2ax

From triangle ACM,

x=hcosACM = bcos(180" — é) = —beosC

& =d* + b —2ubcos C

Therefore, the same result 15 obtained whether or not the triangle contains an obtuse

angle.

We chose to draw a perpendicular from the vertex at 4 to the opposite side; we could
have chosen B or C as the vertex and we would have developed two similar formulae. We

present all three options as a summary of the cosine rule:
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Examples

The cosine rule as stated above can be used to calculate one side of a triangle given the
two other sides and the angle between them. It can ilso be used to caleulate an angle
given the three sides of a triangle. The formulae above are then rearranged as follows:

1. The sides of tnangle ABC are ¢ = 120 mm, » =135 mm, ¢ =200 mm: find the angles
A and C. We use the formulae

. b+ - 18225 + 40000 — 14400
Cos A = : =

= -= 08116
2ac 2 x 135 x 200
theretore 4 =45.75 {using INV COS).
. . 14400 - 18225 — 40000
Smmilarly  cos( = Ceeee— o == —0.2276
2x 120 x 135
therefore C=1032 (obtuse. because the cosine is negative)

2. Intrangle ABC, A=265.5=130 mm and ¢ = 220 mm. Find the length of the third
side. Start with

3

~ hl
a =b" 4 2becos

then a’ = 16900 ~ 48400 — 2 x 130 x 220 x c0s26.5 = 1410975

Theretore  « = 118 mm [ ]
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Solution of triangles

It is useful to note that the largest angle in a triangle is opposite the longest side and the
smallest angle is opposite the shortest side. There are four cases to consider.

Three sides are given

(1)  We first find the largest angle using the cosine rule.

(i) Then we find a second angle using the sine rule.

(iii) Finally we use the angle sum property to find the third angle.

There are two points to note. First, we advise finding the largest angle first because the
cosine of an obtuse angle is negative and if the largest angle is obtuse this presents no
problem; the other angles must be acute and knowing the sine of an acute angle

determines that angle uniquely. Second, if we wish to have a check on accuracy we can
replace (iii) by the use of the sine rule then apply the angle sum property as the check.

Two sides and the included angle are given

Example

(i) Calculate the third side using the cosine rule.

(i) Find the smaller of the unknown angles using the sine rule.

(iti) Use the angle sum property to determine the third angle.

Again, there are two points to note. First, we find the smaller angle at step (ii) because it
must be acute, hence it can be determined from knowledge of its sine. Second, we can

employ the sine rule a second time at step (iii) and use the angle sum property as a check.
However, note the following example.

In triangle ABC, 4 = 20", b=4, c=8. Find a. 8. C.
(1) We use

a> = b+ ¢ — 2bccos A
=16+64—2 x4 x 8cos20°
= 19.86
therefore a = 4.456.

(i1) The smaller angle is opposite the smaller of sides b and ¢, so
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-~ 4sin20
that sinB=-———=0.307
so tha sin 3456

therefore B=17.88"
(i) If we use the sine rule again

. csind 8 xsin20
i = = =0.614.
sin€'=— 4.456

INV SIN on the calculator suggests that C = 37.88. This is clearly wrong since
A+B+C # 180" with this value of C. The use of the angle sum property gives

C=180"—20 — 17.88 — 142.12"

The problem has arisen because sin 142.12° = sin 37.88" as a consequence of the
fact that 142.12" and 37.88" are supplementary. This ambiguity occurs again in
the fourth case. ]

Two angles and one side are given

(i) Use the angle sum property to find the third angle.
(i) Use the sine rule to find one of the remaining sides.

(i) Use the sine rule again to find the third side.

Two sides and an angle opposite one of them are given

This is known as the ambiguous case since the information can lead to two possible
triangles.

Consider Figure 7.12 where we have assumed that ¢, b and B are the given quantities.

To construct the triangle from the information given, we draw AB to the required
length and a line from B to form the given angle ABC. From A we draw the arc of a circle
of radius b and where it intersects the second line is the third vertex C.

Figure 7.12(a) shows that no triangle can be formed if b is not large enough; in fact,
Figure 7.12(b) shows that the shortest possible length for b is ¢sinB. Since this case
represents a right-angled triangle, it is easy to find the remaining side and angles.

Figure 7.12(¢c) seems to indicate that two triangles are possible but one of them
requires the third vertex to lie on the wrong side of A8 and is inadmissible. This happens
when b >c¢. The ambiguous case is shown in Figure 7.12(d) and arises when
csinB < b < ¢. Two examples are now given to illustrate the cases depicted in the
Figure 7.12(c) and (d).
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(a) (b)

(c) (d)

Figure 7.12 The ambiguous case

Examples I. Solve the triangle ABC if a=24, c=25 and C = 66 .

(i) Using the sine rule

sind  sin(

a ¢

A~ asin (A‘u24sin66"

so that sinA4 = = (0.8770

therefore A = 61.28

The other option A=180 —61.28 = 118.72° is not possible  since
4+ C > 180"

(iiy The third angle, B = 180" — 66" — 61.28" = 52.72".
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(iii) Using the sine rule again

b o«

sin B sin C

sin B 25 sin 52.72°
Sin é - Sin 66

therefore h=rc =21.8.

. ¢ . . a . . o .
Note that we used the function —— . in preterence to ——, since it uses information
sinC sin 4

given, not estimates derived from that information. Note also that we could have used

the cosine rule to determine b.

2. Solve the triangle ABC if a=7, c=6 and C = 29.45.
(i) Using the sine rule
. sin ' 7sin29.45°
sing = 280 % _ 1ol - = 0.5736.

¢

Therefore A=1350" or 145°

Each of these answers is possible. First we take A =35.0"
(it) The third angle, B =180 —29.45 —35.0=115.55"

(ii1) The sine rule gives

b csiné* 6sin115.5”

= = - =11.0.
sinC sin 29.45%

Second we take 4 = 145.0".
(ii) The third angle, B =180 —29.45 — 145.0° = 5.55".
(iii) The sine rule gives

_ 6sin5.55°

=—— = 1.18.
sin 29.45° .18

In summary the two results are

A=350, B=11555. b=11.0 or
1450, B=555, h=1.18. [ ]

N
it

Draw the two triangles to convince yourself that they are both solutions.
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Area of a triangle

In Figure 7.13 we show a triangle ABC and an altitude 4D formed by drawing a line from

A pempendicular to BC or BC produced. as in diagram (b).
A

B

(ty

(%Y

Figure 7.13 Area of a triangle

As we saw in Chapter 5 the arca of either triangle. denoted A, is given by

1
- % base x height

A=i

NO

A= cah
This result was obtained by noting that the area of a triangle is half the area of a rectangle
with sides equal to the triangle’s base and height, Since the altitude is seldom given, b
usually has to be derived. it is more convenient to employ a formula which involves only

o) —

the angles and sides of a triangle.
Reference o Figure 7.13 shows that

h— csinB

acsin B,

g
I
1O —
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In Figure 7.130a) we see thie
h=hsin

and we vinuld e

L s
&= _absm(’

2
In Figure 7.13b), however.
k= bsin AU = hsin(I1%0 — ACB) = hsin(180 - &) = bsinC
amdd the resobt is the s, showing that it does not matter whether the given anple s acue

ar obhtuse.
[ can also be shown that

b sin Al

L=
Il
a1 —

Hence the area of a trangle s gaven by

A thicd way of tinding the arca of o trsngle can be used if all theee sides of a triangle are

piven. We guote the resalt withoul prood,

|
A= s(s—a)s—bls—c) where s= m_n +b+c)

Exuamples 1. Find the arca of riangle ABC where w =31, =39, C = 52,

1
L= %112 xsinSe =347.04

—
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2. Find the area of the triangle with sides 57.4, 70.8, 103.6. For convenience let ¢« =57 .4,
b=70.8, ¢ = 103.6. First we calculate the semi-perimeter, s:

1
s = 5(57.4 +70.8 4+ 103.6) = 115.9.

Then

A= \/(1 15.9)(115.9 — 57.4)(115.9 — 70.8)(115.9 — 103.6)

V(115.9)(58.5)(45.1)(12.3)
= 1939 [ |

Exercise 7.2

1

Use the sine rule to determine the unknown sides and angles of the triangles given below.

@) a=4,b=6,4=37 (Bacute) (b)) h=7.c=5B=57
«©) B=82" 4=41",¢c=8 (d)

5 A=1T.B=11°,a=6
@ A=90,b=7c=24 M A=80C

=B.C=40,¢=5

Use the cosine rule to determine the unknown sides and angles of the triangles given
below.

The accompanying figure shows 48 =6 cm and the line AG drawn at 40° to 4AB. At the
point B an arc of radius 4 cm is drawn. This meets AG at the points C'; and (7 respectively.
Now solve the triangles ABC, and ABC; given A =40, a =4, ¢ = 6, noting that there are
two possible solutions.
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#

ag8
381

i

4

Determine all possible triangle solutions, where possible, for the following data sets:

(@ a=35b=5c=3 (b) A=34,B=42",¢=21.63

() bh=6,c=8, B=4I° (d  h=4,¢=9 B=37

Find the lengths of the sides of a parallelogram whose diagonals are of length 3 and 2 and
meet at an angle of 42°,

(a) If AABC is obtuse prove that

a b ¢

R = - = ~ = =
2sind  2sinB  2sinC

where R is the radius of the circumscribed circle.
(b) Determine R for the triangles in Question 4. What do you observe when two
possible triangle solutions exist?

Determine the area of each triangle in Question 4.

(a) Find the points where the straight line v=2x — 3 crosses the coordinate axes.
(b) Determine the area of the triangle enclosed by the crossing points and the origin.
(c) What are the angles in the triangle?

Use Pythagoras’ theorem in the right-angled triangle shown in the tigure to prove that the
distance between (xy, y,) and (x,, y,) is

((xy —x)) + (@ —v)")?

[ETRNY (2, v)
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Find the distance between

(a) (3, 4) and (1, 0) (b) (=2, 3)and (3, 4)
(c) (1, 0) and (-2, 3).

Hence find the area of the triangle formed by (3, 4), (1, 0) and (-2, 3).

] 10 Draw a graphical picture of the triangle in Question 9.

(a) Determine the equation of the three straight lines which make up its sides in the
form y =mx+c.

(b) Using INV TAN on a calculator, find the angle of intersection of each straight
line with the x-axis.

(c) Check that the angles in (b) match the angles in the triangle.

11 For the general scalene triangle whose sides are a, b, ¢ we know from the cosine rule that

y P4+t —a?
0S4 = ————.
2be

1
By defining s = 3 (a + b + ¢), the semi-perimeter, it can be proved that

~ 2{s(s —a)(s — b)(s — o)'’?

sin A
bc
&
C a
A b B
(a) Deduce that the area of the triangle is

A = {s(s — a)(s — b)(s — )2

(b) Verify the result for the triangle in Question 9.
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1
12  Verify that the area of the triangle A/B is equal to Ers, where r is the radius of the

inscribed circle. Using the notation of Question 11, deduce that for the triangle 4ABC,

A =rs.
13 (a) Prove that the radius of the circumscribed circle R is
g b
4A
(b) For an equilateral triangle determine the ratio »/R.

14 Using the standard notation in the triangle, prove the following results:
(a) a(siné — sin é‘) ~+ b(sin C - sin;t) + c(sin;t - sin B) =90
cos A N cos/!ﬂi’+ cos C _ &+ b+t
a b ¢ 2abc
(c) a(ccos B — beosC) = ¢? — b2
asind +bsinB _a® + b

.z 2
csinC c

(b)

(d)

beos C —+ ccosB  sinA
(e) =

acosé‘+ccos;1 B sinB

15 The triangle ABC has vertices at (x|, ¥,), (x2, y») and (x3, ¥3) as shown,

(a) Write down the areas of the parallelograms, ALMC, CMNB and ALNB.
(b) Deduce that the area of triangle ABC is given by

1
A= 3 X, (v2 = 3) 2000 —») + 5300 — »)).

© What conclusion could you draw if A = 07
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y C (x3,¥3)

B (-’(2, ¥a)

16 Determine the areas of the triangles whose vertices are
(a) (-3,2), 2.3). (-1, 4
(b) 0,0, 2, . (=2, 4
(c) (a, 0), (b, b), (4b — a, 4b) where b>a >0
(d) (=3. 7, (=1, 4), (3, =2).

17 A quadrilateral is formed by the points (x|, ¥1), (x2, ¥2), (x3, ¥3) and (x4, y4) as shown in
the diagram.

()«'2.)‘2)

(x3, Vv
(X, ¥,) 3. ¥

(xg.¥q)
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(a) Its area is given by

1
Elxl()’:z = ¥3) x50 — 1) +x300 — )l

1
+EIX10’3 —yg) +x300 =y )+ x40 — ¥yl

Why are the modulus signs so important?

(b) By drawing a simple sketch, but without giving detail, explain how you would find
the area of a pentagon knowing the coordinates of its vertices.

©) A quadrilateral is formed by the points (6, —2), (=2, —1), (3, 5) and (6, 3).
Sketch it on graph paper and determine its area.

gl 18 By solving the triangles 48D and BCD determine the area of the quadrilateral shown in
the diagram.
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19 How far is P from O?

20 Determine the distance AC to the nearest whole number.

7.3 DISTANCES AND ANGLES IN SOLIDS

Problems which are concerned with solid figures are usually solved by selecting suitable
right-angled triangles. A good starting-point is the drawing of a clear diagram. Some
useful tips are given.

(i) Keep the diagram simple; draw two or more diagrams if necessary.
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(i) Show a three-dimensional solid from a point of view which is not head-on but from a
point above and to one side.
(iii) Indicate hidden edges by dotted lines.

In the examples which follow, these and other aspects of good practice will be used.

The angle between a line and a plane

The angle between a line and a plane is the angle between the line and its projection on

the plane.
Q
D C
N
P
A B

Figure 7.14 Angle between line and plane

In Figure 7.14 the line segment P(Q meets the plane ABCD at P. ON is the
perpendicular from Q to the plane. PN is the projection of PO on the plane and PON is a
right-angled triangle. The angle Qi’N is the angle between the line and the plane.

Note that a line which is perpendicular to a plane is perpendicular to every line in the
plane.

The angle between two planes

Two planes which are not parallel meet in a straight line, known as the common line.

To determine the angle between two planes, draw a line in each plane from a point on
the common line so that the two lines drawn are perpendicular to the common line. The
angle between these two lines is the angle between the planes. In Figure 7.15 the common
line is AB and the two lines perpendicular to A8 are OP and OQ. The required angle is
POQ.

If one of the planes is horizontal, say the plane containing AOB and Q, then the line OP
is a line of greatest slope in the inclined plane. It indicates the steepest path up the
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Examples

Figure 7.15 Angle between two planes

inclined plane from O; wherever we start on 4B the line of greatest slope is parallel to

OP.

Note that if two planes are perpendicular then it is not the case that each line in one
plane is perpendicular to each line in the other. See for instance Figure 7.16; the lines AD
and BG are not perpendicular.

1. Figure 7.16 shows a cuboid. Find

(1)

the length of the diagonal 4G

(i) the angle DAG
(iii) the angle between the line AG and the plane ABCD
(iv) the angle between the planes DAG and ABCD

H G
[
1
1
|
|
E : F
)
D' ____ | _______ C
4
.
20 mm e
e 30 mm
~
d
I
A B
40 mm

Figure 7.16 Diagram for the cuboid example
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H G I G

(a) (b)
Figure 7.17 Construction for the cuboid example

In Figure 7.17(a) we have highlighted the triangle ACG

(1) First we use Pythagoras’ theorem on the triangle ABC:
(ACY = (AB)Y + (BC)Y = 1600 + 900 = 2500

Hence AC =50 mm.
Now we apply Pythagoras’ theorem to the triangle ACG:

(AG)? = (ACY + (CG)* = 2500 + 400 = 2900

Hence AG = +/2900 = 53.85 mm,
Although it was easy to do so in this example, it was not necessary to
evaluate AC itself: its square was all that was required.
(ii) In Figurc 7.17(b) we have highlighted triangle ADG? it has a right angle at D. The
length DG is found via Pythagoras' theorem to be

(AG): — (AD)* = +/2900 — 900 = /2000 = 44.72 mm

The angle DAG can be found by first calculating its sine, its cosine or its tangent.
We shall use the cosine:

N DA 30
Hence DAG = 47.9 .

(iii) The specified angle is found by considering triangle AGC: C is the foot of the
perpendicular from G to the plane ABCD.
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2%

Hence the angle we require is GAC. Now
GC 20
AC 50
so that GAC = 21.8".

(iv) The common line of the planes DAG and 4BCD is AD. Suitable perpendicular
lines to it are GD and DC and the required angle is GDC. From the right-angled

. 20 .
triangle GDC it follows that tan GDC = 0= 0.5, therefore GDC = 26.6".

tan GAC = 0.4

Figure 7.18 shows a pyramid on a square base of side 120 mm. The sloping edges of
the pyramid are of length 200 mm. G is vertically below P. Find

(1) the altitude of the pyramid
(ii) the angle PEG
(ili) the angle PBE

(iv) the complete surface area of the pyramid

l
(i) The altitude of the pyramid is the length PG x GE = 7 % 120 = 60 mm. From
the right-angled triangle CGE we calculate

(GC)? = (GE)! + (EC)? = (60)? + (60)> = 7200

Therefore GC = /7200 = 60+/2 mm.
From the right-angled triangle PGC we calculate

(PG = (PC)? — (GC)? = 40000 — 7200 = 32 800

Figure 7.18 Diagram for the pyramid example
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therefore PG = 181.1 mm.

N 18 ~
(i) From triangle PGE, tan PEG = so that PEG = 71.7°.
1
(ii1) In the right-angled trnangle PBE, PB=200 mm and BE = e 120 = 60 mm.

Hence
. BE 60
PBE = — = —
cosPBE = 25 = 200
PBE = 72.5°

(iv) First we find PE from triangle PBE:

(PEY* = (PBY* — (BE)Y = 40000 — 3600 = 36400
so that PE = 190.79 mm

We could have found PE from triangle PGE:
(PEY* = (PG)* + (GE)* = 32800 + 3600 = 36400 (as before)
The area of triangle PBC is
1 1 5
EPE x BC = 3 x 190.79 x 120 = 11447.3 mm
The total surface arca is

4 x area of PBC + area of base = 4 x 11447.3 + 14400
= 60 189 mm?

3. A plane is inclined at 30° to the horizontal. A line in this plane makes an angle of 25°
with the line of greatest slope. Find the angle which the first line makes with the
horizontal.

Refer to Figure 7.19(a). The line BE makes an angle 25° with the line of greatest
slope BC, which makes an angle 30" with the horizontal, so

C BC
=c¢o0s25" and BE =

Th :
e , cos 25"

. cM
Let the perpendicular from M meet the plane ABCD at C; then BC = sin 30" so that
CM = BCsin 30", ¢
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(a) (b)
Figure 7.19 Diagrams for the plane example

This is also the height of £ above the horizontal plane through 4, B and M. If N is
the foot of the perpendicular from £ to the plane ABCD then, as we see from Figure
7.19(b),

EN CM  BCsin30°

S i AN = — = ——— = — !
sin EB BE BE BC cos25
= sin 30" cos 25"
= 0.4532.
Then EBN = 26.9. []

Exercise 7.3

1

s 4

A car travelling north at 100 km hr™' along a straight road first observes a tall radio mast
on a bearing 040". Twelve minutes later the bearing is 110". How far is the mast to the east
of the road?

A tall chimney at the end of a horizontal street subtends an angle of 10” to an observer on
the pavement. By walking 100 m towards the chimney the observer notices that the
clevation has risen to 15 . How tall is the chimney?

A block of flats 50 m tall lies east—west. Find the length of shadow cast at midday

(a) in summer, solar elevation 62° (b) in winter, solar elevation 15

A fan belt is required to revolve around two cylindrical flywheels of radii 2 ¢cm and 5 cm
whose centres are 12 cm apart. How long is it?
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A cylindrical log is to be pulped at a sawmill in four equal volumes. The first stage is to
slice it horizontally along its length. The slicing cross-section looks like the first diagram
so that corresponding shaded areas are equal. Now refer to the second diagram. The upper

L . . 1
and lower slicing levels are determined by arranging 0 so that the area shaded is ZnRz,
where R is the radius of the log. Prove that # must satisfy the equation

20 —n =2sind

20
SANNAN
[ 777/
A

&>

e 6 A steel beam 20 m long and density 8.5 gm cm™ is being used to refit a building with a
new pitched roof. The cross-section of the beam is specified to be of the form below, with
distances in centimetres. Determine the mass of the beam to the nearest kilogram.
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60°

7 A and B are two points on level ground, with 8 2.5 km south of A. At a given instant an
acroplane is observed at a bearing 120” from 4 and 050" from B. The angle of elevation is
35" from A. Find the height of the aeroplane and its angle of elevation from B.

8  As part of an accident emergency procedure, following an underground gas leak, the area
within a radius 100 m from the leak must be cleared at ground level. For example the point
P, 60 m east and 80 m north of the leak is on the edge of the clearance area (or cordon).

(1) A building 90 m south of the site of a detected leak lies east—west. What length of
its frontage is exposed at ground level?

(b) At what level up the building might the front be considered safe if the upward
effects of the blast are ignored?

(c) If (x, ») are the coordinates of a general point on the circle, what equation do x
and v satisty?

9 A cuboid has the dimensions shown.
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11

12

D

Determine

(a) the angle EC makes with the horizontal
(b) the acute angle between EC and DF

The plane containing the triangle ABC is at 45" to the horizontal. 4B is in the direction of
steepest slope and BC is horizontal. Determine the angle AC makes with the horizontal
plane.

30

A

Three sonar detectors monitor fish movement from the bottom of a deep lake of 500 m
depth. They are arranged in an equilateral triangle and each has an effective detection
range of 1 km. How far apart can they be placed to ensure total coverage of breadth and
depth within that triangle?

For a square pyramid of side 10 m and height 15 m, determine

(a) the total volume,
(b) the total surface area, excluding the base

(c) the angles of slopes of both edges and inclined planes.
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13 A ship passing a cape in good visibility observes a large mountain due north on shore.
Two hours later and 40 km NW of the original position, the ship observes the mountain
again, this time due east at an elevation to the horizontal of 5. How far away from the ship
on the later observation is the base of the mountain and how tall is it?

14 Two pitched roofs meet at the corner of a building at right angles. 4B represents the gulley
between them at the inward corners. If each roof has a pitch of 15°, what is the angle of
slope of the gully?

A

B

15 Find the distances between the following pairs of points:

(a) (3, 1.5)and (2, 4, 7) (b) (—1, =5, 3)and (6, 5, =5)
(c) (4,7, 1yand (=1, =9, 16).

16 Determine the distance of each of the points (0, 0, 0), (1, 0, 3). (4, I, — D) from (2, 2, 1).
What conclusion do you draw?

17  What is the volume of the tetrahedron formed by the points (1, 1, ). (2, 1, — 1), (0, 0, )
and (6, 0, 0)?
18 A tetrahedron is formed by the points A4(3, 0, 0), B(—1, =2, 0), C(—1,2,0) and
D(0. 0, 4). Given that the plane z = () is the base, determine the angle of slope of the plane
formed by B, C, D with the horizontal.

e
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7.4 RATIOS OF ANY ANGLE AND PERIODIC MODELLING

In Section 7.2 we extended the definition of sine, cosine and tangent to include obtuse
angles. We continue that extension to embrace angles of any magnitude.

In Figure 7.20 two positions of the rotating line OF on a circle of radius 1 are shown so
that P appears in the third and fourth quadrants.

y y

VA x

oy 10

(3
%

(a) (b)
Figure 7.20 Ratios of angles greater than 180°

In Figure 7.20(a) PN = OPsin ¢ = sin ¢ and ON = OP cos ¢ = cos ¢p. The coordi-
nates of P are (—cos ¢, —sin¢), i.e. (—cos(() — 1807), — sin({) — 1807)).

We have defined the coordinates of P to be (cos @}, sin 8) and therefore both the sine and
the cosine of an angle between 180” and 270" are negative. However, since the tangent
has been defined as the ratio of sine to cosine, in this quadrant it is positive. We therefore
have the following results for an angle () between 180" and 270:

sinf = —sin(0 — 1807)  cos) = — cos(f) — 180°)
tan 0 = tan(0 — 180")

Similarly, referring to Figure 7.20(b), we find that

sinf) = —sin(360" — )  cos ) = cos(360° — )
tan ) = — tan(360" — 0)

Example Find the three trigonometric ratios for the angles
(i) 240 (i) 330°
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Solution

(i) (=240"is in the third quadrant and 0 — 180" =60 . Hence

sin240° = sin(240° — 180") = —sin 60
c0s240" = —cos60 ', tan24() = tan 60

(it) =330 is in the fourth quadrant and 360" — () =30, s0

sin 330" = sin(360° — 330°') = —sin 30
c0s 330 =cos30 . tan330 = —tan30 n

We should make a summary of our results so far.
The ratios which are positive in each quadrant are given by the following rule
(sometimes known as the CAST rule).

S (sin) l A (all)

T (tan) l C (cos)

Otherwise the ratio is negative in sign.

As an example, the angle 210" is in the third quadrant and has a positive tangent but
negative sine and cosine.

The magnitude of the trigonometric ratios are the best calculated using the acute angle
formed with the horizontal axis. For example, in the second quadrant the cosine
of an angle is negative and the magnitude of cosl135 = —the magnitude of

1
cos45 = —— =~ —0.707. see Figure 7.21.
72 &

/ 135°
45°

Figure 7.21 Angle for the second quadrant
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Examples First Quadrant

40°

Second Quadrant

20°

160°

Third Quadrant

ah

30° ¥ )

Fourth Quadrant

dhy
N

350°

10°

Sign Value
sindl =+

sin40)" = 0.643

cosdl = + cos 40" = (.766
tan4() = + tan 40 = (1.839
Sign Value
sin 160 = + sin20° = (.342
cos 160 = — —c0s20 = —0.940
tan 160" = —tan 20 = -0.364
Sign Value
sin210° = — —simn 30 = —0.500
cos 210" = — —cos 30" = —0.866
tan210 = + tan 30° = 0.577
Sign Value
sin 350" = — —sin 10 = -0.174
cos 350 = + cos 10- = 0.985

tan 350 —tan 10 = -0.176
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A useful generalisation of the above examples is provided by Figure 7.22 and the
formulac cenclosed in the following display.

sin(180° — 0) = sin cos(180° ~ @) = —cos 0 tan(180° — @) = —tan 0
sin(180° + 0) = —sin®  cos(180° +6) = —cos®  tan(180° + 6) = tan#
sin(360° — 0) = —sin 0 c0s(360° — 8) = cos tan(360° — 0) = —tan 0

180° - B 0

180+ 8 RIZIAN:

Figure 7.22 Re!ated angles

Example Find
(1) sin 300 (b) tan200

(1) The angle 300 is in the fourth quadrant and can be written as (360 — 60 ). Hence
sin300 = —-sin60 .

{b) The angle 200 is in the third quadrant and can be writien as (180 4 20 ). Hence
tan 200 = +tan20 . [ ]

Ratios of angles greater than 360

If we return to the rotating line OF in Figure 7.20 we may imagine rotating machines
where the line bas gone through more than one revolution.

If we compare the positions of OP after a rotation of 390 with that of 30 we will find
that they are identical since 390 — 360 + 30 . i.c. one full revolution plus 30 . Indeed a
rotation of 750 produces an identical result since 750 =360 + 360 + 30 . i.c. two
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complete revolutions plus 30 . Clearly cach of the ratios for these three angles has the
same value at ull three angles. c.g. sin750 = sin390 = sin30 .
We may generalise this result to say that

sin(360° 4 0) =sin0, c¢cos(360° + 0) = cos O, tan(360° + 0) = tan 0

In this context angles are often measured in radians and the equivalent results are as

follows;
sin(2rn 4 0) =sinf, cos(2n + 0) = cos b, tan(2x + 0) = tan @
Example Find
() cosT8O0 (i) 1an600 i) sin]-‘lg

(y 780 =720 +60 thercfore  cos 780 = cos60 — 0.5
(1) 600 =360 + 240  therefore an600 = tan 240

Since 240 =180 +60 . an600 = +tan60 = /3

( )llr: , 3n theref vnlln . 3
i) — — 2n ~— ereforc sin- - =sin=-
3 3 g 1
iz bid 1= n |
Since =r-—-. sin =+sin- = —. ]
£ My it

Ratios of negative angles

If ) measured anticlockwise from the positive x-axis is o positive angle then ¢ measured
clockwise from that position is a negative angle. Figure 7.23 illustrates the situation for an
acute negative angle.

Now OF i~ in exactly the position it would have if it were to rotate anticlockwise from
OA through an angle (3600 (). Henee

sin(—f) = sin(360 — ) = ~sind!
cos(- ) = cos(360 - ) = cost)
tan(—0) = an(360 —th = —tand
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X

figure 7.23 Negative angles

The conclusions are true whatever the magnitude of the negative angle, and we may state
the following:

sin(—0) = —sin 0, cos(—0) = cos b, tan(—0) = —tanf

Example Find
(i) sin(—200) (ii) tan(-300)

(1) sin(=200 )= -sin200 = —sin(180 +20 )= —~(—sin20 ) = +sin20 . Note
that —200 occupies the same position as 160 and
sin160 = sin(180 —20 ) =sin20 .

(i) tan(=300 ) = -tan300 = —1an(360 — 60 ) =tan60 .

Graphs of the ratios

We now display the graphs of sin ¢ and cos ¢ for values of ¢ between — 180 and + 540 .
We calculated the values for several angles in the range 0 10 90 and used the properties
of the ratio of angles in other quadrants to extend the graphs. Figure 7.24 shows sin @ and
Figure 7.25 shows cos (0. Notice that we have marked the scales in Figure 7.21 both in
degrees and in radians for comparison.

Notice how the pattern repeats every 360 or 2x radians. This feature is called periodic
behaviour and the period is 360 or 2n radians. Because of the shape of the graphs,
penodic phenomena. e.g. oscillations, can often be expressed in terms of sines and
cosines.
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D]nlb
|||||||||| =3O
©
> }
- |
o~
|||||||||||| S~_ _ _ __ _ __2
Y
T
x &8
T

Figure 7.24 Sine of any angle

9

Figure 7.25 Cosine of any angle
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The graph of tan @) has a surprise for us. It is shown in Figure 7.26,

— 0

90° /180° 270°/360° 450%/540°

|
|
I
|
l
!
{
!
|
|
[
|
|
-180° -90° !
!
|
|
|
|
!
|
!
|
|
|

| |
| |
| |
| |
| |
| |
| |
| |
! |
| !
| |
! I
| t
! I
1 }
| |
[ |
| |
! |
| !
| |
| f
| |
| I
| |
t |

—l+

Figure 7.26 Tangent of any angle

The graph shows that tan (/ is also periodic, but the smallest interval over which the
pattern repeats is 180 or r radians, even though it is the ratio of two quantities which
have a period of 360 or 2r radians.

Furthermore, the graphs of sine and cosine oscillate smoothly between the values — |
and + 1 but the tangent has violent breaks in its graph every 180 . Each of its branches
can be moved 180 to the left or to the right to coincide with its ncighbour.

Solutions of trigonometric equations

tan 0 =p

Example

Suppose that we wish to solve the equation
tan () = |

[f we input | to a pocket calculator and press INV TAN. we obtain /=45 or. in radian

mode 7 ~ 0.7854, which is an approximation to 0 = g However, if we look at Figure
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[
I
|
I
|
I
Figure 7.27 tano=1or -1

7.27 we see there are other solutions of the equation. i.e. there are several angles whose
tangent is 1. In fact there are infinitely many. both to the left of 45 and to its right.
We consider two cases.

Solutions between O and 3607 (0 and 27 radians)

5
There is a second solution, namely () =225 (oan radians) found by adding 180 (or n

radians) to the calculator solution.

All solutions of the equation

If we add or subtract multiples of 180 (or 7 radians) to the calculator solution then we
generate all the possible solutions. Here are some of them:

oo =315 0 =135, 45,0 2250 405 . 585....
or in radians

Vkis 3n n Sn 97 137
7 7 o2 4 3
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In radian mode a compact formula can be used to cover all solutions. It is

nn + 0,, n=0 =£l. £2....

where 0, is the calculator solution of the equation.

Note that if we wish to solve the equation tan¥ = —1 the calculator solution is —45°
and the solutions in the range 0" < @ < 360" can be found by adding 180 twice to give
tirst =135 then 0=315". Other solutions can be found by repeatedly adding or
subtracting 180 . The formula applies generally to the cquation tan@ = p. whether p is
positive or negative.

cos0=p, -1<p<l1

Example

Figure 7.28 shows the graph of cos @ between 0 =0 and # = 360",

Figure 7.28 cos0 =0.50r -0.5

Supposc we wish to solve the following cquations:
(i) cosl)=0.5
(i) cos) = —0.5

(i) The calculator solution is 0 =60 or g radians. In the range 0 < 0 < 360 there is

a sccond solution, ¥ = 360 — 60 = 300" or # =2n — ; = -53—“ radians. Other
solutions can be found by adding or subtracting multiples of 360 or 2x radians, as

appropriate.
(i)) The calculator solution of cos@) = —0.5 is 6 =120 (ori—"mdians). This angle
is of the form 180 — ¢ where ¢ =60 the sccond solution in the range

0 <0 <360 is of the form 1830 + ¢, i.c. =240 (or%n radians). Note that
240 =360 - 120 .
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Again, other solutions can be found by adding or subtracting multiples of 360
(or 2n radians). A compact formula for the solutions in radians of the equation
cos =pis

2nm £ 0,, n=0, £, £2. ...

where @, is the calculator solution.

sin0=p, -1 <p<1

Example Find solutions of the following equations:
(i) sin0=0.5,
(i) sinfl=-0.5

0.8

0s

Fguwe 7.29 sint =050r -0.5

Figure 7.29 shows the graph of sin0 for 0 < 0 < 360 (or 0 < f < 2= radians).

(i) If we input 0.5 to a pocket calculator and press INV SIN, we obtain 0 = 30 (org

mdians). Looking at Figure 7.29 we see there is a second solution in the interval
0 < @ <360 : it is the supplement of the first solution, i.c. 180 — 30 =150

rn-c= > dians
0 g = ¢ Mdians ).
Other solutions are obtained by adding or subtracting multiples of 360 (or 2n

radians) to each of these solutions. We therefore gencrate two sets of solutions:

.e.. —690 . -300. 30. 390. 750,
and .... -570. -210. 150. 510. 870.
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In radian measure these solutions are

23m lin = 177 25n
6 6 6 6 6
197 Tn 5m 170 29n
and ..., ———, ——., —, —. —. ...
6 6 6 6 6
(ii) A pocket calculator gives the solution of sin0 = —0.5 as (0 = —30". If, as is often

the case, we seek solutions in the interval 0" < () < 360 then we add 360° to this
value to obtain §=330". The second solution is found by noting that
330° = 360" — 30" = 360" —¢ then calculating 80" + ¢ = 180" + 30" = 210"

Other solutions are generated as before by adding or subtracting multiples of
360" to both solutions above. Hence the sets are

... =S5100, 1507, 2100, 5707, 930,
and ..., =390°, -=30". 3307, 690. 10507, ...

or in radians

177 Sn Tn 197 3n
6 6 6 6 6
13n n Il 23n 35n
and ey —~6—. —g, '—6-' —6—. —6— .

Exercise 7.4

1 Given that the relationships sin{—x) = — sinx and cos(—x) = cos x, define sinx and cosx
respectively as odd and even functions, define the following as odd, even or neither.
(a) sin 2x (b) sin® x «©) sin{x + 7/2)
(@) cos’ x (e) sinx + sin 2x (f) sin(2x — 1)
()  tan’x ¢h) S + &

sinx  sin’x
2  On graphs directly below one another and in the range 0 < x < 2n draw
(a) sinx (b) sin 2x (c) sin” x

What do you observe?
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1
3 For —m < x < 7 draw the graph of y = —— and dot in the graph of y = cosx.
cosx

]
4 Extend the graph of v = sinx to —47n < x < 47 and draw in the line y = >

1
(a) For what values of x in 0 < x < 21 does sinx = 5‘?
(b) Extend the result to the rest of the interval —4r < x < 4n.
1
(c) What is the general solution for sinx = E?

5 Repeat Question 4 for
(a) Y =Cosx COSX =
(b) v=tanx tanx =
6 Solve sin(xn) = 5 for O < x < 2m by first setting xm =z and obtaining solutions for z.



SUMMARY

e Ratios of an angle: in a right-angled triangle, opposite/hypotenuse
is the sine of an angle, sin0; adjacent/hypotenuse is its cosine, cos#;
sine/cosine is its tangent, tan 0.

e Fundamental identity: sin’ 0 + cos?0 = 1.

e Cast rule: determines the sign of the trigonometric ratios in the four
quadrants of the plane.

e Useful results:

sin(90° — ) = cost)
c0s(90° — 0) = sin
sin(180" — 0) = sin0
sin(360° — 0) = —sin0

e Sine rule: in triangle ABC

a b _ &
sind_ sinB  sinC

e Cosine rule: in triangle ABC
a* = b + & — 2bccos A

| ;
e Area of a triangle: triangle ABC with sides a, b. ¢ has area EbcsmA.
e Solution of a triangle: triangles can be solved if we know
(i) three sides

(1) two sides and the included angle
(iii) two angles and one side

The ambiguous case may occur if we are given two sides and a non-
included angle.



e Angle between a line and a plane: the angle between the line and its
projection on the plane.

e Meeting of two planes: unless they are parallel, two planes meet in a
common line; the angle between the planes is the angle between their
normals.

e General solutions:

tanf = p 0, £ nm,
costl =p, |p| <1 2nm £ 0,
sinf =p. |p| <1 0y £ 2nn, m — 0y £ 2nn

where 0, is the value obtained from a calculator.
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Answers

Exercise 7.1

(a)
(d)
(8)

(a)
(d)
(g)

(a)
(d)

n/3 (b) 3n/4 (c) Tn/6
5n/3 (e) 4n/5 (f) 9 /4
S5n

36" (b) 540° (©) 80

35° (e) 990° (H) 1845~
270

0.8088¢ (b) 1.7092¢ (<) 5.324¢
57.296° (e) 94.309" () 277.54°

(selected answers)

1(c)

1)
1(g)
2(a)
2(e)
2(h)

2g)
3(c)

(a)
(c)

(e)

1

sin210° = —sin30° = —> c0s210" = —cos30 = -V3/2
I
tan210° = tan 30" = —
V3 l
405 = 360" +45° sin405° = sin45* = —, etc.

V2
900" = 2 x 360" + 180"  sin900" = sin 180° =0

sing — 0.5878 cosg — 0.8090 tang = 0.7265

I212—71:2 X 27T+3?n sin32—n:: ~sing= -1, etc.
4lr . n .om 1
51n)4— = sm(lOn +Z) = smz = —i etc.
sin(*3—n) = —sin3—n =1, etc.
2 2
s5in 305.06° = — sin(360° — 305.06°) = —sin 54.95° = —0.8186

cos(360° — 305.06) = cos 54.94° = 0.5744,

—sinfl, —cos@, tanf) (b) sin(), cos 0. tan 0}

]
—sin#, cos(), —tan @} (d) cosf), sinf), ——
tan )

sint}, —cos 0, —tan 0 H —cosl, sin0), ———
tan ()
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6

cos 8

sin 8

Period = 2

i tan ©

Period = nt

RSN E¥S)

[SE]

N A

(b)
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7 (ab) (©)
510°
L
/ 382°
382° = 360° + 22° = 22" S10° = 360" + 150° = 150°
—~104° = 360" — 104" = 256°
9 (3,4,5), 0=36.87°, p=51.13°; (5, 12, 13), §=22.62°, ¢ =67.38";
(8, 15, 17), 0 =28.07", ¢ = 61.93°
Exercise 7.2
1 (@ B=6451°,C=7849, c=6513
by C=36.8",4=862° a=87328
(© (Z‘=57 a=626b=945
(d  C =525, b=128, c=53I
() B=1626° C=7374 a=25
) A=B=70", a=bh=731
2 (@ A=41.40°, B=5577°, C = 82.82°
(b)  A=10029, B =43.53, C = 36.18
() a=2938, B=4831°, C = 84.69°

(d)

c=12.225, 4 =24.88°, B =34.12°
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3

10

15

16

(@  C,=105.38", B=34.62°, h=3.54
(b)  C;=74.62°, B = 65.38", b=5.66
(a) A=43.53, B=10029",C =36.18"
b)) a=125b6=149, C = 104"
(©)  A=77.98 or20.02°, C = 61.02° or 118.98°, a=8.95 or 3.13
(d) No triangle can exist
1.01, 2.34
4a) 254 4b)  11.14
4(c) 4.57 (same in both cases)
4a)  5.165 4b)  90.36 4c) 6215 or 23.48
3 9 o
@ -3 (5.0 ORI (€©)  27°, 63°, 90
() 25 (b) V26 (©) 32 Area=9
) x4+ 17 L. .
BC: y=2(x— 1), 63.43°, AB: x+y=1,—45, AC: y=""—", 1131° 4 =356.31",
B=71.57,C=5212" 5
y
C
A 3. 4)
(-2.3)
B X
(1.0)

{c)

(a)

(X1, V). (x2, ¥2), (x3, ¥3) are collinear

4 (b) 5 ©) ah (d) 0 (points are collinear)
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17 (a)
(b)
(¢)

18 29.37

19 7.085

20

501

The area of the quadrilateral is the sum of the areas of the triangles. Magnitudes
must be added and not allowed to cancel if quantities of the type
x,(y; —y3) +x3(¥3 — ¥) + x3(y; — ¥,) work out negative.

Sum of areas of triangles XYZ, for example

(3.5)

(6.3)

(6.-2)
Area =34
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Exercise 7.3

Exercise 7.4

10

11

12

13

14

15

16

17

18

12.86 km
51.57 m

(a) 26.59 m (b)
46.74 cm

675 kg

1427 m, 31.78°

(@) 872 m (by 436m
(@) 2478 (b)  45.24°
25.10°

1.5 km

(a 500 m® (b 3162 m?
28.29 km, 2475 m

10.55°

(@  3.742 (by 1459

186.60 m

©) x*+3y* =100

(c) 64.76°, 71.56°

(©) 17.49

Distance =3 in each case. (2, 2, [) is the centre of a sphere upon which all the points lie.

2 units

tan~' 4

(a)
(©)
(e)
(2

= 75.96°

odd

sin(x + Z) = —COSx, SO even
2 - ,

odd

cven

(b)
(d)
9]
(h)

even
even

neither
odd
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4
(a) z T sin x
-14
|
(b) it 2T gin 2x
(Twice frequency)
-1
1
sin “x
(c) g 2r
(period quartered)
-1
* s ~ -~
- \\ b4
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4 y

x=§+2nn n=0,x1,%£2,...

or/'.=>:—+2nn n=0.£1.£2.. ..

5 () 7N 7 ) f/\“\
VNN

x=n/3+2nn,n=0,%1.+2,... x=-n/3+2nn, n=0+1,£2....

(b)

.

a

4
4

rx=nfd+nn,n=0 %I, £2,...
2n 4n 5 2 1
6 z:g?n?nT (z=§+2mrorz:7n+2mr.n:0,1,2,..‘) i.e.x:§+2n0r
2
x:§+2n,n=0 [,2



8 FURTHER ALGEBRA



INTRODUCTION

OBJECTIVES

The seeds of algebra were sown in Chapter 2. The ideas of sequences and
series underpin the important branch of mathematics known as calculus,
which is introduced in Chapters 11 and 12. Two special classes of
sequences, arithmetic and geometric, have applications when phenomena
occur in a discrete rather than a continuous manner; for example, interest
on a loan compounded monthly or the height reached at each bounce by an
object which is colliding repeatedly with a horizontal surface. Polynomials
have application in many areas of applied mathematics, including the
automatic control of engineering systems.

After working through this chapter you should be able to

identify an arithmetic progression and its component parts

find the sum of an arithmetic series

identify a geometric progression and its component parts

find the sum of a geometric series

find the sum of an infinite geometric series, when it exists
calculate the arithmetic mean of two numbers

calculate the geometric mean of two numbers

understand and use the sigma notation for series

identify the terms associated with a polynomial expression
evaluate a polynomial using nested multiplication

know the remainder theorem for polynomials

know the factor theorem for polynomials and use it to find factors
deduce the main features of the graph of a simple rational function
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8.1 ARITHMETIC AND GEOMETRIC PROGRESSIONS

A company opens an account to cover future repairs on its building. It allocates £800 in
the first year and increases that amount by £50 per year for the next seven years. The
amounts (in £) paid into the account in each of the cight years are 800, 850, 900, 950,
1000. 1050, 1100 and 1150.

This is an example of a sequence, which is a list of items (or terms) in a given order.
The total amount (in £) paid into the account during the cight-year period is

800 + 850 + 900 + 950 + 1000 + 1050 + 1100 4+ 1150

This sum is an example of a series. which is simply the sum of the terms of a sequence. In
this section we concentrate on two special examples of sequences in which the terms have
a simple relationship to each other. In Mathematics in Engineering und Science, Chapter
10, the topics of sequences and scries are dealt with further.

Arithmetic progressions

Examples

The sequence introduced above has the property that each term can be obtained from its
predecessor by adding a fixed amount: in this case, 50. We say that the common
difference between the terms is 50. The sequence is called an arithmetic progression.
shortened to AP. There are four characteristic quantities of an AP: the first term, denoted
by a, the common difference denoted by 4, the number of terms denoted by # and the last
term denoted by /.

In the example above, ¢=800, d=50, »=8 and /=1150. Note that
1150 =800 + 7 x 50. In general,

[=a+(n—1d (8.1)
The terms in the sequence can be written as a.a +d. a+2d. ..., « + 7d. Knowing any

three of the four characteristic equations it is possible to find the fourth tfrom relationship
(8.1).

|. Inan AP, a=4, d=3, /=61. From (8.1)

6l=4+(n—-1)x3
$0 that 3(n—1)=157
and here n = 20.

(Write out the terms to verify this result)
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Sum of an AP

2. In an AP, a =81, n=25, /=33. From (&.1)

so that 33 =81 + 244
24d = —48:; therefore d = —2

(Note that « can be negative in some cases. Again, write out the terms to check.)

3. The first three terms of an AP are 6, 13 and 20. Find a formula for the #th term and
hence write down the 100th term. Here ¢ =6 and d=7.
The first term is a, the second a + d, the third ¢ + 2d and the rth term is

a+(r—NDd=6+(r—1)x7
=6+7r—7
=T7r—1

When »= 100, the term is 700 — 1 =699. |

In the example at the beginning of this section the sum of the AP can readily be found to
be 7800, but it is tedious to compute. How much worse it would be to calculate the sum
of the AP 6, 13.20,...,699. A short cut is nceded. Returning to the first AP, let

S = 800 + 850 + 900 + 950 4 1000 + 1050 4+ 1100 + 1150

It should be obvious that we can write alternatively
S = 1150+ 1100 + 1050 + 1000 + 950 + 900 + 850 + 800
Adding the last two equations, we obtain

28 = 1950 + 1950 4 1950 + 1950 + 1950 + 1950 + 1950 + 1950
8 x 1950
= 15600

il

so that $'= 7800, as before. In general, if
S=a+la+dl+la+2d]+ - +[a+(n— 1)d]
then

S=la+n—-Dd]l+at+(rn—-2)d]+[a+n-3)d]+---+a
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and

2S=Ru+n-Ddl+[2a+(n— 1d]+--- +[2a+ (n — 1)d]
= n[2a + (n — 1)d]

so that

S:g[2a+(n— 1)d]

A more friendly formula is found by putting / = a + (n — 1)d so that

Examples 1.

2.

n
S=§(a+/) (8.2)

Find the sum
34547 +--- 4371

This is the sum of the AP

which has a=3., d=2, /=371. The number of terms n is found from
n—1=(371-3)/2 =184, so n=185.

The sum of an AP is called an arithmetic series. In general a series is the sum of a
number of terms of a sequence. Hence

1 185
S:$(3+371):—2- x 374 = 34595

Find the sum of the first 20 terms of the AP whose first three terms are 8, 13 and 18.
Here ¢ =8, d=5,n=20sothat / =8 + 19 x 5 = 103. Then

20
S = (8+103) = 1110
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3. The sum of the first 24 terms of an AP is 960. If the last term is 17 find the first term
and the common difference between the terms. Using equation (8.2)

24
960 :?(u—k 17y =12(a + 17)

therefore 80=a+ 17

so that a = 63.

Since =a+(n—1)d

then 17 =634 23d

so that 23d = —46 and d = 2. n

Exercise 8.1

1 Find the common difference and the 10th, 15th and nth term of each of the following APs.
{a) 8, 11,14,17,... (b) 1000, 996, 992, 988. ...

2 The fifth term of an AP is 8.6 and the eighth term is 6.2. Find its first, second and 30th
term.

3  Find the number of terms in the following APs:

(a) 1.2,3,.... 18 (b 51,52,53,...,68

4  Find the sums of the following arithmetic progressions:
(a) a (first term) =2, d (difference) = 6, n (number of terms) = 10
(b) a=4,d=-2,n=5
() a=2,{(last term)=29,. n=10

(d) a series whose first term s 6, fourth term is 18, and which has 10 terms in all

5 Find the sums

(a) 1+24+3+---420 (b) 1+164+22+4---4226

6  Find the sum of the first 20 terms of the following APs:

I 2
: 5.48.4.6,... b 2.2-.2-,...
(a) (b) 323
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10*

11*

12

The 8th term of an AP is threc times the second term and the first term is 6. Find the 20th
term, the sum of the first 10 terms and the sum of terms from the 11th to the 20th.

For the sum of the first 7 natural numbers

S, =14+2+34-+n

1
(a) Prove that S, = ;n(n + 1)

(b Find the lowest value of # for which
(1 S, > 100 (i) S, > 1000.

The sum of the first # terms of a sequence is S = #(Sn — 4). Show that the sequence is an
AP: write down the first four terms and check out the formula for S in this case.

How many terms of the arithmetic series 1 +4 + 7 4 -+ - is il necessary to take to obtain
the sum 1520?

In an AP the 9th term is half the second term and the 4th term is 24. Find the first term, the
common difference and the sum of the first 1) terms.

As part of a productivity arrangement a patent office begins business by screening 5000
applicants per month, increasing that number by 100 cach month thereafter. How many
applications are processed in the first year?

Geometric progressions

A sequence in which each term is obtained from its predecessor by multiplying by a fixed
number cach time is called a geometric progression, written GP. As an example
consider the sequence

3. 6. 12. 24, 48.

The first term, «, is equal to 3, the last term, /, is equal 10 48 and each term is obtained
from its predecessor by multiplying by the common ratio 2, denoted by ». The terms in
the sequence can be written as «, ar, ar’.ar’, ar’. The number of terms n =5 and the last

e |

term [ = ar
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Examples 1. In the GP
1 | N | i 1
27478 167 32 64
| : T A =ar®
=l rFr=—-, 1= N = urv
“ 2
2. In the GP
1, =2, 4, =8, 16
a=1,r==2r=5I=a"

3. InaGP,a=3,/=729 and n =6. Hence
3 =729
P =243 and r=3

4. Ina GP, a=3,/=2187 and n=7. Hence

35 =2187
=729

Either r =3 or r=—3 is possible

Sum of a GP

The sum of 4 GP can be obtained fairly simply by noting that if we let
S=a+ar+a’+ - +a’

then
S=  ardar+ar+- +ar

Upon subtraction and cancellation
S—rS=u —ar’

o that

S(t—r)y=a—ar =ua(l —+")
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Hence
a(l — ")
S = — .
(1 —») (8.3)
unless r=1.
Ifr=1then S=a+u+a+-- 4+ a=nu The sum of a GP is called a geometric
series.
Examples . The GP

1, 0.5, 0.25, 0.125, 0.0625, 0.03125
has a=1, »=0.5 and n = 6. Its sum is therefore
11 =(0.5)°)  1-0.15625

1-05 0.5
=2 x 0.984375 = 1.968 75

as you can verify directly
2. The GP
3, —6. 12, =24, 48
has a sum given by

30 —(=2)) _3(1+32)

SET Sy T 3

=33
which you can verify directly. |

Sum to infinity of a GP

Consider the GP

1 —
ool —
[o )
W
]

1
3
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|

5 :3andn_i Its sum is

( ) | 1y 3l
32/

Suppose we allow the GP to extend to 10 terms and then find its sum. We obtain

1 1 10
L - _)
2( (2 ) (o0 o23

S—=— T Lo

1 - 1024 1024

2

which has ¢ =

r\)\—-n\u——
o]

2

If the GP has 20 terms its sum is
2
=1- (5) = 0.999 999 046 (9d.p.)

Suppose we allowed the GP to continue indefinitely. The sum of the first # terms is

l "
o ()

. . : A .
and as » increases indefinitely (5) approaches the value zero (never actually getting

there). The value of S then approaches 1. We call this the sum to infinity of the GP.

Consider a square of size | m made from paper. Suppose I cut it in half and hand one
of the two parts to you. I then cut the remaining piece of paper in half and hand one part
to you. Assuming that I can continue to cut my piece of paper in half repeatedly. you will
accumulate the arcas

TR

0| —

1
e

Mo ——

and the sum of these areas, namely

LIV
2748 16

will get closer to the value of the original area of paper, namely 1.



8.1 ARITHMETIC AND GEOMETRIC PROGRESSIONS 351

In general we say that, provided 11l < 1, i.e. the terms of the GP are getting smaller in
magnitude. the sum to infinity of a GP is given by

o

Ti—r

S (8.4)

This follows because when trl < e, —1 < r < 1, then /" gets progressively smaller as n
increases and the term (1 — /') in equation (8.3) approaches the value 1.

Examples 1. Find the infinite sum

3,33
7749 33T

. 3 |
Since ¢ ==, r=- then
7 7

You can check out the plausibility of this by calculating the tirst few terms of the
sequence.

2. Express as a fraction the decimal 0.90 = 0.909090 . . ..
Here. the decimal is the infinite sum

9 9

Q
0 1600 T 00000 T

)0 000

9
which is the sum ot & GP with ¢ =— and r=——-.
oo 10 100
The sum is given by

9 90
G 10 100 90 10
o I 99 99 ]

100 100

3. The third term of a GP is half the difference between the first and the second terms.
Write down the tirst four terms of the two possible sequences and find the sum to
infinity of the one for which this sum exists.
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With the usual notation,
= ta—an
ar- = -(a—ar
2
so that 27 = 1 —r, i.e. 2* +r — | = 0. Factorising gives

1
2r — D(r+1) and r:é or —1

The sequences are

N2
RSN
o <RI~

and
a, —a, a. —d

We require I#! < 1 for the sum to infinity to exist; the second series will have a sum
which alternates between « and 0. For the first series

Exercise 8.2

1 Find the common ratio and the term indicated for the following GPs:

(a) 5.10,20, ... (10th) (b) 2, —10,50, ... (7th)
(c) 3.2,1.28,0.512, ... (5th)

2 Find the sum of the following GPs:

(a) 4,8,16,32,64, 128,256 (h) 4, -8.16, —32.64, —128.256
11
(c) the first 20 terms of 156 -

(d) first term 2, common ratio —1; 101 terms

3 Find the sums of the following geometric series:
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10

n*

(a) a (first term) =3, r (common ratio) =2, n =35

1 l
(b) a:S.r:E.n:lO (c) u=3, r:—i.n=5

A GP has a first term of 9 and a common ratio of (.8. Find the sum of

(a) the first 20 terms (b) the first 10 terms
(c) terms 11 to 20

Write down the nth term of the following GPs:

(a) first term 2. common ratio 3
. 1 1
(b) first term n common ratio 5
. 1 .
(c) first term — n common ratio 3
. l . 1
(d) first term — Y common ratio — 5

Write down the sum to n terms of a geometric series when

@ =1 b  r=—1

Write down the sum to infinity of a geometric series when |rl< 1. Deduce that

l—xv4+x - +xt = = Lxl< ).

I +x
What is the sum | +x° 4+ x* + x4+ ... for x| < I?

1
Find the common ratio of a GP whose first term is 4 and whose 9th term is o What is the
sum of the first 9 terms?

The sum to infinity of a geometric series s three times the first term. What is the common
ratio?

Express the following decimals as simple fractions:

(a) 04 (b)) 045 (¢) 0.288 = 0.288288288... (d)  3.288

A sum of £1000 is invested at an annual rate of 5% per annum, with the interest being
compounded annually, i.e. in the ath year the amount A is given by the formula
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where s is the annual percentage rate, P is the sum invested at the start of the first year.
What is the total sum invested at the end ot 4 years, 10 yeurs? What is the etfect of
compounding interest every six months at a rate of 2% per half-ycar?

12 The dividend paid in an investment is agreed to be £1000 in the first year, rising by 7% per
annum thereafter in the ensuing years.

il

() Calculate the dividends paid in the second and third years.

(b) Calculate the total amount which is paid out over the first 10 years.

A radioactive substance decays at a rate such that the amount of substance left halves
every 100 years. How long will it be before the amount lett s 0.01% of the original
amount?

14 An object is dropped from a height of 5 m above ground level. It rebounds many times and
on each bounce it reaches a height of 1.7 times its previous height. What height does it
reach after 3 bounces, 5 bounces. # bounces? What is the total distance it travels after 3
bounces, 5 bounces? What is the distance travelled before it comes to rest (in theory)?

15 Note the following definition for two numbers « and b:

. : 1
Arithmetic mean 5 (u+b)
Geometric mean Vab

. 2
Harmonic mean l—l
a b

Note that the harmonic mean of two numbers is the reciprocal of the arithmetic mean of
their reciprocals.

(a) Find these three quantitics when ¢ =4, h=9.

(b) Show that, in general. the arithmetic mean is greater than or equal 10 the
geometric mean. When is equality achieved?

() If ¢, b and ¢ are successive terms of an AP show that b is the arithmetic mean of ¢
and c.

(d) If ¢, b and ¢ are successive terms of a GP show that £ is the geometric mean of ¢
and c¢.
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The sigma notation
Consider the sequence
prreio1
2747816 327 64
We can denote the terms as

t3=—_;, I4=2_‘. s =58

1 1
H = 5.

= —.
Y 2

[

. . 1 . .
A typical term is ¢, = 5 The sum of the series

Hhth+h++i+ 1

can be written in a compact notation as

The capital sigma Y means “sum of”; the notation means the first value taken is ¢, and the

6 on top of the ) means that the last value taken is 1. Similarly

N
lv+f3+[4‘+‘[5

2

P

We could also write this sum as

Write the following series using the sigma notation
1

Example
11 ]
(d)—+ +27+ +m
by 2+4+6+---+68

() 246+ 18+ 54+ 162
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1
(a) The rth term is —, as you can check. Hence the sum is given by

3

[ IR
=gt +—+~--+§_Z§

S —
32 33 =

(b) The rth term is 2r and there are 34 terms, so
34 34
S=3 2 (: 2 x > r asyoucan verify)
r=1 r=1

(c) The first term is 2, the second is 2 x 3, the third is 2 x 3% and the #th is 2 x 31 so

5
Hence S = 3~ 2 x 37!

r=1

s 25
(Note that 5=2x > 3" = 3 3 37 verify this.) u
r=1 r=1

The sum of the infinite series

RN S
2tatRT

can be written as

x< /1\"

% ()
The use of the symbol oo on top of the 3 sign implies that the number of terms of the
series is infinitely large. ]

L -

Exercise 8.3

1 Write the following series in sigma notation:
(a) 14+449416+25 (b) 346494124 --.430
| A T 1 1 1 1

(c) §+§+2+§+"'+m (d) 1+§+6+E
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1

74+2-3-8-13 Sl ot — e

(e) + (f) tltgtoet
(8) 1+ +x* 428 (h) l—x+x2 -+ 40

2 Write out the sum of the first four terms and the number of terms in each of the following

series:
16 8
(a) pi (b) Y (r+3)
r=1 r=I|
10 20 ]
(c) E,I(l?m —3) (d) 2
6 12
(e) > (H SYir+4)
r=4 r=5
1 14
(8) 22 (h) >
r=0) r=()
2 X R
(i > G S+ )
r=-2 r=)

8.2 POLYNOMIALS

In Chapter 3 we dealt with linear expressions of the form mx+ ¢. In Chapter 4 we met
quadratic expressions ax? + &x + ¢ and cubic expressions ax® + bx? + cx + d. These are
all examples of polynomials in x.

In general, the expression p(x) = a,x" +a, X" ' +--- +a, where a,.a, ,....,q,
are constants and »n is a positive integer is a polynomial in the variable x.

The coefficient, a,, is called the leading coefficient. If ¢, £ 0 then the polynomial has
degree n.

Examples of polynomials of degree 4 are

l
=20, §x4 +x -6, <+ -2+ 7

The important point is that the highest power of x which appears is the fourth power. Any,
or all, of the lower powers of x and the constant term may be absent. Only positive integer
powers are allowed.

A polynomial of degree 3 is a cubic (polynomial), a polynomial of degree 2 is a
quadratic (polynomial) and a polynomial of degree 1 is a linear polynomial. To be
complete we call a polynomial of degree zero a constant (polynomial).
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The polynomial
ax"+a,_;x"' +- +ax+a
is in descending order whereas the polynomial
ag+ay+x+ - +a, X +ax

is in ascending order.

Evaluation by nested multiplication

Example

To find the value of a polynomial expression for a given value of x, we can substitute the
value of x directly. Hence the value of 5x* — 2x? 4+ 3x 4+ 4 when x=2 is

5x (2P —2x(Q2F+3x244=40-8+6+4=42

This was awkward enough but if we wanted to find the value when x = —1.732 that would
be much more tedious. The method of nested multiplication reduces the number of
multiplications needed and therefore leads to less round-off error, in addition to being
quicker.

Consider the polynomial
53 —2x% + 3x + 4

We write this first as [5x2 — 2x + 3]x + 4 then as [(5x — 2)x + 3]x + 4.

Notice how we first collect all the terms in x and factorise out x; then we take the other
factor and factorise out x from these terms which contain it. This process can be
continued until we obtain a linear expression, in this case 5x — 2. Hence

50 -2 + 3x +4=[(5x — 2)x + 3]x + 4

You can verify that the two expressions are equivalent. To evaluate the expression on the
right-hand side when x =2 we proceed as follows:

(1) Multiply 5 by x and subtract 2 S5x2—-2=8
(i) Multiply the result by x and add 3 8§x2+3=19
(1i) Multiply the result by x and add 4 19%x24+4=42 |
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Graphs of y = x"

We saw in Chapter 4 that the graphs of y=x" and v = —x* werc essentially of the same
shape as the general curves v = ax? + bx + ¢ where a > 0 and a < 0 respectively. [n the
same way, the graphs of y=x and yv=—x are typical of the general straight line
v=ax+h where @ >0 and a < 0 respectively. However, we saw that the curves y=x"
and y=—x" are not typical of the curves y = ax® + bx? + cx + d.

In general, for n > 2 v =x" and v = —x" are not fypical of the polynomials of degree n.
Figure 8.1 shows the graphs of y =x* and v= —x*. Notice that the graph of v =x" looks,

(a) (b)
Figure 8.1 Graphs of (a) y=x" and (b} y= —x*

at first sight, similar to the graph of v=x* However, v=x" is a more ‘flat-bottomed’
curve than y=x and has steeper sides. This is because for |x] < 1. x* <2,

AN B 1y , ,
c.g.(i) =Te<1"= (§> .whereas for [x| > 1, x* = eg 3% =81 > 9 =32

The graph of a more typical polynomial of degree 4 is shown in Figure 8.2. It has two
local minima between which is sandwiched a local maximum. This is usually the case
when the coefficient of x* is positive.

The precise location of the local minima and maxima with respect to the axes depends
on the coefficients of the polynomial. Some other options are shown in Figure 8.3.

One feature of interest concerns the values of x where x-axis is crossed or touched. In
the case of the polynomial v = x* — 3x* + 2x°. shown in Figure 8.3(a). the axis is crossed
at v=1 and x =2 and touched at x =(. We say that the polynomial has four zeros: x = |
and x=2 and a double zero x =0.

Equivalently. we say that the polynomial equation x* — 3x> + 2x? = 0 has four roots:
x=1,x=2 and x =0 (a double root).
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Figure 8.2 Graph of a typical polynomial of degree 4

(a) (b)

1/4\/\] x -1 x

(©) (d)

Figure 83 Graphs of four polynomials of degree 4 () y = x? —3x% +2x2,
Oy =x*=3x>+2x2 4+ 0625, Q) y = x* =33+ 2x2 —0.25and (d) y = x* + 3x3 + 2x2
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Example

In general, if x=a 15 a zero of the polynomial p(x) then x=« is a root of the
polynomial equation p(x) =0. Furthermore, (x — a) is a factor of the polynomial.

The polynomial
px)=x* 432 + 2 =+ 1)x +2)

has factors x (twice), (x + 1) and (x + 2). The zeros of the polynomial are 0 (twice), — |
and —2. The roots of the equation x* + 3x* +2x? = 0 are x=0 (twice). x=—1 and

y=-2. | ]

Notice that the zeros of the polynomial occur either side of the local maxima and
minima. Looked at another way, between two different zeros a polynomial has either a
local minimum or a local maximum.

However, something quite different happens with the polynomial x*. The local minima
and local maxima have been ‘squeezed together’ to coincide in a simple local minimum
at x=0. Other special cases can occur; for example, the polynomial

plx) = x* — 4

whose graph is shown in Figure 8.4(a) has its local maximum coinciding with one of the
local minima. Note that p(x) = x*(x — 4).

y y
vy=xl-d4xd 440
y=x%~4x3
40
4 X
13+
-271 X
(a) (b)

Figure 8.4 Graphs of two polynomials of degree 4
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All the polynomials of degree 4 which we have considered have had four zeros or two
zeros (including multiples). In Figure 8.4(b) the polynomial has no zeros.

One final point. If the leading coefficient is positive then a local mintmum occurs first
followed by a local maximum, then a local minimum, and so on. If the leading coefficient
is negative then the sequence starts with a local maximum.

If » is even and « is positive then the graph of the polynomial ‘starts’ in the second
quadrant and ‘ends’ in the first quadrant, as in Figure 8.4. If # is even and « is negative
then the graph starts in the third quadrant and ends in the fourth. Here is a table of the
possibilities for polynomials of degrees | to 6.

Degree of Paossible number of
polynomial 2€108

0 (constant) 0

[ (linear) 1

2 (quadratic) 2or(

3 (cubic) Jorl

4 (yuartic) 4or2orl)

5 Sor3orl

6 6ordor2or(

interpolation with polynomiails

Figure 8.5(a) shows part of the graph of a function which passes through two given points
(xy, vy) and (x5, y2). What is the v-coordinate of the point P'? It is not possible to say
unless we know the equation of the curve.

However, there is only one straight line which passes through the given points and it
may be used to approximate the given curve so that P in Figure 8.5(b) is reasonably close
to the point £. The use of the y-coordinate of P as an approximation for the v-coordinate
of P is known as linear interpolation.

Referring to Figure 8.5(b) we see that triangles OPM and QRN are similar. so

PM _MQ e XTh o _xTn (8.5)
RN NQ Yo=Y XX

Therefore we can calculate the value of y.
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X (b)

Figure 8.5 Linear interpolation

Example A curve passes through the points (1, 3) and (4, 9). Estimate the y-coordinate of the point

) o1
on the curve whose x-coordinate is 2 —.

Using equation (8.5) we obtain

1

y—3:22 :
9-3 4—1
i1
Le. ))_3:»—2=1
6 3 2

1
s0 that y—3:§><6:3

Le. y==6

Figure 8.6 Linear interpolation
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Example

Refer to Figure 8.6 where P, =(1, 3) and P, =(4, 9). |

In the same way a quadratic curve can be used to approximate a curve that passes
through three given distinct points which do not lie on a straight line. There is only one
quadratic curve which passes through these three points.

A curve passes through the points (1, 9), (3, 1) and (6, 4). Use a quadratic approximation
to estimate the y-coordinate of the point on the given curve whose x-coordinate is 4.2.
Refer to Figure 8.7. A quadratic curve which passes through the three given points is
y = x> — 8x + 16. You can verify this by showing that the coordinates of the three points
satisfy this equation.

Since there is only one such quadratic, ours is unique.

When x=4.2, y = (4.2)° —8 x 4.2 4+ 16 = 0.04. [ ]

If four distinct data points are given then there is a unique cubic polynomial whose
graph passes through them (assuming that the points do not lie on a straight line or on a
quadratic curve) and the interpolation process can be carried out using this cubic curve.

One word of warning. If the point P is outside the range of given data points, e.g. outside
the line segment QR in Figure 8.5(b) or the quadratic arc QRS in Figure 8.7, then the
process is known as extrapolation and can give very poor results. Compare with Figure
8.6 and see why.

Figure 8.7 Quadratic interpolation
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Exercise 8.4

On a graph with scale =2 < x <2, —10 <y < 10, draw the graphs of y=x", n=1(1)5.
How do you think the graph would look like it # were very large? Consider the odd and
even cases separately.

A quartic or fourth-order polynomial takes the form

v=d+ by 4 cx’ +det + f!

Draw examples of sketches of the quartic when the following criteria are met:
(a) a.c. f>0.b=d=0 (note that w(—x} = {x))

(b) a.b.c.d >0 (assume two roots only)

() d <0, =0

(d) a,b>0,¢c=d=f=0

(e) a=—f >0 h=c=d=0

(H a=0h.c.d, f>0 (assume two roots only)

A polynomial of odd order has positive coefticients. Determine which of the following
statements are truc about it:

() it has no roots (b) it has one positive root at least
() it has one negative root at least

Draw the graphs of x=1% and v=x* for —20 < x, v < 20.

The equation

represents a straight line passing through (x;. v) and (x,, v2).
(a) By setting v =.x, then x = x> verify that this is so, i.c. v = L)) and v, = L(xa).
(h) Rewrite the equation as vy =ax + b, determining «¢ and b.

(c) What happens if v =17



366 FURTHER ALGEBRA

6 Consider the expression

—X)x —x3) , (x — 3 )x —x;) , (x —x Mx —xy)

: (x; —x3)x; — »’(1))2 (v3 — x Mx3 — x3)

M

Ofx) =

(x; = x2)x) = x3)

It can be seen that O(x) is a quadratic in x, even though it is a complicated one.

(a) Set x =x), x5, x3 In turn to show that O(x,) = vy, O(x;) = vy, Ox3) = v3, i.e. Qx)
passes through (x;, y1). (x2. v2), (x3. ¥3).

{b) For the points (0, 1), (1, 0), (2, 0) determine Q(x).
() What happens if (x;, 3), (x2, v2), (x5, v3) lie on a straight line?

7% Prove that Q(x) in Question 6 must be unique by assuming the result to be false and using
reductio ad absurdum.

8* In a manner similar to Question 6 it can be shown that a unique cubic passes through four
é
points in a plane. Consider

oy RO ) x|
’ (X| — X )(Xl — X_;)(X| — .\'4). [ (.\'2 — X3 )(Xz — X3 )(,\’2 — X ) 2
" (x —x ) — x(x — x3) s+ (X — x X — x9)(x — x3) ’

(r3 = x x5 — x) x5 — x3) (xg — x5 — X5 x4 — x3)°

(-3.2)

40 (0.1 )\L/"“”

and show that C(x) passes through (x;, y). (x2, v2), (x3. v1) and (x4, v4). Find C(x) for the
points (—4, 0), (=3, 2), (0, — 1), (3, 0), as shown.
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9

10

1

12*

Determine the polynomials formed by (a) adding, (b) subtracting and (¢) multiplying the
polynomials 2 — 3x + x* and 6 — 5x% 4+ 2x° — x6 4 x7.

Use nested multiplication to help plot the graph of | —x + 2x* —x* +x° for =2 < x < 2.

Express the following as polynomials in the quantity shown in parentheses:
(a) (VX = x /o) (x4 — x4 (x4

(b) (9xy — 2 /N0 = (o)) (o) /%

©  (/Jx= 100G/ (xyx) —4/x") 1/

By tabulating and identifying sign changes, estimate the values of x for which the
following inequality holds:

x(x = 3)(x = 5) > (x + T)x + Dx — 2)(x — 4)

8.3 FACTOR AND REMAINDER THEOREMS

A theorem which we shall quote (but not prove) in a form applied to polynomials is the
intermediate value theorem. In this form it states that if p(x) is a polynomial in x and
pla) # p(b) for two numbers ¢ and b where a < b then p(x) takes every value between the
values p(a) and p(b) at least once in the interval a < x < b.

In other words, for every number s between the values p(a) and p(b) there is at least
one number ¢ in the interval (a, £) for which p(c) =s. Refer to Figure 8.8(a).

s=0 b

X a \l X
(a) (b)
Figure 8.8 Intermediate value theorem
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Corollary

Example

Examples

Example

An important corollary of the theorem applies when p(a) and p(b) are of the opposite
sign. Then it follows that p(x) =0 at least once in the interval a < x < b; see Figure
8.8(b).

The following examples illustrate the need for care when applying the intermediate
value theorem and interpreting its result.

Consider p(x) = x> — 3x? + 4x — 12.

It is straightforward to see that p(0) =12 and relatively easy to check that p(4)=20.
Hence for at least one x in the interval 0 <x <4, p(x)=0.

In fact there is only one such value of x and it is x=3. |

I. The polynomial p(x) = x* + 4 has no zeros; it is an irreducible quadratic. Since
p(—3)=13 and p(4)=20 the intermediate value theorem indicates merely that the
polynomial assumes all values between 13 and 20 at least once as x goes from —3 to 4.
It does not indicate that the polynomial also takes values between 4 (its least value) and
13 as a sketch of the graph will show you.

And the theorem does not tell us that, with the exception of the value 4 which occurs
only when x =0, the values trom 4 to 13 are achieved twice.

3]

. The polynomial g(x) = x> —4 has two zeros: x=-2 and x=2. If we calculate
p(—3)=35 and p(4) = 12 and apply the intermediate value theorem, all we learn is that
the polynomial achieves values between 5 and 12 at least once as x goes from —3 to 4.
No mention is made of the values between —4 (the least value) and 5. [ ]

Every polynomial of odd degree has at least one zero but it may have more than one.

Consider p(x) = x* — 2x* — 5x + 6.

Since p(—-3)=-27-184154+46=-24<0 and p4)=64—-32-20+6=
18 > 0 then there is at least one zero of p(x) in the interval (0, 4). If we calculate
p(0) =6 then all we can conclude is that p(x) takes every value between 6 and 18 at least
once as x goes {rom 0 to 4.

In fact p(x) = (x + 2)}(x — I ){x — 3} as you can verify by multiplying out the right-hand
side. Therefore there are three zeros: x=—2, x=1 and x=3. The intermediate value
theorem does not help us to detect the latter two zeros.

However, had we checked that p(2) = —4 we should have noted that p(x) changed sign
in each of the intervals (=3, 0), (0, 2) and (2, 4). Each of these intervals therefore
contains a zero and, since a cubic polynomial has at most three zeros, we have located
them all. |
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This approach is taken up again in Mathematics in Engineering and Science but for the
moment we note the need to read the statement of a theorem carefully to check what it
tells us and what it does not.

The following example illustrates the possibilities for a quartic polynomial.

Example Consider the polynomials

) =xt+572 +4=00 + D)2 +4)
P =x' 43 4= - D+ == Dix+ 1D)(x* +4)
pa) =x =S5 4= = 1) —4) = (x = Dx+ D{x = 2}x+2)

n

pa)=x" =23 +5¢° —8x+4=(x— )T +4)
p5(x):x4—4x3 +6x° —4dx+ 1 = (x — 1)4

pi(x) has been factorised into the product of two irreducible quadratic factors. It has no
roots.

po(x) has been factorised into the product of two linear factors and one irreducible
quadratic tactor.

palx) has been factorised into the product of four linear factors.

palx) is a special case of pa(x) where the two linear factors are the same (indicating a
double root of p4(x)=0).

ps(x) is a special case of p;y(x) where all four linear factors are the same. [ ]

In general a polynomial of degree » can be factorised into a product of linear factors and
irreducible quadratic factors. If # is odd then there must be a least one linear factor.

The remainder theorem and the factor theorem

When we divide 18 by 6 the result is exactly 3; we say that the quotient is 3. When we
4
divide 18 by 7 the result is 25; in terms of whole numbers we say that the quotient is 2

and the remainder is 4. This can be stated as

1I8= 2 x7+ 4

quotient remainder

When the remainder is zero the quotient is a factor; hence 3 is a factor of 18, as we know.
This result can be generalised to polynomials,

If p(x) and s(x) are polynomials and if s(x) # 0 then we can find unique polynomials
g(x) and r(x) such that

px) = s(x)g(x) + r(x) (8.6)
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Example

Example

Note that if A(x) is not identically zero then it is of lower degree than s(x). The polynomial
¢(x) is the quotient and ~(x) is the remainder.

If p(x) = x> = 3x° + x + 6 and s(x) =x — 2 then you can verify that
o3 tx+6m3(x -2 —x-1)+4

Hence the quotient is x* — x — | and the remainder is 4. |

Later in this section we will see how to obtain the quotient. Suppose for the moment we
Just want to find the remainder.

In identity (8.6) supposc that s(x) is a lincar factor (x — a). It follows that r(x) must
have degree less than 1; therefore it is a constant polynomial (i.e. a number) which we
shall write as R. Then (8.6) becomes

plx) =(x—algix) + R
If we now put x =a we obtain the result
play=0+R

so that R = p(a).
This result can be stated as the remainder theorem:

We wish to divide the polynomial p(x) = x* — 3x® + x + 6 by the expression (x — 2).
Here a =2 and the remainder is ;)(2) = 8 — 12 + 2 + 6 = 4 (as we found earlier). If we
divide p(x) by the expression (vx+2) then a=-2 and the remainder is
M-2)=-8-12-2+4+6= —16. This can be venfied by direct division but we ask
you now merely to verify that

=3 Hx+6=(x+2HE = 5x+11)-16 [ ]

An important result which partly follows from the remainder theorem is the factor
theorem:
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Example

Proof

Using the remainder theorem, we obtain p(x) = (x — a)g(x) + p(a) where g(x) is the
quotient. Note that there are two statements to be proved here:

(1) If p(ay=0 then p(x) = (x — a)g(x) so that (x — «) is a (linear) factor of p(x).

(it) Conversely, if (x — a) is a factor of p(x) then the remainder after dividing p(x) by
(v — «) must be 0. Hence p(a) =0, from the remainder theorem.

Show that (x4 2) is a factor of p{x) = x’ — 2x* — Sx 4 6 but that (x — 2) is not.
Since p(—2)=-8-84+10+6=0 then (x+2) is a factor. Since p(2)=
8 -8~ 10+ 6 = —4 #£ 0 then (x — 2) is not a factor. |

The statement that (x — «) is a factor of p(x) is equivalent to saying that x = ¢ is a root of
the equation p(x) =(). The factor theorem can therefore be used to establish roots of a
polynomial equation.

It is worth remarking that whereas the equation ax+ »=0 has the simple solution
x = —bh/a(a # 0) and we have already used the formula for the solution of a quadratic
cquation (Chapter 3); this is about as far as it is reasonable to proceed by a formula
approach. There are recipes (called algorithms) for finding the roots of cubic and of
quartic equations but they are very tedious to apply. For polynomial equations of degree
greater than 4 no such general recipes exist.

Finding quotients and factors

Examples

The remainder theorem identifies the remainder after division by linear expression, but it
does not identify the gquotient. The following examples develop a method for finding a
quotient.

1. What is the quotient when x* — 3x + x + 6 is divided by (x — 2)? The answer can be
obtained progressively.

x* = 3x" 4+ x + 6 = (x — 2)(quadratic) + xxxl=x
=(x-— 2)(x2) + gives =2
=(x— 2)()(2 —x)+ gives =2 -+ 2x
=x' —3x? 4+ 2x
E(x—2)(x2—x—])+ gives.\']—3x2+2x—x+2

=x -3 $x+2
=x—2DP—x—1)+4

Hence the quotient is (x> — x — 1) and the remainder is 4.
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Example

Example

2. Divide 2x* 4 3x7 ~ 5x + 9 by (x+3).

27 437 5+ 9 =(x+ 3)(quadratic) + X x2¢ =20
= (x 4+ 327 + gives 2x' + 647
=(x+ N2 — 30+ gives 2% 4+ 67 — 387 — 9x
=2 4+ 3% — 9

=+ 32 -3+ 4+ gives2e #3070 — 9 +4v + 12
=432 -3x+4)-3

The quotient is (2x> — 3x 4+ 4) and the remainder is —3. n
The same approach can be used to factorise a polynomial completely.
Verify that (x — 1) is a factor of the polynomial p(x) = x* + 4x* 4+ x — 6. Find the other
tactor(s). (Note that we do not yet know whether there are two other linecar factors or

simply an irreducibie quadratic factor.) Since p(1) =1 +4+1 -6 =0then (x — ) isa
factor of p(x).

3

YAt rx—6=0=(x- I)(quadratic) + ¥ x x> = x°
(= ) + gives oy

fll

= (v — D +5x) + gives ¥° + 4y’ — Sx
=(x— (¥’ + 53+ 6)

The quadratic expression factorises into the product (x4 2)(x-+3) and therefore
Px) = (v — Dix + 2)x + 3). n

Note that the same approach could have been used to find the other roots of p(x) = O given
that v =1 is a root. We should then have found the other roots to be x= -2 and x = —3.
It there is a multiple root this will not be detected immediately.

Factorise p(v) = v — 2¢% — 537 — 8x + 4. given that p(1) =0. We know that (v — 1) is a
factor of p(x). so

oo 45— 84 4= (x - I)cubic) vx oyt =yt
=(x— DY)+ gives xt — X
= (x — l)(.\"“ — )+ gives P R RIS,
=(x — ])(.\"‘ — 3+ ax) + gives =2 5 — 4y

=(r— N~ +4v - 4)
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Exercise 8.5

You may recall from an earlier example that p(x) = (v — l)z(ﬁ(2 +4). The fact that
(x — 1) is a multiple factor (or x =1 is a multiple root of p(x) = 0) has not emerged at this

stage.

Determine the polynomials whose roots arc as follows, and draw suitable sketches.

(a)
(b)
(©)
(d)

-1, 1,2
—3 (twice), 0. |
I, 2 (three times)

=5, =2, 0 (twice), 1, 4

Assume in each casc that the coefficent of the highest power of x is equal to [, e.g.
(x+ v — D(x — 2) in (a).

Consider f(x) = X4 —6x+21.

(a)
(h)

Prove that there are no roots of f(x)=0 for v > 2.

Plot the graph of f(x) for x=—4 (1) 3, using an x:y scale of :10. Estimate the
only root to two significant figures.

By considering f(x) — 21, show that f(x) crosses the line =21 in three points.

For y=f(x) in Question 2, what is the effect of scaling the x-axis by a factor ¢ and
the v-uxis by a factor b7

Write down the new equation for ¢ =2 and A=5. What has happened to the
root(s)?

When a polynomial P(x) is divided by (x — a) we can write P(x) = (x — ¢)Q(x) + R.

(a)
(b)

)

(d)

By putting x =, prove that R = P(a).
What is the conclusion if R=0?

Given that
=T+ 204 L= (- DO) + R

write down R then find Q(x).

If O(x) is as in part (¢) and R =0, what is the cubic polynomial?
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5 (a) Determine a and & if x* — 2x2 4+ ax + b has roots x=1. 2.
(b If instead x = —7 is a repeated root and x = 12 the other root of the cubic in part
(a). what arc a and b?

P2
6 The equation ex’ 4 x2 + dx + 10 = 0 has roots x = —2. 1 1 3 Find ¢ and d.

7 Determine the unknown constants in the following identities:
(a) Ax(x — D+ Bx(x -2} +Clx — N x - 2) =2
(b) 3 —dx+3=alx— 1y +bx—1)+c

©) Ax(x — Ix — 2) 4+ Bx(x — 2)(x — 3) 4+ Cx(x — 1 }{x = 3)
+D(x— YHx—2)x=3) =12

(d) {(x — 3)3 —(x — 4)3 =3+ ev+d
In each case recognise that the identity holds for every value of x, so select values of x in

the first instance to eliminate or simplify terms (e.g. set x=0, | or 2 in (a)). Systematic
multiplying out should be undertaken when it is the only option left.

8 For the expression
&b —o)+ ble-a)+cta—bh)

(a) Show that ¢ — b, b — ¢, ¢ — a are factors.

(b) For the remaining factor note that symmetry, i.e. complete interchangeability
between «, b, ¢. is needed. Identify this factor and write the expression as a
product of four factors.

9+ (a) Identify three factors of
d'b—)+Pc—a)y+MNa - b)
where # 1s an integer, negative or positive.

(b) What happens if n =07

(c) Prove that

l)—('+('—a+afh _(a—b)(l)-c)(c'—_i)

a b ¢ ahe

10 Multiply out

(x+ v+ )(x—yv+c¢) and choose ¢ to factorise

(a) X -y 4+x—v by =4 2x+1 © ¥ -1 4+5+ 3v+4
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11 Write down the square of (x — v) and express x> — 2xy + 217 + 4v + 4 as the sum of two
squares. Deduce that the expression is zero for only one pair of values of x and y.
12* (a) The expression
2 —xy = =3x =3y +c
is known to be the product of two linear factors. Accepting that the coefticients of
x in the factors must be | and 2 respectively and the coefficients of v must be | or
—1, trial and error establishes that (2x +y +a) and (x — v+ 5) must be the
factors, so the cocfficient of x1 in the product 1s —1. Multiply the two factors
together and find c.
(b) Factorise the following polynomial as a product of two linear factors with a
suitable value of ¢:
6x’ +xy —y' —x+ 2y +c.
13 Determine the quotient ()(x) and the remainder R when the polynomials P(x) are divided
by the linear factors given
(a) =33 4 2v 4+ 1 by (x — 1)
(b) 342 —x—1 by(x+2)
(c) 407 -2 —x+30 by (x—73)
(d) 1= 5x—x* by (3 — 20)
14 In the following cases the factors are exact; identify the unknowns.
Plx) Factor(s)
(@) ¥ -9 tax+15 x—3
(b) 54 6x — X +ax’ x+1
(c) (x+ Dx* +ax+ 1 x+1
(d) X+ px+gq x+c
(e) 60 + ax + hx? + x* x+5 x+3
(H ¥ +ax* +bhe+c x—l,x—2 x—5
15 Determine the quotient and remainder in the following cases:

(a) o5 —x+6 = —x+12
(b) 2 —3x 4 4xt — 5 1 —2¢+4
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(©) X +87+W+7 xx+1

@ ST e tdr 43+ 420 + 3+
(e) 11 —6 L2 —v—5

(f) 94— =¥ L9

16 Expand out

12

x(x+2)+1=x(x+2)

as a quartic equation and verify that there are only two real roots.

17# Solve the equations

—28
(@) x(x +3) )
3
b x(x+2 =4
(b) x(x + )+x(x+2)
(©) Expand out the sixth-order polynomial

(e + D+ 2) 4 4x(c + Dx+2) + 17
and prove that it has no real roots.
18* (a) Solve the equation
Vit d+ i+ T=VI5F 2
(b) Solve the simultaneous equations

x+y=5
3 =28

Start by putting z = xv to solve the second equation for xy.

(©) Solve the simultaneous equations
7 1
+ =2
x+v x-—y
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(d) Determine the two values of x which satisfy

VX424V + 2 =22(x+3)

8.4 ELEMENTARY RATIONAL FUNCTIONS

We have seen that when two polynomials are added together the resulting expression is
also a polynomial. The degree of this polynomial is the higher of the degrees of the two
original polynomials. For example

(2,\'3 +x-=7) +(x4 - +x2) =x*4++ 2 +x—7

R+ x =T+ = +2x) =3 - +3x—7
When one polynomial is subtracted from another the resulting expression is also a
polynomial. The degree of this polynomial is the larger of the degrees of the two original
polynomials with one exception. For example

R 4+x—-N—-2F -+ = —x-7
In the special case where the leading terms of the two polynomials are equal then the
resulting polynomial is of lower degree.

When two polynomials are multiplied together, the result is also a polynomial and its
degree is the sum of the degrees of the two original polynomials. For example

(2)(3 —7) x (Jc4 + xz) =2¢ + 225 =t =74

However, when one polynomial is divided by another it is the exception that the result is
also a polynomial. For example

x4 ax—4
i S e ol SR
x4+ 4

because (x> +4) is a factor of x* — 2 + 4x — 4.
However, the expression

¥ x4 —4
x2+5
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Graphs of y =

Example

cannot be simplified further. A rational function has the form

o)
g(x)

where p(x) and ¢(x) are polynomials.

When the degree of p(x) is less than the degree of g(x), the fraction is known as a
proper rational function. If the degree of p(x) is greater than or equal to the degree of
g(x), the fraction is an improper rational function.

The case where ¢(x) is a constant really cannot be considered a true rational function.
lgnoring this case, the simplest rational function is one for which p(x) is a constant. In this
section we consider some examples. We have taken a = | for simplicity; the only effect
of taking positive values of @ different from 1 is to change the vertical scale of the graph.
Question 2(e) of Exercise 8.6 asks you to do this.

1
Figure 8.9 shows the graph of y = —. Note the following features:
X

(i) The graph appears in two sections, one in the first gquadrant and one in the third
quadrant. This is because when x > 0, v > 0 and when x <0, y < 0.

(i) If we were to rotate the part of the graph in the first quadrant by 180", using the origin
as the point of rotation, it would coincide exact/y with that part of the graph in the
third quadrant. (As an example note that when x=2, y=0.5 and when x= -2,
y=-—05.)

Figure 8.9 Groph of y = J;
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(iii) The graph is symmetrical about the line y =x.
(iv) The graph is symmetrical about the line v = —x.
(v) As Il increases, Ivl decreases.

In other words, it x becomes larger (more positive) then y decreases but stays positive. It x
becomes more negative then 1 increases but stays negative. Geometrically, as we move to
the extreme right or to the extreme left on the graph the curve gets closer to the x axis but
does not cross it or cven touch it. We say that the curve approaches the x-axis
asymptotically or, equivalently, that the x-axis is an asymptote to the curve.

When x =0 we cannot assign a value to y. As x approaches 0 through positive values
(from the right) the values of v increases ever more rapidly and the curve gets ever
steeper, becoming almost vertical. Similarly, as x approaches 0 through negative values
(from the left) the values of v decrease ever more rapidly and the curve gets ever steeper,
becoming almost vertical. As x approaches (), therefore, the curve approaches the y-axis
asymplotically: equivalently, the y-axis is an asymptote to the curve. We could also say
that the curve possesses both horizontal and vertical asymptotes. |

]
Figure 8.10 shows the graph of y = <. There are clear differences from the graph of
x?

I . L
v = -~ Note the following features:

X

(1) The graph appears in two sections, one in the first quadrant and one in the second
quadrant. This is because when x> 0, y > 0 and when x < 0, y > 0.

(i1) ‘The part of the graph in the second quadrant is a retlection in the y-axis of the part in
the first quadrant. (For example, note that when x=2, v+=0.25 and when x= -2,
vy =10.25 again.) Therefore the graph is symmetrical about the r-axis.

1
Figure 8.10 Graph of y = e
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Example

(iti) As lxl increases, Iyl decreases. In other words, for large positive or large negative
values of x, v gets closer to zero but stays positive. Hence the x-axis is an asymptote
to the curve.

(iv) When x=0 we cannot assign a value to y. However, as x approaches zero (from
either direction) the values of v increase ever more rapidly and the curve gets ever
steeper, becoming almost vertical. The y-axis is an asymptote to the curve. The curve
possesses both horizontal and vertical asymptotes. |

When « is negative the picture is altogether different.

1
Figure 8.11(a) shows the graph of v = —— and Figure 8.11(b) shows the graph of
1 N [ I
» = — = At first sight it looks as though the graphs of y = ——and v = — — havc been
X X X’

turned upside down. More preciscly, they have been reflected in the x-axis. The general
features are similar to those of the graphs in the previous two examples with obvious

modifications to allow for the reflection. |a
Yy y
X X
(a) (b)
. 1
Figure 8.11 Graphsof (@) y = — 3 and () y = —QQ

We now consider briefly the case where ¢(x) is of the form (x — @) or (x+ ).

. . 1 ]
Figure 8.12(a) shows the graph of v = Py It looks as though the graph of y = - has
X

been moved to the right by 2 units, and this is just what Aas occurred.

The trouble spot is x =2 where the value of » cannot be defined. As x approaches the
value 2 from above, the y-values get ever more positive; as x approaches the value 2 from
below, the y-values get ever more negative,
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r.»l——-l

(a) (b)

Figure 8.12 Graphs of (o) y = x]—_2 and () y = -x—l—]

The asymptotes are x =2 (shown dashed) and the x-axis (or y=0). Note that the
asymptotes are not part of the graph.

. 1 - . 1
Figure 8.12(b) shows the graph of v = P This time the graph of v = — has been
X X

moved to the left by 1 unit. The asymptotes are x=—1 and the x-axis. If we write
yv= —(—1) then the analogy with Figure 8.12(a) should be clearer. In both cases the -
x—(—
. . 1 1
axis 1s crossed. The curve of y = cuts it at y = — = (x =0) and the curve y = —
Tox— 2 Tox+1

cutsitaty=1.

Ratio of linear polynomials

Example

We consider the case where both p(x) and ¢(x) are linear polynomials. We examine one
specific example and make some general remarks.

2x -5
x-3
2x=5 2x—6+1 1 ]
Note that = == + =2+ . hence we consider y = 2 4+ ——.
x=3 x—3 x—3 1 x—=3
Notice that as x approaches the value 3 the values of T3 gets larger in size.
X —

y:

The add-on constant 2 is really unimportant; for example. when x=3.0001,
vy =2+ 10000 == 10000 and when x=2.9999, v =2 — 10000 >~ —10000.

However, when x gets increasingly large and positive, y approaches the value 2 trom
above; for example, when x=10003, y=2.0001.
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When x gets increasingly large and negative. v approaches the value 2 from below: for
example, when x = —9997, v=1.9999.

2x -5
The graph of y = \——3 is shown in Figure 8.13. The lines x=3 and y=2 are
asymptotes. .
y I
)
|
1
l
|
l
|
2 |
R P - ST
5 |
3 i
'\ l
Nl 13 X
2 1
|
|
|
I

Figure 8.13 Graph of y = 2)%5
. 1 . . .
The graph of ¥ = — has been moved to the right by 3 units then upwards by 2 units, i.e.
X
S
to be centred at the point (3, 2). The curve cuts the y-axis at y = 3 (x=0) and cuts the

5
x-axis at x = 2 (y=0). |

Finally we remark that the general expression

be C
cx 4 — o+d+——d
ax+b o« a|l a a
ex+d el ev+d | < ex +d
h.
d
_ua a
T ex +dd
d
,
4, ¢
T ox+d

a  be—ad
C
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If bc # ad then we can apply the method in the last example to study the behaviour of

ax+h
V= —
’ ox +d

What happens when be = ad and none of the four constants a, b, ¢ and d is zero is the
subject of Question 4 in Exercise 8.6.

Exercise 8.6
1 Skeich graphs of

(a) y=- (b V==

]
(c) X = (d) vl =—
[v] x|

2 Sketch the graphs of

1 2x+3 2x+ 1

¢ T — — b P = N v =
(@) 2 RY ) ; x4+ 1 © ! y+ 1
) _3.\'—1
d V= o

1 1 1

=— == 1,2,—=, -1, =2

(€ v=0d4=3 2

3 Find the vertical and horizontal asymptotes of the following:

Sx+4 2~ 3x
. P b -
(a) 1 T (b) 1 e 3
. ‘_ll—,\' @ __6+2—.\‘
© =T TEYTIY

X+ /
4 Giveny= CLIA; what happens it ud =bc#0 or if ad =bc=0?
x4 ¢

5 Where are the roots v =0 of the functions in Question 37

. 1 . .
6 On the same axes sketch the graphs of v = —and v = 3x + 2. Determine the coordinates of
. .. . X
the two points of intersection.
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7% Determine necessary and sufficient conditions on @ and b in the following three cases:

. ] 1
(a) v=uax + b intersects y = — (b) v=ax+ b touches y = —
X x
. . 1
(c) y=ax+ b neither intersects nor touches v = -
X

For part (b) write down the coordinates of the common point in terms of 5. What is the
sign of a7

. R . x+3
8 Determine the coordinates of the points where the curve y = z—+—2
(a) crosses the coordinate axes
(b) intersects the horizontal line v =4
(c) intersects the vertical line x= -2
(d) meets the straight line y = ; +1
9 Sketch the graphs of
] XHx+6
a r=x+34+—— b = ——
(a) y=x +x 2 (b) y Py

Identify the points where the x and y axes are crossed.

1 l L
=5, ¥y ==3. Then plot x = —
2 X

1
10  Plot the graphs of v=—, y= -
X7 X v

11 Using graphs as necessary, determine the coordinates of the intersection points of the
following curves:

(a) yv=x,y= P (2 points)
] 5

(b) y=—yv=—-= (1 point)
X X

(<) : : (1 point)

: VY = = V= 5 n
YTV T oy p

1 1 .

(d) V= & y= 6(x +5) (3 points)
1 1

(e) V= - yv= 6( 2 _6x+1 1) (3 points)
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12

13

14*

15*

16*

Note that in cases (d) and (e) a cubic equation in x needs to be solved. Use the remainder
theorem to eliminate a root, noting that a solution exists in both cases when x is a small
integer. Sketch the graphs in case (¢).

Find the questions of the tangent and normal to

(a) '—l t .7_l ——l
)V‘\_ a 3 m= 3

b r= t (=2.1 = —1
(b) Yy x+3a( ) (m )
1
On the same axes draw graphs of y = and y = o From the graphs determine the
x— X -
1
values of x for which > ——.
x—1 x-=2

1 1
Draw the graph of v = 2 + — and dot in the graph of |2 + ‘ where this differs. For which
X X

l 3
values of x is |2+ -] < 5‘.’
3x—4 3x—4
Show that x 7= 3+ 3 and draw the graph of v = ;T’ On the same axes, draw
X — X — X —

the graph of v = [x + 2| and observe that the two curves meet in three points. Determine
the values of x which satisty

Iy — 4
2] < 2

and notice that one of the four related equalities is spurious.

With reference to Question 15, determine the values of x which satisfy

x+2| <

3x—4
x=3



SUMMARY

Arithmetic progression (AP): A sequence a,a +d,a+ 2d. ..., in which
each term is obtained from its predecessor by adding a constant amount, the
common difference

Sum of an AP
S=g(a+!)

where «a is the first term, / is the last term and » is the number of terms.
Geometric progression (GP): A sequence a, ar.ar’, ..., in which each
term is obtained from its predecessor by multiplying it by a constant
amount, the common ratio

Sum of a GP

_a(l =)
S =g

S Pl

where « is the first term, r is the common ratio and » is the number of
terms. If =1 <r<1 the sum to infinity is

Arithmetic mean of two numbers @ and b is %(a + b)

Geometric mean of two numbers @ and b is Vab
Sigma notation

h=h+h+---+1,

r=1

If the sequence is infinite then

oo
Zr,=f|+f2+"'

r=1



A polynomial of degree n is written p(x) = a, + ayx + @y + ---+ a,x".
Nested multiplication: used to evaluate a polynomial.

Remainder: when a polynomial p(x) is divided by (x — a) the remainder is
R=p(a). If R=0 then (x — a) is a linear factor of the polynomial.

Rational function: the ratio of two polynomials, px) Where p(x) =0 the

g(x)
function has a zero; where g(x) =0 the function has a vertical asymptote.
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Answers

Exercise 8.1

Exercise 8.2

10

1

12

(a) d=3,35,50.8+3(n—1})=5+3n
(b) d=-—4;964, 944, 1000 + 4(n — 1) = 1004 — 4n

3d=-24sothat d=—-0.8; 118, 11.0, =114

(a) 18 (b) 18

() 290 (b) 0 () 155 (d) 240
(a) 210 (b) 436.6

(a) 62 (b) —3;—0 = 103%

63, 195, 690 — 195=495
(b) () 14 (1) 45

S :g(2+(n — 1)10); 1, 11, 21, 31; S=64

32

u=30,d=-2,5=210

66 000
(@  r=2: 2560 b))  r=-531250 (¢
(@ 508 by 172
() OABOTBAA0 oy,

2324522934 -

l 610 _ l

(a) 93 (b) (,(1 _Eﬁ) :TN

33

(c) ]?

r=0.4; 0.08192
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4 (a)  45[1 —(0.8)"] (b) 451 —(0.8)""]
(c)  45[(0.8)!° — (0.8)2°] = 45 x (0.8)'[1 — (0.8)'""]
5 (a) 2 x 3! (b) lx ! "—‘_ :
47\2) 2
1 1 n+l
(c) BT (d) (— 5)
6 (a) na (b) 0 for n even, a for n odd
1
7 1 —x2
1 127
8 == —
"T2 716
2
9 ==
"=3
4 45 5 288 32 365
1 -, b —— = -
0 @ 5 O =g © 590 =110 @ T
11 £1215.51 approx., £1628.89 approx., £1218.40 approx., £1638.62 approx.
12 (a) £1070, £1144.9 (b) £13816 approx.
13 1328 years approx.
14 1715 m, 0.84035 m, 5x(0.7)" m
Sx0.7+5x% (0.7)2 +5x (0.7)3 to 3 bounces
5(1 —(0.7)
=17x[5+5x(0.7)+5x (0.7 = 1.7 x % = 18.615m
1-(0.7)
1.7 x u—)] = 23.571 m (5 bounces)
1 —-0.7
5 .
. = 28. .
1.7 x e 83m
72
15 (a) AM =65, GM =6, HM = T

(b) Equality where a=»s.
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Exercise 8.3

5
1 @ Y r b 3 3
r=I r=1
) 100 | J 3] ]
(c r;; ( ) ,.:0§ B I; -

3
> 4 2 1\ x ()"
© Y12-5=%07-5) (B 3 25x (g) =25 Z(g)
r=1 r=0 r=1 r=1

3
& >ox (h) 2 (=x)
r=0 =0
2 (a 3+9+27+81;16 b))  4+5+6+7.8
1 1 1 1
7T4+19+431443; 10 d 4=t —+—
(c) +19+31+ (d) 4+16+64+256 20
(e) 16 +25+36; 3 (f) 94+ 10+11412; 8
(g) 1+24448;12 (h) 0+1+8427; 15
. 11 .
(i) —4+—-4+142:5 )] 2+ 6+ 12 + 20; infinitely many

472

Exercise 8.4

Nl
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n odd

2 () Here is an example

neven

Here is an example

~

|
\

Symmetric about y-axis

rv>0ifa>0
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) Here is an example (d)

S

\ e

Cubic Straight line, positive slope, intercept to left
of origin

(e) ()

(-1,0) (1.0 X

r>0if x>0, x=0is a root

=11 =) +x)

3 (a) False (b) False (v > 0, if x> 0)
() True (v € 0 if x < 0)
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10

Intersections at (0, 0), (1, 1) only

Y- Ya—y Xo¥, — Xy XYy — XV
(b) a=" Y2 or 2 1, b= pag] 12 or 4 pAg]
X=X Xy — X X — Xy Xy — Xy

(c) L(x)=y,, t.e. the horizontal line y =y,

1
(b) o) zixz —%x+ 1

(c) Q(x) is that straight line; the coefficient of X2 is zero

q(x) = O,(x) — OQ,(x) is at most a quadratic which passes through (x;, 0), (x, 0} and
(x3, 0), i.e. it has three zeros; the only option is g(x) = 0.
. (x=3Nx+dHSx+3) 5 4 2, 19
Clx) =- =
) 36 36 "9 T2

(a) W=+ 4+ —5x2 ~3x 48
(b) x4+t -2+ 45 -3x—4
(c) X0 5T — 8k — x4+ 217 — 10x7 — 182+ 12

30 —
20 |

-10

-20

-30
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11 (a 2 =M =),z = x4
(b) 92 =2)1 —z0). z = (x)'/°
) Fl-203-4z),z=1/yx

12 —6<x< —|,2<x<4, approx.

Exercise 8.5

1 (@) X =2xr—x+42 (b) 50 4302 — oy

(c) =7 4+ 18x2 - 20x+ 8 (d) X0 4 2% —21x* — 22xF + 40x°

\_/ I
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2

(a)
(b)

(c)

(a)

(b)

(b)
(d)
(a)
(’ o=

(a)
(<)

(b)

(a)

fx)>21ifx>2

(—3,20), (0, 21), (2, 21)

X 1= x/a, yi— y/b

s {3+ o(2) v

3 4

8

ifa=2,b=5 nheny:5(1+%—3x+21)

Only root doubled.

{x — a) i1s a factor

X - T +2x+ 4
a=—1,b=2
12, d=—41

A=1,8=-2,C=1
A=2,8=6,C=—-6,D=-2

—(a—b)(b—c)c—ala+b+c)

a—b.b—c.c—a

(c)

(b)

(b)
(@

(b)

R=7 x)=x*—6x—4

a=-119, b =588

a=3,b=2,c=2
c=-21,d=37

Expression =0
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10 (a) (x+y+ Dx—yp), c=0
(b) x+y+Dx—y+1),c=1
{c) x+yv+1)x—y+4),c=4
N =P ++220x=p==2

12 (a) Cx+y+Dx—y—2),c=-2
(b) Bx—y+D2x+y—-1),c=-1

13 o) R
(a) 2 —x—2x 1
(b) I —d4x+7 —15
(¢) 4x% + 18x + 89 475
1 3 5 1
14 (a) a=13 (b) a=-2
(c) a=-1 (d) A =pc+qg=0
(e) a=47,b=12 (f) a=-8,b=17,c=~-10
15 Ox) R(x)
(a) x—4 —17x+54
(b) -5 -6 5x 426
(c) ¥ —2x+9 2 —2
(d) x+3 —3x2 — 6x
© r2+i+36— 111x — 446
’ 11 121 121
(f) x+1 4x% 4 9x
16 x=-3,1

17 @ 1,—4,:|:é«/16 —%

(b) 1,3, +/2-1
(c) x0 +6x° + 13x* 4+ 1667 + 16x% + 8x + 17
If y = x(x + 1)(x+ 2) then (y + 4)> + 1 = 0, so no real v, hence no real x.
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18 (a)
(c)
Exercise 8.6
1 (@
(<)

()

53

X = 1.4.1i—\—/~
2 2

3

= 17
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(b)

(a)

(d)

(c)

a<0

("

A)
a>0

()
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4

The graphs move outward as a increases, e.g. for a = —1, the graph passes through
(1, = 1), (=1, 1) but for a=—2 it passes through (V2. =V2). (=2, V2).
2 5 3 3
¢ = -, V== b = — = — =
(a) X=3r=3 (b) X=35.¥ >
(c) x=19,y=1 (d) x=-2,vy=5
v=b/d or a/c, i.e. constant
a=b=0=>y=0
¢=d =0, y=o00, undefined
b
= = 0, S = —
a=c¢c y=-5
a .
b=d =90, y=-, as in the first case
P
4 2
— b It
(a) 5 (b) 3
14
11 d -
(c) (d) s
(@) A +4a>0 (b) P H+4a=0

2 b -
(¢) b +4a <0, (1—7 . 5)’ a < (; here are two possibilities
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(=3, 0), (5.

(d)

(b)

y+3

&
2K

(©.34)

—_
=
~—

9

o
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11 (a)
(d)
(e)
12 (a)
(b)

13

(L, 1), (=1, = 1) (b) (—5

. —g) (c) (I, )

(1, 1), (—3 + \/i.é(2+ ﬁ)), (—3 - \/?,(]—)(2 — ﬁ))

1 1
P _
(1, ), (_,2). (3.3)

1
T:2v+x=3, N :_;r’:§(4x—7)
T:x4+yv+1=0N:y=x+3.

—

,
' The shaded arca

'

©represents J< v <2
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14
15
-2.0) .
:x-J
1=Vl <x<2-6,ie. —4317<x< —0.449,
3<x<2+/6ie 3<x<4.449
16

=3

—4.317 < x < —0.449 (as Question 15)and 11 — | < x < 4.449,i.e. 2.317 <x <4.449.



9 COORDINATE
GEOMETRY



INTRODUCTION

OBJECTIVES

Coordinate gecometry is a combination of geometry and algebra. Points,
lines and geometric shapes are defined in algebraic terms using the
position of points with respect to fixed lines. or axes. We are able to
calculate distances, areas and volumes accurately, without recourse (o
scaled diagrams. In three dimensions, where diagrams would be difficult to
produce. many of the formulaec of coordinate geometry are simple
extensicns of corresponding formulae for two-dimensional cases. Robotics
is a branch of engineering that makes extensive use of coordinate
geometry.

After working through this chapter you should be able to

calculate the distance between two points with given coordinates

find the position of a point which divides a line segment in a given ratio
find the angle between two straight lines

calculate the distance of a point from a given line

calculate the arca of a triangle knowing the coordinates of its vertices
give simple examples of a locus

recognise and interpret the equation of a circle

define a parabola as a locus

understand the concept of parametric representation of a curve

use polar coordinates and convert to and from Cartesian coordinates
interpret the equation of a straight line in three dimensions

state and interpret the equation of a plane
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9.1 DISTANCES AND AREAS IN TWO DIMENSIONS

In Chapter 3 we introduced the idea of the coordinates of a point. Strictly, they are known
as Cartesian coordinates. In this section we shall use them to help us calculate distances
and areas involving points which lie in a plane. In the heading we refer to two dimensions
since to locate a point in the plane it is necessary to specify two coordinates.

Distances between two points

In Figure 9.1 P and Q are two points with coordinates (x,, v;) and (x,, v,) respectively.
We wish to calculate the distance PQ.

We draw the right-angled triangle POR where PR is parallel to the x-axis and RQ is
parallel to the y-axis. The y-coordinate of R is therefore the same as the y-coordinate of P
and the x-coordinate of R is therefore the same as the x-coordinate of Q. (PR lies on the
line whose equation is v = y, and RQ lies on the line x = x,.) Hence the coordinates of R
are (xy, v).

The lines MP and NQ are parallel to the y-axis and meet the x-axis at A and N
respectively.

Then M is the point (x;.0) and N is the point (x,, 0), hence

RP = NM =x, — x,
In the same way

OR =y, —y
14
0
(x50 v4)
P R
(x..,\‘,){ } (63,3
[ |
| |
| |
| |
[ [
M N X

Figure 9.1 Distances between two points



406 COORDINATE GEOMETRY

Applying Pythagoras™ theorem to the triangle PQR. we have
(POY = (PR + (QR) = (x: —x,)* + 05 — )
Taking the positive square root of both sides of this equation gives
PO = e =) + vy 01
Notice lbal if the minls P and Q are inlcrch‘angcd. the result is the same since
(=) = —n)and (v —v) =0, —n).

Although we have drawn both £ and Q in the first quadrant, the result applies quite
generally.

The distance between the points P(x,.y;) and O(x,, y3) is given by

PO = {(x; —x)* + (o, = 3)")'72 9.1)
Example Find the distance between the points (3, —8) and (=2, 4).
Let x; = 3.y = —8.xy = =2.v, = 4, Then the required distance is

(3= (=20 + (-8 -4y} *

={(3 =2 + (=127}

=25+ 144"}

=13 [ )

Dividing a line segment in a given ratio

In Figure 9.2 () and R are the points (x). 1)) and (x,. vy) respectively. We want to find the
coordinates of the point P which divides the line segment R in the ratio m @ n. ic.
P _m
PR

Let P have coordinates (v. v). The triangle ORT ix drawn so that Q7 is parallel to the
x-axis and 7R is paralle] to the v-axis. Therefore QTR = 90 .
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X

Figure 9.2 Dividing a line segment in a given ratio

Next, PS is drawn parallel to RT to meet Q7 at S. Hence QSP = 90". In triangles QRT
and QPS,

RQT = PQS (common angle)
QTR = QSP  (both 90°)
QIAQT = Qi’S (angle sum in each triangle)

Hence triangles QRT and QPS are similar. Therefore

QS_PS‘QK
QT RT QR
But
i m
Q_ QP _ n _ n _oom
R~ QP+ PR N -
Ok OPHPR mppipr Zyr M
n n
Therefore
QS_SQ_ m

QT TQ m+n
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Example

Since SQ = x — x| and 7Q = x, — x|, we obtain the result

X —x; m

Xy — xl - m-+n ’
Cross-multiplying we have

(m+ n)x --x) = m(x; —x;)

therefore (m 4 n)x = mx, — mx; + (m + n)x; = mx, + ax,
mx, + nx
Then y=—2
m-+n

Similarly, we find that

ny, + ny
V="
. m+n

The coordinates of the point which divides the line segment between (x, y,) and (x5, ;)
in the ratio m : n are

(mxz + nx, my; + ny,)

, (9.2)
m—+n m—+n

There are several observations to make:

(i) Each coordinate of £ is a weighted average of the coordinates of Q and R, the weights

and
m+n m+n

(which sum to 1) being respectively.

1 1
(i) If m = n, i.e. P bisects OR, then coordinates of P arc (2(x1 +x). i(vl +y2)).

(iii) If m > n the point P is closer to R than to Q and the weighting of the coordinates for
R is greater than for Q.

Again, the diagram is for illustration only. The result is true wherever O and R are
located.

O is the point {(—4, —6) and R is the point (2, 4). Find the coordinates of the point P which
bisects QR and the point U which divides QR in the ratio 2:1.

Solution

1 1
The coordinates of P are (E [(—4) + 2]. 3 I(—6) + 4]), ie. (—1,=1).
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The coordinates of U are given by

\__2x2+lx(—éﬂ~0 ’~2><4+1><(—6)*2
T 2+ - 2+ 1 ~3
. . 2
Hence U is the point (0,5). |

Since P lies between O and R we should strictly say that P divides QR internally in the
ratio m1 : n. If P were to divde QR externally in the ratio m : n then QP : PR = m : n but
P lies outside OR; see Figure 9.3.

14

Q

X
Figure 9.3 Dividing a line segment externally

The coordinates of P are given by

mx, — nx, my; — ny,
X=————" Y=
m—n m—n
Example QO is the point (2,4) and R is the point (6.8). Find the coordinates of the point P which

divides QR externally in the ratio 2:1 and U which divides QR externally in the ratio 1:2.
Solution
The coordinates of P are given by

2x6—-1x2
,“_————210' ;=
* 21 ! 21

2x8—1x4
= =12

Hence P is the point (10, 12).
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The coordinates of U are given by

I x6-2x2
_1x6-2x2_

_1x8—2x4__
-2 O

=0.

Hence Q is the point (-2, 0). |

Note that dividing OR externally in the ratio 1:2 is the same as dividing RQ externally in
the ratio 2:1.

Angle between two straight lines

Examples

In Section 3.3 we stated without proof the conditions for two straight lines to be parallel
or perpendicular. We generalise those conditions by stating, again without proof, the
formulae for the angle between two straight lines.

The angle ¢ between the two straight lines vy = mx + ¢, and y = m,x + ¢, is given by

my — my

tanf) = 9.3)

1 +m|m2'

We make the following observations:

(i) If my =m, then tan0 = 0, so ) =0, i.e. the lines are parallel.
@iy If mym, = —1 then 1 +mm, = 0, so tan0 is infinitely large and 0 = 90°, i.e. the
lines are perpendicular.

(iii) If tan 0 is calculated to be negative then # is the obtuse angle between the lines
whereas if tan ) is positive then 0 is the acute angle between the lines.

1. Find the acute angle between the lines y = 2x — 5 and 3x + y = 4.

The first line has a gradient m, = 2. The equation of the second line can be written
v = —3x —4, so the line has a gradient m, = —3. Then the angle ) is given by

2—(=3) 5

=]

tanf =—- 2 __
S 2% (=3 =5

so that 0 = 135°.
The required acute angle is 180° — 135° =45°.

2. Find the equations of the lines which pass through the point P(1, 2) and which make

]
an angle of 45° with the line vy = E(X — 4); refer to Figure 9.4.
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(0, -1)

(0, -2)

Figure 9.4 Diagram for the second example

1
The gradient of the given line is m, = 7 Let the gradient of the line we seek be m,. If

the angle is 45 (linec NP) then tan ) = | and

m -z
l:——]—,i.e. m; = 3.
l+§m,

The equation of the line is

v=2=3x-1)

ie. y=3x—1.
If the angle is 135° (line MP) then tan () = —1 and

1
" B ‘ 1
._l = ————, L. ml =-3

3
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The equation of the line is

1
y=2=—3G-1
1 n 7
i.e =—zx+=
T3
. . . 1
Note that the two lines are perpendicular since 3 x (— 3) = -1 |

Equation (9.3) breaks down if one of the lines is parallel to the y-axis for then its gradient
is infinitely large. Figure 9.5(a) shows that if the other line has a positive gradient
m, = tan 0 then the required acute angle is 90" — 0. If m; < 0 then, as is shown in Figure
9.5(b), the required acute angle is ¢ — 90",

yh A

y=mpx+c|

.\’ = ﬂl| X+ ("
90°-8

X

>y

(a) (b)
Figure 9.5 Angle between two straight lines

Distance of a point from a straight line

Let the line have equation ax + by 4+ ¢ = 0 and the point be P(x,, v, ). There are two cases
to consider: where P is on the opposite side of the line from the origin, Figure 9.6(a), and
where it is on the same side, Figure 9.6(b).

The line PN meets the given line perpendicularly at N and the required distance (the
shortest distance from the point to the line) is d. PM is drawn parallel to the x-axis to meet
the given line at M. Now

d = PN = PMsinf
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180°-6

180°-6

X X
(a) (b)

Figure 9.6 Distance of a point from a line

The y-coordinate of M is cqual to that of P and is therefore y,: since M lies on the line, its
x-coordinate i$ given by ax + by) +¢ =0, ie.

x = —(by, +0)/a.
In Figure 9.6(a)

PM =x —(—{by, +0)/a)

by +¢
:Xl-{»(»}l C)
a

_ax by fc
=S te

In Figure 9.6(b)

PM = (—=(bv, + c}/a) — x,
ax; £ by, +¢)
—

Since we are concerned only with the length PM we may say that

_ax; + by + ¢
= .

PM
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Example

The equation of the line may be written

ax
P = — — —
‘ b

> "

so that its gradient is ~(a/bh).
In both diagrams the gradicnt of the line is tan(180 — 0) = tan¢). Hence tantl = a/b

and sinf = :t——,“i‘,,,
{a- + b))’

We know that sin 0 + cos? @ = 1. so dividing by sin® 0 we get

. This result is now derived.

ie. 4 ——m=

tan’ @ sin’ 0
l 1 1+N a +H
< 5 . = -5 = 0
sin” 0 al a’
.y (I:
Thercfore  sin* 0 = ————=
a’ + M

and taking square roots,

a
sim) = £+ a3
(@ +b)'"*
Since it is the length of PN which is required and since PN = PM sin6), we have the
following result. The perpendicular distance from P(x,, v)) to the line ax + by + ¢ = 0/is
given by

d:lax' + by, +¢|

9.4
(@® + b)'7? 4

We wish to find the distances of the points P(1.2) and ((2,1) from the line
2v + 3+ 1 =0 and to decide whether the points are on opposite sides of the line.
For P the required distance is

2x1+1x24+1 |5

(22 + 1) 5

H
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For Q the required distance is

2x(=2)+1x1+1]_ |-2| 2

(22 4+ 19172 NN

Since the signs of ax, + by, + ¢ are different for P and Q they lie on opposite sides of the
line, as a scaled diagram will confirm. [ |

Area of a friangle

In Figure 9.7 the triangle ABC has vertices A(x, ¥;), B(x;, y,) and C(x3, y3).
AL, CM and BN are drawn perpendicular to the x-axis.

A

[
|
|
‘ B
|
|
[

|
|
I
1

L M N X
Figure 9.7 Area of a triangle

The area of the trapezium ACML is
1 1
E(AL +CM) x LM = 50’1 + 33— x)).
Similarly the area of the trapezium CBNM is

1
E(Vz + y3)xy = x3)



416 COORDINATE GEOMETRY

Example

and the arca of the trapezium ABNL s

]
5 ('V; +.\'3 )(.1’_\ - )

-

Then the area of trigngle ABC s

1 1 ]
SO =y — )+ 2()'_‘ + vy - xy) — 2(1', s )

Expanding this expression and cancelling leads to the tollowing result:
1
Area of A ABC = 5!-"1("2 =) + %05 —») + X301 =)} 9.5)

Sometimes this formula leads to @ negative value for the arca. To ensure a positive
answer, we should label the vertices of the triangle so that, when moving round the
perimeter of the triangle trom A 1o B 10 C o A, the triangle is always on our left. Iuis
simplest to ignore the minus sign when it arises

Find the area of the triangle with vertices A(6. 4). 8(1.2) and C(4. 6).
Here vy = 6. x, = 1oy =40y =40 vy = 20 vy = 6. Henee the area is given by

]
602 6 b 16 Hdd Dp=f 24248 =7,

(2% 2

The actual arca is 7. [ ]

Exercise 9.1

Write down an eapression for the distance between two points (. b) and (c. ). Which of
the following three points is furthest from the point (2, 1)?

() (-5, 4 (b) (7. 6) ©) (3. - 7)

What is the acute angle between cach of the following pairs of lines?
() y=3x+12v-y=5

(b) IDN4+Sr43=0x-5r=2

(<) 1.06x + 3.07v ~ 15 =0, 9.86x — 8.56v=17.5
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(a)

(b)

(c)

(d)

(a)

(b)

(b)

Where does the line

X

a b

intersect the coordinate axes?

When «a, b > () draw the line in (a) and the perpendicular to it from the origin. Use
similar triangles and Pythagoras® theorem to show that the length of the
perpendicular is

How is the result in (b) modified if a or b, or both of them, are negative?
Find the shortest distance to the origin from the lines

v

(i) t5=1 (i) 3x—4r=5,

| =

For the line in the Question 3(a), prove that, regardless of the sign of ¢ and b.
the coordinates of the foot of the perpendicular from the origin to the line are

( b a )
(@ + b)) @2+ 622 )
What is the equation of the line segment OP?

Following the method of Question 4, determine the distance from the origin to
the straight line, given in the general form

Ix+my+n=0.
Transfer the origin to the point (x,.1) using the transformation X = x — x|,
¥ =y —y: hence prove that the distance of the point (x;.y)) to the line

+mv+n=0is

|lx; + my, + n|
(2 4+m)'"?

(7 is the centroid of A ABC. The centroid G is such that

1

oG = 5(()/4 + OB + 0C).
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7

9*

Write down the coordinates of the centroid of the triangle whose vertices are the points
(6, =2), (=2, —1)and (3, 5).

B
C
A o
The line y = 2x — 3 is rotated about the point (2, 1)
(a) 45° clockwise (b) tan~'(2) clockwise (c) 45° anticlockwise

Obtain the equation of the rotated lines in each case. Draw the graph in case (c).

The point (1, 6) is 4 units distant from a line which lies to the right of it, and which
intersects the x-axis at 45°. What is the equation of the line?

(1. 6)

45°

The point (x, y) is free to move so that it is the same distance from the two fixed points
(2, 5) and (6, 1). Equate the squares of these distances and show that the coordinates x and
y must satisfy the equation

x—y=1

What does this mean?
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o ()

, (6. 1)

10* An enclosed garden is bounded by four walls and is therefore shaped in the form of a

quadrilateral. A landscape gardener wishes to plant a tree in the middle so that the distance
to the nearest wall is a maximum. How could the optimum position be found?

You are advised that there is no straightforward method to the optimum solution, even
though this solution exists. Numerical methods are needed and these are beyond our
scope. Try it first then look at two ideas in the answers.

9.2 LOCI AND SIMPLE CURVES

Example

If a point moves to satisfy some condition then the path it traces out is called its locus
(plural loci). As an example we may require it to be on the straight line joining the points
(1, 1) and (2, 3); its coordinates then satisfy the equation 2x — vy — | = 0.

A point P moves so that it is equidistant from the points 4(—1, 2) and B(2, —1); describe
its locus.

Figure 9.8 illustrates the situation. One position for P is the midpoint of the line
segment AB. The condition on P is that P4 = PB, so

(PAY = PBY
ie. = (=1 + (=2 = =2+ — (=D’
ie. 4+ 1)+ -2 =x—-2 +@+1)
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B

Figure 9.8 Locus of a point equidistant from two given points

Expanding and cancelling we obtain

A+l —dv+a=x —dx 447+ 2v 41
or 6x = 6y

ie. XxX=y

The locus of P is therefore a straight line passing through the origin. The standard
equation of the locus is y = x. (It is the perpendicular bisector of 4B.) |

Intersection of two loci

Where two loci meet, the points of intersection can be found by solving simultaneously
the equations of the loci.

Example Find the points of intersection of the line y = x 4+ 2 and the curve y = 2x* — x + 2.
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Example

Solution

Substituting the first equation into the second, we obtain
Y+2=2"—x+2

or 2¢0 = 2x =

i.c. 2x(x — 2) = 0.

Hence x = 0 or x = 2. When x = 0 cither of the original equations gives v = 2 and when

X = 2.v =4. The points of intersection are therefore (0. 2) and (2. 4). |

A straight line which meets a curve in only one point is called a tangent to the curve at
that point. The single point of intersection is known as the point of contact.

Show that the line y = mx + a/m is a tangent to the curve v = dax for all values of
m #£ 0 and find the coordinates of the point of contact.

Substituting the equation of the line into the equation of the curve, we obtain

a )\’
(m.\' + —) = dux
m

2

. LR [
le. m°x” 4 2ux + — = dax
m
,
. 7 2 2
Le. mx —2ux+—=0
m*

a2
or mx —— |} =0.
m

a . . . . . . .
Hence x = — is the only solution. Using the equation of the line we find that
m*

a a2
V= —_— =

m o m  m

. . . a 2u
The point of contact has coordinates ( = ——-). |
m=m

Some important loci

Circle

The locus of a point which moves so that its distance from a fixed point is constant is a
circle. The point C is called the centre of the circle and the constant distance is the
radius of the circle. Figure 9.9 shows the situation where the centre C is the point (x,. 1y)
and the radius is a.
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Example

Figure 9.9 A circular locus

Let P(x,y) be a point on the circumference of the circle. Then PC = a. Hence
(PCY =a?,

ie. x—x) +—p) =d (9.6a)

is the required equation. Note that in the special case where C is the origin the equation
simplifies to

4y =dk (9.6b)

Find the radius and the coordinates of the centre of the circle whose equation is
32431 —6x + 12y = 12,

Solution

First we divide the equation by 3 to obtain
2,2 —
X +y —2x+4y =4

Then we collect the terms in x and y:

Fe2r=x—2x+1-1=@x—-17°-1
and V' 4+dv=1P+4v+4-4=(+2"—4
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Hence the equation can be written

x—1?+@+27-5=4
or x—1F+@+27=9=3%

Comparing this with equation (9.6) we see that the radius of the circle is 3 and its centre
is the point (1, —2). ]

Parabola
The locus of a point which moves so that its distance from a fixed point is equal to its
distance from a given line is a parabola. The fixed point is the focus of the parabola and
the given line is the directrix. Figure 9.10(a) shows the general case where S is the focus

and PS = PM.
j P/
M

(2.0

ro

Figure 9.10 Parabola

Example Find the equation of the locus of the point P which moves so that its distance from the
line x = 2 is equal to its distance from the point (2, 0).
From Figure 9.10(b) we know that PS = PM. Let P be the point (x, y). Then M is the
point (—2. v). Furthermore,

PM =x+2
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and
(PS)? = (x — 2" + (y — 0)°.
Since (PS)? = (PM)* it follows that

(x =22+ (=07 =(x+2)

ie. X —dx+4+y =x +4x+4
0 that V= 8x
which is the required equation. ]

When the directrix is the line x = a and the focus is the point (a.0) the equation
becomes

Vv = dax. (9.7)

This way of writing the equation is called standard form.

Ellipse

The locus of a point which moves so that the ratio of its distance from a fixed point to its
distance from a given line is constant and less than 1 is an ellipse. The ratio of the
distances is the eccentricity of the ellipse, denoted e.

Figure 9.11(a) shows the general case and Figure 9.1 1(b) depicts the standard form of

the cllipse. The directrix 1s x = 4 and the focus is the point (ge, 0). If we denote the
(4

Focus

il

Directrix

(a) (b)
Figure 9.11 Ellipse
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expression a*(¢* — 1) by % then the equation (in standard) form is

2
%+é:L (9.8)

Hyperbola

The locus of a point which moves so that the ratio of its distance from a fixed point to its
distance from a given line is constant and greater than 1 is a hyperbola. The ratio of the
distances is the eccentricity of the hyperbola, denoted by e.
Figure 9.12(a) depicts the standard form of the hyperbola. The directrix is x = ? and
e
the focus is the point (ae,0). If we denote the expression a®(¢? — 1) by b? then the
equation (in standard form) is

2y
] 9.9)

The dashed lines which the curve approaches as x approaches infinitely large positive or
infinitely large negative values (i.e. on the far right or the far left) are the asymptotes of
the hyperbola. They have the equations

y:iéx (9.10)

<y

Directrix

(a) (b)
Figure 9.12 Hyperbola
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Exercise 9.2

When the asymptotes are perpendicular b = ¢ and the curve is called a rectangular
hyperbola. In the example shown in in Figure 9.12(b) the asymptotes are the x and y
axes. The standard form of the rectangular hypberbola is

xv = (9.11)

Determine the locus of a point which is equidistant from the origin and the point (3, 1).
Draw a sketch to illustrate the answer.

Prove that the locus of a point equidistant from two fixed points (a, b) and (¢.d) is a
straight line. Determine its equation.

Write down the equations of the straight line which are equidistant from the following
pairs of points.

(a) (0, 5) and (6, 4) (b) (3, 4) and (2, =7).

Determine the two points which are exactly five units away from both of the points
(=2, 0) and (6, 0).

Find the two straight line loci of a point equidistant from each of the coordinate axes.

Determine the equations of the two straight lines which are the loci of a point equidistant
from both 3x + 4y = 5 and 4x — 3v = 5.

A point (x, y) moves such that its distance from the point (0. 5) is equal to the square of its
distance from the origin. Prove that x and y satisfy the equation

Ay 4t x4 10y = 25,

Determine the Cartesian equation of each of the following circles, expanding it out in full.

(a) centre (2, 1) and radius 3 (b) centre {(—5, 4) and radius 6.

Determine the equation of the locus of a point which is equidistant from the point (0, 2)
and the x-axis.
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10* A point moves so that its distance from the line y = 3 is twice its distance from the origin.

Find its locus.

9.3 CIRCLES

Example

In the last section we found the equation for a circle. The standard form of the general
equation is

A+ +2gc+ 2 4+c=0 (9.12)
This can be rewritten as
G+ +o+fV =g+ —c

which represents the circle whose centre is the point (—g, —f) and whose radius is
(g +/2 =o'

Find the radius and the coordinates of the centre of the circle whose equation is
2,2
X+y —-2x+4v—-4=0

Here g = -1,/ =2 and ¢ =4. Hence the centre is at (1, —2) and the radius is
[(—1)+ 22 + 4]"/? = /9 = 3. (This is an alternative to the approach on page 428.) W

Equation of a circle on a given diameter

Suppose that 4B is a diameter of the circle in Figure 9.13. Let P(x, y) be any point on the
circle. From Chapter 5 we know that the angle APB = 90", so the line segments AP and
PB are perpendicular.

The gradients of the lines 4P and PB are respectively

Y=» and y—)’2'
X — X X—X;
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B (x5.%5)

X

Figure 9.13 Circle on a given diameter

Hence

(,,\' —)'|)<}’ —)‘2) -1
X—x /\v—x,

or (x—x =)+ =y =) =0

Sometimes an alternative approach may be preferable as the following example shows.
Example Find the equation of the circle on the diameter whose endpoints are 4(1. —4) and B(S, 2).

The centre of the circle, C, is the midpoint of 4B; its coordinates are therefore (3, —1).
The radius is the length of AC and
(ACY =B~ 1) + (-1 —(—4) =4 +9 =13,

The radius is therefore /13 and the equation of the circle is

(x =37 +(+ 1) =13. [ ]

Equation of a circle through three given points

There is only one circle which passes through three given non-collinear points. In general
it is necessary to find the solution of three simultancous linear equations o determine the
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Example

equation of the circle and this can be quite tricky. Sometimes, however, as the next
example shows it can be straightforward.

Find the equation of the circle which passes through the origin and the points (0, 2) and
{—3, 3). Find the radius and centre of the circle.

The general equation for a circle is X2 + 37 + 2gx + 2fy + ¢ = 0.
(0, 0) lies on the circle, so ¢ =0
(0, 2) lies on the circle, so 4 +4f +c¢c =0
S==1
(1, 3) lies on the circle, s0 1 +9 —2g 4+ 6/ + ¢ =0
g=2.
The equation of the circle is therefore
¥4y A -2y =0.
This can be written
x+2 '+ -1V =5

so the centre of the circle is (=2, 1) and its radius is /5. [ ]

Intersection of a straight line and a circie

The general case is complicated to handle, so for now we confine our attention to a circle
whose centre is at the origin.

Let the circle be x2 4+ 2 = o’ and the straight line be y = mx + ¢ these intersect where

4+ (mx + c)2 =d

or (1 + m? ))(2 +2mex + & —a = 0.

This quadratic equation has two real roots if its discriminant is positive, i.e.
e if 4m°t > 401 + m*)c? — az).

This reduces to the condition

& > (1 + m?)a?.
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This is the condition for the line to cut the circle in two distinct points.
Similarly we can argue that if

3 < (1 + mz)a2

then the line does not meet the circle at all.
If there is only one point of intersection then the straight line is a tangent to the circle,
so the line y = mx + ¢ is a tangent to the circle x> +1? = o° if

& = (1 +mha*. (9.13)

Examples 1. Show that the straight line x + 3y = 10 is a tangent 1o the circle x* + y* = 10 and find
the coordinates of the point of contact. Find the equation of another tangent to the circle

in the same direction, i.e. a paralle] tangent.
The equation of the line can be written x = 10 — 3y. This meets the circle where

(10 =3y +32 =10
ie. 10y? — 60y +90 = 10
ie. V' —6y+9=0
or (v — 3)* = 0.

There is only one solution, y = 3, and therefore x = 10 — 9 = 1. The point of contact
is (1, 3) and since it is unique the line is a tangent to the circle.

Alternatively, since the equation of the line can be written as y = — gx + 3 then
10 .. 10 100
c= ?m = -3 Since a® = 10 then (1 + m*)a® = 5 x 10 = o5 = ¢?. Hence,

from equation (9.13) the line is a tangent.
From Figure 9.14 we see that the parallel tangent has (—1, —3) as its point of
contact. Its equation is x + 3y = ¢ and, since (—1, —3) lies on the line, we can say that

—10=¢ ie.c=-10.
The equation is therefore
x4+ 3y =-10.

2. A circle whose centre lies in the first quadrant touches both coordinate axes. The line
3y = 4x + 6 is also a tangent to the circle. Find the equation of the circle and the point

of contact with the given line.
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y
\ (.3

(-1.-3)

Figure 9.14 Tangents to a circle

Let the equation of the circle be
X +3? +2gx+ 2/ +c=0.

The circle meets the x-axis, i.e. y = 0, where x*> + 2gx + ¢ = 0.

Since there is only one point of contact, the left-hand side of this equation must be a
perfect square, i.e. (x* 4+ 2gx + g?), so ¢ = g*. Similarly the curve touches the y-axis,
ie.x=0,if 2 =c

The equation of the circle can therefore be written

xz+yz+2g)c-{—2gy—~}—g2 =0.

The line 3y = 4x + 6 meets the circle where

4 : 4x + 6
x2+<x3+6) +2gx+2g( x;— )+g2=0

which reduces to

2522 + (48 + 42g)x + (36 + 36g + 9g%) = 0. (9.14)
For the line to be a tangent this equation must have equal roots. Hence

(48 + 42g)° = 4 x 25(36 + 36g + 9g°).
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This eventually reduces to the equation
28 +g-3=0

. . 3

which has solutions g = 1 and g = ~5

The value g =1 is rejected since this would give the centre of the circle as
(—1, —1), which is not in the first quadrant.

3 . (33 . . .
Hence g = — 7 so the centre of the circle is (5 , 5) The equation of the circle is

9
x4yt —3x =3y +,= 0.
Equation (9.14) becomes

9
2557 — 15x+5=0

ie. 100x* — 60x +9 =0
ie. (10x -3 = 0.
Lo 3 . . . 12
Here the only solution is x = 0 and, using the equation of the line, y = 5 |

Length of the tangent from a given external point
A point P(x,, y,) lies outside the circle (x — x,)* + (v — y,)* = &2 if
(x; — X + o _,Vn)z > a
In Figure 9.15 PT is one of the tangents from P to the circle x* +y* + 2gx 4+ 2fi + ¢ = 0.
From Pythagoras’ theorem we see that the length of the tangent PT from P to the circle is
given by (PT)’ = (PC)* — (CT)".
Since C is the point (—g, —f) then
(PCY* = (xo + )" + (o + /).

And CT is a radius of the circle, so

(€T =g+ —c.
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Figure 9.15 Length of a tangent o a circle

Theretore

(PTY = + 208 + &+ + 20 f +/2 -8~ +¢

=X} + 5 + 2gx%) + 2y + c.

This expression is the left-hand side of the equation of the circle with x replaced by x, and
v replaced by v,.

Parametric representation of a point on a circle

In Figure 9.16(a) the point P lies on the circle x* +y* = a®. The line OP makes an angie
{) with the positive x-axis. When P is at the position A this angle is zero, and (} increases
as P moves anticlockwise round the circle from A. When ) = 360° the point P has
returned to A.

Each point on its journey corresponds to a different value of 0 and each value of # in
the range 0° < 8 < 360° corresponds to a different point on the circle. The angle 0 1s
called a parameter.

From Figure 9.16(b) we can see that OM =x = acosf) and PM =y = asin{. The
coordinates of P can be written (acos @, asin ).
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P P(x, )

(@) (b)
Figure 9.16 Parametric representation of a point on a circle

Note that

2+ =a*cos? 0+ a*sin’ §
= a?(cos? 0 + sin? 0)

=a’ x|

which shows that the point whose coordinates are (acos@, asinf) lies on the circle
x2+y? =a’

Exercise 9.3

1 The line y = x + ¢ touches the circle x> +3? = 9 in the second quadrant. Determine c.
Show that there is another choice for ¢ in the fourth quadrant.

2* Of the two circles which are drawn in the diagram, one has radius 13 with centre (9, 12)
and the other has radius 10 with centre (—4, —6).
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.
(-4, -6)
(a) Write down the equations of the circles in expanded form.
(b) Subtract one from the other to confirm that the coordinates of the points of
intersection satisty the equation 13x + 18y = 52.
(c) Substitute this relationship back into one of the equations to prove that the points
of intersection are (4, 0) and (—0.8195, 3.4807).
(d) Find the area common to both circles.

Determine the coordinates of the points of intersection of the straight line y = —(x +7)
and the circle 3x* 4+ 3)? — 18x — 20v + 57 = 0.

Determine the equations of the circles which pass through the following sets of points:

(a) 0, ), 3, 1)and (3, 9) (b) (—2,2) 2, 4)and (5, =95)

Show that the equation of the locus of a point which moves so that the sum of the squares
of its distances from the points (1, 0) and (—1, 0) is constant and equal to 18 is
437 =8

The general equation of a circle is given by

X+ 42804+ 24+¢c=0

In terms of g, /and ¢ find the radius and the coordinates of the centre of the circle.
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7

10*

Show that the equation for the locus of a point which moves such that its distance from the
point (—2, 0) is twice its distance from the point (0, 1) is a circle. Where is the centre and
what is the radius?

(a) On the circle x2 +y2 = | mark the points

. Sn 5
P (cosg . sin g) Ps(cosm.sinm), Py (cos—;, sin 7”)

(b) Find (i) the Cartesian form and (ii) the parametric form for the circle of radius /2
centred at (1, 1).

By completing the square in x and v determine the coordinates of the centre and the radius
of the following circles:

(a) XAV 4 A -6 4+5=0 (b) Ay =5+ -3=0
Interpret the meaning of the following ‘circle equations’:

(©) XAV A +2v4+5=0 (d) X4+ —bx—dy+20=0
A circle has centre (3, —2) and radius 5.

(a) Determine the coordinates of the points where it crosses the x and v axes.
(b) At what points does the line y = x intersect the circle?

9.4 POLAR COORDINATES

In the Cartesian system of coordinates the position of a point lying on a plane is specified
by its distance from two perpendicular lines in the plane, namely the x- and yv-axes. In
some situations an alternative system is more appropriate, especially when a key feature
of the situation is the distance of an object from a fixed point.

In polar coordinates the fixed point is denoted by O, the origin of coordinates and the
distance of a point £ from O is denoted by r. Knowing that a point P, is a distance » from
O does not fix its position; it merely confines P to a circle of radius r centred at the origin.

We specify a fixed ray (half-line) starting at the origin then measure the angle (
through which the ray must be rotated anticlockwise to lie along OP; see Figure 9.17(a).
The numbers r and ) are the polar coordinates of P and P may be represented as (r, 0)).

Figure 9.17(b) shows four points £ to P, and their polar coordinates. Note first that we
have measured angles in degrees. We could have used radians instead, for example,
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)
(3.135°%)
P
(r. 6)
£y
3 2o
’ 2 2. 30°)
45°

o 30°

0 Fixed ray 60° 40° Fixed ray
: 1.5
P3 Py
(1.240°) (1.5. 320°)
(a) (h)

Figure 9.17 Polar coordinates

P, could be represented by the pair of coordinates (2. g) Note also that if anticlockwise

rotation is specified as positive then clockwise rotation is negative. As an example we
could specify P, as (1.5, —40°).

If the object rotates anticlockwise about O at a constant angular speed «, measured in
radians per second, then it will be at any particular position on several occasions. If the
object is initially at P, then at any subsequent time ¢ it will be at the point P(a, wi); see

. . T . TS
Figure 9.18. If » = 2 radians per second then the object is first at £, at f = 1. It returns
to P, after 8s,i.e. at r = 9s;itis at P) again at 1 = 17,7 = 255, and so on. According to

n 9
the general formula at + = 15 the position of P is (a. Z) at 1 = 9s the position is (a, Tn)

17n
andat/ = 17s it is (a. T) All represent the same position, so the coordinate 0 is not

13

0 ¢ sixed ro
Py Fixed ray

Figure 9.18 Rotation at constant angular speed



438 COORDINATE GEOMETRY

uniquely defined. Adding (or subtracting) a multiple of 2r radians (or 360) does not alter
the position of a point.

To be specific, we limit () to the range —[180° < (# < 180° (or —n < ! < 7 in radians);
sometimes it is limited to the range 0° < ) < 360° (or 0 < 0 < 2n).

The link between Cartesian and polar coordinates

By choosing the origin of polar coordinates to coincide with the origin of Cartesian
coordinates, and choosing the fixed ray to be the positive part of the x-axis, we are able to
relate the two coordinate systems to each other; sce Figure 9.19.

y
P
,
Yy
’ ]
X
0 X M Fixed ray

Figure .19 Polar and Cartesian coordinates

Using the fact that OPM is a right-angled triangle, it follows that

x = rcos(l, ¥y =rsin{. 9.15)
Hence we can readily, and uniquely, convert from polar coordinates to Cartesian
coordinates.
Example P, is the point (2, 30"), P, is the point (3, 1357), P, is the point (1, 2407). What are the

Cartesian coordinates of these points?

Solution

For P, we have r = 2 and () = 30°, so

3
x:2cos30":2xl§=ﬁ‘ _1'=2sin3()“:2><%: 1.
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Example

Hence P, is the point (+/3, 1) in Cartesian coordinates. The other two points can be
obtained as follows:

P, is the point (3 cos 135”, 35in 135%) = (3 X (— L) Ix l)

) A
(3232
B 22
1
P; is the point (cos 2407, sin 240°) = (— 7 ?) |
Also from Figure 9.19 we see that
¥ o=xt 4y tanfl = y/x. (9.16)

We can use these equations to convert from Cartesian coordinates to polar coordinates.
There is a difficulty in identifying 0 correctly as the following example shows.

Find the polar coordinates of P(2,2) and Q(—2, —2).

Solution

For P, #* =22 4+22 =38 r=22
2 ,

Also, tan():iz 1 L0 =457,

Hence P is (24/2,45") in polar form.
For 0,7 = (=2 + (=2 =8 .. r=2J2

Also, tanl=-—=1.
so an )

A calculator would provide the answer = 45°, which cannot be so; P and Q are
different points and must have different polar representations. Reference to Figure
9.20(a) helps to resolve the dilemma.

It is clear from the diagram that Q has the polar form (2+/2.225%).

The difficulty arises since tan 225" = | = tan45° and using INV TAN on a calculator
gives an answer in the range —90° < 0 < 90°. |
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2 45° /45° 1
459 2 X | 45 X

t=

(-2.-2) (a) (b)

Figure 9.20 Converting from Cartesians to polars correctly

Figure 9.20(b) shows that in the Cartesian system R = (—1. 1)and S = (1, —1). Both R
and S lead to

o= (=1 + (1) =2, s0r = V2.

Calculators would give the result § = —45-, which identifies S. To get the correct angle
for R we must add 180" to produce 135°.

The lesson is clear. A sketch of where the point in question is positioned indicates
whether the calculator value of ) is correct or whether we must add 180 1o it.

Curves in polar form

We have already seen that the curve »=constant is a circle centred at the origin. If we
take the example » = a then * = @, and from (9.16) this becomes x* 4+ v* = ¢, which is
familiar to us from the previous section.

The form of a ray or half-line through the origin is () =constant. In Figure 9.21 the

solid half-linc has equation () = g Tt can also be specified as y = x. x > 0. The other ray,

5
shown dashed, is } = f orv=uxx<0.
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Examples

Figure 9.21 Two related rays

I. Write the equation » = 4 cos {} in Cartesian form.
Multiplying both sides of the equation by r, we obtain

r* = 4rcosl

2

and since r* = x* + )* we have

Le. P4y =4r or X —dx+y' =0

We have to beware that this does not introduce points which were not present in the
original equation. Multiplying by » allows the solution r =0, ie. x =y =0, the

.. . n . . .
origin. But when 0 = 90" or 3 radians » = 0, anyhow. No new points are therefore

introduced.
Completing the square we see that

(F—dv+ 4417 =4
or (x—2)2 +y2 =4

which is a circle of radius 2 centred at the point (2, 0).

The circle is now easily drawn, but we could have sketched it directly from the
polar form. Polar graph paper is designed to be radially symmetric as in Figure 9.22,

We measure the distance » along radial bearings. We choose a value of ), work out »
from the equation » = 4 cos () and plot a point distant » from the origin in the direction
given by the angle (0. For example, r = 4 when 0 = 0,

Since cos(—0) = cos ) there is symmetry about the x-axis. Note too that

< < =tokeepr=0.

DT
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Figure 9.22 Generation of a polar curve

2. Plot the curve » = a(l + cos 8) where a > 0.
Taking 0 < 0 < 2x tabulate 0 and " for selection of values of 0. The polar graph is
a

shown in Figure 9.23 and is known as a cardioid because it is heart-shaped.

 (degree) cos f) rla
0 1 2
30 0.87 1.87
45 0.71 1.71
60 0.5 1.5
90 0 ]
120 —-0.5 0.5
135 —-0.71 0.29
150 —-0.87 0.13
180 —1 0
210 —0.87 0.13
225 —-0.71 0.29
240 —-0.5 0.5
270 0 |
300 0.5 1.5
315 0.7 1.71
330 0.87 1.87

360 1 2
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0.5

to

Figure 9.23 The cardioid r = a(l +cosf) with a=0: in this case the radial
coordinate is r/a, which is equivalent to taking a = 1

Note that we took 0 < () < 27, starting on the positive x-axis and proceeding to the
cusp; the cusp is the sharp corner on the curve when () = n. We then proceeded along
the lower branch to 0 = 2n, where we started. Equally we could have taken
—7n < () < m and plotted the curve anticlockwise from the cusp and back to the cusp.
Note that the curve is symmetrical about the x-axis. This is always the case when {
appears as cos (), because cos(—0)) = cos ().

3. Plot the curve r = | + 2sin 0 for 0 < 6 < 2n. First we tabulate values of  and r; note
that € is in radians.

) (degree) sin {1 r
0 0 1
n/6 0.5 2
/4 0.71 2.41
n/3 0.87 2.73
n/2 I 3
21/3 0.87 2.73
3rn/4 0.71 241
Sn/6 0.5 2
7 0 |
T1/6 —-0.5 0
Sn/4 —-0.71 —-0.41
4n/3 —0.87 ~0.73
3n/2 - .
Sn/3 —0.87 —0.73
Tn/4 —0.71 —0.41
/6 —0.5 0

2n 0 1




444 COORDINATE GEOMETRY

8=7n/6 6=1In/6

Figure 9.24 Polar graph for curve r =1+ 2sin0,0 <6 < 2n

We see that when 0 = 7n/6 the curve returns to » = 0 then » becomes negative.
This is because the origin is crossed and negative values are essentially in the
vertically opposite quadrant. Another change of sign takes place when ¢ = 117/6 with
the curve returning to » = 1 on the x-axis when () = 2x. For larger values of 0, or
negative 0, it merely repeats itself. Refer to Figure 9.24.

4. Plot the spiral r = 0/2x, ¢ > 0 as far as § = 6n. Here we see that the range of 6 is not
restricted and the spiral expands outwards indefinitely. Usually, however, restrictions
do apply, especially when trigonometric, i.e. periodic, functions are involved: see
Figure 9.25. ]

Figure 9.25 Polar graph for the spiral r = (/22,0 < 0 < 6n
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Exercise 9.4

1

Determine the Cartesian equations of the following polar loci:

(a) r = —4cos ) (0 second and third quadrants)
(b) r=2sinf

Sketch the curve in each case.
Determine the polar equation of the straight line x = c.

A straight line is a distance « from the origin at its closest point. Which of the following
polar forms is correct?

(a) d = rcos(x+ ) (b) d = rcos(x — 6)
(¢) d = rsin(x + () (d) d = rsin(x — )
d
o

Determine polar forms for the following Cartesian equations:
(@  x*+)" =10y b Fy =0+ -y
©  3x=pd )" d PP =G-D -1

In cases (a) and (d) interpret fully and draw sketches.
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5

7:/
e

A parabola with focus at the origin has directrix x = —2a.

(a) Use the focus-directrix property, SP = ¢PM, to prove that the polar equation of the
parabola is

2
“_ 1 —cosd.
,

(b) Where is the vertex, in Cartesian coordinates?

(©) Prove that the Cartesian equation of the parabola is v2 = 4a(x + a).
6* Sketch the curve

r=14+ccosl

where ¢ is a constant. Consider the cases ¢ = 0.8, ¢ = 1.2. In what sense is ¢ = | critical?
What happens with ¢ = —17
7* Sketch the inward spiral

4n
V=
0+2n’

>0

How does this compare with the curve in Question 67
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8* Sketch the following curves:

(@) B 10sinf
"T T

(b) F=6¢cost + 8sin#.

, 0 > 0; assume that » = 10 when 0 =0

You may find that part (b) is sketched more easily by first putting it into Cartesian
coordinates.

9.5 THREE-DIMENSIONAL GEOMETRY

In a plane (two dimensions) we need two independent coordinates to specify the position
of a point; in three-dimensional space we need three such quantities. The rectangular
Cartesian coordinate system can be extended for this purpose. Figure 9.26 shows a
Cartesian coordinate system in three dimensions.

The point N is vertically below the point P. The x and y axes are, as usual,
perpendicular to each other and intersect at the origin O. The third axis, the z-axis, is
drawn to be perpendicular to the other two axes. The direction of positive z is chosen so
that the whole system is ‘right-handed’. A simple test for this 1s, if the first finger of your
right hand points in the direction of positive x and the second finger points in the direction
of positive y, then the thumb points in the direction of positive z.

The x and y axes lie in a plane called the x—y plane, the y and z axes lie in the y—z plane
and the x and z axes lie in the x—z plane. These three planes divide three-dimensional
space into eight parts known as octants. One such octant is where x, y and z are all > 0.

The position of a point is specified by three distances, as shown in Figure 9.26. Each of
the three coordinates can be positive or negative, giving eight possible combinations, one
for each octant.

(X Yoy 20

M ]

/ Yo N

Figure 9.26 Three-dimensional Cartesian coordinates
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Distance between two points

The distance between two points is found by applying Pythagoras® theorem twice in
succession: refer to Figure 9.27. PM is paralle] to the x-axis. MN is parallel to the y-axis
and NQ is pacallel to the z-axis.

Then

(PQY = (PNY' +(QN)
= (PM) + (MN) 4 (ONY
by applying Pythagoras™ theorem first to the right-angled triangle PNQ and then to the
right-angled triangle PMN.
Now M is the point (xs.v,.2,) and N is the point (x;.v;.2)). Hence the distance

PM = x, — x,. the distance MN = 3, — v, and the distance QN = =, — z,. We have the
following result:

The distance d between the two points (x;; ¥;,2,) and (x,, ¥;, 2;) is given by

& =x-x) +0m-n+@E-2) 9.17)

x

Figure 9.27 Distance between two points
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Example Which two of the points P(2,3,4), (0, —1.0), R(3,3, —1). S{(4.1.2) are (i) furthest
apart and (ii) closest together? (Note that ,°, means ‘therefore’).

Solution

(PO =(0—2" +(—1 -3 +(0—4P =4+16+16=36 .. PO=6
(PRP=(3 =2 +(B -3 +(-1 -4 =14+0+25=26 .. PR=+26
(PSP =(4—2Y +(1 -3V +(2-4) =4+444=12 - PS=2V3
(ORY =(3—=0P + B — (=D 4+ (=1 -0 =9+16+1=26 . OR=+26
OSF=@—0 +(0—-(=D))P+Q2-07=16+4+4=24 . 05S=2V6
(RS =(4 -3V 4+(1 =3V +Q2—(=1)=1+44+9=14 . RS=+14

Hence P and Q are furthest apart, and P and § are closest together. ]

Equation of a line in fwo dimensions (2D)

Suppose that we wish to find the equation of the straight line which passes through the
points (2, 1) and R(4, 4). Referring to Figure 9.28, we can calculate the gradient of the

. RN 3
line to be — = -

NO 2

PM 3
Let P(x.v) be a point on this line, then the ratio — = = wherever P is placed. As we

move from {J to P the distance travelled parallel to the v-axis is (;) times the distance

Figure 9.28 Equation of a line in two dimensions
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travelled parallel to the x-axis. We could therefore write the coordinates of P as
3
x=2+u, y=1+ 2%

where u is a parameter.
Alternatively, to avoid fractions, we can write

x =242t y=143t (9.18)

. 1 . .
where ¢ is also a parameter, equal to Eu. (We use O as our starting-point but we could
have used R instead.)
Each value of 7 corresponds to a unique point on the line. At O we have t = 0 and at R

1 1
we have f = 1. When ¢t = —5 the point is (l, —5) and when ¢ = 3 the point is (8, 10),
and so on. Points where ¢ is negative lie to the ‘south-west’ of Q, points where 0 < ¢ < |

lie between O and R and points where 7 > 1 lie to the ‘north-east’ of R.
We can write equations (9.18) in the form

x=2 y-1
== 9.19
2 3 ( )
Although this is not an elegant form, it will be useful for the case of lines in three
-2 —1
dimensions. Starting with x_z_ :y—3—, we multiply by 6 to obtain

3Ix—6=2y—2
3
or y:§x—2

which is a more familiar form of the equation of a straight line.
The ratio 2:3 formed from the denominators of the fractions in equation (9.19) is called
the direction ratio for the line.

The angles o and f§ in Figure 9.28 are the angles made with the positive x-axis and the
positive y-axis respectively. The values of cos « and cos f§ are called the direction cosines

of the line.
. - 2
Since RON = a then cosa = cos RQN = ﬁ and since ff =90 —a then cosfi =
. .o 3
sine = sinRON = —. Hence cosa:cosfi =2:3, the direction of the line, and

V5

cos® o + cos’ i = cos® a + sin®a = |.
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Equation of a line in three dimensions (3D)

Suppose we wish to find the equation of the straight line joining the points Q(2, 1. 2) and
R(4, 4, 3) in Figure 9.29. OS is a straight line segment of unit length parallel to OR.
Moving from Q to R, the x-coordinate is increased by 2, the y-coordinate by 3 and the
z-coordinate by 1. By analogy with the two-dimensional case the direction ratios of the
line are 2:3:1. (Note we use the plural ‘ratios’.)
If P(x,y,z) is any point on the line then x =2 427y =14 3t.z=3+t. These
equations can be rewritten as

x~2 v—1 z-3
23

(9.20)

since each fraction is equal to ¢.
Note that the direction ratios are usually expressed in terms of integers. However,
equations (9.20) can also be written as

for any value d # 0.

Figure 9.29 A line in three dimensions
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The general result follows. The equations of the line which passes through the point
(xg. ¥9» 2o) and which has direction ratios [ : m : n is

.r—a:y—b:z—c_ (9.21)
! m n

Example Find the equations of the straight line which passes through the points (3, —1, 2) and
(=2,3, 0.

Let Q be the point (3, —1, 2) and R the point (-2, 3, 0). Then in moving from Q to R
the x-coordinate decreases by 5 (increases by —5), the y-coordinate increases by 4 and the
z-coordinate increases by —2. The direction ratios are therefore —5:4: — 2 and the
equation of the line is

x=3 y—=-(-1) =z-2
-5 4 0 =2
x=3 y+1 =-=2
-5 4 =27

Note that if we use R as our ‘base point’ the equations become

x+2 y-3 =z
-5 4 =2

It is straightforward to show this version is equivalent to the equations we derived earlier.

In Figure 9.29 2, f3, and 7 are the respective angles made with the positive x, y and =
axes by the line segment OS and therefore by the line through P and Q to which it is
parallel.

The coordinates of S are (cosx. cos f. cosy). To see this, draw a perpendicular from S
to each axis in turn and remember that OS = |. Therefore the direction cosines of the
straight line are cosx:cosfi:cosy and the direction ratios are /:m:n, where
[:m:n=cosa:cosfl:cosy.

By a double application of Pythagoras’ theorem

(0S)? = cos® x + cos® f§ + cos®
We know that OS = 1, so the direction cosines satisfy the equation

cos? o 4 cos? i + cos® 7 = 1 (9.22)
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453

Example

Find the angles made with the positive coordinate axes by the line

The direction ratios of the lineare / :m:n=2:1:-2.

Since P+ m?> +n> =441 4+4 =9 =32 we have the result that

2 0s | -
S% =, C = . 08 =
coOs A = 3 s 3 cos’ 3

so that cosx : cos fi 2 cosy =1 m:nand equation (9.22) is satisfied.
Therefore, x = 48.2 . ff = 70.5,7 = 131.8 | all results quoted to 3.1,

In two dimensions it is the exception for two lines not to meet. In three dimensions the
opposite is true. Two lines in a plane will not meet if they are purallel. and if no plane can
be found which contains the two lines then the lines are skew and skew lines will not

meet. Skew lines cannot be parallel.

As a simple example consider Figure 9.30. The line OR lies in the v—z plane. All points
on it have z-coordinate 2 and x-coordinate (0. The line ST is the Jine v+ v = 1.2 =0 and
lies in the x—v plane. The lines are not parallel since there is no plane which contains

them both and they clearly do not intersect. They are skew lines.

o

Y R

Figure 9.30 Skew lines
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Example

Determine whether the lines

x—1 y+1 z x—1 yv=-2 z-2
= = d —— == =
2 2 M3 0 4

intersect and if so find the coordinates of the point of intersection. (The significance of the
zero denominator for the second line is that y = 2 at all points on it. The line therefore
lies on the plane y = 2, which is parallel to the x—z plane.)

Any point on the first line has coordinates given by

x=1+42t, y=—-1+4t z= -2t forsomet.
Any point on the second line has coordinates given by
x=1-13u, y=2, z=2+ 4u for some u.

We try to find a value of 7 and a value of u which give the same point in each case.
Looking at the y-coordinates we must choose t =3 for a maich. Then for the x-

coordinates 1 + 2t =1 —3u, i.e. 7= 1 — 3u, so that u = —2. The real test is whether
these values given the same z-coordinate. Now —2t = —6 and 2 + 4u = —6. Hence the
lines meet at the point (7, 2, —6). [ |

The equation of a plane

We state without proof that the equation of a plane in three dimensions is
ax+hby+ez=d (9.23)

where a, b, ¢ and d are constants. A geometrical interpretation of @, b and ¢ is provided in
Chapter 4 of Mathematics in Engineering and Science.
The origin lies on the plane if and only if 4 = 0. As special cases note

(i) a#0,h=c=0gives x =0, i.e. the v—z plane
(i) b#0,a=c=0 gives y =0, i.e. the x—z plane
(iii) ¢ # 0,a = h = 0 gives z = 0, i.e. the x—y plane.

Note for instance that x = constant is a plane parallel to the y-z plane. For example, the
plane x =4 cuts the x-axis at the point (4, 0, 0); this is equation (9.23) with
a=1.6=0.c=0,d=4.

Two planes which are not parallel meet in a line. A simple analogy is two consecutive
pages of this book meeting in the line of the binding. As an example, the x—y plane meets
the x—z plane at the y-axis. Since the x—z plane has equation y = 0 and the x—y plane has
the equation z = 0, they meet where both y and z are zero.
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The following examples illustrate some applications for the equation of a plane.

Examples . Find the equation of the planc which contains the points (2, 0, 0), (1, 1, 0) and
(=2, 1, 1.

If the equation of the plane at ax + by + ¢z = d then

(2, 0, 0) lies on the plane so that 2a = d (1
(1,1, 0) lies on the planc so that a + b = d (2)
(—2.2.1) lies on the plane so that — 20 +2h+ ¢ = d. (3)

1
From (1) and (2) a = b — id and from 3y —d+d+c=d.soc=d.
1 ]
Hence the equation of the plane is —dx+ -dv+d-=d. or cancelling d,
2 2
x+v+2z=
2. Find the equation of the plane which is parallel to the plane x + 2y — 3z =4 and
which passes through the point (4, —2, 1).
The equation of the plane is of the form x + 2v — 3z = 4. Since (4, =2, 1) lies on
the plane
I x4+2(-2)-3()=d
ie. d=-3.

Hence the plane has equation
X+ 2y —-3z=-3.

3. Where do the planes x + v — 3z = -2 and 2x — 3v — = = 6 meetl?
The intersection of each plane with the plane z = 0 is a line; these lines meet where

x+y=2and 2y —-3v =6, ie. x =0.y = ~2. which is the point (0, =2, 0).
Each plane meets the plane z =1 in a line and these lines meet where

x+y—3=-2iex+y=1
and 2x—=3v—1=61c.2-3vr=7.

The point of intersection 1s where x = 2, v = —l and = = |, i.e. the point (2. —1. 1).
The line of intersection of the two planes is the line joining (0. -2, 0) and (2, —1, 1).
This has direction ratios (2, 1, 1) and hence equations
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1 -3
4. Find where the line XT :'% _Z l meets the plane 3x — 4y — 2z = |5,
Any point on the line has coordinates (x,y,z) where x= -1+t y=rz =3+t for
some value of /. Substituting these expressions into the equation of the plane we
obtain
(=1+0—-4)—-23+1=15

Le. —-3tr—-9=15
ot =—8.

Hence the coordinates of the point of intcrsection are
x=-1-8=-9, v = -8, z=3-8=-5.
The point is (=9, —8, —5). |
One final notc. Many problems involving lines and planes in three dimensions are more

easily handled by the use of vectors. See Chapter 4 of Mathematics in Engineering and
Science.

Exercise 9.5

1 (a) Write down an expression for the distance between the points whose
coordinates are (a. b, ¢) and (p. g.r).

{b) How far is the point (2, 1, 2) from the origin?

2 (w Depict the following points relative to a three-dimensional set of axes: P (2, 3. 5),
Py(=2.1,4), P3(3.-2. —4).
(b) Determine the distances between each pair of them.

3 @ Depict a line in the direction (—1, 1, —1) which passes through the point

P(1,2, .

(b) Write down the equation of the line.

(c) Show that the line passes through the y-axis. Where does it intersect the plane
y=0

4  What is the equation of the line passing through the poiats P (1.2, 3) and P,(—1.1.5)?
What are the coordinates of the point where the line intersects the horizontal plane z = 17
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7

The plane
X y z
A Wy |
a+b+c

intersects the coordinate axes at the points (a, 0, 0), (0, b, 0) and (0, 0, ¢) respectively.
Write down the intersection points of the following planes with the coordinate axes:
x

z
e
(b) Ix+5y+9z=45
(c) 2x=3y4+z4+6=0
(d) 3x — Ty =42,

Explain the result in case (d).

Solve the equations for the following pair of planes to determine the equation of their
common line

X+2y+3z=6
xX—y+2z=2.

Where does this line intersect the plane y = 0?

2

A curve in space has the equation y = x°, z = 0. What kind of curve is it? Draw a sketch.

8* A triangle is formed by the origin and the points P, (x,.v,.z,) and Pi{x;. v;. z3).

ﬂ

TE T PRy

I’:( Vs ¥y D)

_—

(a) Write down the expressions for the distances ) and r,.
{(b) Obtain an expression for the distance P, P,.
(c) Use the cosine formula to prove that
- XX vy, 22
cos PLOP, = — SR 12

e
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(d) Find the cosines of the angles P,(A)P2 in the cases
iy Pr=(3.1.2),P,=(2.2,1)
(i) Py =(4.-3,0), P, =(3,-3,4)

(e) What is the area of each of the triangles P, OF,?

9 An observer wishes to estimate the height H of a nearby hill. The angle of elevation of the
summit is measured at x degrees from a point on the ground. The observer then climbs to
the roof of an adjacent skyscraper of known height Am and finds that the angle of
elevation of the hill is now [ degrees. Prove that

hsinacos f§

" sinxcosff — cosasinfi’

If #=100m, 2= 10" and ff = 9" estimate H. How far away is the bottom of the hill?
Give your answer in kilometres.

10* A large building of height % is observed across a lake from 4 and B, two points on the
opposite shore at the same horizontal level, a distance d apart. Given the angles shown in
the diagram, prove that

__dsinxsinf§
Tosin(B4y)

If x=7.f8 =7 =280 and d = 400 m, determine /4. How far away is the building from
A?
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11

12

13

14

15*

Determine the equation of the plane which passes through the points (0, 0, 1), (11, =2, 3)
and (5, —6, 7).

Draw the section of the plane x +y+z =1 forx,y,z > 0.

(a) Determine the angle of minimum slope.

(b) Determine the equation of the line lying in the plane which passes through the z-
axis and the plane z=0 in the direction of maximum slope.

Determine the volume of the tetrahedron formed by points (0, 0, 0), (=3, 0, 0), (0, 6, 0)
and (=2, 4, 3).

A plane containing the point (1, 2, 1) has a normal in the direction (2, —1, 2). Determine
its equation.

A rectangular building with a symmetric pitched roof has coordinates as illustrated, where
the numbers represent distances in metres. The line 4B forms the ridge of the roof and the
building is symmetrical. Determine the maximum angle of slope for the sides of the roof
and the maximum angle of slope for the ends of the roof.

(5.1,8)

(10, 8,6)




SUMMARY

The distance between the points (x,, y,) and (x,, y,) is

\/{.\'1 — .\'2 )2 + {_"] — .}'2)2

To divide the line segment joining (x,.y,) and (x,, y,) in the ratio m : n
find the point

mx; 4+ nx; my, + ny,
m+n ' m+n

The angle 0 between the lines with gradients m, and m, is given by

m, —m
tan) = ——L
l - "lzml

The distance of the point (x,.y,) from the line ax+ by +c=0is

_ lax; + by, + ¢

d
V&t B

The area of the triangle with vertices (x,.y,), (x5, »,) and (x3, y3) is
1
i{xl(yl = ¥3) +x3(v; = »1) + 300, — )}

A locus is a set of points which satisfy a given condition. For example, the
set of points that are equidistant from points P and Q form the
perpendicular bisector of the line segment PQ.

The equation of a circle centre (—g, —f) and radius (g* + /2 — ¢)'/?

is

Py 28+ 2 +c=0



Parabola: the locus of points which are equidistant from a fixed point (the
focus) and a given line (the directrix)

Parametric representation: a curve in the x—y plane specified by a pair of
equations expressing x and y in terms of a third variable, the parameter.

Polar coordinates: a point can be represented as (r,f) where
x=rcosf,y=rsinf

Equation of a straight line: the equation of a straight line in three
dimensions which passes through the point (x,, y,, z,) with direction ratios
(a,b,c) is

Lol D e 4 e ]
a b ¢

Equation of a plane: the general equation of a plane is

ax+by+cz=d
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Answers

Exercise 9.1

(@a—c) + (b —ay)'”?
@ V74 b V50
(©) V65, (=5, —4) is furthest away

(c) 68.09°

(a) 45° (b) 72.26°
p_ b
(a, b) 7 ¥(a2 + )72
(0, b)
P
b
(c) p= (?%b]z)—'/z otherwise no change

(d) i)  6//13 i) 048

(b) y=ax/b

n
@ E "
/3, 2/3)

1
@ y=36+1

(b)

(b)

{a,0)
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8

9

10

(©) y+3x=7

k’ y=2x-3

y=x+5-4y2 (ie. y =x — 0.657)

The locus is a straight line passing perpendicular to the line segment joining the two given
points and passing through its midpoint.

An approximate solution can be obtained by (a) a classical approach or (b) a coordinate
approach.

(a) Q/
<J

7

/_
The bisectors of the angles are not concurrent as they are within a triangle but enclose a
smaller quadrilateral. Choose P inside this smaller quadrilateral, and so on. The result

applies to a scalene quadrilateral. Had we started with a square, the bisectors would have
been concurrent at the centre.
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) p,

N

Py

G, is the geometric centroid whose coordinates are

((xl + XX+ x4 Y+ yo s +.V4)
4 ' 4

A cardboard cut-out of the quadrilateral would balance on G, and is usually very close to
the true point. However, if the quadrilateral has a reflex angle, G, may lic outside it.
whereas the true point is obviously inside, as shown in the diagram.

Exercise 9.2

1 y=-3x+5

0.5

L3

©, 0 K(S/l 0) X
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1
2 (a—cx+h-dy= 5 Ha* — )+ (B — a’z)} Roles of g with ¢ and b with d can be
reversed.
3 (@ 12x — 2y — 27 (b) x+1ly+14=0

4 (2,3 and (2, —3)
§ Linesy=x,v=—x

6 )*:%,7x+y= 10

8 (@ X4+ -dx-2p-5=0 b X+ +10x—8+5=0
X2
9 =14+
3 + a

10 4 +37 +6y=9

Exercise 9.3

1 ¢ =432 (two values)

2 (@ (i) ¥+ -18x—24v+56=0
(i) F+¥P+8x+12v—48=0
(d) 3.168 square units

11
s (+)an
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4 (a)

4+ — 10y =0 b)) X+ —dx+2y—-20=0

6 Centre (—~g, —f)  radius (g2 + /2 — ¢)'/?

2 4 2
7 Centre (—,‘) radius = 5«/5

(a)

(b)

(b)

(©)
(d)

10 (a)
(b)

Exercise 9.4

33

PZ

o
N

i F+y=2x+y)
(i1) x=l+\/§cost,y:1+\/§sint
Centre (—2, 3), radius 22

Centre (% - g), radius —4-6

2
Point (=2, —1), hence r = 0

(x —3¥ + y— 2 +7 > 7 for all x,y ‘radius’ negative, circle cannot exist

(3 ++21,0), (3 — /21, 0); (0, 2), (0, —6)
(=2,-2),(3.3)

4+ +4x=0 by X +)yF =2y

(V)]

(=2,0)

N
N

Both are circles, centres (=2, 0) and (0, 1) respectively
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2 rcosfl=c

3 (b
Angle =2 -0
d d = rcos(x —
e
= rcos(f) — x)
4 @ (b)
r==1+sin0
0, 5) .
=+ +sinfl, oniy
Circle centre (0. 5)
r = 10sin0
(a) ()]

(c) r=3/tanf
1 1
r = -
cos +sin  /2cos(0 — n/4)

(d)
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(0. 1)

(|.0\

Line passing through (0, 1) and (1, 0)

5 (b (—a,0)

Origin is passed through it ¢ > | and is a cusp if
c=1 Cardioid reflected in v-axis
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8 ()

Inward spiral in quadrants | and 11 only. Note that » < 0 for 7 < ) < 27, then » > 0 again
for 2n < 0 < 37, and r < 0 for 3n < 6 < 4x, etc. The curve thus remains in quadrants |

and II.
(b)

3.4

Circle centre (3. 4), radius 5, passing through the origin
Exercise 9.5

T @ {(a—pY +(b—gf +(c—r}"?
(b) 3 units
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2 (@ z
L P
r,
| D WS WY Sy Sy S e y
P
X . 1
(b) Plpz;‘/i Pz'”x:\/;x plpx:\/m;7
3 (a)
(1.2, 1)
x—1 y—-2 =z—1
b =" =
(b) T 1
(¢) Line crosses v-axis at (0, 3. 0) and intersects plane y =0 at (3, 0, 3).
x—1 y=-2 =z-3
4 == 3,3, 1
2 1 -2 ( )
5 (a) (5.0,.0), (0, 6,0, (0.0, b) (15,0, 0), (0,9, 0). (0,0, 5
(c) (-3, 0, 0), (0, 2, Oy, (0, 0, -6) (d) (14, 0, 0y, (0, -6. 0) only

The plane in (d) 15 vertical.

z—4
-3

x+6 v

7 1

[}

(—6,0,4)
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7 z
// Parabola in plane - = 0
>
—-y
“
X /\ \ v ——.ll ={
8 @ =i+ +) =)
by PPy= () =) 4 (=) (2 — o)
(d) (i) 10 (i) 2!
! = m) ———=
3V/14 5V34
1 - I .
e (i Azsx/z{» (i) L\:?m()g
9 983m 5.58km
10 /4 =140.4m 1143 m from 4
I ] vV + = |
12

(.00

(1.

Q. 1.

(1.0.0)



472 COORDINATE GEOMETRY

13 9
14 2x—y+42:=2

15  Sides: tan '(2/5) =21.%
Ends tan '2 = 63.4°



10 FUNCTIONS



INTRODUCTION

OBJECTIVES

Functions are the verbs of mathematics. A function is a special kind of
relationship between two variable quantities, which can be regarded as
input and output variables. It is important to understand the operation of a
function in its general sense so that specific functions can be handled
properly. The exponential function can be used to model the spread of
disease and the falling temperature of a substance as it cools down. Its
inverse, the logarithmic function, can be applied to convert an exponential
model into a straight line model.

After working through this chapter you should be able to

define a function
understand the terms domain and range
understand how a translation can alter a functional description

understand how a reflection in the x axis or the y axis can alter a functional
description

understand how a scaling transformation can alter a functional description
interpret the action of one function followed by another

find the inverse of a given function both algebraically and graphically
determine the domain and range of the inverse of a given function

define and use the exponential function

solve problems of exponential decay and exponential growth

define and apply the logarithmic function

state the domain and range of the inverse trigonometric functions
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10.1 IDEAS, DESCRIPTIONS AND GRAPHS

Functions have been called ‘the verbs of mathematics’. We have already referred to
functions on several occasions and you are probably familiar with function keys on your
calculator. In this section we put the ideas on a formal footing.

- DOUBLE DOUBLE

INPUT OUTPUT ¥ 2x

(a) (b)
Figure 10.1 The function 'double’

A function is a rule by which an input is converted to a unique output. For example, the
function ‘double’ converts any numerical input to a unigque numerical outputl. The
function can be represented in several ways. One way is shown in Figure 10.1(a), where
the function is pictured as a ‘black box’.

We often write the general input as x and the output as 2x, as in Figure 10.1(b}. We can
regard the tunction as a mapping converting x to 2x. In this approach we write

frixi— 2x

where the function has been named f. We read the statement as 'f maps x to 2x". For
example, f(2) = 4; we say that 4 is the image of 2 under the mapping f. An alternative
approach is to write

Slx)y=2x

which we read as '/ of x equals 2x’; x is called the argument of the function.
It sometimes helps to present the function pictorially. For this purpose we write

v =2x

v=2x

Figure 10.2 Graph of the function ‘double’
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Examples

then we can draw a graph of the relationship between y and x, as in Figure 10.2. In this
context x is called the independent variable and y the dependent variable, where the
nature of the dependency is provided by the function. To reinforce these ideas we
examine two further examples.

1. The function ‘cube’ converts a number x uniquely to its cube. The number 3 is always
converted to 27, the number —2 to — &, and so on. We can represent the function as the
black box of Figure 10.3(a), as the mapping f: x — x* or as the relationship f(x) = x*

3
ory=x".

CUBE —— h—{ DOUBLE AND ADD 3 J——’

X ¥ X 20+ 3

(a) (b)

Figure 10.3 Functions: (&) ‘cube’ and (b) ‘double and add 3’

2. The function ‘double and add 3" can be represented as /: x — 2x+ 3 orf(x) = 2x + 3
or v = 2x + 3. For example, f(2) = 7 and f(—4) = —5. Figure 10.4 shows the process
in box form. ]

2
-~

— DOUBLE AND ADD 3 R

4 -5
—_— DOUBLE AND ADD 3 —_—

Figure 104 Applying the function 'double and add 3’

Note that x is merely a symbol to help illustrate the work of the function. In the last
example we could write f(u) = 2u + 3. f{a) = 2a + 3, etc. It is usual at this level to use x
as the independent variable.

In the three examples so far the function can receive any number as its input and every
number can appear as an output. Consider now the function f(x) = x%. It is clear that any
number can be squared, but the output can never be a negative number. And the function

S (x) = /x (which corresponds to the \/ key on your calculator) can only receive an input

which is non-negative; the output also can never be negative.
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A function can be thought of as a mapping between a set called the domain and a set
called the co-domain. Each element of the domain is associated with one element of the
co-domain.

If we consider the function f: x1— x* as a mapping fiom the set of real numbers to
the set of real numbers then we note that only some elements of the co-domain can
result from the mapping, namely the non-negative elements. The subset of the co-
domain which are the imuges under the mapping of elements in the domain is the range
of the function.

In the case of the function f(x) = 2x + 3. which maps real numbers into real numbers,
the range is the entire co-domain. Further examples follow,

Function Domain Range

¥ All real numbers All real numbers

= All real numbers All real numbers > 0

A All real numbers > 0 All real numbers > 0

sin.v All real numbers All real numbers y satisfying
-l <y <

Cos X All real numbers All real numbers v satisfying
-l =y<l

tan.x All real numbers except odd All real numbers v

. .n
multiples of 5

- All real numbers except v = () All real numbers except 0

X

{ .

5 All real numbers except x = () All positive real numbers

a

v} All real numbers All non-negative real numbers

The function f(x) = |x| is the absolute value or modulus function defined by the
statements

X if x>0
—x ifx<0

Jlx)y=

Therefore, if x = 3 then f(x) = 3 and it x = =2 then f(x) = 2; in effect we ignore any
minus sign. The graph of the function is shown in Figure 10.5: ¢ is a positive value of x.

Note that some functions can be defined on different domains from those quoted in the
table. For instance, if the function /(1) = #? is defined on the domain of integers then its
co-domain is the non-negative integers, but only a subset of non-negative integers form
the range, namely 0, 1, 4, 9, 16, etc.
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Al e oo

Figure 10.5 The funcfion ‘absolute value’

If we consider the function f(x) = 2x then there is only one value of x for which
f(x) = 8, namely x = 4. However, when we consider the function f(x) = x? there are two
values of x for which f(x) = 4. namely x = 2 and x = —2. Indeed for any output ¢ > 0
there are two values of x that are mapped into it; this causes difficulties when we come to
‘undo’ or invert a function, a process covered in Section 10.3.

Exercise 10.1

1 Using simple inequalities. e.g. 2 < x < 3, write down the domain specified by the

following:
(a) All real numbers except x = 0 (b) x > —1 excluding x = 0, V2
]
c x| >4 d 5.
(«©) x| = (d) X+ 5 >
2 Interpret the following functions (a) to (d) both in the form f(x) = ... and as a mapping. In

case (e) identify the quadratic function from the given inputs and outputs.

() INPUT —4 HALVE AND ADD 4 ]——> OUTPUT
(h) INPUT SUBTRACT § AND TAKE SQUARE ROQT  |—— OUTPUT
(¢) INPUT SQUARE AND ADD | —— OUTPUT

(d) INPUT kal ADD | AND SQUARE J—- ouTPUT
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{e) 3 —_— 8
-5 —— —_—
] ———= _— = 0
Identify the domain and range for each of the functions given in Question 2.
A function 1s defined as
x+2 x< -2
fxy=40 —2<x<l
x—1 x>
Draw its graph. What are its domain and range?
243
Sketch the graph of y = + )
1 +x
. . . ) 24+ 3x
Hence determine the domain and range of the function f(x) = Ty
X
(a) On the same axes draw the graphs of v =x,y =3 and y = 10 — x.
(b) The function f(x) = min{x, 3, 10 — x) is detined as the minimum of x, 3 and

10 — x for each x. For example, if x =4 we look at x itself, which is 4,
10 —x =10 — 4 = 6, and 3. Out of 3, 4 and 6 the value 3 is the minimum so ()
takes the value 3, f(4) = 3. Highlight f(x) on your graph.

(c) Given that the domain of x is the set of real numbers, what is the range?

(d) Rewrite f(x) as

X x <3
f(x)=143 3<x<u
10 — x x>a

and determine a.

This is an example of a piecewise function, i.e. a function which has different definitions

over different parts of its domain.
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7 The function f(x) = max(1.4 —x?.x —3) is defined over all real numbers to be the
maximum of 1,4 —x% and x — 3.
() Sketch the graph of f(x).

(b) Rewrite the function in the form of Question 6 part (d) by inserting the appropriate
intervals in the expression below,

1
floy={4-x
x—3

8 From the sketches given below, identify the domain and range of the functions whosc
curves are drawn.

(a) i x—axis and line y =
are asymptotes

(b) =2

(-3.1)

\

x—axis and line vy = -2
are asymptotes
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(cy ¥

,
v =4y

10

(d

Write down the domain and range of the following functions; write them in the form

(a)
(c)

(e)

(¢)

<

'\\'

)=

,
CX b 2xT

foxi— 1

fxi— cosx, —

=x=

NSRS |
R

foxi— 2y + 3|

(b)
(d)

(N

(h)

fixvi—>
Jixi— 1/(x+2)

. b bis
fixi— tany, — - < v < -
2 2

fx1— sin(l/x)

In the following examples the ranges or domains are restricted: identity the corresponding
domains or ranges for f(x). In (f) consider that domain which lies between —n/2 and n/2

only.
Function Domain Range
(a) x+5 y>0
(b) l/x S5<1/x<20
{c) ¥+ | <v <l
(d) [2x + 3] 7<|2x+3 < 11
(€) sin n/2 <x <3n/4
(f) tan x 1/V3 < tanx < /3
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n

12*

13*

14

A continuous function is one whose graph has no breaks, i.e. no discontinuities.

(a) Verify that the function below is continuous and sketch its graph,
x—1 x <0
fly=1x -1 0<x=<2
x+1 x> 2

(b) Where is the discontinuity for the function f(x) = 3 ?
x —
(c) Is /* x = |x] continuous?
(d) Is the following function continuous? Sketch its graph.
fix—>x* 41 x<0
fix—0 x=0

fix—>x2+1 x>0

(a) Sketch the graph of y = Vx—1.x>1.

(b) Now draw the graph of y* = x — 1. Does this define a function?

(c) From (b) express x as a function of v and write down its range and domain.
(d) Determine the domain and range of f(x) = v/x — L.

The domain of the function f is the set of all integers n where
n+1
S = s s

(a) Write down f(n) for |[n| < 4.

(b) Divide the top and bottom of the fraction by # to find out what happens when # is
(i) large and positive (ii) large and negative

A train starts from rest at station A then increases its speed uniformly until a maximum
speed is reached. It then cruises at constant speed until station B is approached, when the
brakes are applied so that the speed is uniformly decreased and the train is brought to rest
at B. Let 1y, 1. &, and ¢; denote the departure time from A, the time when the maximum
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speed is reached, the time when the brakes are applied and the time of armival at B. Then
we can write the speed as a function

K (t —1ty) ty <t <1y
s(t)={ K, f<t<t
K, — Ki(t — 1) Hh<t<h

(a) Show that if s(r) has a continuous graph then K, = K, (1} — 1y} = K3(t; — 1,).

s(t}

(b) The train leaves A at 0910 and reaches its cruising speed of 180kmhr ™" or kph at
0913, which it maintains until 0945. It then decelerates to B, arriving at 0950.
(i Taking ¢, = 0 define s as a function of r.

(1) How far apart are 4 and B?
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10.2 TRANSLATION, SCALING, FUNCTION OF A FUNCTION

Translation

Example

We saw in Chapter 4 that it was possible to deduce the main features of the quadratic
function f(x) = ax? + bx + ¢ by writing

2 4y _ .+/) 2+ _ h?
ax- +=bx4+c=al{x 2; 4 da

then relating the graph of

(L) D)

to the graph of y = x°,

The graph in diagram (a) of Figure 10.6 is the result of moving the graph of y = x?
upwards (in the positive y-direction) by a distance 2 units. The graph in diagram (b) is the
result of moving the graph of v = v downwards (in the negative y-direction) by | unit.

In diagram (c) the graph of v = x° has been moved to the right (in the positive x-
direction) by 1 unit: in diagram (d) the graph of v = ¥* has been moved to the left (in the
negative x-direction) by 2 units.

To obtain the graph in diagram () we moved the graph of v = x* to the right by I unit
and then upwards by 2 units. (We could have first moved the graph upwards by 2 units
then to the right by I unit.)

These movements are known as translations. Note that we could achieve the result in
diagram (e) by a single translation directly from the origin to the point (1, 2) but it would
not have been casy to write down the new relationship between x and y.

Diagram (f) is the result of a reflection of the graph of v = x? in the x-axis followed by
a translation of 3 units in the positive y-direction. The reflection gave the term in x° a
negative coefficient.

Reflections and translations are examples of isometries. An isometry is a mathematical
transformation which preserves distance.

Sketch the graph of the function f(x} = 4v — x> by first writing the right-hand side in a
form which indicates a reflection and two translations of the graph v = x2.

First note that 4y — x> =4 — (v — 2)3. From x* we proceed to (x — 2)2, which implies
a translation to the right by 2 units; sce Figure 10.7(a). Then we carry out a reflection in
the x-axis to get —(x — 2)%; sce Figure 10.7(b). Finally we make a translation upwards by
4 units to obtain the required function in Figure 10.7(c). To carry out a reflection in the
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Figure 10.6 Translations of y = x2
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A
S A

(a) (b) (c)

Figure 10.7 Creating a function using simple isometries: (a) begin with y = (x — 2)%
(b) use a reflection to obtain y = —(x —2)%; (c) use a translation to obtain
y=—(x-— 2)? + 4, which simplifies to the required function, y = 4x — x2

v-axis we change the sign of x as the first operation. For example, consider

flx) = (x—2)2; its graph is shown in Figure 10.8(a). If we replace x by —x then
f(=x) = (=x —2)* = (x + 2)*, and its graph is shown in Figure 10.8(b). This second

graph is the reflection in the y-axis of the first graph. |

We can generalise the results we have obtained so far by starting with the graph of an
arbitrary function y = f(x).

The graph of y =f(x) 4+ a is obtained from the graph of v = f(x) by moving it a
vertical distance a; if @ > 0 then the distance is upwards, if ¢ < 0 then the distance is
downwards.

The graph of y = f(x + a) is obtained from the graph of y = f(x) by moving it a
horizontal distance a; if a > 0 then the distance is to the left, if a < 0 then the distance is
to the right.

y 4 y

(a) (b)
Figure 10.8 Reflection in the vertical axis
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For a horizontal movement we modify x before applying the function f; for a vertical
movement we apply ffirst and then modify the result. The vertical movement obeys the
rule ‘positive upwards” but the horizontal movement contradicts the rule “positive to the
right’.

Finally, the graph of v = —f(x) is obtained from the graph of y = f(x) by reflecting it
in the x-axis: the graph of ¥ = f(—x) is obtained from the graph of y = f(x) by reflecting
it in the v-axis.

Scaling
Figure 10.9(a) shows the graph of the function defined by

. 2. —l<x<i
Jx) = 0. elsewhere

Figure 10.9(b) shows the graph of y = 1.5f(x) and Figure 10.9(¢c) shows the graph of
v = 0.5f(x). The scale on the vertical axis has, in effect. been changed.

y 2 yT

L

-1 I X -1 | X 1 ] X

[E8)]
ra

to]—
to|—

() ()
Figure 10.9 Scaling a function
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Figure 10.9(d) shows the graph of ¥ = f(2x): 10 see this we replace x by 2v in the
definition of /. Hence

2. -1 <2v<1 e —

IA
P
IA

R
N —

S(2x) =

0. elsewhere

1
Similarly, Figure 10.9(e) shows the gruph of y :_/'(5.\‘).

In general. v = af(x) indicates that the graph of v = f(x) has undergone a change of
vertical scale. stretching it by a factor |a| if |¢| > | and contracting it by a tactor
la] if ja| < |. If @ < 0 the graph is also reflected in the x-axis.

Similarly. v = f{ax) indicates that the graph of y = f(x) has undergone a change of
horizontal scale, contracting it by a factor |a| if |¢] > 1 and stretching it by a factor
la| i Ju] < 1. If @ < 0 the graph is reflected in the y-axis.

Note that to carry out a horizontal change we modily x before applying the function f:
to carry out a vertical movement we apply /first and then modity the result.

The vertical effect is what we might expect. i.c. multiplying by 2 stretches the graph:
the horizontal effect is the inverse of what we might expect, i.e. multiplying x by 2
squashes the graph.

Function of a function

In Scction 10.1 we considered the function f(v) = 2x + 3 as a single operation on x. We
could break this operation into two simpler ones, as in Figure 10.10(a).
Let f represent the mapping /7 x1— 2x or f{x) = 2v and g represent the mapping
g x> x4+ 3orgx) = x4+ 3 Then g(f(x)) = gl2x) = 2x + 3.
The order of applying the functions is important. Reversing the order gives
Jg(x) = flx+3) = 2(v + 3)

which is depicted in Figure 10.10(b).

DOUBILE H ADD 3 F——
AR v+ 3

RS RAY
G0
_— ADD 3 DOUBLE f—————
v v+ 3 20+ 3)
(b)

Figure 10.10 The composition of two functions depend on the order in which they
are performed: (Q) 2x + 3 (b) 2(x + 3)
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Sometimes we write g( /' (x)) as g = f(x) and f(g(x}) as /" o g{x). The function g o/ is
known as the composition of ¢ with /. The term function of a function makes it more
obvious what is being carried out.

We have to be careiul when combining functions which have restrictions on their
domain. and/or range,

Example The functions f(x) = /v and g(x) = x — 2 are given. Find / (g(v)) and g(/(x)) and state
any restrictions on their domain and range.
fis the function ‘take square root™ and g is the function “subtract 2°. Hence

flen = "2 ore—'?
G =Vi—2  ard?o2,

Now the domain of /s the set of all real numbers > () and its range is the set of all real
numbers > (. whercas the set of all real numbers represents the domain and range of g.

In the case of g( f(x)). [requires an input > (} and g receives as input any real numbers
which are > . Hence the domain of f(g(x)) is all real numbers > 01 its range is all real
numbers > — |

2o

Note that functions can be compounded more than once. For example. the function
f(x) = (& + 1) can be regarded as the composition of the functions “square’, “add 1 and
“cube’.

Exercise 10.2

1 A function f(x) is defined for x > 0 as shown in the diagram. Dot in f(x — 1) and f(x + 1).
How is the domain of x-values changed?

14
(1.
I—/\
(0. 172) S~
r T T T T T X
-3 -2 -1 ! 2 3
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2 A function whose graph is the same after reflection in the y-axis is an even function; here
is an example. Notice that /(—x) = f(x) for every value of x, where the domain of x is R.

Likewise a function whose graph is an upside-down or inverse reflection in the y-axis,
often with f/(0) = 0, is an odd function; here is an example. Note f(—x) = —f{(x).

-

-

v
x

a

—

(a) Determine whether the following are even or odd:
() x
(i) x*
(i) x*
(iv) x", n positive even integer

(v) x", n positive odd integer
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(b) Show that sinx is odd and cosx is even. What about tan x?

(c) Determine whether the following functions are even, odd or neither:
(i) x*+x° (i) x| (iiiy x* +x
(iv) xsinx (v) |x+ 3| (vi) xtanx

3 If fis defined over [—L, L] and g and 4 are defined to be
| ) 1 .
glx) = EU(X) +/(=x)), h(x) = E(f(x) = f(=x))
show that g(x) is even, 4(x) is odd and that 4#(0) = 0.

4 Take the function f(x) sketched in Question | and reflect it in the y-axis, i.e. extend the
domain to include x < 0. Draw a new sketch.

Now define
J(x) x>0
glx) =1 f(0) = % x=0
f(x) x<0

(a) What is the domain of g?
(b) Sketch the graph of g(x).

5 Take the function f(x) from Question | and sketch

(@)  f(2x) b Sx/2) ©  f(=2x)

6 By drawing sketches simplify the following as multiples of sinx, cosx or tanx:

(a) cos(x — m/2) (b) sin(x — 1) (c) tan(x — m)
(d) sin(x + 37/2) (e) cos(x — 2m)

7 On the same axes sketch the following functions:
(a) sinx b) sin2x (c) sin(x/3)

(d) sin(x/3 — n/2)

8* Define f(x) to be the function sketched in Question 1, i.e.
]

I
i(x+1) 0§x<§
. 1
fx) = 1-)2—‘ sEx<l
l x> 1

2
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Identify the following graphs in the form rf{(px + ¢) + s in the best way possible

(1, 1/2)

(a)

(b)

(¢)

(e)

(—1.-1/2)

[CI AN

(d)

0. 2)

1. D

2,0

(=12 D)

(4.-2)
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9

10*

11

12

Draw the graph of f(x) = sin |x]|.

(a) Prove that f(x) is even. (b) Is f(x) continuous for all x € R?

The function f(x) has domain R and range (0, M) where M is the maximum value of f(x),
and f(x) — 0 as x —» oo,
Identify the domain and range of the following functions:

(@  f(2x) by  fBx+4) ) 3fx)+4 @ f(=x).

fix)

The function /: x — 3x = 1 maps the domain {1, 2], i.e. | < x < 2, into the range (2, 5].
Identity the domains and ranges of the following functions:

(@)  f(2x+1) (b)y  2/(x)+1 ©  3flx—=5+2
dy f&H (&) f2x*+6x+5) 0 f(-x)
(g) Sflax+b)

(h) Were fto have domain R, how would that alter the ranges in parts (a) to (f)?

For the function f(x) = 2 determine
x+3
@ () b  fGx-06)
©  fGVx)+/f(3/VX) (d  f(sinx) + f(cosx)

In cases (¢) and (d) place your answer over a compact common denominator.
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13

14

15

Given that 3x% — 6x+ 10 =3(x — 3)* + | and f(x) = x%, identify which one of the
following represents 3x° — 6x + 10.

(a) SO -3N+1 (b) JBx-3)+1
© 3Yx-3)+1 @) 30D =@+ L

b\’ b’
Show that ax? + bx + ¢ = a(x + 2) +c— i Given f(x) = x? show that any parabola
a a

of the form ax? + bx + ¢ can be written as 7/ (px 4+ g) + s by identifying p, ¢. r and s in
terms of a, b, c.
. . . 1.
(a) The general solution to the equation sinx = 3 is
x=(n/6)+ 2nm, x = (5n/6) + 2nm, n integer.
By setting y = 2x — (n/2) determine the general solution to the equation
sin(2x — n/2) =

|
5
(b) Solve tan(3x + ) = 1 given that the general solution to tanx =1 is

13

x= (g) + nm, n integer.,

10.3 INVERSE FUNCTIONS

. 1 . . .
The function f(x) = 2x (‘double’) and g(x) = Ex (‘halve’) have a special relationship to
each other:

f(g(x)):2><%x:x and g(f(x)):%xe:x.

In other words, the function ‘undoes’ the effect of the function g and vice versa. We say
that f is the inverse of g and that g is the inverse of f.

Figure 10.11(a) represents the function f'in box form. To undo the effect of /'we can
image pushing an input through the box from right to left; the box now becomes the
inverse operation ‘halve’, as in Figure 10.11(b).
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Example

E—— DOUBLE HALVE
INPUT OUTPUT OUTPUT INPUT

(a) (b)
Figure 10.11 Inverting a function

Another way to obtain the formula for the inverse function is to take the relationship

o 1 . . 1
v = 2x and rewrite it as x = Ey, then interchange x and y to obtain y = ix.

Find the inverses of (a) f(x) = x + 3 and (b) f(x) = x°.

ADD 3 SUBTRACT 3
INPUT OUTPUT OUTPUT INPUT

(a) (b)
Figure 10.12 Inverting f(x)=x +3

(a) If we write y =x+ 3 then x = y — 3. Interchanging x and y we obtain y = x — 3.
Hence the inverse function is g(x) = x — 3; see Figure 10.12.

———’L CUBE j 1 CUBE ROOT -’<—
INPUT OUTPUT QUTPUT INPUT

(a) (b)
Figure 10.13 Inverting f(x) = x°

(b) If y = x then x = /3. The inverse function is g(x) = x'/3; see Figure 10.13. |

The inverse function of f(x) is written f~'(x). In the example above f~'(x) = x — 3 in
part (2) and f~}{x) = x'/3 in part (b).

There is a way of obtaining the graph of the inverse function if we already have the
graph of the function itself. We simply reflect the graph of ¥ = f(x) in the line y = x. The
reflection is the graph of ' = f ~!(x). Figure 10.14 shows the operation carried out for the
functions of the example above.

Note that in diagram (a) the intercept of the inverse function on the x-axis is equal
to the intercept of the original function on the y-axis. And the intercept of the inverse
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y=x+3
y y vy
v N
3
y=x-3
-3 3 X X

-3

() (b)
Figure 10.14 Graphical approach to inverting a function

function on the y-axis is equal to the intercept of the original function on the x-axis.
In diagram (b) the graph of the function crosses the line v = x and so does the graph
of the inverse function, at the same points. These results are true in general.

You may have noticed that we have referred to t4e inverse function. This is because if
an inverse function exists it is unique. But not all functions have an inverse.

Consider again the function f(x) = x*, depicted in Figure 10.15(a). Suppose we know
that f(x) = 1.728 and we want to know the value of x; there is a unique answer x = 1.2
What we have done is to apply /~'(x) = x'/* so that £ 71(1.728) = 1.2.

1.728
.44

(a) (b)

Figure 10.15 Not every inverse is a function: (@) x = y'® is a function but (b)
x = +y'2 s not



10.3 INVERSE FUNCTIONS 497

Figure 10.15(b) demonstrates the problem with f(x) = x% Suppose we know that
f{x) = 1.44 there is no unique value of x. The point we made about a function at the
beginning of the chapter is that a function maps each input into a unigue output.

We could say that x = ++/1.44, i.c. x = 1.2 but this is not good enough. If we restrict
the domain of f(x) = x* to the non-negative real numbers then we have effectively
restricted the graph of f(x) to the right-hand half in diagram (b). We are therefore able to
obtain the positive square root only, which is what the / bution on your calculator will
do. Figure 10.16 shows the cffect of reflecting the graph of y = x* in the line y = x. In
diagram (a) the domain of fis all real numbers, but in diagram (b) it is all non-negative
real numbers.

y fix) y fix)

(a) (b)
Figure 10.16 Inverting the function f(x) = x?

The reflected graph in diagram (b) is a function but the rejected graph in diagram (a) is
not, since all inputs x > 0 give fwo ouputs v. If the domain of £(x) = x? is x > 0 then the
range is all »» > 0. This is true of the inverse function /~'(x) = /x.

Inverse of a function of a function

The inverse of a function of a function, if it exists, can be obtained rather like unwrapping
a parcel with several layers of wrapping paper. The last layer of wrapping is taken off first
and the first layer of wrapping is taken off last. The box representation of a function helps
here.

Consider f(x) = 2x + 3 shown in Figure 10.17(a). If the input is put through the boxes
right to left, each box now acts as the Jinverse of itself compared to when inputs went
through left to right: see Figure 10.17(b). It suggests that the inverse function is

|
/) = S =3),
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———’IV DOUBILE }—'— ADD 3
2x 2x+3

X

(a)
‘——'17 HALVE ‘—{ SUBTRACT 3 Ram—
(x-3)2 x-3 X

(b)

Figure 10.17 Inverting a function of a function

To check thls write ¥ = 2x + 3 then rearrange to get x = - (y — 3). Interchanging x and

y gives y = -(x—3) There are no restrictions on the domdm and range of either
function.

We can write the inverse of f(g(x)) as g~ '( f~'(x)). In the alternative notation the
inverse of f o gis g~! o f~!. Care is needed when either for g has a restriction on domain
or range.

Example Find the inverse function of f(x) = (x + 1)'/2, restricting the domain of f as necessary.
Rearranging y = (x + D' we get x = % — 1 sign. Then f~'(x) = x> — 1. This function
has domain all real numbers and range real numbers > —1. However, the function f(x)
has domain x > —1 and range y > 0, Figure 10.18(a). Figure 10.18(b) shows how the
inverse function has domain x > 0 and range v > —1. ]

/ y=(x+ N2

2
1 v=x--1

(a) (b)
Figure 10.18 Inverse of f(x) = (x + 1)'/?
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Inverse trigonometric functions

Figure 10.19 shows the graph of v = sinx and its reflection in the line y = x. Notice that
we must restrict the domain of f(x) = sinx if we are to produce an inverse function.

,x‘=7F/2 x=m/2

g(rt/Z.l)

N F N\ (. 0)
/ VTN v

(a)

(h)

Figure 10.19 Inverse of the sine function
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If we restrict the domain of —g <x< g then sin x takes all values between — I and 1 (its

entire range) once only. The portion of the graph is highlighted in diagram (a). The
corresponding portion of the reflected graph is highlighted in diagram (b).

Hence for f(x) = sinx the domain is —g <x< gand the range is —1 < y < |. For the

. . .. . T T ..
inverse function the domain is —1 <x <1 and the range is —3 <y< 5 This is

consistent with pressing INV SIN on a calculator. The inverse function is written sin~' x

or arcsinx. The value produced by the calculator is the principal value of sin™' x.

Exercise 10.3

1

3 Consider the function f: x — x

By simply writing y = f(x) and solving the equation for x in terms of y, determine inverse
functions for the following:

(a) fixi—>x+1 (b) fix—> ¥ (c) fixi—> 1%
(d) fixi— 2 =1 (e) fixi— Jx—1
O  fix—ax+ba#0) (g fix—> /5

You may assume there are no additional restrictions on the domain for the above. Identify
the domain and range in each case.

(a) What happens to part (f) in Question 1 if g = 0?

b
(b) For f: x 1— ind prove that £~ exists provided that ad # bc. What happens if
X
ad = bc?

2 x>0, ie.

y
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4*

5*

(a) What is the range of f?

b) Determine f~' by setting v = x? and solving for v in terms of x.

-1

(<) Define g: x i— x*,x < 0. Accepting that g ~' converts the range of g back into its
domain, show that g=':

D x1— — Jx inverts g. Put ) = —/x and proceed from

there.

(d) Given h: X = X+ 2x+2=(x+ l)2 4+ 1 show that 7~ vi> V/x—1—1 or
X1— —+/x—1—1, depending on the choices of domain for 4. ldentify the
choices.

For the following quadratic functions solve the equation v = f{(x) for x in terms of y and
use the information to define /! appropriately, giving domain and range.

(a) fixi— X 42x+5 (b) frxis ¥ —12x - 50
() fixi— 3x7 4+ 2x — 11,

Now try this for the general quadratic function

(d) fixi= ad +hx+c,(a#0) (e) Consider (d) for a = 0 when
M b#0 1y b=0.

As we know, the graph of the inverse function is a reflection in the line y = x of the graph
of the original function.

y=/ix)

] .

A%

xv=f '(y)

By laying a ruler perpendicular to v = x draw graphs of the following functions. their
inverses and the line v = x.

(@  fixi— x4+ 20 +5 (by  fixi—> sinx (¢)  f:x1—> cosx.

Note how the inverse functions on the graph represent the totality of x = £~ '(v), giving
the complete range of output x for input y, and note how complete consistency is
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preserved in that an input can have only one output. Alternatively if (x, v) is a point on the
graph of v = f(x), then (v, x} is a point on the graph of x = f~'(»). However, looking at
the x-axis, notice there may be many vafues of y for a given x on the graph of £~
Perhaps this has highlighted the need for restrictions on ranges and domains where
inverses are defined.

For the function f: x — tan™' x, written y = tan™' x, it is a small step to write x = tan y.
Use this fact to sketch the graph of fand identify a suitable domain for its principal value.

Use your calculator’s INV button (for inverse functions) to determine the principal values
in degrees of

(a) sin”! (%) (b) cos™! (-« %) (c) tan~'(100)
(d) sin™! (ﬁ; i) (e) tan~' (2 + V/3).

An equation in two variables represents a function only when one of the variables is
uniquely expressible in terms of the other, and the domain and range are specified. A non-
functional equation is called an implicit functional relationship, e.g. x* +1° = 1, which
represents a circle of radius 1.

(a) Show graphically that x> +31° = [ is its own reflection in v = x.
(b) Write down functional equations for the arcs in the form y = f(x). Define domain
and range.
22
The equation of an ellipse is —2 + ;)—, = | where a and b are the lengths of the semi-major
a 2

and semi-minor axes.

—
N
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10+

11

12

Notice there are two values of v for each value of x and vice versa. but only one of each
value per quadrant. Detine functions, one for each quadrant, which map x into v. In each
case define the inverse function. Define the domain and ranges.

22
Repeat Question 9 for the hyperbola \—, —'/L, =t.a>bh
a? b
Let fixi— I/x.g: x1i—> V —x. )it xi—> ¥,
(a) With /. g and 4 chosen as above, write down or determine the following
(i) fg.gh . hf:fg ort oy reters to f(g(x)). ete.
(i) £~' g ' Al and verify that ff~' = I (identify).
(b Prove that fg # g/, etc. in general.
(¢c)  Verify that ( fg)"' =g '/ ete.
(d) What are f( f(x)). g(g(x)) and A(A(x))? Is there a pattern?
(e) Draw the graph of f(x) + g(x) and from it demonstrate that f + g is a well-defined
function. What of ( /' + g)_".’
() Write down f{(x)g(x), g(x)A(x) and A(x)f(x), showing that all of them differ from
the results in part (a).
A function satisties f(x + 1) = f(x)/(») for all real x. v.

(1) Verify that £(2) = { f(D))2. £(3) = { £}

(b) Suggest a form for f(n) where n is a positive integer.

(c) Prove that f(n) = 2", where » is any integer. totally meets the requirements. Start
by considering # > 0 then find /(0) and finally prove for n < 0.

(d) By taking x.1 € R to be any number of your choice, on your calculator, verify that
J(x) = 27 satisties the provisions of f.
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13*

14

15

(e) Repeat the argument of (c) for f(n) = ¢" where a is another integer, e.g. a = 3.
Will any integer do for ¢? What is f(1)?

) On your calculator experiment with generalising part (d) by finding ¢* where g
and x are any numbers, positive, negative or zero. What conclusions do you
reach?

A function g satisfies the rule
gly) = glx) + g(v).

Prove that

(a) g(hy=0 (b) g(Vx) = %g(X) (assume x > 0)
(©) gll/x) = —g(x),x#0

(d) it g(x,) = v, and g(x,) = v, then g(x x3) = v +v,.

If /is the inverse function of g then fg(x,x,) = x,x, = f (v, + v,). Prove that f must satisfy

the condition in Question 12.

(e) Accepting that f(x) = 2% satisties the provisions of fin Question 12, by setting
v =2 show that x = log, y. Verify that g: x1— log, x satisfies the provisions of g.

(f) Plot. y=2".y=x and v=log,x on the same axes. (Note that

1
log, 1 = 0. log, (5) = —1, etc.).

The following functions are defined over the set N of positive integers. Where possible,
determine the inverse function over N or state that no inverse exits.

(@  f:a—-n’

(b) f:@2n—1)i— (2n - 1%, # odd: S (2n)— (2n)’. n even

(©) S n— n.nnot a perfect square; [ ni— /n, n a perfect square
(d) Fi@2n=D— 20 f 2y i— 2n — |

(e) Jin— l/n (f) fin— (n+1)n+2)

(g) o= 2 —n.

By considering each section in turn. obtain an inverse function for the following
continuous piecewise function:

fixi— 2v+ 1 - <x<()
fixi—> 1+ ¥ 0<x<3
fixi—> 13 —x Jecx <o

Draw the graph of £ ~'(x).
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10.4 POWER LAWS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Power laws

We know from Chapter | that the numbers 3°, 3% 3% are examples of powers of the
number 3: so too are 3V, 3 1,372,

The function 3.3 '.37? is a power function with the number 3 as the base. The
general form of a power function is f(x) = a*. Figure 10.20 shows graphs of v = f(x) for

1
1 =2.3and | < ].
‘ (2) |
Can you see a connection between the cases a=2 and a =37 When

| Ny ) 1\
a :—2. Jlx)= (2) =—=27" so that it f(x)=2", (i) = f(—x) and the graph of

Y

Figure 10.20 Power functions
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' . - - . .
r= (5) is the reflection of the graph of v = 2¥ in the vertical axis. Note that all three

curves pass through the point (0, 1). This is true in general since ¢” = | (unless a = 0).

When a > | the values of f(v) increase as x increases; this is an example of a growth
function. When 00 < @ < 1 the values of f(x) decrease as x increases; this is an example of
a decay tunction. If « = 1 then f(x) = 1.

Examples 1. The value of an antique increases by 5% cach year. If its value in 1990 was £10000
what was its value in 19957 What will be its value in 2000, 2010? It x denotes the
number of years from 1990 then the value (in £) is given by

V =10 000 x (1.05)"

since a 5% increase means the value is multiplied by 1.05.
In 1995, x =15 and ¥ = 10 000 x (1.05)° = 12763 to the nearest integer, so the
value to the nearest £ is £12 763,
In 2000, x = 10 and ¥ = 10000 x (1.05)". To the nearest £ the value is £16289.
In 2010, ¥ = 20 and the value is £26 533,

ro

Each month an unused battery loses 10% of its charge. After how many months 1s the
charge 1% of its onginal value?

Let the initial charge be C. Then after one month the charge is 0.9C, after two
months it is (0.9)2C. after 3 months it is (0.9)°C and after x months it is (0.95'C or
C(0.9y".

When (0.9)"C=0.01C then (0.9)' =0.01.

Taking logarithm to the base 10 we obtain

log(0.9)" = x1og(0.9) = log(0.01)
_ log(0.01)

X = = 43.7.
v 10g(0.9)

After approximately 44 months the battery has retained only 1% of its original charge.
n

The exponential function

An accurate plot of the graph of v = 3' was used to estimate the gradients of the tangents

. 1 o .
to the curve at values of v = 3 1.1 5 2. Then the ratio of this gradient to the value of y

was calculated in each case and the results displayed in a table. In fact, as we shall sce in
Chapter 11, the ratio can be found exactly by calculation. It is approximately 1.1.
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X Gradient of langent ¥ Ratio
! 1.9 732

5 . 1.732 1.1
1 3 3 1.1

1
Ii 5.7 5.196 1.1
2 9.9 9 1.1

If we repeat the calculations for y = 4*, we find the corresponding ratio is about 1.4 and
for v = 2" the ratio is about 0.7. It seems reasonable (o suppose there is a value of a

between 2 and 3 for which the ratio is exactly 1. This value is about 2.718 and is denoted
by e.

The gradients of y = ¢* at any point is equal to the value of ¢* at that point.

Your calculator should have the button €. In Figurc 10.21 we have plotted the graph of

Vv = ¢". We used it 1o calculate the gradient at x = 2 and found it to be about 7.4: the value
of ¢* is 7.389 to 3d.p.

Figure 10.21 Graphofy =e*andy = e

An equally important and related function is the negative exponential function
e~ (= l/¢*). Its graph. shown in Figure 10.21, can be obtained by reflecting the graph of
v = ¢' in the vertical axis. It is used to model decay.
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Examples

1. The temperature 0 of a hot liquid cooling in an atmosphere of constant temperature 0,

is found from Newton’s law of cooling as
0=0,+0,—0)". (10.1)

where 0, is the temperature of the liquid at time ¢ = 0 and £ is a constant related to its
thermal properties. It is instructive to build up the graph of 0. The muitiplying factor
(0, — 0,) changes the scale on the vertical axis; see Figure 10.22(a). And adding 0,
effectively raises the graph a distance 0 ; see Figure 10.22(b).

(a) (b)
Figure 10.22 Producing the graph equation (10.1)

Suppose that 0, = 100°C, 0, =15 'C and k=0.1 and suppose we wish to
estimate the temperature of the liquid at t=35 minutes, 10 minutes, 20 minutes. The
formula (10.1) becomes

0 =15+ 85¢ "1,
Hence

whent =15, 0 =65.6 C
whentr = 10,0 =463 "C
when t =20.0 = 26.5"C.

. An important model describes radioactive decay. It is known that the rate of decay of a

radioactive substance is directly proportional to the amount of the substance remaining.
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The graph has been obtained by reflecting the graph of ¢~

Mathematically it can be proved that the amount ot the substance m left after time 1 is
given by

m = mye M (10.2)
where my; is the mass at time 7 = 0 and £ is a constant of radioactive decay.

. The voltage in a d.c. circuit containing a capacitance is known to build up to a
maximum from zero when the circuit is switched on. The voltage ¢ at time 7 is given by
v = V(1 — ¢*) where & is a constant. The graph of the function v is shown in Figure
10.23. We say that the graph approaches the steady-state maximum value V
asymptotically or that the horizontal line © = F is an asymptote to the curve, ie. a
tangent at infinity. |

Figure 10.23 Voltage across the capacitor versus time

¥ gbout the horizontal axis to

obtain —e #. The constant | is added by lifting the curve through a distance I;
multiplication by V' is achieved by scaling the vertical axis differently.

The logarithmic function

Suppose in the problem of the cooling liquid we wanted to find the time taken for the
liquid to cool from 100 C to 20 C. We would need to solve the equation

20 = 15 + 85¢ "

5§ = 856—({]/ _ 85

- =01

hence &% =-— =17

5



510 FUNCTIONS

Example

Remember from Section 1.3 that, for some number a > 0, if ¢* =y then x = log, ».
Hence if ¢ = y then x = log, .

Logarithms to the base ¢ are called natural logarithms (or sometimes Naperian
logarithms). A notation which is used on calculators is to write log, x as In x; the symbol
‘In” stands for ‘logarithm natural’.

In the cooling problem we had ¢!

=17, so

0.lt=log, 17=1In17
and r=10In17 =10 x 2.830 = 28.3.

Natural logarithms obey all rules for logarithms stated in Section 1.3; here are some of
them:
In(xy) =Inx+ Iny
In(x/y) =Inx —Iny
In(x") =nlnx

We wish to express «* in terms of natural logarithms. Let ¢ = " then
In(a") = xlna
But In(e') = y. 50 a" = "¢, |

The logarithmic function is the inverse of the exponential function. Its graph can be
obtained by reflecting the curve y = ¢ in the line y = x; see Figure 10.24.
= y=x

v=e¢

Figure 10.24 Graphs of the exponential and logarithmic functions
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Example

Note that In x is not defined for x < 0. This can be seen as follows. We have ¢ > 0 for
all y; now consider y = In x so that x = &, but ¢ > 0, hence x must be greater than 0.
The gradient of y = In x is always positive but decreasing. This means that the values
of In x are increasing with x but at a progressively slower rate. In fact we shall show in

1
Chapter 11 that the gradient is given by —.
X

We return to the problem of radioactive decay.
Consider the time elapsed when m = 0.5m,, i.e. half the original mass; we have
O.Sm() = mU(,)ik[
| _ 1
so that 0.5 =5= e = i

and M =2,

1
Hence k&t = log,2 =In 2 and 1 = %ln 2.

This value is called the half-life of the substance and it is independent of the amount of
mass present at the start of decay.

How long does it take the substance to decay from an amount 0.5 to 0.25? It is easily
seen that the time is again the half-life. Hence if the half-life of a substance is 1 year, then
after | year there will be half of the original substance remaining, after 2 years one
quarter, after 3 years one eighth, and so on.

Exponential and logarithmic functions compared

Exponentia) function Logarithmic function
Domain All real values All real values>0
Range All real values>0 All real values
Asymptote Horizontal axis Vertical axis
Gradient ¢' (increasing) 1/x {decreasing)

A= Inl=0

et = In(xy) =Inx+1Iny

et e =e' In(x/y)=Inx—Iny

(") =™ Iny" =alny

M = x (x > 0) In{e') = x {all x)
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Exercise 10.4
1 Show that 2'" = 1024 and establish that (2)'™" ~ (10)"".
2 Any positive integer can be writlen uniquely in terms of powers of 2, or binary form:

58=1x2 4+ 1 x22 41 x2°4+0x22+1 x 2+ 0and is written 111010

(a) Find the binary representation of the following integers:
7 (ii) 19 (i) 41
(iv) 59 (v) 113 (vi) 520

(b) Roughly speaking, how many binary digits are there per decimal digit? A binary
digit is called a bit.

3 When a sum of money. £5 is invested at p% per annum its value increases by a factor of

(l + L) for cach year invested.

100
(a) Determine the value of the investment after
() [ year (i1) 2 years (i1i) » years
(b) A sum of £100 1s invested at an annual interest rate of 5%.

(i) What is the investment after § years?

(i) How long 1s it before the investment is doubled?

4  Without using tables, evaluate the following logarithms:

1

(a) fog, 16 (b) log, (6) (c) log,, 1 000 000

: -23 49"
(d)  log,(36)™ (e)  log, 82 (0 logy| 355
(g)  logs0.125 (h)y  logg +/10.

5 ( It x=log, = v =log.x z=log, v. express each in terms of powers
and prove that xyz = 1.

(h) Where all the logarithms are 1aken to the same base prove that

0 log 16 +log 25 — log 36 5
1 - ——————
log 10 — log 3
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7

@s

10

11

12

(“)Iog\/T§§<—Iog2«+log\/343——kgitfi__i
log 4900 — log 16 S

Lo . |
By expressing in terms of powers, prove that log, b = oo
og,u

If 0 < x < yvthen log.x < logy, for any base. Use this fact to find the minimum value of n

which satisties the inequality (0.9)" < 0.05.

Solve the equations

(a) 6.1y =3.515 (b) log,p(x* — x) = 0.3010
and the simultaneous equations

© (35297 =67 (A5G =190

On the same axes sketch the graphs of v = ¢' and v = ¢ *. Comment.

By taking natural logarithms, solve the following equation for x

R

Prove that
() a* ="M for g >0
Inc¢
b log, ¢ = —. for b, ¢ > 0.
®) Bi ¢ Inh ro.e=

Given that if f:x+— ¢ then f~': x— Inx. draw on the same axes the graphs of
r=f(x).y=xand v = f"(x). Comment.

Consider f(x) = ¢, /7' (x) = Inx, g(x) = ¥ and g~ '(x) = /x with domains and ranges
suitably defined.

(a) Determine in the simplest (or lowest) torm
(i) 7(g2) (i) /~"(g(3)
i) g 7'/ e v g @)
(b) Which of the following statements are true?

M f Mg =21w G ST NHEU0) = g
(i) /el =/

(c) What is the domain of In In x7 Hence explain why In In sin x and In In cos x cannot
be defined.
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13 A power law x = C(1.4)™" is used to predict the resale value of a desk-top computer when
it 1s ¢ years old.
(a) What is the meaning of C?
(b) Change the base of the exponent to e and express x in terms of C, e and 1.

(c) If the computer costs £1000 initially, what is the value to the nearest £1 at [ year, 2
years and 3 years old respectively?

(d) After what time does it drop to half its cost value?

14 Sketch the graphs of the following functions:

x

(a) xe . x>0 (b) T (What are the asymptotes?)
e\’
(¢c) e vsinmx, -1 <x <2 (d) In(¢* + 1) —x, x > —3.
15  Determine x from the following equations:
(a) 2°-27=6 (b) 9 —Tx3-8=0

And determine x and y from the following simultaneous equations:
(C) 2.r+'\' — 32’ 3.\‘ + 3)' — 3()
16 Simplify
(a) In(2¢") (b) ednx (c) elinx—zIny)

log,o(e* + 1)

17  Express
logy e

as a single logarithm.

18  The hyperbolic sine of x is defined to be

1

sinhx = E(eY —e 9

likewise the hyperbolic cosine of x is defined to be
1 i
coshx = E(er +e™).

From the definitions show that sinh is an odd function, i.e.
sith(—x) = — sinhx
and that cosh is an even function, i.e.

cosh(—x) = cosh x.
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19

5l 20

21*

Use these properties to show that

(a) sinh x=0 when x =0 only (b) cosh x > 1, all x
() cosh’ x — sinh? x = | (d) sinh 2x = 2 sinh x cosh x
(e) cosh2x = 2 cosh®x — 1.

Sketch the graphs of sinh x and cosh x.

The hyperbolic tangent is defined by

sinhx
tanhx = ~———
coshx
(a) Prove that tanhx = ), —¢ .,
et + et
(b) When is tanh x =0?
(c) Describe how tanh x behaves for
(i) large positive x (ii) large negative x.

Use HYP and INV HYP on your calculator to tind
(a) sinh (1) (b) cosh (2) (c) cosh (—2)
(d) tanh (—5) (e) sinh” ' (=1) (f) cosh ~' ()

1
(g) tanh (§> .

The hyperbolic functions are all exponential in type, which suggests their inverses are
logarithmic. We can prove this for one example by Ietting

v = sinh T or x= sinhy = (¢ —e™)

1 1
Now let z = €', noting that z > 0, so that x = 5 (z - —). Solving for z in terms of x
gives - = x £ /x2 + L. ‘

Now +/x2 + 1 > x for any real x, and because z > 0 only the positive root is accept-
able, so v = Inz = In(x + +/x? + 1), i.e. sinh™'x = In(x + Vx> 4 1) for any real x.

1 1+
(a) Prove that tanh™' x = = In ~——-—r>.
2 | —x

1
v+ Ve -1

(b) For any x> 1 prove that x—xi - 1= Deduce that

In(x £ vVx2 — 1) = Fin(x + vx2 = 1).
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(c) It is known that y = cosh™' x is double-valued in that x = cosh v = cosh(~y).
Prove using (b) that two values of cosh™ ' x are

cosh 'x = £ln(x+ V2 — 1)
@ 22* Use logarithms to verify parts (f) and (g) of Question 20.

23* Use the principle of reflection in the line v = x to sketch curves on the same axes.

(a) sinh x and sinh~ ' x (b) cosh xand cosh 'x (¢ tanh x and tanh ~ ' x

Exercise 10.5: further applications and models

1 Draw the graph of v = ¢' and draw the tangents a1 the points (0, 1) and (1, e). Determine
the intercepts of the tangents on the x-uxis graphically and verify that the gradients are |
and ¢ respectively. What are the equations of the tangents?

2 Repeat the procedure of Question 1 for v = 2% at the points (0, 1) and (1. 2). For the
tangents at these points verify graphically that

radient
_gra len‘_ —In2.
value of v

3 For a radioactive isotope whose half-life is 3x 107" s what is the law of exponential
decay?

4 The build-up of voltage in a d.c. circuit with capacitance is modelled by © = V(1 — e~/ F)
where ¢ is the voltage measured 1n volts at any time, ¥ is the final voltage, R is the
resistance of the circuit measured in ohms (Q) and C is its capacitance measured in
microfarads (1 gF =10 “®F). The time constant of the system is the value of ¢, in seconds,
such that t = CR.

(a) If R=15x 10°Q and C = 10 uF what the time constant (r.)?

(b) How long does the circuit voltage take 1o build up to 99% of its final value?
() Show that no matter what values R and C happen to possess, r =~ 0.63} when

=1, and ¢ = 0.99 I after 4.605¢,.
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E) 5 Beer’s law of diminishing light intensity is based upon the idea that the light of intensity /,

is reduced to an intensity /, where [, = /,q,0 < g < | on passing through a specitied
thickness of a translucent medium.

(a)

(b)

m

If the medium is m units thick, m is a positive integer, given that

Iy =1lyg. I, = 1g. I, = g, etc, establish that /,, = [,¢"

If « = —Ing prove that [, = [,e™“".

The result in (b) holds for any m > 0, not just a positive integer, and for clear, still,
fresh water I = Jye™ '*> where x is the depth in metres. Using this result determine

(i) the reduced light intensity at a depth of I m |
(1) the depth at which light intensity is reduced by a factor of (5)

6 A cup of hot water is observed initially to be at a temperature of 60 C. Fifteen minutes
later 1ts temperature has dropped to 40°C and after a further fifteen minutes this is 30 °C.

(a)

(b)
(<)

Write down the two equations which relate the observed temperatures according to
Newton’s law of cooling and show that

40 -0, 30-0,
60— 0, 40—0,°

Hence find 0,.
In2
Show that the thermal constant is given by £ = 15
Assuming that the water had cooled down from boiling point at the time of the first
observation, how long before the initial observation was it boiling (100 C)?
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7 In an electronic diode with two parallel plates the electric current (/) flowing at one plate
varies with the volitage difference (V) between the two plates. The following observations
are made.

4 1 4 8 12 17 20

i (.030 0.240 0.679 1.247 2.103 2.683

Take logarithms and replot on a straight line graph. Determine the power law that
operates between V and i. Alternatively use log-log graph paper and plot to obtain a
straight line.

8 When a gas expands or contracts without any supply or removal of heat, the changes that
take place are adiabatic and govemned by the law PV = constant, where P is the pressure
and Vis the volume. For air 7y = | .4, approximately; use this value 1o plot £ against V for
P =1(1) 10 given that V' = | when P = I.

9* A weight suspended on a light helical spring vibrates up and down when impulsively
jolted downwards.

The downward displacement x is a function of time ¢,

x: t+— 10cos2xnft

1 x(f)

x 1$ measured in centimetres and ¢ in seconds.

(a) Sketch the graph of x(#) when f = 2 and calculate the time when

(1) x = 0 for the first time

(ii) x = O for the third time
(iii) x = —10 for the second time

(b) What is the period of a complete oscillation?
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i

#

10*

11*

12*

An alternating voltage is a function of time, following a sinusoidal pattern of the form
v - 1y sin 100me.

Find the width of the time interval when v > 80t for the first time after r = 0.

In information theory the degree of disorder in a system is measured by its entropy. The
entropy £ of a system S with probability distribution (p. p>. ..., p,) 1s given by

E(S)= =) pilog,p;
=1

i

where the sum of the probabilities 3 p, = 1. Find £(S) for a source with four elements
o

having probability distribution (0.02, 0.18, 0.35, 0.45).

In error-correcting code theory the use of » check digits produces a redundancy function

R(n) =

n

T neN.

(a) How many check digits are needed to ensure that the redundancy function 1s less
than 0.017?

(b) Plot the graph of R: xi—

x> 1

¥ —1|

over [1. oc] and verify that it is decreasing for




SUMMARY

Function: a rule which associates cach member of one set, the domain,
with a unique member of a second set, the co-domain. The set of valucs
taken by the function is its range. We write y = f(x) where x is the
independent variable and y is the dependent variable.

Transformation: The graph of y = f(x) may be translated, reflected or
scaled.

Translation: /(x — @) represents a move to the right by a, but f(x) +a
represents a move upwards by a.

Reflection: —/(x) represents a reflection about the x-axis, but f(—x)
represents a reflection about the y-axis.

Scaling: af (x) represents a scaling in the y-direction, an expansion ifa > 1,
a compression if @ < 1; but f(ax) represents a scaling in the x-direction, an
expansion if @ < 1, a compression if a > 1.

Function of a function: the output of one function becomes the input of a
second function. The notation f(g(x)) implies that the function fis applied
to the output of the function g.

The inverse of a function: /~'(x) reverses the action of the function f(x);
its graph is obtained by reflecting the graph of f(x) in the line y = x. Itis a
function if the original function is such that no two inputs are mapped to the
same output. The domain of the inverse function is the range of the original
function and vice-versa.

The exponential function: is written ¢, where e & 2.718; its inverse is
Inx.

Inverse trigonometric functions: the domains of the trigonometric
functions are restricted to an interval of length 7; the function sin™' x

has domain —1 < x < |.
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Answers

(c)
(¢)

—xxc<xy<fand 0 < x <« ¢

1 <x<00<x<+v2and x > V2

x < —4and x> 4

—S5<yv<—48

Fiv) :%+4. x> %4_ 4

fy=x+1. fixi—> ¥ +1

flXy=x"—1, fix—x* — |

(b)

()

Domain

Range

(1)
(b)
(¢)
(d)
(c)

All real numbers
Real numbers >5
All real numbers
All real numbers
All real numbers

All real numbers

Non-negative real numbers
Real numbers > |

Non-negative real numbers
Real numbers > --

(1 Oy

The domain and range are cach the set of all real numbers

f) = Jv =5, fixi—> \/\_‘j

SO =@+ 17 x> (1P
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5 7
I
I
i
]
1
L
1
|
)
________ 3 U US—5¢ |
|
1
1
: /
X X
I
[
i
I
|
1
I
I
I
I
v =1
Domain is the set of real numbers except —~ 1
Range is the set of real numbers except 3
6 (ab) y
v=x
7
\ X
y=10-x
(c) Range is the set of real numbers < 3

(d) a=17
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(a) y
4-x°
x-3
=1
7 ¥ ’ x
1 x < |
4—x° —l=<x<l
) =14, l<x<4
x—-3 x>4

Equality has been taken at the changeover points from left to right; this was our choice.

Domain Range
(a) All real numbers All positive real numbers
(b) All real numbers except —2 All real numbers < 2
(c) Not a function: for values of x > 0 there are rwo values of v
(d) Not a function: for values of x such that —a < x < 0 or 0 < x < a there are two
values of y
Function Domain Range
(a) flx) = 2x° All real numbers Non-negative real numbers
b S =x All real numbers All real numbers
| .
(c) Jx) == Real numbers # 0 Real numbers # 0
X
. 1
(d) flx = Real numbers # —2 Real numbers # 0
. (x+2) i .
(e) f(x) = cosx —-——<x< Real numbers 0 <y < 1

2 2
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Function Domain Range
. 4 T
(H flx) =tanx —5 <Xx< 3 All real numbers
() fxy=12x+ 3| All real numbers Real numbers > 0
1
(h) f(x) =sin (;) Real numbers # 0 Real numbers —1 <y < |
1
10 @ flx)=S b) = x=S
(c) 1 <f(x) <2 (d) —T7T<x<-5and2 <x <4
1
©  sEfw=l () g <x< g
11 ()
(2.3)
(0.-1)
(b) x=3
(c) Yes, the graph has a U shape at x = 0 but it does not break since |0] = 0.
(d)

The graph breaks at x = 0: it is not continuous
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12

13

14

(a,b)

(c)
(d)

(b)

ANSWERS
yv=aAx-1
y= -~ -1
2 =x — | does nor define a function because a simple input x can lead to (wo outputs y

x = g(y) = »* + 1; domain all real numbers, range all real numbers > |

Il

T
1,=1/20 1,=7112

(1) Let ¢t be measured in hours and

3600«

s(t) = { 180

7
—21 .
180 60([ ]2)

(i1) A and B are 108 km apart

x>1 fx)=0
n -4 -3 -2 -1 0 1 2 3 4
JS(n) = 0 (1) through positive values and (ii) through negative values
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Exercise 10.2

Yy
flx+ 1) ,J\\ Lo flx=1)
.7 ‘“41.’ ...... A
| [l
L T
X
Domains change to x > | and x > —1 but the ranges remains the same
(a) (1) odd (i1) even (1i) odd (iv) even (v) odd
(b) odd
(c) (1) even (11) even (ii1) neither (iv) even
(v) neither (vi) even
Domains of g and 4 are both {—L, L]
y
0, 172)
} I t +— —
-2 -1 1 2 x

The domain is R

(@  f(2x) by fx/2)

© +
-

x>0 x>0
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()

Range unchanged

f(=2x)
l
-1
(a)
sin x
~\ /—
. p
\ /
\ 1
\ !
\ 7 |
: T
v
\ n/2
AY
N
N
. tan x
(c)
]
1
!
1
1)
i
I3
i
i
!
/
/
’
1
1
n

(b)
- §in X
/’ N ~ i
’ N ’
7 N '
/ ' l
7 N /
/ R -
, L
1
/, I n
, /
) ’
- ’
@
—Cos X
~3n/2
(e)
S.ocosx -
.
. . L
. T
n
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8

9

10

1

sin x sin 2x
. 7!
| 1 .
(@ S - 3 (b) x+1) () 3 —J(=x)
(d) 2f(4-x)-3 (e) 2l = f2x+ 1))
(a) —sinx (x <) siny (x>0)
sin (M =0
(b) Yes
Domain Range

(a) (b) (d) R 0<flx)<M

(©) R 4 < f(x) <3M+4

[domain], [range]

(a) [3, 51. (8, 14]
(c) (—4, —3], [—37, —28]

(b)
(d)

[1, 2], 15, 1]
[1, 4], {2, 1]
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Exercise 10.3

12

13

14

15

(c) [13, 25], [38, 74] (N [-2, =11, [-7, —4]
(&) la+b.2a+b]. [3a+b)—1.3(2a+b) — 1]
(h) R. R

Each of the input “functions’, 2x + 1,x ~ 5.2x? + 6x + 5 are defined over R if x is
defined over R. fis a purely linear function and maps R to itself. Note that [3, 5] means
I <x <5, etc.

eX
X
inx
(1,0
(a) 2 (b) 2 (c) 2 constant
; ~.con
Yooy 5x—3 3
) 2(6 + sinx 4 cosx)
(sinx 4 3)(cosx + 3)
{c) Yes
| b dac — p?
= 1. = —, Y =du, S =
P 1 2a 4a
@ o+ L m T
¢ = —+nn —
a 3 nm 3 3
The order is inverse: domain, range. R/{1} means real numbers except I.

(a) v r— LR R (b iy SRR
€  flivisl —1; R/{1}.R/{0) @ v o+ DPRR
."

e fhivis I4+vi(l.oc) R ® v —b)/aRR
(@ S vy VUR/(0LR/(0)
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2

(a)
(b)

(a)

(a)

(b)

(c)

(d)

(e)

(a)

f:x1— constant, all x, not invertible
b—d

Sy T2 (—dfe), R fage))
cy—a

ax+b a . . .
If ad = bc, * = —, constant, not invertible as in (a)
cx+d ¢

flx)>0 b Slixes Jx (d)

Sty =1+ =4 [z - (=4
Fly--1-W=4 f1x<-Di>(y>4)
Sy > 64+ Y86, [ (x = 6) 1> (y > —86)
Sy 6—/y+86 fi(x <6)1—> (v> —~86)

1 y 34 1 34
—1. 2 z . _ S
fitty— 3+\/3+9,f.(xz 3) H(yz 3)

1 34 1 34
iy — 3~ §+Ef (x<—§) — (y>——)

x > 1 both cases

3

bZ

b y—c+4— b b2

-1 _ - . ta . _—— ; S

Ny = 2a+\ a ,.f.<x_>_ 2a) = (“‘zc 4a>
2

I Py b b?

. b da ,. v _Z

Sy — 2% N o ,/.(x< Za) I— (y>c 4a>

Q7' oy % TR—-R (ii) /! does not exist

xX2+23+5

-1 -Vy-4
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{a)
(d)

(a)

(b)

(b) (¢c)
cos A
sin ' x
cos ™!
_%
‘/ —X <Yy <o —n/2<y<n/2
+3n/2 x real (range restricted)
X =tany
30° (b) 120 () 8943
9.879° ) 75

<

N O

NN

N

yv=V1=xie f:xi— (1 —x%)Y? upper half [—1, 1]1— [0, 1]

v=—=vI—-xlie fixi— —(1—x)" lower half [-1.1]1— [0, 1]
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9

10

11

(In each quadrant, /', f~' are given.)

I x— bJ/1=x%/a,[0,d) — [0, b);

0 xi— b/1~-x2/a%, [-a,0] — [0, B]:

NI xi— —by/1 —x2/a, [~a, 0] - [~b.0];
IV x> — b1 =x2/a?,[0.d] — [—b, 0]

I x— byx2/a? —1,(x > a),(y>0)

Il x— byxtja*> — 1,{x < —a),(y > 0)

I x— —byxt/a? —1,(x < —a).(y <0)
IV x1—» —bhJ/x?/a2 —1,(x>a).(y <0)
(a) (i) fg:x1— l—i—x

(i) [ x> 1x, :

g

b gfix— L= 1/x(#f2),
hg:x1— (1 —x)
(c) g x> 1 —%(:jg)", h'lg™!
(d)
g, isas f h... h (ntimes), x — x*"
1 2
© J@ g =il o=

g
i
~ \
\

ghixi— 1 —x

xi—> 1 —x,

Xi— am, [0.5] — [0, d]

x1—> —ay/1—x2/2.[0,b] - [~a.0]
xi—> —ay/1=x2/b2,[~b,0] = [—a,0]
xi— ay/1 —x2/b2 [—b, 0] = [0, q]

Xi— a\/mﬁb—{ (x>0),(y=a)
xi— —a/T+x2/b2, (x> 0),(y < —a)
x> —a/T+32/P (x <0),(v = —a)
xi— a1+ x2/p2, (x < 0), (v = a)

3ohfixi—> )X

Al x i X173

fhixi— 1/x*(=hf, but this is an exception)

x> (L= i 1

=1 gg=1hhx—> Y =x°, fff...=f, odd, n times and =1/, even
b4

fix)+ g(x)

1/x

A vertical ruler shows that f + g is a function defined for x € R/{0} but ( / + g)~"'

must be defined for x > 0 and x < 0.

1 —y£{y— 1 +4?

-1, .
(f+g) yi 7
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12

13

14

15

(f)

(b)
("

(b)
(©)
(e)

(8)

(e)

l . 3
—Y‘ .r3(l —x). X~
X

fy={fY' =k"itf(MH =k {e) Any integer, f(1) = a

a' exists if @ > 0 for a general x € R.

/..
T
]ng‘.\
/,/ |
{ [
No inverse over N
No inverse over N
No inverse; 2 — 2.4 — 2, elc. (dy st =rf
No inverse H No inverse

No inverse; | — 1.3 — 1, the only exception to a 1-1 mapping

\

/

x—1
DX %—.(—x,l): x = ~x—=1.]1.10]: xi—= 13 —=x.(10.2¢)
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Exercise 10.4

10

2!0 = 1024 ~ 10* so that (2'%)" ~ (10*)"

(a) T=224+2+1=111, 19=24+241=10011
41 =2° 4+ 2% +1 = 101001, 59=2424+2 4241 =111011
113 =204254294+1=1110001. 520 =2%+ 2% = 1000001000
(b)  Since 2'” ~ 107, ten bits correspond roughly to three decimal digits.
p p\ 2\
: S+ i) (14 i) S{ 1+
@ @ ( +100) (n ( +100) (ah) ( +100)
5 5
b i £100 | | +—) = 127.63
(b) (1) ( —+ 100)
(i) Just over 14 years; with n = 14 the figure is £197.99.
(a) 4 (b) -2 (c) 6
4
(d) -3 (e) ; 63) —2x — 3y
3 |
(g) —3 (h) 1
(a) xyz = (xpz)™, so xyz = 1
In 0.05
,le.n>29
"= In0.9 e =
(a) x = 0.695 (b) x=2 () x=1.664, v=0.171
e e’
) -1 1 2

Each function on ¢™* and ¢*, is a reflection of the other in the vertical axis

x=p/In3
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1 . .

Inx

Each function, e' and Inx, is a reflection of the other in the line v = x

12 (@ (i) e* (i) 2In3 (i) V2 (iv) 2In2
(b) (i) true (i1) false (iii) true

(c) In In x has domain x > 1. In In sinx cannot be formed because sinx < 1; the same
is true for cosx.

13 (a) C = x(0), i.e. the value of x at t = 0 (b) x = Ce "33 (0336 =1In1.4)
© Year Value (£) (d) 2.06 years
1 714
2 510
3 364

14 (@) Yy

9] d)
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15

16
17

18

19

20

23

(c)

(a)

In(34/10)

X=—
In2

x=2,y=3orx=3,y=2

= 2.623 (b) 3" =8,x=1.893

In2 4 x (b) x° (c) x/y

In(e® + 1), which cannot be reduced further

(b)
(©

(a)
(d)

/-7 sinh -1 x

cosh x

tanhx = 0 if x = 0, i.e. only when sinhx =0
2x 1 — e—2x
tanhx = T ~1,x> 0 :m ~ -l xk0.
1.175 (1)) 3.762 (c) 3.762 (d)
—1.000 (e) —0.881 ) 1.317 (g)
cosh x tanh 'x
sinh x

—1.000

0.549

tanh x
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Exercise 10.5

1 Tangents y =x+ 1,y = ex

In2

3 m=mpe ™ k=

4 (a) t. =50s (b) 230.3s
5 (o (i) 14.2% of surface value (ii) 0.355m
6 (0 15 min

7 i=3x 10732

8 P 1 2 3 4 5 6 7 8 9 10

F 1 06095 04562 03715 03168 02781 0.2491 0.2264 0.2081 0.1931

9 (@ @@ 0.125s (b) (i) 0.625s (c) (b)y 0.75s
10 0.0041s
11 1607

12 (a) n=10
(b) T4
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11 DIFFERENTIATION



INTRODUCTION

OBJECTIVES

The need to calculate accurately the rate of change of a variable quantity is
crucial in many areas of activity. Often we have a formula which describes
the behaviour of the quantity, and differential calculus provides us with the
means of obtaining the rate of change as accurately as the formula will
allow. We can calculate the acceleration of an object if we know its speed
as a function of time. The process of differentiation can be used to
calculate maximum and minimum values: for example, we can find the
dimensions of the box of maximum volume which can be cut from a given
area of sheet metal.

After working through this chapter you should be able to

understand the terms derived function and derivative

relate the derivative of a function to the gradient at a point on its graph
differentiate standard functions

differentiate a linear combination of standard functions

identify from its derived function where a given function is increasing or
decreasing -

identify the stationary points of a function

use the first derivative test to determine the nature of a stationary point
obtain the second derivative of a function by repeated differentiation

use the second derivative test to classify the stationary points of a function
locate the points of inflection of a function

know the derived function of the standard functions
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11.1 RATES OF CHANGE

A function expresses the dependence of one variable quantity on another. Often we are
interested in the rate of change of one quantity with the other. In many cases we are
concerned with the rate of change of a quantity with time: for example, the temperature
of a cooling liquid, the current in an electrical circuit, the distance travelled by a vehicle.
Examples which involve other rates of change are sales revenue with number of units
produced and the strength of a signal with distance from the source. [n order to keep the
discussion general we shall mostly use x and y as the variables,

Sometimes it is clear from the function what the rate of change is. If y = 2x then v
increases at twice the rate of x. More generally, if v == mx + ¢ then v increases at m times
the rate of x. This constant rate of change is the grudient of the straight line v = mx + . If
m is negative then y decreases as x increases and we speak of a negative rate of change,
Refer to Figure 11.1.

m>0 m={

m<()

{ T~
Positive rate of change Zero rate of change Negative rate of change
(a) (b) (c)

Figure 11.1 Rate of change for a linear relationship

Average rate of change

If we consider the curve vy = x?, shown in Figure 11.2(a). then we see that the rate of
change of ¥ with x is not constant. For x < 0 the rate of change is negative and for x > Q it
is positive. As x increases from zero the rate of change becomes larger. For example.
between x = 0 and x = | the value of y increases by | whereas between x = | and x = 2
the value of y increases by 3 (from 1 to 4). As x decreases from zero the rate of change
also becomes larger but is always a decrease.

We can define the average rate of change of y over an interval of x by reference to
Figure 11.2(b). As x increases from x| to x,, v changes from y, to v,. The average rate of

S,

ST - )
change of v in this interval is —= .
Xy — X
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(a) (h)
Figure 11.2 Average rate of change of a function

If v, > y, this average rate of change is positive, indicating an increase in v; if v, < vy
Y2 =¥ £ . Y2 <V
then y has decreased.

Example What are the average rates of change of y = x* between the following values: (a) x, = 1
and x, =15, (b) x, =15 and x, =2, (¢) x;, = -2 and x, = —1, (d) x, = -2 and
Xy = 27

Notice that in all cases we have chosen x, > x,.

(a) Atx;=1,y;, =1 and at x, = 1.5, y, = 2.25; therefore
225—-1 1.25
A se rate of change = ———— = — = 2.5
verage rate of change 577 03
(b) Atx; = 1.5y, = 2.25 and at x, = 2.y, = 4; therefore
4-225 1.75
A te of pe = ——— = —— =33
verage rate of change 775 03
(©) Aver: te of change 4-1 3 3
C verage rate ol chan =T =—7T=—
& L S T
4-4 0
(d) Average rate of change = P 0 ]

Notice that in (d), although the values of y change as x goes from —2 to 2, the uverage
rate of change is zero.

Instantaneous rate of change

Suppose we wish to find the rate of change of v = x? at the instant when x = 1. Referring
to Figure 11.3. we can calculate the average rate of change of y in the intervals x; = | to
xn=2x=ltox,=15andx; =1tox, = 1.1
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225

1L11s 2 X

Figure 11.3 Instantaneous rate of change

41 225 -1 1.21 =1
Th , respectively, =3, =25 ——=21
ey are, respectively 1 5.1 111
The values of the average rate of change are decreasing but what happens as x, moves
closer to x; = 17 In the tables below, the first table shows the results of some calculations

while the second table shows similar calculations based on x; = 2.

Table 11.1
X5 21l 1.01 1.001 1.0001
Average rate of change 3 21 201 2001 2.0001
Table 11.2
X 3 21 2010 2001 2.0001
Average rate of change 5 41 401 4001 4.0001

It looks as though the average rate of change in the first case is edging towards the
value 2 as x, closes to x|, whereas the second case seems to approach the value 4. Rather
than carry out a similar set of calculations for other values of x,, we choose a general
value x; = a and consider a nearby value x = a + 4, as in Figure 11.4(a).

The average rate of change of v over the interval ¢ < x < a4+ h is

(a+h)2—az_c12-+-2ah-+~hz—az_2ah—+—h2

= =2a+h
(a+h)—a a+h—u h at
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Example

y y
(a+h)? Q Tangent
P
P
a?
7 a+h x a X
(a) (b)

Figure 11.4 Instantaneous rate of change and slope of a tangent

This gives the gradient of the chord PQ shown in the diagram. As @ moves down the
curve towards P, the chord is getting shorter in length; when () coincides with P this
chord is effectively replaced by the tangent to the curve at P, as in Figure 11.4(b).

As O moves towards P the value of 4 gets progressively closer to zero and the
expression (2a + h) gets closer to the value 2a. This suggests that the instantaneous rate
of change of y=x? atx =1l is 2 and at x = 2 is 4.

You could try to draw the tangents to the curve at x = | and at x = 2 and estimate the
gradient of each but it would be a somewhat inaccurate procedure.

We now put these ideas on a formal footing. The derivative of the function f{(x) = x*
atx = a is 2a. Note that the derivative is a number. Since the result is true for any value a
we can define the derived function of f(x) = ¥* to be the function g(x) = 2x.

The derived function of f(x) is written f”(x) which we read as ‘f'dashed x’. The value of
the derived function at x = « is the derivative of /(x) at x = a, written /"(a). Hence, in this
example f'(x) = 2x. As special cases, f'(1) = 2 and "2} = 4.

Show that the derived function of f(x} = mx + ¢ is the constant function f'(x) = m, hence
find the derivative of f(x) at x =2 and x = —3.

Let xy =« and x, =a+ h. Now v = f(a) =ma + c and v, = f(a + h) = m(a + h)+
¢, so the average rate of change of y over the interval a < x <a+his

Vy—yv mla+h)+c—ma—c mh
p=—ti = — =¥
Xy — X (a+h)—ua h '

This result is independent of A&, so the derived function is given by f'(x) = m. Hence the
derivatives /'(2) and f'(—3) both have value m. |

Note the special case that if f(x) = x then f'(x) = L.
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In general, the derivative of the function f(x) at x =« is found by considering the
fla+h)—f(a)
h
say that f(x) is differentiable at x = ¢ and the limiting value of the fraction is the

derivative f'(a). We write

fla+h) —fla)
h

fraction . If this fraction tends to a limit as /& approaches zero, we

S(a) = lim (11.1)

h—0

where lim means ‘the limit as /4 approaches zero'. The word ‘differentiable’ simply

h—
means ‘can be differentiated’, i.e. the derivative exists at that point. The process of
obtaining the derived function is called differentiation.

An alternative notation which will be more uscful in certain contexts is illustrated in
Figure 11.5. P is the point (x,») and O is a point close by with coordinates
(x + Ox, v + dv). We take the symbol dx to mean ‘a small increase in x* and the symbol
dy to mean ‘a small increase in y’. Note that the symbol & by itself has no meaning.

Yy
y=flx)
v+ Oy ¢
By
P
¥
/ \4 ar
{ X X+ Ox X

Figure 11.5 Alternative notation for differentiation

. 3y 2
The gradient of the chord PQ is therefore ;)/ For the curve y = x° this is
X

v+ -y (x+ ox) — i _ 2xéx + (9x)?

: = - = 2x + Ox
(x+dx)—x ox ox

As Q approaches P,dx — 0 and the expression 2x 4+ dx — 2x. Hence the derived
function is 2x. Sv dy
When we take the limit of )— as x approaches zero, we write the result as = Hence for
dV OX 2
2 “

=X, — = 2x.
A X dx X
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dy . )
Note that & is a single entity not a fraction; for example, the 4's do not cancel.
X

d
. dy ) .
Example Find pm for the curve y = cx* where ¢ is a constant.
x
The coordinates of P are (x, cx?) and of O are (x + éx. c(x + (Sx)z). The gradient of the
chord PQ is
Iy elx+ax) —ex? 2ex(dx) + c(dx)? i
‘;v _ c(x ,f) o ex( x)w c(ox) = 2ex 4 ¢(6%)
0x (x+ox)—x Oox
e . . . dy
The limit of this expression as dx — 0 is given by d‘ = 2c¢x. |
x
. , dv . :
Hence for the curve y = —x R —2x. Sketch the curve and check this result is
X
reasonable. The table below summarises the main ideas in the two notations with an
example.
Table 11.3
Function f(0) v x?
Derived function 1) [jf\ 2x
[eAN
L dy
Derivative f(a) d_ atx=a 2a
X

dy . . N .
Note that where c—} = f’(x) is positive the values of y = f(x) increase as x increases;

dv . . :
where ;1— = f’(x) is negative the values of y = f(x) decrease as x increases.
x

Exercise 11.1

1 The data below are taken from the graph of y = x*.

x 0 1 2 3 4 5
y 0 1 8 27 64 125
(a) Determine the average rate of change (a.r.o.c.) in each umt interval, e.g. from

x = 2 to x = 3, written |2, 3].
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3

(b)

(c)
(d)

(e)

(@)

(b)

(c)

(a)

(b)

Take x =2, 2.1 and 2.2. Determine w(2.1) and w(2.2) and the average rate of
change in the intervals [2.0, 2.1] and [2.1, 2.2].

Repeat (b) but with x =2.01 and 2.02 and the intervals (2.0, 2.01] and [2.01, 2.02].

Set x = 2 4 A and determine y(2 + A). If  — 0 what is the limiting value of the
average rate of change (ar.o.c) at x = 27

Repeat (d) but for a general value of x, i.c. x,. What is the rate of change at x = x,,?

Expand
M (e +h° (D) (xg+h)
i) (o +A) V) (g + 1)

If # is small enough to neglect terms of order 42 and higher. written O(h%), write
the appropriate forms for the cxpansions in (a).

Guess at an approximate form for (x, -+ 4)", where # is a positive integer greater
than 4. Multiply this form by x, + # and ignore terms of O(h?) to verify that
(xo + )" = Xy + (1 -+ Dh).

With x, = 1 and A = 0.01 determine the approximate rate of change (a.r.o.c.) of
¥ = x% in the interval [1.00, 1.01]. Repeat with 4 = 0.001.

What is the exact value of the rate of change at x, = 17

For x; = 1.2,3 and & = 0.001 estimate the approximate rate of change (a.r.o.c.) for

(a)

(b)

¥y = 1/x at those points.

1
If terms of O(h?) can be ignored, verify that (x, + h)”' ~ — (l -~ ~).

The average rate of change (a.r.o.c.) of y = 1/x in [x,. x, + A] is given by

1 1

Xy +h o Xy

h

Simplify this expression. What is the limiting value, i.e. the derivative at x = x,,
as h — 07

It is known that the actual rate of change of the function f(x) = sinx is the derived
function f'(x) = cos v. Tabulate sinx for x = 0 (0.1) 0.5 and determine the average rate of
change (a.r.o.c.) to 3s.f. in each interval. Compare it to the cosine value at the midpoint of
the interval. Remember x is in radians.
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Estimate the average rate of change (a.r.o.c.) for f(x) = ¢ for x = 0 (1) 3. Divide this
(x+h)—f(

estimate by ¢' itself. Take f(r-l—#r_) with #=0.01, then A=0.001. Retain 4s.f.

What conclusion do you reach?

Repeat Question 7 for f(x) = 2%, dividing the estimates by 2*. Use the x* button on your

8
gl
calculator with #=0.01. Retain 4s.f.
- . 11
Draw the graph of f(x) = Inx and the tangents at the points x=§, > 1,2, 3.

9 (@
(b) Estimate the rate of change (3s.[) at these points, taking A=0.01. What
conclusion do you reach about f'(x)? Hint: In 2=0.693 to 3d.p.

10 The average rate of change can be readily estimate from data tabulated at equally spaced
intervals even if the actual function is not known. Given the tabulated data, plot f(x) and

/'(x) using the average rate of change estimates.

X 0.0 0.1 0.2 0.3 .4 0.5
0.697 0.693 0.707

F) 1.000 0.794 0.725

In this case you should assume that the average rate of change estimates for f'(x) are
evaluated at the midpoints, e.g. /7(0.05) is estimated in the interval 0.0, 0.1}.

The distance D covered by a train departing from a station platform is measured accurately

1
over the first five minutes of its journey.
t (min) | 2 3 4 5
2 (km) 0.7 2.1 4.0 6.5 9.2
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(a) Estimate the mean speed over each minute of the journey.
(b) What is the mean of all the mean speeds?

(9] Sketch a graph showing speed and distance.

11.2 SIMPLE DIFFERENTIATION

In this section we extend the idea of differentiation to some of the functions we have
already met and to sums, differences and multiples of them.

From the previous section we know the derivative of the tunctions x, x
The results are summarised in the table below.

2 ¥ x* and X°.

Table 11.4
flx), ory X ¥’ s v s
dy 2
F,or 2 I 2 322 4yt 5y
dx

It seems reasonable to suppose that if » is a positive integer then the derived function
of flx) =x"is f'(x) = nx"" 1.

What happens if we allow the power of x to be a negative integer? Consider the
following example.

Example Find the derived function of f{x) = x "
Iffix) =x"! = ! then f(a) = ! and f(a+ h) = ! . Therefore
x a (a+h)
f(a+h)—f(a)_l 1 _l _1 a—(a+h) _ —h _ ~1
h “hla+h a]l Al ta+ha | Ma+ha (a4 ha

1
As h — 0,(a + h) — a and the whole expression has a limiting value of ——.
a
Since this is true for any value of a (except a = 0 for which f{a) is not defined) then

. . . [ 1 -
the derived function of x~' = —is — = = —x 2, a
X x?

The result is consistent with the formula above for differentiating x”.
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We show in Chapter § of Mathematics in Engunecring and Science that the formula
ax” ! holds true when 7 is a fraction. In fact we can quote the following for any real
number n.

If y=x" then f;‘Ezn.i:'"" (11.2)

ax

We quote three rules without proof that can be used generally, provided the functions
concerned can be differentiated. Here f(x) and g(x) are two functions and x and fi are two
real numbens,

1. Scalar multiple: the derivative of a scalar multiple of a function is that scalar
multiplicd by the denvative of the function, i.¢. the denivative of x/(x) is 2/ '(x).

t9

. Sum: the dernivative of the sum of two functions is the sum of their derivatives. i.e. the
denvative of f(v) + g(x) is 7(x)  g'(x).

3. Difference: the derivative of the difference of two functions is the difference of their
derivatives, i.e. the denvative of £(x) — g(x) is f7(x) — g'(x).

Note that these three rules can be covered by a single general rule:

4. Linear combination: the denvative of a hincar combination of two functions is the
same linear combination of their derivatives, i.c. the derivative of 2f(x) + flig(x) is
2f°(x) + fg'(x).

Putting f# = 0 gives Rule 1. putting x = ff = | gives Rule 2 and putting x = 1. i — -1
gives Rule 3.

Note that when we use the term “derivative’ this means the results are true for a particular
value. x = a say. If there are no restrictions on a then we should strictly replace
‘denvative’ by “denived function’.

In the altemative notation we let w — f(x) and ¢ — g(x). Then the rules become

d du
1 d-—x(am).—:d—
du dt
o EFUTIERYE
(11.3)
d du dt
3 “}“{ll l)‘a—{-};

d du dv
4, d;r{aw + ﬁ!} = IIK + ﬁd_r
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Examples 1. Differentiate the following using (11.2) and Rule 1.
() x* (b) x~* (¢) x'72 (dy x 23
(e) 5x7 M —2¢ (@) &' (hy —3x=
Solution

(a) Here n = 9 and the answer is 9x%.

(b) With # = —6 the answer becomes —6x 7.

1 1 ,
(¢) Since n = 2 the answer is ix 12

. 2 2 _an
(d) Withn = — 3 the answer becomes — —x77/",
(€) 5 x 7x" = 35¢% (H (=2) x 32,
1 4 , 3 9
SNV RVELINE Ve B 2 . _2e Y 2 2

(g) ><5¥ 5‘ (h) (—=3) x 4r 4\
2. Difterentiate the following using Rules 2, 3 and 4
(a) x> + 1 (b) x> —x (¢) 4x* = 3x
(d) ¥ +4x+3 (&) =2 +4x1 +3x -5
Solution
(a) Via Rule 2 we obtain 2x + 0 = 2x.
(b) Via Rule 3 we obtain 2x — 1.
(c) The result is 4(2x) — 3(1) = 8x — 3.
(d) The result is 1(2x)+4(1)+3(0) =2x+ 4
(&) The result is —2(3%%) 4+ 42x) + 3(1) = 5(0) = —6x7 + 8x + 3. |

After practice you will be able to write down the answers to such problems by carrying
out the multiplications mentally.

Note that when we differentiate a polynomial of degree n,
ie.ax"+a, X'+ +ay wherea,, u «y are real numbers and a,, is not zero,
we obtain a polynomal of degree n — [.

ST I

Trigonometric functions

Figure 11.6 shows the graph of y = sinx marked with nine points, 4 to /. On the lower
graph we have marked corresponding points 4" to /. The lower graph has values at each x
which are the gradients at the corresponding points on the first graph.
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Figure 11.6 Gradients of the sine function

The value of the sccond function at A is |, which is the value of the gradient on the
1
tirst graph at A: the gradient on the first graph at B is > which is the value of the second

function at 8. It is clear that the gradient on the first graph at C is zero and this is the
value on the second graph at (7, and so on. From the periodic nature of the function

S(x) = sinx we may also expect the gradients to be periodic. ¢.g. the situation at / should
be identical o the situation at A.

The lower graph looks very similar to ' = cosx: in fact this is exactly what the curve
is. Without proof we state that

If y=sinx then --=cosx. (11.4)

Similar consideration of the graph of v = cos x leads to the following result

If y = cosx then %: ~ sinx. (11.5)
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We state without proof two further results.

dy

If y=¢" —_—

y=¢" then = e . (11.6)
dyv 1

Ify=1 h —_——

y=Inx then = (11.7)

It would be instructive for you to verify the plausibility of results (11.5), (11.6) and (11.7)
by consideration of the graphs concerned.

Example A stone is thrown vertically upwards with initial speed u. Its height above the point of
projection at subsequent times ¢ is given by

= !—| '2
v=Hr—-=
A 28

where g is the acceleration due to gravity. Find its velocity at any time ¢ and determine
where the speed is zero. What do you conclude about the motion of the stone at this time?

&

u 2u t

£ &
Figute 11.7 Height of a projectile with time

The velocity is given by

: ]
v = gl' =u- 58 x 2t = u — gt (positive upwards)
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When ¢ = ‘—‘. the speed is zero. The stone is then at its highest point. Subsequently
d .
d% = r < 0, indicating that the stone is descending again.

1
Figurc 11.7 shows the graph of v against ¢. Note that y» = 0 when wr — 3 g =0.ic.

. 2
2ut —gt- =0 or {2u — gt) = 0. Therefore. vy =0atr=0orats = g |
4

In general. if a parabola crosses the horizontal axis at two distinct points then its highest
(or lowest) value is taken midway between the two crossing values.

Scaled variables

Consider the graphs of v = sinx and v = sin 2x in Figure 11.8(a) and (b) respectively.
Because the graph of v =sin2v can be obtained from the graph of v =sinx by
compressing it horizontally by a factor of 2. the gradients on the graph of ¥ = sin 2x are
steeper.

These ideas make plausible the following result

If y=sinkx then gi’=kcoskx. (11.8)
X
y
y
\-T R x4 x 1o x
-n .4 2n
(a) {b)

Figure 11.8 Scaling the sine function: (@) y = sinx and (b) y = sin2x
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Examples

The factor cosAv implies that the gradients repeat with the same periodicity as the
function and the factor k emphasises the relative change in steepness of the gradients. A
formal justitication will be given in Chapter § of Mathematics in Engineering and
Science.

Another useful result which we state without proof is as follows.

If y=¢ then %:ke“. (11.9)

1. Newton's law of cooling states that the rate at which a *hot® liquid cools is directly
proportional to the temperature difterence between the liguid and the surrounding air.
Write the mathematical equivalent of this law using 0 for the temperature of the liquid
at time ¢, 0, for the temperature of the air (assumed constant) and £ as a constant of
proportionality (assumed positive).

Show that # — 8, + (0, — 0,)¢™ satisfies the equation you produce where @, is the
initial temperature of the liguid (i.c. the temperature at 1 = 0). (Note that the derived
function of ¢™* is (=k) *).

Solution
ot . . .
The rate of change of temperature with tme is T The statement “is proportional to

means “is equal to g constant times” and the temperature difference is (1) — 0,). We cannot
do .

cquate u and k(0 = 8)) because &) — (1)) ix positive since & > 0 and 0 > 8, for the
[¢

Lo du o L .
liguid to cool. If - 0 then () increases with time, which is clearly wrong. We require
[¢

{0 1)

‘T < 0. s0 we write ‘d, = —k(0) - 0,). which is the required equation. (In Chapter 11 of
«

Mathematics in Engineering and Science we see how to solve this equation. For the

moment, we take the given “solution” and verify that it does satisfy the equation.)

Using the given derived function of ¢™¥ we apply Rule 1 so that

ﬁ{m(, —tye M)y = —k(0, - 0)e ¥
dt
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The derivative of the constant (, is zero and by Rule 2 we have

do i,
7= 0 — k(0, — 0,)e ™™

But from the given ‘solution’
0—0,=(0,—8,)e "
L .
therefore = —k(6 — 0,), as required. (Note that when ¢ = 0,
=6+, ~0)x1=0,and as t — 00, e ¥ — 0 and ¢ — @, from above.)
2. In the previous example at what time is the rate of cooling half the initial rate?

Solution

di
The initial rate of cooling is —k(0; — 0,), by putting ¢/ = f); in the formula for o And

when
di |
e —Ek(()0 -0
we have
1
—k(0—0) = > k(0 —0))
1
or 0—0,= 2 (0, —0,)
1
ie. (0 — 0™ = 50 = 0)
1
Lkt — _
hence ¢ 2
and then M =2
and kt =1n2
1
so that t = ;]n2 [ |

In general, we can say the derived function of f(kx) is &/”(kx). For example, the derived
function of cos4x is 4(—sindx) = —4sin4x. The table below lists some important
functions and their derivatives. Together with the rules for linear combination, this allows
you to differentiate a wide range of functions.
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Table 11.5
Function f(x) Derived function f'(x)
C, constant 0
¥ et |
sinx €Os X
cos.X —sinx
tan.x 1/(cos? x)
e e
Inxy.x >0 1/x
sin kx kcos kx
cos kv —k sin kx
tan kx k/(cos® k)
ek\' k(’k"
., dy . .
Examples 1. If y =In(kx),k > 0,x >0 find Tt by writing y as the sum of two logarithms.
Ix
. . . d 1 1
Infx = Ink + Inx and Ink is a constant with zero derivative. Hence BZ =04+-=-.
Ix x X

2. v=(x+ by find Z—i by expanding the power on the right-hand side. Repeat the
process for y = (x + b)} .
First v = (x + b)Y = x2 + 2bx + b,
Hence

d
Y ox 4 2b = 2x + ).
dx

Next

y=(x+5)> =2+ 3b% + 302 + 5.

Hence
? = 322 + 6bx + 367 = 3(x* + 2bx + b?) = 3(x + bY’.
x
We show in Chapter 5 of Mathematics in Engineering and Science that if y = (x + b)"

d
then & = n(x + by .
dx
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3. Repeat the ideas of the previous example for y = (ax + 5)* and y=(ax+ b)*.

Solution
First

y=(ax+ b)2 = &’x* + 2abx + b*
so that

b _ 2a*x + 2ab = 2a(ax + b)
dx

Second
y = (ax + by’ = &’x* + 3d®bx? + 3ab® + b°
so that

d
Y _ 3a’x + 6abx + 3ab?
dx

= 3a(a’x* + 2abx + b*x?)
= 3a(ax + by u

d
In general, if y = (ax + )" then d_v = na(ax + b)" .
X

Exercise 11.2

1 From first principles differentiate

1
(@  x ® © 3

2 Find the derivatives with respect to x of the following functions of x:

(a)  3x? (b) —ax? © 8
(d) %3 ey x*—7Tx ®  5x*+6
(g) 2x3 + 5x (h) x* = 3x? (1) 3x-5
) 7 — 4x (k) 5(x +x%) 0 3(2x — 3x%)
(m) I +5x+6 (n) 452 —Tx+2 (0) 3 + 6x — 8x?
(p) 253 — T2 45 Q) S5x3 +8x—~9 (r) xg — 4x* + 3x
) xte 0 - W 40l

X X X

5

(v) S —8—9¢
X
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d
Sketch the curve y = x* — 5x + 4. Find ZX and evaluate it at the following points:
X
(a) the two places where the x-axis is crossed (i.e. the roots of XX —5%+4=0)
(b) the single place where the y-axis is crossed

dy
Where is Pdi = 0? What does this mean?
X

Sketch the cubic y = (x 4+ 3)(x — 2)(x — 5).

dy
(a) Multiply out the right-hand side, determine d—l and evaluate it at each of the three
roots of the equation y = 0. X

d
(b) Solve the quadratic equation 2 _ 0 for x. Determine y for these values of x and
mark the points on the curve. *

The velocity » (ms™") of a particle constrained to move in a straight line is defined to be
ds .
v:Z;, where s is the displacement (m) and ¢ is the time (s). If s = 3t—1(r > 0)

determine the value of v when r = 0.5. When is the particle instantaneously at rest?
. . . 1 5 .
A weight falling freely under gravity obeys the law s = 3 gt*, where s is the

downward vertical displacement (m), ¢ the time (s) and g is the acceleration due to gravity
(9.81 ms™?); air resistance ignored.

e

(a) i) A small object is dislodged from the roof of a building 100m tall. How
Jong will it take to reach the ground below?

(ii) At what speed will it be travelling then?

(iii) How far has the object fallen at half the time it takes to reach the bottom?

(b) In a similar problem, if the object reached the ground after 65, how tall was the
building and what would the velocity be on impact?
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7 Differentiate the following with respect to the variable concerned:

10

(a)
(©
(e)
(e
(i

(k)

(m)

Differentiate the following with respect to x:

(a)

(x=3)x+4) )
x
x4 7172 (d)
9 — 233 (H
ax® +bx2 +ex+d (x) (h)
(20" 0
eullx (])
In(=x),x <0 (n)

Inx? (

=21Inx) (b) Inx*

In case (c) express 10" as a power of e.

Differentiate y = ax? + bx + ¢ to determine the coordinates of the vertex, i.e. where

dy

- =0

dx

A cubic function of the form f(x) = ax® + bx? 4+ cx + d may possess a graph with a
variety of shapes, as illustrated. In the second case the slope of y = f(x) is positive for all

d
x. By finding %’ determine the conditions satisfied by a, b and ¢ for the slope to change
dx Y p g

x4+ Dix—D(x—=2)
2
(6x —5)(2x+ 1)
Jx

p—1

N/
ULV
sin 10x

(e" +e N e* —3e™)

tan x(sin® x + cos? x)

(c) 10*

sign. In this event what are the implications for the cubic?

/]

-
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11* (a)

(b)

. d . . . d
If y = |x| determine o for both positive and negative x and draw its graph. Is d—y
X by

d
defined at x = 0?

d ]
Given that y = x|x|, prove that d—i = 2]x| (x # 0). By considering 5_)7 as ox — 0
X
through positive or negative values, prove there exists a common limit equal to

dy
-

zero. Draw the graphs of y and 7

12* A road bridge is constructed so the approach roads up to points 4 and B are of constant
gradient and the joining span between 4 and B is a parabolic arc.

%_\f\

A B

The construction model takes the form illustrated. The slope of each approach road is
1/50. Determine the equation of each approach road and the parabolic span, noting that
its slope is equal to the slope of the approach roads where they join.

y

(1. N 2.1

T T

Il |
1 T
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11.3 TANGENTS AND STATIONARY POINTS

Examples

dy . . . .
We know that > measures the gradient of the tangent to a curve y = f(x) at a given point.

dx

Knowing the coordinates (x.y,) of a point on the curve allows us to determine the
equation of the tangent to the curve at that point using the equation y —y, = m{x — x,)

where m is the gradient.
The normal to the curve at a point is a straight line that is perpendicular to the tangent
there, as shown in Figure 11.9.

Tangent

y=fix)

X

Figure 11.9 Tangent and normal 1o a curve

1. Find the equations of the tangent and normal to the curve y = x> — 4x + 3 at x = 0 and
at x = 4. Find where these tangents meet and where these normals meet.

Solution

) d
For the given curve & _ 2x—4. Atx=0,y=3 and Y —4.
dx dx

The equation of the tangent is y — 3 = (—4)}(x — 0), i.e.
yv—3=—4x or y=—-4x+3
-1 1
The normal has a gradient of = Z; its equation is
3 1 x—0) o : +3
—_ = —(x — ) = —
y 2 ry=g*
dy . .
Atx=4,y =3 and i 4. The equation of the tangent is
Ix

y—3=4x—4) ley=4x—13
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]
The gradient of the normal is ~3 and its equation is
3 l( 4) i : +4
-3=—-(x- le.y= ——
Y 3 X €.y 4x

The tangents meet where
—4x+3=4x—-13 le.x=2

The equation of either tangent shows that when x =2,y = —5, so the point of
intersection is (2, —5). The normals meet where

1 ]
zx+3=—3x+4 ie.x =2

1 1 1

When x =2,y =—-x2+4=3- The point of intersection is | 2,3-}. Refer to

Fi 2 2
igure 11.10(a).

d | . .
2. Find d—y for the curve y = — Find the two points on the curve from which normals can
x X

be drawn to pass through the origin. Is the gradient on the curve ever zero?

{a) ()]

Figure 11.10 Tangents and normals for (@) x? - 4x + 3 and (0) y = ;
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Solution

On the curve, :_)x’=—xl~2' The gradient of the normal at (x,.y;) is therefore
1

-‘/(x’) = 3. The equation of the normal is ¥ — ¥, = ¥(x — x).
1
But y, =X_1 so that
'—l—xz(x xy)
b PR 1)
If this linc passes through the origin then
|
0‘“-:,\'{(0-4“)
x
i.e. -—=-x
Hence x, = 1 or — 1 and the two points are (1, 1) and (= 1. — D).

The gradient is never zero but approaches zero as x takes increasingly large values,
positive or negative; see Figure 11.10(b).

Horizontal tangents

Consider the function y =x* —4x+ 3 shown in Figure 11.10(a). We saw that

dy _ dy . ) dy
d—x_Zx 4. When x<2.dx<0 and the function is decreasing: when x > Z.dx> 0

and the function is increasing. At x = 2.%= 0 and the function is stationary.

We can generalise these results to the following stalements using the other notation.

If f(x) > 0 in an interval of x then f(x) is increasing in the interval.
If f'(x) < 0 in an interval of x then f(x) is decreasing in the interval. (11.9)
If f*(x) = 0 at a point then f(x) is stationary there.
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Examples

In this example the curve is stationary at the point (2, — 1), which is called a stationary
point. The tangent is horizontal at a stationary point.

[. f(x) = tanx is an increasing function everywhere since f"(x) = — —— > 0, for any x.
cos®x

Refer to Figure 7.26 to remind yourself of the graph of v = tan.x.

2

: 1 . . : -1 . .
. f{x) = - has no stationary points. /'(x}) = —- and is always negative so that on each
X X<
branch f'(x) is decreasing; see Figure 11.10(b).

3. The function f(x) = = 3x has two stationary points, Since f'(x) = 3x2 — 3 the
stationary points occur where

32 -3=0 or x==+I

When x=1y=13-3=-2 and when x=—-l.y=(-1)'+3=2 Hence
A= (—1,2)and B = (1, —2) are stationary points.

Figure 11.11 shows the graph of the function; notice the regtons where the tfunction is
increasing and the region where it is decreasing. [ |

Zero

Positive Pusitive
1 Newative

B Zero

(a) (b)
Figure 11.11 Gradients on the curve f(x) = x> — 3x
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Types of stationary point

The graph in Figure 11.11 is typical of a cubic function with a positive coefficient for x*.
The feature at 4 is a local maximum: the function is at its highest in the neighbourhood. it
does take higher values for large positive x, in fact for x > 2. The feature at B is a /ocal
minimum: the function is at its lowest in the neighbourhood: it does take lower values for
large negative x, in fact for x < -2.

We make a formal definition as follows.

The function f(x) has a local minimum at x = a if f(x) = f(a) for all x near a.
The function f(x) has a local maximum at x = a if f(x) < f(a) for all x near a.

(11.10)

Local minima and local maxima are both examples of stationary points, but there is a
third kind. Consider the function f{x) = x*, whose graph is depicted in Figure 11.12.

Now /*(x) = 3x°. and for almost every value of x.f'(x) > 0. showing that f(x) is
increasing. At x = 0. however. /'(x) = 0 and the function is stationary there. Yet this
point is clearly ncither a local minimum nor a local maximum.

If you imagine driving along the curve from negative values of x to positive values, i.c.
in a general left-to-nght direction, then at x = 0 the sense of bending would change from
clockwise to anticlockwise,

The point of change in the sense of bending is called a horizontal point of inflection.
{Some older books call it a point of contraflexure 10 emphasise the change.)

At a local maximum the sense of bending is clockwise, at a local minimum it is
anticlockwise. Local maxima and minima are points at which the function changes from
decreasing (o increasing or vice versa: in other words. the derivative changes sign. They

Figwe 11.12 Graph of the function f(x) = x3
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are also known as turning points since the curve effectively changes direction from
upwards to downwards or vice versa.

Testing for stationary points

Examples

A test to determine the nature of the stationary point employs the first derivative of a
function. Table 11.6 shows a pictorial representation of the test where the stationary point
isatx =a.

1. Determine the location and nature of the stationary points of y = x* — 6x? 4+ 8x + 9.

Solution
d
Now d—y =4 — 12x+8 =4( —3x+2) = 4(x — D*(x + 2). Stationary points occur
x
when x =1 and x = 2.
d
The only places where i might change sign are at x = —2 and x = 1. Hence we

dx
choose as typical values some simple values of x to the left of —2, between —2 and 1,
and to the right of 1.

Table 11.6
Sign of f'(x) Sign of f/(x) Picture Decision or
to the left of to the right of definition
x=a xX=a
Negative Positive - + Local minimum

Positive Negative Local maximum

(0]
(o]
Ny y ) ¥
Positive Positive
+ Horizontal
u\

point of
inflection
Negative Negative




568 DIFFERENTIATION

d
Consider the sign of —dX atx=—3,0,2.
X

d
At x= 3,2 — 44— <.

dx=
At x=0, ‘—i¥=4(—1)2(2)>0.
dx

dy
At x=2. 2 _40124) > 0.
dx

Using the table above we see there is a local minimum at x = —2 and a horizontal point
of inflection at x = 1. The graph of the function is sketched in Figure 11.13.

Figure 11.13 Graph of y = x4 —6x? + 8x + 9

2. Locate the stationary points of the function f(x) = sinx and determine their nature.

Solution

Now f'(x) = cosx, therefore f'(x) = 0 where cosx =0, i.e. at

x::tg, 132—”, :i:ézz,etc.
There are infinitely many stationary points.
Between x = —g and x = g the derivative does not change sign; if we take x :n0 for
simpTIticity we see that //(0) = 1 > 0. Hence the function increases between x = 3 and
xX=z.

2
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3 _ L
Between x = g and x = —27—[ the derivative does not change sign; if we take x = 7 for
simplicity we see that f'(n) = —1 < 0. Hence the function decreases from x =g to
_3n
=5

Since the derivative changes from positive to negative at x = o this point must be a

local maximum. At x = 2mn, f'(x) = 1 > 0, so the derivative changes from negative to

. 3mo. - oo .
positive at x = ER indicating a local minimum. The periodic nature of sinx suggests an

alternative of the local minima, of value —1, and local maxima, of value 1. Figure 11.14
repeats the graph of y = sinx to illustrate these ideas.

T T % T /;\ 1
3n n Sn X
/ = \/ B \\_/ B \/
-1

Figure 11.14 Graph of y = sinx

4
3. Find the stationary points of the function f(x) = x + "
Here

, 4 x*—4
Sx=1 —E= T
Hence f'(x) = 0 when x*> -4 =0, i.e. x = £2.

These are the only places where the derivative might change sign. For convenience we
take x = —4, 1 and 4 in turn:

) 4 ' / 4
(=4 =1 ]6>O, f(H=1-4<0, fd)=1 16>0.

Furthermore, when x = -2,y = -2 — 2 = —4, and at x =2,y = 4. Hence there is a
local maximum at (—2, —4) and a local minimum at (2, 4). The graph of f(x) is shown in
Figure 11.15.

The dotted lines y = x and y = —x are not part of the graph; they are asymptotes of the
curve, as are the x and vy axes. Note that the function is not defined at x =0, as
demonstrated by the break in its graph. Also, f'(0) does not exist. |
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Special cases

N y=-x

Figure 11.15 Graph of y = x+§

The function f(x) = |x| has no derivative at x = 0 yet it clearly has a local minimum
there.

It is important to distinguish between Jocal maximum and minimum values and global
maximum and minimum values. First note that maxima and minima are known
collectively as extrema, or extreme points, the singular is extremum. The function
depicted in Figure 11.16 has a local maximum at P and a local minimum at {, but in the
interval @ < x < b it has a global minimum at x = @ and a global maximum at 5.

Sometimes a local extreme value coincides with its global counterpart. For example,
the function f(x) = x* has a local and global minimum at x = 0, but if the interval of
interest is 1 < x < 3, say, the global minimum is at x = 1; see Figure 11.17(a).

a ﬁ b X

Figure 11.16 Local and global maxima and minima
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() (b)
Figure 11.17 Graphs of (@) y = x? and (b) y = tanx

Figure 11.17(b) depicts part of the graph of y = tanx. In the interval 0 <x < g the

function has a minimum at x = 0 and a maximum at x = Y Overtheinterval 0 < x < w1t
has neither a maximum nor a minimum.,
In some situations we do not need calculus at all.

Example Suppose that we wish to find the global maximum and minimum values of the function

1

A TR Tl

This looks formidable, but the function clearly takes its greatest value when the
expression (x — 4)* + 10 is least, i.e. when x = 4; there the expression has a value of 10

o]
dndf(x) 18 H)T)

0.01 -+

|
4

1

Figure 11.18 Graphof y = — ————
o Pty [(x — 4 + 10
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However, the expression (x — 4)* + 10 has no greatest value since its graph is a U-
shaped parabola. Since f(x) is the square of some quantity, it can never be negative and

1
for very large (positive and negative) values of x it is approximately given by —. The
x2

larger the value of x, the smaller the value of f(x). Therefore the values of f(x) approach
zero but never achieve it. The graph of the function is shown in Figure 11.18. |

Exercise 11.3

1 Find the tangent and normal to the curves indicated at the given point.

(a) y=34+5x-x x=2 (b) y:2—x2,x:0
2
() y:x3. x=-—1 (d) y:;, r=42
x+ 1 .
(e) y:z’(;L v = —1 (H Vv =sinx, r:7—r.
X 3

Draw a sketch for case (b).

2 On the following curves, determine the coordinates of the points where the gradient is 1.
(a) y=¢ (b) v=1Inx.

Show that the curves share a common normal at these points. Draw a sketch.
. . I,
3 At what points on the curve y = tanx does the normal have gradient —5.’

4 The parabola y = x> — 8 + 12 has two real zeros.

(a) Determine the equation of the tangent to the parabola at cach of the zeros.
(b) Likewisc determine the equations of the normals at the zeros.
() Deduce that the point where the tangents intersect, the vertex and the point where

the normals intersect, all three lie on the axis of symmetry of the parabola.

5 Draw a parabola of your choice which possesses real zeros. At the zeros draw in the
tangents and normals. Mark the respective meeting points, as in part (¢) of Question 4 and
observe that the result holds in general.
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6 Draw the parabola y = x? +3x 4 1.

(a) Determine the gradient of the tangent and normal at the point P,(1, 5).

(b) Determine the coordinates of point P, on the parabola where the normal and
tangent respectively have the same slope as the tangent and normal at (1, 5).

(c) Determine the coordinates of the points when the tangent at 7, meets the normal at
P, and vice versa.

(d) Determine the area of the rectangle comprised of the two points on the parabola
and the two intersection points. Draw a sketch.

7 Show that the tangent to the parabola y = x? + x + & at the point x = | always has
gradient 3. If it passes through the origin, determine k.

8* The straight line v + 4x = £ is a tangent to the rectangular hyperbola y = 1/x at a point P
on the first quadrant, as illustrated. Determine the coordinates of P and the value of A.
Verify that v+ 4x = —k is a tangent at the point /', vertically opposite P in the third
quadrant.

9* A straight line y = mx is drawn tangentially to the curve v = sinx, meeting it at x = x just
. .. . n
to the left of the second positive maximum at x = 5

(a) Determine m.

(b) Prove that x satisfies the equation x = tan 2. Do not attempt to solve the equation.
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(o, sin o)

i
T

1
10. Iff(x) = /x — % ,x > 0 prove that /"(x) > O for all x > 0 and determine the equation of

the normal to f(x) at the point (I, 0).

11.4 SECOND DERIVATIVES AND STATIONARY POINTS

The second derivative of a function is obtained by applying the process of differentiation
2.

. . . . . dey
to the derived function. We use the notation /”(x) and ‘T;
2

Example Find the second derivative of (a) f(x) = x° (b} v = sinx and (¢) y = Ssinx — 3cosx.

(a) f/(x) = 6x° and f7(x) = 6(5x%) = 30x*
dy v d L
(b) i cosx and i dx(cos X) = —sinx

dy )
(c) d—l = 5¢osx — 3(—sinx) = Scosx + 3sinx
X

d%y .
E’;: —5sinx + 3cosx [ |

&y

Note that in parts (b) and (c) {—1 = -
ax-
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Geometrical interpretation of the second derivative

N
<

N d . . . d
The quantity f/”(x) = —1—; measures the rate of change of the gradient cTV
74 & X

If f(x)=x> then f'(x)=2x and f'(x)=2
If _f(x) = —Xz then _/V'(X) = —2x and j-//(x) -2

Figure 11.19(a) shows that the gradient of v = x? is increasing from left to right. From
large negative values it goes through small negative values to zero to small positive

’

values and to large positive values. For this curve F > ().
X

Conversely, in Figure 11.19(b) the gradient of y = —x? is decreasing from left to right;

dy

for this curve ',/ < 0.
dx?

Curves like v = x* are said to be concave upwards and those like y = —x? are

concave downwards. The graphs of many functions are concave upwards in some parts
and concave downwards in others. Look at a graph of v = sinx for an example.

2
. L. . y
In the region of a local minimum the graph is concave upwards and —5 > 0. In the

2

e
2y

region of a local maximum the graph is concave downwards and 7 < 0. What happens

{points where ¥ — 02
at points where —= = 0

P dx?
Y y
v=uxl
X
x y=-x2
(a) (b)

Figure 11.19 Graphs of (@) y = x2 and (b) y = —x?
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Points of inflection

d

Consider the graphs of y = x* and y = x> — 3x in Figure 11.20. If y = x* then ‘—; = 3x?

d%y *
and e 6x.

Y y
y=xd
y=x3-3x
X X
(a) (b)

Figure 11.20 Graphs of (@) y = x> and () y = x* - 3x

When x < 0, % < 0 and the curve is concave downwards. When x > 0, % > 0 and
the curve is concave upwards. At x =0, % = 0 and the curve has a horizontal point of
inflection. The sense of bending has changed at x = 0 and this is reflected by the change
in sign of Z_jc%) as we pass through the origin.

The graph of y = x* — 3x indicates that the curve is concave downwards for x < 0 and

concave upwards for x > 0. At the origin there is again a change in the sense of bending.
For this function

dy 2 d’y _
H_;j =3x"—3 and E = 6x

d2
Clearly d—x: = 0 when x = 0 but the gradient of the function is not horizontal. The feature

at x = 0 is known simply as a point of inflection.

One word of warning. Simply because ;—i = 0 at a point, it does not immediately
X

follow there is a point of inflection. Consider the graph of y = x* shown in Figure 11.21.
It is obvious that the curve has a local (and global) minimum at the origin, but

d’y d
K’l = d—x(4x3) = 12x?, which is zero at x = 0.



11.4 SECOND DERIVATIVES AND STATIONARY POINTS 577

Example

yax

Figwe 1121 Graph of y = x4

We can basc a test for stationary points and points of inflection on the second
derivative as follows.

If /(@) = 0 and f"(a) > 0 then f(x) has a local minimum at x = a.
If f'(a) = 0 and /"(a) < 0 then f(x) has a local maximum at x = a.
If f'(a) # 0 and f"(a) = 0 then f(x) has a point of inflection at x = a.
If f’(a) = 0 and f"(a) = 0 then further investigation is needed.

Locate the points of inflection on the following curves:

(@) v=x3 -2 (b) y = sinx
€) y=3x* — 8 + 6x? + 24x d)y=¢"
dy d*y 1 &% dy 1 2
(a)7_3r2 Zxdx—&t 2; henr_3 dy__ObudX—3x(-)-3¢0 Hence
the point of inflection occurs when x = %
dzy . . . d*v
(b) — = cosx, —5 = — sinx. When x is a multiple of # then — = Obutcosx =1 or -1
dx? dx-

at such points, hence the points of inflection occur infinitcly often, sandwiched
between the altemate local maxima and minima. Refer to a graph of y = sinx.

(c) ‘%: 12 — 24x2 + 12x + 24,

2
:Tév: 36F° —48v 4+ 12 = 123% —dx + 1) = 12(3x = I)}(x — 1).
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Examples

d?y dy L d%y dy 7
= = < W S - = =25~ 0.
When x =1, 72 = 0 but e =24 # 0. When x = 3 0 but e 25 5 #0

. . . 1
Hence there are points of inflection, at x = 1 and x = 3

M

dy . d¥y - dy . . .
(d) — = —e™", 5 = +e™" and = is never 7ero, so that there are no points of inflection

dx dx dx?

on the curve. ]

For locating and identifying stationary points. we now have two tests: one is based on the
first derivative at the stationary point and on either side of it, the other is based on the first
and second derivatives at the stationary point.

Other than the case where both f"(x) and f”(x) are zero for the same value of x, the
second derivative test is probably easier to apply, provided the differentiations do not
become too complicated.

It might be argued that the first derivative test is foolproof so it should always be used.
Remember, though, it will only pick out points of inflection which have a horizonal
gradient. The choice depends partly on what is sought and partly on your preference.

1. A rectangular plot of land is to be enclosed by brick walls. If the area enclosed is
400m?, what dimensions of the plot will require the least perimeter and what is this
least value? Refer to Figure 11.22.

Solution

Let the dimensions of the plot be x m by y m. Then the arca is xy m” so that

xy =400 or y=400/x

00
The perimeter is given by p = 2x 4 2v. Substituting y = 400/x we obtain p = 2x + §—

X
Differentiating twice in succession produces

dap 5 800 d’p 1600

dx x2’ dxr ¥

800 . 5 Lo
5~ =0, i.e. x> =400; the only relevant solution is x = 20.

d,
Now d_p =0 when

X
2

400 ) d
Then y = - = 20, too, so the rectangle is a square and p = 80 m. Since vl: > {) this

solution represents a minimum value of p.

2. An object moves so its displacement from a fixed point is given by s = sin 3t + cos 31.
When does s take its maximum and minimum values? Interpret your results.
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00 20

(a) 1)}
Figure 11.22 Diagrams to show the rectanguilar plot of land

Solution
Differentiating twice we obtain
,

d; d-
Z: = 3cos3r— 3sin3s. ;,7; = 3(—3sint) — 3(3cos3t) = —9sin3r — 9cos 3¢

dz.' 5
(Nole that ——: = —(3) x s)
dr?

Now % =0 when 3cos3¢r—3sin3r =0 1.e.

sin3t =cos3t or tan3t=1.

This equation i tistied when 3¢ = n Sn? L 80 1= n Sn on tc. Wh
is equation is satis 14 4. ) 7 etc. en
n d | 1
=—, —=-9 9 x 0.
4" dr X\/i ﬁ<
When
5t d%s 1 |
Y=o, —=-9 —-—=}-9 -— 0.
4 dr ( ﬁ) ( ﬁ)>
When
91 d’s | |
=—, —=-9x-——=—-—9x — < 0. ctc.
T an X\/j Xﬂ< cte
9 17n 1 1 2 5
Henudt/~n 172[ 7 ,etc.. s1sat1tsmax1mumofﬁ+ﬁzﬁzﬁ.Att:é.
13 21 1 1
= " . etc., s 1s at its minimum of — —= — — = —/2.

120127 NNz
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This displacement describes a (simple harmonic) oscillation about the fixed point. The
maximum represents the greatest distance travelled in the direction of positive s and the
minimum represents the greatest distance travelled in the opposite direction; together
they define the points between which the object oscillates.

3. A firm mass-produces a computer component. The unit price p (in thousands of £) is
related to the demand x (in hundreds of units) by the equation

()
x={—}).
P
The cost C (in £) producing the components is given by
C = 5(x+24)
(a) Find the level of demand x for which the profit is maximum.
(b) Find the unit price p at which this occurs.

(¢) Find the maximum profit.

Solution
The revenue R gained from selling x units is R =xp. Now x=—— so that
2
8100\ 90 90
p = ( ) = — 5. Hence the revenue R is \’(—7) = 90x'/2, The profit
X x!72 x!/2
P =revenue —costs =R — C
= 90x'? — 5(x + 24) = 90x"? — 5x — 120.
Now
dP 190 45 d*p 1 45
—_— = = — = —x — an = ———=.
de  2x172 x!/2 4 dx? 2x312
45 172 . . . 4 2
Hence =0 when —; =35 or x/° =9, i.e. x = 81. At this value of x, <0, so
x xi/2 dx?
. . . 90 90
this represents a maximum profit. When x=81,p= W =95 = 10 and

P =90(9) — 5(81) — 120 = 285.
Hence the maximum profit of £285 000 is achieved when 8100 units are produced at a
selling price of £10000 per 100 items. |
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Exercise 11.4

1

Which of the following functions have maximum or minimum values? State the values of
x, if any, which gives those values of the functions.

(a) X2 — 8x (b) Tx — x? (c) 3x? + 4x
(d) 1 —x° (e) (x — 1Yx —4) () x+2)x—=95)
(g) 7 + 5x — 2x°.

For the following functions identify any maxima, minima or points of inflection, stating
the values of x for which they occur. Sketch a graph for each function.

(a) 2 =3 4+ 3x (b) Xx —6) (c) x(x? — 12)

(d  x(x—5)x—8) € (x4 Dx—1) 0 (+x2—-x
9 ,

(g) X+ . (h) x4 2x.

Find the maximum and minimum values of f{(x) = (x — 1){x — 2)/x and illustrate your
result by sketching the graph of the function between x = +3.

Find the area of the largest rectangular piece of ground that can be enclosed by 100 m of
fencing if part of an existing wall can be used.

SOUNEARRNN NN

A rectangular sheet of cardboard is 8 m long and 5m wide. Equal shares are cut away at
each comer and the remainder is folded to form an open box. Find the maximum volume.

A particle which moves in a straight line relative to a fixed origin obeys the law

208 97
§=— ——+ 10t
s 3 > +

where s is the distance (m) and f the time (s).
(a) Find an expression for the velocity. When is the particle instantaneously at rest?

{(b) What is the acceleration?
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8

o]
]

10

1

12

13

(c) What is the maximum displacement?

(d) What ultimately happens to the particle?

A stone 1s thrown vertically upwards from the ground. Neglecting air resistance. it obeys
1 . . -
the law s = ut — Egtz where s is the upward displacement (m), u the initial upward

. - - . . -2
projection velocity (ms ') and g the acceleration due to gravity (ms™ °) measured
downwards, hence the negative sign.

1..
() Differentiate s and verify that 1 = (Z; when 1 = 0.

(b) When does the stone reach its maximum height?
(c) What is the maximum height?
(a) A person drops a stone into the sea from a vertical cliff 100m high. How long

does it take tor the stone to reach the sea?

(b) Suppose, the person threw the stone upwards at 10ms
(i) To what height would it rise?
(i) How much longer would it take the stone to reach the sea?
(Take gto be 10ms” %)
. X —4x—1 . .
Prove that f(x) = — can have no maxima or minima when x > (.

The function fis defined as follows:

2x(x = 1) X
X

1) = (x = I){x = 2)(x = 3)

Find the maximum and minimum values of f{x) and identify its least value. Sketch f(x)
and f7(x) together on the same axes.

Given that f(x) = 4+ ax? + bx+ ¢ has a maximum at x = —2 and a minimum when
X = 3 determine «, b, c.

The volume of a cylinder is 16mcm’. If its total surface area is the least possible. find its
radius.

The amount, W litres, of fuel used by an aircraft flying a certain distance at a speed
400

." N
e

vkmmin "' is given by W = 257 +

(a) Find the rate of change of W with respect to v when ©» = 4.
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14*

15*

16*

17

(b) Find the smallest number of litres required for the distance and the economical
cruising speed.

A ship is 10 km north of 4 and another is 9 km east of A. Starting at the same time, the two
ships move south and west respectively at 6 kph. If the distance between the two ships
after 7 hours is xkm. show that x* = 727 — 228t 4+ 181. Find the time when the ships are
nearest to one another by linding the value for / where x° is least. What is the shortest
distance apart?

Which of the following functions are concave downwards, upwards or neither?

(a) X (b) ¥ (c) —x! (d) ¢

() Inx (" x— 1/ () R i K ROy

The positive tunction f1s defined for x > 0. It is both decreasing and concave upwards.

1 B
0 Cx0)
(a) What conditions must be fulfilled for the rectangle ABCO to have maximum
area?
(b) For f(x) = ¢7'. defined for v > 0, find the rectangle of muximum area. You may

{ .
assume that “ (xve y={(x— L) '
dx

Determine the derivative of the following functions to the order stated.

(i) smy (3) (b) X4 () Iny (5)
(y =107 4 2600 - S+ 3 — L+ 1 (6)

) As@ (D )y xS
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18
19

20

21*

Keep differentiating ¢, recording the result each time. What do you abserve?

Repeat Question 18 for sin.x.

K a number of times. Consider the cases

Differentiate x
(a) k a positive integer (b) k not a positive integer

What do you observe?

Sketch the graph of f(x) =14 (x — 1)4. Show that f“"(l) =0.k<3 Setx=1+¢,

where ¢ is small, positive or negative, and by finding f{x) near x = | prove that fhas a
minimum at x = 1.



SUMMARY

Differentiation of a function: a function f(x) is differentiated to give the
derived function f”(x). The value f'(a) is the derivative of f(x) at x = a. The
derivative measures the instantaneous rate of change of the function.

_ . Sla+h) —f(a)
o=

Linear combination:

%16/ ) + Be(w)) = of () + B

Gradient of the curve: y = f(x) has gradient Z—{ =f{x).

Increasing and decreasing: are properties of a function f(x) revealed by
its derivative.

S(a)>0 f(x) is increasing at x = a
fila) <0 f(x) is decreasing at x = a
f@=0 f(x) has a stationary point at x = a

There is a local minimum at x = a if /'(x) < 0 forx < @ and f’(x) > 0 for
x> a.
There is a local maximum at x = a if f'(x) > 0 forx < @ and f'(x) < O for
x> a.
There is a point of inflection at x = a if f'(x) has the same sign on both
sides of a stationary point.
The second derivative of a function is the derivative of the first derivative,
written (x) or ‘fl’

B
Second derivative test for a stationary point at x = a

If /”(a) > 0 the point is a local minimum
If f”(a) < 0 the point is a local maximum
If /"(a) = 0 we need further investigation



o Point of inflection: if f/“(a) = 0 then when f'(a) # 0 the function has a
point of inflection at x = a; if f'(a) = 0 we need to investigate further.

¢ Some derived functions

fly x* & sinkx cos kx In kx
fiix) m*' kM kcosky  —ksinkx %
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Answers

Exercise 11.1

(a)

(b)

()

(d)
(c)

(a,b)

()

(b)

X 0 ] 2 3 4 5

v 0 8 27 64 125

4.r.0.C. 1 7 19 37 61

X 2 2.1 22

v 8 9.261 10.648
4.1.0.C. 12.61 13.87

X 2.00 2.01 2.02

v 8 8.120601 8.242 408
4.1.0.C. 12.0601 12,1807

aroc.=12+6h+h > 12ash—0

At x = x5, ar0c. =33 +3xh + 4 > 3xjash— 0

x5+ 2xph + b = xh 4 2k
xp 4 3x3h + 3x0h + B A 0] + 3xh

X+ A+ 0GR+ dxph’ + h A x + Axdh

(xo + )" =X +nxy Yh = x07"(xy + nh)

aroc. (h=0.01)=6.152(3 d.p.)
ar.o.c. (h=0.001)=6.015(3 d.p.)

6

X 1 2 3

1/x 1.000 0.500 0.333
aro.c. (4d.p.) —-0.9901 —().2488 —=0.1107
AL0C. = — limiting value =—

- Xolx, + h) X;
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6 X 0.0 0.1 0.2 0.3 0.4 0.5
sin x 0.000 0.100 0.199 0.296 0.389 0.479
a.r.0.c. 1.00 0.99 0.97 0.93 0.90
Cos x 1.00 0.99 0.97 0.94 0.90
7 x 0 I 2 3 h
e 1.000 2,718 7.389 20.09
a.r.o.c. 1.005 2.732 7.426 20.19 0.01
aro.c./e 1.005 1.005 1.005 1.005 0.01
a.r.o.c. 1.001 2719 7.393 20.10 0.001
ar.o.c./e' 1.001 1.001 1.001 1.001 0.001
Note that for A =0.001 the ratio a.r.o.c./¢" is 1.0005, rounded 1.001. You can see that
(ar.o.c./e’) — 1 as h — 0 and that the relative error for # = 107" is approximately
1
= x 107",
2
8
e 0 l 2 3
2" [ 2 4 8
a.r.o.c. 0.696 1.391 2.782 5.564
ar.o.c./2" 0.696 0.696 0.696 0.696
In fact a.r.o.c./2" > 0.695 555 in each case. Notice that if f{(x) = 2* then /'(x) = In2.2%,
where In2 ~ 0.693.
9 (b
X 0.333 0.500 L.OD0  2.000  3.000
Inx — 1.098 —.693 0 0.693 1.098
a.r.o.c. 2.96 1.98 .00 0.50 0.33

(f“(x) _ 1)
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9 (a)
B y=Inx
-
L
I 2 3 4
-l
%
4
/
10
_\Jx)
1
0304 05
W @ yminp 1 2 3 4 s

S (kph) 42 84 114 150 162

(b) Mean of five speeds = 110.4 kph.

(c) DS
S(r)
10 - 200 D(1)
5 -1— 100
| 1 | | |
1 2 3 4 5 r{min)
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Exercise 11.2

1 (@ 3x? (b) 5x*
2 (a) 6x (b) — 8x

(e) 2x—7 () 10x

() 3 ()] —4

(m) 6x+5 (n) 8x — 7

2

(@ 152 +38 (r) 3% —8x+3

) —%—4 (u) 12x2+3—2
3

(0, 4)

(1,0)

(©)

(c)
(&)
(k)
(0)

(s)

—2/x

(4,0)

d
(a) _.y:2.X—5; —3at (l, O)~3at (4’ O)

dx

(b) Q =—-5at (0,4
dx

dy

(d)
(h)
(D
(p)

— = 0 at the vertex (2.5, —2.25) where the slope is zero.

dx

3x?

2
3x% — 6x
6 — 18x
6x% — 14x
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4
(a)
(b)
5 »p-22
6 (a)
(b)
7 (@@
(d)
(g)
()]
(m)
8 (a

2()J
1()J

1 T T
-2 -l 12\ 3

~-10 7

-20

y=x ~d4x?-11x+30

d
Y3 8 —11=(Gx = 1D)x+1)
dx
dy
= 40 at (—3, 0), =15 at (2, 0), 24 at (5, 0)
X
dy 11 400
a =0 at (— 1, 36) and (*3—, —37—)
5,t=1
(i) 4.52s (i) 44.3ms " (iii) 25m
(i) 176.6m (i) 589ms™"
1+ 12/x? (b) 1+ 1/x2 — 475}
36x2 —4x + 5 © 5)22/3
2x/x 3
2 l —3/4 1 —4/5
3ax? +2bx+ ¢ (h) yed -V
10 cos 10x (k) —1le~ !
1/x (n) sec?x
2/x b k/x
b2
C — a;)

(¢)

(f)

(1)

M

(c)

il =)

prl
2pJp

172\
()

26% 4 e~

In10 x 10*
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10  5? > 3ac; cubic has a local maximum and a local minimum

d
LAY E(ixl)

12

Exercise 11.3

+1

(a)
Left span: —I—L(x—l)
pamy=1=%50
1
Right y—l=—-—(x-2
ight span: y 50(" )

1
Join: y = ga(—x2 + 3x 4+ 48)

(a) y=x+7,x+y=11

(b) y=2,x=0

y=x

2

x| x|

y= —x2=x|x|

(b)

Normal

Tangent
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(c) y=3x+23y+x+4=0
(d) x+y=2V2,y=x
(e) x+y+3=0y=x—-1

x Viny V3

O y=ytg merteat

W N

N

y=x+1
y=x-1

x+y-1=0 is the common normal

3 x=+=n/4

4 Tangents y+4x=28 at(2,0)
y=4x—24 at(6,0) meetat (4, —8)
Normals 4y=x-2 at(2.0)

1
4y +x=6  at(6,0) meetat (4, 5)

/
/\v

\
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1
6 (a) Tangent gradient 5, normal gradient -3 at (1, 5)

(b) pz(_? _%) ie. (—1.6,—1.24)

(c) Tangents/normals meet at (—3, —1.5) and (—0.3, 5.26)

(d) 8.788

7 Tangentat (1,24k), k=1

1
8 P(§.2),k:4

1 |
1 x) = —— - i ; al 1 =1.
0 f(x 2ﬁ(l+x)>01fx>0,n0rmdllsx+y 1

Exercise 11.4

7
1 (@ min 4 (b) max 3 (c) min —;
. .5 .3
(d) infl 0 (e) min — ® min -
2 2
5
(g) max T
2 (a infl 1 (b) max 0, min 4, infl 2
(c) max —2, min 2, infl 0 (d) max 2, min ? infl ?
1 1
(e) max 3 min 1, infl 3 H) min —1, max 1, infl 0

(2) max —3, min 3 (h) min —1
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3 max —(3 4+ 2v2), min(2v/2 - 3)
4 1250m°

18m’

(a) v=22—-9+10;r=25and2 (b a=4t—-9 (©) 7~

(d)

(r=35)
ultimately accelerates away
7 t=uj/g (c) u/2g
8 (@ 447s (b) 1 Sm (i) 1.11s

1
9 /S =x+ — > 0 when x > 0. Must have f(x) = 0 for a local maximum or minimum.
X

. 1l V32 ‘ V32
10 Least and minimum (5,—5),max (2_T C_)ﬁ) min ( +T 6‘/3)

f0

fix
]_.
1

1 2 3

11 a=2.b=—-4c¢c=-8

12 2cm

13 (a) 187.5 litres per kilometre (b) 200 litres, 2km per minute
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14  1h 35min, +0.5km (=0.707 km)

15 (a) concave up (b) neither (c) concave down
(d) concave up (e.f) concave down (8) neither
16 @ O L) =05 ) <o
i) 2 Of () = 0. 5 (f () <
d2
b) x=1—@eH=(x-2)e =-e'<0atx=1
dx?
Area=e"!, maximum
24
17 (a)  —cosx (by  840x° © =
x
880
d 720 0 —x 143
(d) (e) (f) 3 43x
2
18 c-i;(e_“) = e™*; alternates e *, even/odd
19 Successive differentiations give cosx, — sinx, — cosx, sinx, .. .; the pattern repeats every
fourth time.
20 k(k—1)...(k—n+1)*" n times
(a) derived function =0 after & + 1 differentiations and subsequently

(b) derived function never zero

2]

(1. D




12 INTEGRATION



INTRODUCTION

OBJECTIVES

Integration is a versatile tool in applicd mathematics. It can be regarded as
the reverse of differentiation; for example, we can find the distance
travelled by an object knowing its speed at every instant during the
journey. To find the position of the object, we would need to know where
it started from. On the other hand, integration can be applied to finding
plane areas, volumes of non-regular solids, the location of centres of
gravity and the mean value of a function over a given interval. The link
between the two types of application is provided by a powerful theorem:
the fundamental theorem of calculus.

After working through this chapter you should be able to

understand the distinction between indefinite and definite integration

obtain the indefinite integrals of simple functions by reversing differ-
entiation

use definite integration to find the area under a given curve

deal with cases where the area crosses the horizontal axis

appreciate the importance of the fundamental theorem of calculus
calculate the mean value of a function over a specified interval

calculate the root-mean-square value of a function over a specified interval
find the volume of a solid of revolution by integration

calculate the moment of an area about either axis

find the position of the centre of gravity of a plane area

use the trapezium rule to find the approximate value of a definite integral
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12.1 REVERSING DIFFERENTIATION

Example

If we know (at any instant) the rate at which a liquid is cooling, can we determine its
temperature at any subsequent time? If we know the instantaneous speed of an object
moving in a straight line path, can we determine its position? The answer to both
questions is a partial yes. The process requires the reverse of ditferentiation, but this leads
to some uncertainty, as the following example shows.

If '(x) = 2x then what is f(x)?
From our work on differentiation we know that one answer is f(x) = x2. However,

. , 1 ) . N
other possible answers include f(x) = x° + 7 f)=x =3 and f(x)=x"—4.7. In

cach of these three cases f(x) = 2x because the constant differentiates to 0.
To cover all possibilities we write f(x) = x> + C where C is an arbitrary constant,
known as the constant of integration.

. ..
In the alternative notation, if d— = 2x then y = * +C. [ ]
X

: o dy oo . :
In solving the equation (7 = 2x we have produced a family of solution curves with the
X

general formulation v = x> 4+ C. Each value of C gives a different member of the family
and no two members of the family intersect; see Figure 12.1(a). In this example the
family cover the entire x—v plane in that every point in the plane lies on one (and therefore

(a) by
Figure 12.1 The family of curves y = x2 + C
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Example

Notation

only one) curve in the family. Specifying a point through which the solution curves
passes selects one of the curves uniquely.

In Figure 12.1(b) we see that for any value of x, say x = a, the gradients on the member
curves are all equal, in this case 2a.

In our example, if we specify that when x = 0,y = 3, i.e. the solution curve passes
through the point (0, 3), then v = x* + 3 is the solution.

This process of reversing differentiation i1s known as indefinite integration. The
resulting function is a primitive, or more popularly, an indefinite integral, sometimes
denoted F(x). I

For f(x) = 2x. examples of primitives are F(x) = x°. F(x) = x* — 5 F(x) =x?+3.

A stone is thrown vertically upwards with initial spced u. Its speed at subsequent times ¢
is given by

dy ,
V! —= — = —
dr U g

where y is its height above the point of projection at time ¢ and g is the acceleration due to
gravity. Find the height as a function of time.

Solution
- . . dv . ] 2 . .
A function y for which le u—gris v= Ln‘—igf , so the general solution is
¢

1 . .. )
y=ut— Egt2 + C where C is an arbitrary constant.

We know that when ¢ = 0.y = 0 so that
0=0-0+C.

Hence C = 0 and the solution is

1,
r=ut — gt
y=ur—sg |

To help us later on we introduce some notation for integrals. The process of integrating
the function 2x to get x> + C is written

2vdy = x* + C.
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The left-hand-side is read as “the integral of 2v (with respect to x)'.

The symbol [ is a corruption of S (for sum, as we shall see in the next section).
You should regand it and dv as forming part of a package into which a function is
placed. i.c. j( )dx, where the formula for the function replaces the brackets. The function
being integrited is known as the integrand. Note that x is the variable used to
convey information about the process of integration. Other letters could be used.
Hence

JZ{ di=r+C. Jz:- dr=1" + C.ete.
In general. if F'(x) = f(x) then F(x) = [ f(x)dx.
To allow us to integrate a range of functions we make use of rules similar to those in

Chapter 11 and apply parts of Table 11.5 in reverse.
In the following. f(x) and g(x) arc two functions and % and ff are two real numbers.

1. Scalar multiple: the integral of a scalar multiple of a function is that scalar multiplied
by the integral of the function.

tv

. Sum: the integral of the sum of two tunctions is the sum of their integrals.

3. Difference: the integral of the difterence of two functions is the difference of their
integrals.

4. Linear combination: the integral of a lincar combination of two functions is the sume
lincar combination of their integrals.

We have used the term Cintegral” to mean “indefinite integral’.
These rules may be summarised as follows,

. r%f(xkix:ajf(x)dx

2. .U’{.r) + g(x)}dx = Jf(.t}dr + Jg(x)d.\'
_ a2.1)
3. [1w - gnax = jf(x) = Js(-t)dr

4. [+ peide = Jf(x)dr +8 jg(x)dx

In the following table we have denoted the constant of integration by C. Note the use of

|x} in the integral of . This is because the In function requires a positive number as mnput.
X
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Table 12.1
Function f(x) Indetinite integral [ f(x)dv
0 C
| v+ C
2x Y+ C
v +1
n —1 .
\ n# n +C
cos .y siny + C
SNy —cosv+C
¢t o+ C
|
- X #£0 Injy|+C
RY
|
cos Ay r sinkv+ C
|
sin kv — zcos v+ C
o L My C
k
Examples 1. Given the following derivatives, find the function y in each case.
dy 4 dy 3 3
a) -— = 5x b) — =2x" —3x" 42
(a) . (b) dx
dv 2 dv 3
) —== d — =342+,
© dy X ( dx X
Solution

5
() _sz(X—>+C:x5+C

5
4 3 4
(b) y:Z(%) —3('%) +2(x)+C:%—x3 +2+C

dy 3 X2 2 1 .
(C)a:.?x ,}’32(_—2‘)+C=—.\” +C:—;+C

dy 5 » I’ 3x~3 3 1

— =3x" 42+ 3 = 2 C=x"4+2x—— .
(d) I -+ 2+ 3x 3 3 + r+(_3)+ x4 2x x3+C

2. Integrate the following with respect to x:
, 5
(a) x* ) ¥ +23+3+ 5
2

| S,
(¢) 2cos3x+ S5sin2x (d) E(ez“ + e ).
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Solution

o

. ._Jd_ =_4+C
(&) .I\ X 4-1—

[ 5 5 [, ' i o,
(b '(,\" +2¢' +3 —,)dx = Ix“dx +2 Ix}d.\' +3 ‘ ldx+5 '.r “dx
. X . . . .

_.\'3 +2,\‘4 34 5¢~! P
3T TN O
oo 4 5 .
= FyY R
() (2cos3x+55in2.\')dx:2’cosfﬁxa’x+5 sin 2x dx
sin 3x cos 2x L2 5 .
—2( 3 )—1—5(— > )+(_§sln3x—§cos2x+(
(d) (1 2.\+l -2x d _ll 2.\(1 +l[ —2.\/
. 26 2( XA2. € X 2 ¢ ax
L™ 1 fe® D U R
—E(—E')""Z-(_Z)-FC—Z( 3¢ +C ]

Note the following points:

I. Although we carried out several separate integrations in parts (b), (¢) and (d) of the
second example, we need only add one arbitrary constant at the end. The * + (7 is not
to be treated as a part of the arithmetic, rather as a statement of uncertainty about the
answer. Once all integrations have been completed it is sufticient to put the single *+ 7
after the expression.

It is always possible, if time allows, to check the accuracy of your integration by
differentiating your answer and checking that the result matches the original integrand.

12

Exercise 12.1

1 By reversing the process of differentiation, write down integrals of the following
tunctions. Include the arbitrary constant.

(a) xb (b) 5a2 (¢) S

@ ) Jx M@=
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2
1\ 2
(2) (x + Dx + 2)x + 3) (h) (x — :)
: 9 5 7 _ (x = 1)
R A v
2 Repeat Question 1 for the following, by determining the indefinite integrals of the

6*

7*

tunctions. Ignore the arbitrary constant.

(@ (b)  xlx— Dix—2)
(©) (6x%/3 — S5x=13(1 — 2/x) (d) = 1P =2)+ (x =3P (x—4)
@ M=Sx=6)+(x- 2)%(x = VA

X

(f) (“\,7/2 _ XZ/II)(XI‘)/ﬁ _ X3/7).

By reversing the process of differentiation, write down integrals of the following; this time
include the arbitrary constant.

(a) 6e* (b) lle™ + 15¢ (c) sin 5x

(d 3sinSx —4cosdx — 11 /x (e) asinax + b cos bx with a. b constant.

In /x + C is the indefinite integral of onc of the functions given below. Which one?

2 |
(a) : (b) i}
1 1

By writing 3% = ¢*'"?, determine [3“ dx.

Determine .[(x” + xX")x + x¥)dx where a. b. ¢, d are constants. Consider different cases,
depending on the values of the constants.

Determine ‘[((x —a)x — b))+ (x — (,')z(x + d)/x)dx where a, b, c. d are constants.

. 2 ) ~
Given that [ /x(x + a)dx = g.r3/‘(.r + 1) + C determine a.
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12.2 DEFINITE INTEGRATION AND AREA

Suppose that we wish to find the area between the line y = x, the x-axis and the ordinates
v =ua and x = b, as in Figure 12.2(a). We can use elementary geometry. The required

area is
ABDC = OBD — QAC
] 1
:5()B>< BD—EOA x AC
B I/7 b 1
= 2 X 2(1 X ad
_ Ly la3~F(b) F(a)
=27 T T “
1,
where F(x) = Ex“

]
Note that F'(x) = x. And in the special case when ¢ = 0, the area is Ebz‘

Figure 12.2(b) represents a velocity—time graph; the velocity of an object is given by
the formula v = u + at. where u is the initial velocity (i.e. at t = 0) and a is the (constant)
acceleration of the object.

The area under the graph of v = u + at, the r-axis and the ordinates t =1, and # = 1,
represents the distance travelled by the object in the interval between times 7, and 1,. The
ordinate AC = u + at; and the ordinate BD = 1 + at,. The area ABDC is given by

y y
D v=u+al
D V=
(b, b}
C
I
(d, u)
h
a
u
0 A B X A B X
Y=a x=h t, 1,
(@) by

Figure 12.2 Area under a straight line graph
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ABDC:%Ku+Mﬁ+OPHmﬂX(Q—h)
= [u+g(ﬁ +fz)}(’2 —1)

a ]
=ulty = 1)+ 5065 = 1)

= (ut2 +gt§) - (m] +§zf)
=F() — F(1))

1
where F(t) =ut + Eatz

Note that F'(t) = u + at = v. And in the special case where r, = 0, the distance travelled
1 ]
is ut, + Eatg. Therefore the distance travelled at any time ¢ > 0 is wt + Eat2 = F(1).

Suppose now that we find the area between the graph of y = x?, the x-axis and the
ordinates x = ¢ and x = b; this is the shaded area in Figure 12.3,

We could try to draw the graph accurately on squared paper and estimate the area by
counting the number of squares in the region concerned, estimating the fraction of each
square to be included in the count when the graph cuts through it. This would be tedious
and not very accurate.

In Figure 12.3(b) we have taken the simpler case where ¢ = (0. The area under the
curve between x = 0 and x = b is clearly less than the area of the rectangle OPQR: this
rectangle has area OR x QR = b x b* = b*. We could say that 0 < Area < p*. Now we

introduce the ordinate x = 5

1o

U (%]

5
-

1]

(@) 13}

Figure 12.3 Area under the curve y = x2
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The arca we want has a value greater than the arca of the rectangle WTFHR and less than
the sum of the arcas of OSTH and WUQR. i.c.

-

b (b\ b (BN b,
ix(§)<}\rca<§x(;—,)=§xb

b A 5p
g‘ < Arca < T

Notice that the overestimate of the arca has decreased (because we have omitted the
rectangle SPUT) and the underestimate of the arca has increased (because we have
included the rectangle HTVR).

Figure 12.4 shows the process continuing with the interval 0 < x < b divided into 4
strips of width b/4 and 8 strips of width 5/8. The sum of the arcas of the shaded
rectangles represents the difference between the values of the overestimate and the
underestimate in each case.

The table on the next page shows the results as the number of strips increases over the
interval 0 < x < b. Results are quoted to Sd.p. As the number of strips increases and
therefore their width decreases. the underestimate and the overestimate get closer
together. To what value are they converging? b

Question 3 in Exercise 12.2 shows that for n strips, of width -, the underestimate and
the overestimate are given respectively by "

(n — l)(ZI: - and (n+ l)(2:1+ -l)h"
on- 6n-

Figure 12.4 Improving the accuracy of area estimates
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3 1 N
ie. (1 —l) (2 —1)[—)— and (1 +—) (7_+_)
n nl] 6 n n) 6

1 1
As n increases, both (l +—) and (] +—> both converge to the value 1 and both
n n

1 1
(2 — —) and (2 + —) converge to the value 2.
n n

Table 12.2
Area/b’
Number of strips, n Underestimate Overestimate
| 0 t
2 0.125 0.625
4 0.21875 0.468 75
8 (.27344 0.398 44
16 (0.28320 0.36523
32 0.31787 0.349 12
64 0.32556 0.34119
128 0.32944 0.33725
256 0.33139 0.33529

Each estimate therefore converges to the value

b3 b3
I x2x— ie —.
R 3
If we look back to Figure 12.3(a) it is therefore reasonable to argue that the shaded area
3
a
has the value — — —.
i 373

Even for this simple function it is a tedious process to obtain the result. It is much more
tedious to find that the area between the curve v = x°, the x-axis and the ordinates

x=aand x=bis — — T Fortunately the next section provides a simpler means of
finding these areas.

Fundamental theorem of calculus

The clue is provided by the results obtained so far; see the following table. It would be
b o X

4 s — — =, since —
5 5 5

tempting to suggest that the result for the function f(x) = x

differentiates to x*. In fact this is the correct result.
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Table 12.3
Arca between v = a and
Function f(1) V= h, gthy — gla) £ v
J S v
' 272 2 !
boa . .
' 3o 3 '
N T o '
1 - LY
4 4 4

In general. for a function f(x). when the underestimates and the overestimates of area
converge to the same value as the number of strips increases, the value to which they
converge is culled the definite integral of f(v) from v = 4 to x = . We often call it "the
integral of f(x) from ¢ to &,

In cach case in the above table the definite integral could be expressed in the form
F(b) — Flu) where F(x) = f(x), ie. F(x) is an indefinite integral of f(x). Which

indefinite integral is chosen does not matter. &
For example. with the function f(x) = x- we have chosen F(x) = ',‘ . then
3 i ) B

F(h) - Fla) = 3 " “1--: if we had chosen F(x) = ';- + 2 then

At al S
y X = 21 -1 -- 2 - — - —
F(by Fla) (3 +..) (; +-) 3 3

3
Whatever constant we add to — will cancel out in this way: therefore we choose F(x)

without a constant of integration.
Because of the link between the arca and the primitive we write the definite integral of
Jf(x)fromx —atox—hbas

]Jj (x ).

Notice the position of the lower limit of integration v = « and the upper limit x = b,

To cvaluate the definite integral we find an indetinite integral of 7(x). evaluate it at
x =a and x = b and subtract the first value from the second. This is expressed in the
fundamental theoreom of calculus.

If F(x) = f(x) then r S(x)dx = F(b) — F(a). (12.2)
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Evaluating definite integrals

Examples 1. Find the values of
4 em/2 e/ 2
(a) [ 3% dv (b) cosx dx (<) cosf db
J2 Jo Jo
(a) The first step is to find an indefinite integral of 3x?; x> will do. The notation
for evaluating x* at x = 2, at x = 4 and subtracting is
B

Notice again the position of the limits of integration. We therefore write
4
[ de=[FP =4 -2 =64-8=56
(b) A suitable indefinite integral of cosx is sinx. Hence

n/2 , n
[ cosx dx = [sinx]y’* = sini —sin0 =1
JO

(c) Here the problem is described in terms of the variable 6. This does not matter;

it is the sine function and the limits of 0 and 7 that determine the answer, which is
therefore |.

2. Find the area under the curve y = sinx between x = 0 and (a) g b)x=m.

(a) The area is given by

.|o sinx dx = [~ cosx]g/2 = (—COS—;E) ~(—cos0)=(-0)- (-1 =1

This is the same as for the cosine function between () and CX Why is this?

(b) ] sinx dx = [—cosx]g = (—cosm) ~ (—cos0) = (+1)—(=1)=2
Jo

. . . . T
Since the cosine curve is symmetrical about x = 5 we would expect the second
answer to be twice the first. ]

When a curve crosses the x-axis between the limits of integration we can obtain
misleading results, as the following example shows.
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Example

Find
2 1

{a) ] ax’ de (b J v de
| |
T 1

<) J A dv (d) J 4 dy
2 ¥

and henee find the urea between the curve 1= 437, the v-axis and the values of x shown in
cach case.

Sodution

An indefiniee integral of 4x* s +* Then

e
@ | detdr =[] — &1 — | = &0
L

X
by | dvldy = [F]] = &1 - (=1 = g0
=1
3

W 4ty = | =81 = =2)* = 65

el

(@ | alde= ), —81-81 =0
R

We ¢learly cannot nterpret all these integrals as areas botween the curves and the x-axis.
As we extend the tnge of v funther to the left, we expect the acea w increase. This does
nat appear (o have happen in cases (b) and (¢). The resultin (d) is alarming: what docs it
mean?

The problems are resolved it we aecept the convention (hat arcas below the y-axis are
given a negative sign- Thix is plousible since in going from the akis W the curve we move
in the nregative y-dicection, We then make use of the following resulr,

If a < ¢ < bthen

(123
_rf(-r)dr = J‘f(x)dx + r Fdx )

5 ' 1
Henee [ A = J‘ S d+ I avtdy
| I 1 J

= ')+ e
=0—¢-1) +81 -0 =—1+8I].
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Recognising that the first integral represents an area below the x-axis then the area we

require is + 1 + 81 =82. Similarly,

3 0 3
[ ax} de = [ 4t dy + ’ ax dx
Jo2 Jo2 Jo

= A + I
=0—(=2)* +81
= —16 + 81.

The area is+ 16+ 81 =97. Finally,

3
[ 4t dx = [, + [*)) = —81 + 81.
J=3

The area 1s + 81 + 81 = 162.

The lesson to learn is that we must be careful to understand exactly what we are looking
for in this problem. If it is a physical arca then we should split the integral into the sum of
two or more integrals, each of which has one or both limits where the function is zero.
The negative values which result are multiplied by — I before adding to find the true total

area.

o X oy 4+ dx

h X

Figure 12.5 Finding the area under the curve y = f(x) from x =atox=b

More formally, consider the problem of finding the area under the curve y = f(x) from
x =« to x = h. We divide the area into strips of thickness # = dx. as shown in Figure
12.5. The strip shown shaded is approximately a rectangle if dx is small and its area is
approximately v ox or f(x)dx. The approximation improves as ox approaches zero. The
total area required is approximately the sum of the areas of such strips and may be written

A=Y flx)ox.
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If 4 converges to a fixed value as dx — 0 then f(x) is integrable over a < x < b and the
limiting value is the definite integral. In our notation

b
S (x)dx = )_limo[z J(x) x ox}.

¢

Note that, although we have used area as a means of illustrating the process of definite
integration, we shall see that definite integrals can represent volumes, mean values of
functions, etc. These will have appropriate units attached. With this proviso, a definite
integral is a value, not a function like an indefinite integral.

Exercise 12.2

1 Obtain overestimates and underestimates (as illustrated) for the area under the curve v = X
over the interval [0, 1]. Use the following steps:

@ 3 3 93

How do these estimates compare to the true answers?

2 Repeat the process with v =x*, but this time take the area to that formed by the

. - . o
trapeziums linking the values of v atx = 13 as illustrated. How does the value compare

1
to the true value of T
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3* The interval 0 < x < 6 is divided into n equal subintervals of width b/n. Noting that

1 .
P+22 4. +nt= 6”('1 + 1)(2n + 1), show that the underestimate and overestimate

of the area between the curve y = x* and the x-axis over this interval are respectively

4  Evaluate the following definite integrals:

(a)

(c)

(e)

(g)

(1)

(n—DE2n—-1H
6n?

[ L)
I

2
x(x — D)(x — 2)dx
1

(b)

(d)

("

(h)

G

(n+ D2n+ 1)#’
6n? ’

2
J 3x% dx
1
! dx

_2 Xz

2
[ 3x* — x)dx

]

2
[ (3x — 1)(2x + dx
Ji

dx.

rx+l

ATRRVES

5  Sketch the curve with equation y = 4x?. Find the area included by the curve, the axis of x

and the ordinates at x = 0 and x = 3.

6 The sketch represents the curve y = 2x(2 — x). What are the coordinates of P? Evaluate the
area above the x-axis.
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10

11

12

13*

14

Sketch the curve y = (1 — x)(2 + x). Find the area above the x-axis.

Find the individual areas of the segments cut off by the x-axis from the curves with
equations (a) y = x(x + 1)(x — 1) and (b) y = x(x + 1)(x + 2).
5
Sketch the curve y = 3x — x? for values of x from 0 to 5. Evaluate | (3x — x>)dx and
interpret the result. 40
3
Evaluate [ (2x — x*)dx and explain the result.
JO

Find the area of the segment cut off on the curve y = Sx — x* by the line v = 6.

[
If [ Y dv = 20, find the value of a.
J1
Sketch the curve y = 1/x and mark off the points where x = —b, —a. ¢, b where a and b
are two arbitrary positive values satisfying b > a > 0.

What is the value of

oh —u
d d>
(a) @ (b) [ i (shade the areas)
Jg X J-p X
b
J dj h>10
(<) Put a = | and prove that In|b| = L/:xd
X
—., b<0
Jo X

(This is why the indefinite integral of 1/x is taken (o be In|x| or In|Kx|, incorporating the
arbitrary constant into the logarithm.)

Determine the following definite integrals:

n/2 -l
(a) J sinx dx (b) e dx

¢ J0
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16*

16

17

(c) J (sin2x 4+ 3 cos 3x)dx
0

1

(d) [ 3x + 4) — (x — 2)(x + 3))dx
JO

2 “ dx Y dx

{e) [ e Vdx () J = (g) J “
JI e

In part (g) consider what happens as X — co.

Consider r x"dx where a, b are real constants, and N is an integer. Write down the value
of the imééral in the following cases:

(a) N=>0 (b) N=0

©) N=-1,b>a>0 (d) N<—-1,b>a>0

Now answer the following questions:

(e) Does a or b need to be restricted in cases (a) and (b)?
4} Can we take ¢ = 0, b > 0 in case (¢)?
(g) Can we take a = 0, 5 > 0 in case (d)?

(h) Accepting that b > a, will be any other values of g and b, apart from » > a > 0,
suffice in cases (c) and (d)?

Determine the numerical values of the following definite integrals:

7 3 6.121
(a) x _:;2 )dx (b) [ 4 - 1/xYdx
Jo X J327
02,5
(C) 2x dx (2r — \'In2)
Jos
1
(d) (6.525sin3.16x — 1.327 cos 2.66x)dx.
0

If m < f(x) < M over [a, b] then the area enclosed between f(x) and the x-axis must lie
between the areas of the rectangles formed by a, » and m, M respectively, i.e.

b
m(b —a) < J F0)dx < M(b — a)

a
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w18

19

y=/lv

(a) Observe that f(x) = 1 is a decreasing function of x for x > 0. By taking its

+x?
minimum and maximum values over the intervals in question, obtain lower and
upper bounds for

1 2
uﬁjmw mﬁjmw

0 1
1/2 1
S (x)dx and J f(x)dx. Use these

(b) Using the same function obtain bounds for [
) 172

4

1
results to give refined bounds for [ f(x)dx.
1o

The function f(x) = (x + 1)e™ has a single stationary point in the interval [0, 1].

(a) Verify that f(x) has both a local maximum and a global maximum at the stationary
point.
(b) Assuming that the global minimum of f(x) is at the endpoint, obtain bounds for
1
J f(x)dx.
0

The function f(x) is to be integrated over the range [a, b] and the area under the curve is
approximated by four trapeziums. Prove that the combined area of the trapeziums is

b—a

(“59)h+ 2+ 22410

where f;, 0 < i < 4 are the values of f(x) at the node points. This is the trapezium rule.
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2 d

. . x . .

Determine the approximate value of [ —33 using the above trapezium rule and compare
J1 X

it to the exact value of the integral (3 s.f.).

20 Use the method of Question 19 to determine an approximate value for

2

< dx
—————— (3 s.f.
Jl v +0.2( )

12.3 APPLICATIONS TO AREA, VOLUME AND MEAN VALUES

Ared between two curves

The area between two curves can be found by one of two methods, as the following
example shows.

Example Find the area between the curves y = x? and y = x°.

The two curves intersect at x = 0 and x = 1 as shown in Figure 12.6.

(i) The required area can be found as the difference between the area under y = x* and
that under v = x°, i.e.

Figure 12.6 Area between the curves y = x?2 and y = x°
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(ii) The length of the strip highlighted in Figure 12.6 is (x> — x*) at the left-hand edge and
if the strip is thin its area is approximately

(x* = x*)ox.

The total area required, 4, is approximately } (x* — x*)dx. As éx — 0 then
0l
A= ] (x> — xM)dx
(

2 x“l
-[5-3],

1 1 1
— (3 _ Z) —(0) = - (as before). u

Mean value of a function

In Figure 12.7 the rectangle PQRS is constructed so its area is equal to the area under the
curve v=f(x) fromx =atox=b.

—— ¥y =fix)

a b x

Figure 12.7 Mean value of a function
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b
Hence (b — a)y,, = J [(x)dx

a
where Vv, is the average height of the ordinates y from x =a to x = b.

The mean value of the function f(x) over the interval @ < x < b is given by

b 1 a) r Sx)de &)

Examples 1. Find the mean value of cos x over the intervals

]

@ 0=<x<- (b)OsxSn (©) 0<x<2n

[ V]

(a) Mean value =

—2] cosrdr——[sm ‘i
2 S 2 2
—;I E—SIHOI—;“—O)—;
1

(b) Mcan valuc—; cosdr-——[sm\']o=—l>mn—>m0|
Jo
1

2 I . N
(c) Mean value = 5= L cosx dx = z—n[smx];,“ =0.
Check with Figure 12.8(a) to see whether the results are reasonable.

2. Find the mean value of 1 over the intervals (@) 0 <x<2and (b) =2 <x <2

o |- -
x

(a) (b)
Figure 12.8 Meon value of (0) y = cosx ond (b) y = x?
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N

1L, [
(a) Mean valuc:—[ Cde =< [—] =
2 ) 2 3 1]

1 (., I[ST 18 (-8 4
(b) Mcan \aluc—z——_—(——_z)j_:x‘d\ —4[3]_:-— 5(3— (T)) = S.

These results are the same because of the symmetry of the curve about the y-axis: see
Figure 12.8(b). |

1 8_4
27373

It is always sensible to look for symmetry to simplify the calculation: a limit of zero in an
integral is relatively casy to apply.

Root mean square value of a function

Example

As we have seen the mean value of cos v over a period. e.g. 0 < x < 2z, is zero. A more
useful measure of the average amplitude of a wave is provided by the root mean square
(RMS) value.

To calculate the RMS of a set of values, take cach one and square it, then take the
mean of the squares and finally obtain the squarc mor of the mean. Since the original
values are squared there are no cancellation effects, unlike the arithmetic mean.

The root mean square value of a function f(x) over the interval a < x < b is given
by

| h
\,." Eta_lj [S(0)] dx (12.5)

Find the RMS of cos v over the intervals () 0 < x < ’2! GO0 <x<znand(¢c)0 <x <2n.

Solution

To solve this problem we make use of a tnigonometric identity that we prove in
Mathematics in Enginecring and Science:

o l+l 2
COS™ X = = + - cos 2x
22
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(a) (RMS)? l .n/zcoz,\d ZIM b eos2x )
=—" ST xdx = — =+ ~cos x
Tf/z_() H‘() 2 2
211 +1 S
= —|-X — X —SINZX
a2t T2
2711 1 n/2
=Z|zx+-sin2x
n[2r+4sm \:L
2 |l = 1 .
:nl(§x2+zsmn)—(0+0)}
2 1 w1
n 27272
Hence RMS l
ce = —=
V2

(b) (RMS)? = ! [ cos® x dx
T Jo

111 1 .
= - l:—x+zsin 2,\'}

n|2 0

1 1 1.
=EH(EH+Zsm2n) —0]

1
Hence RMS = —
V2
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2r

9 1
() (RMSY = -— | cos’xdx
2n ),

B |
= — 5x+zsm2x]

2n

0

i | 1
- — — — g1 —)
In (2 X 27r+4sm47t) ( }

Volume of a solid of revolution

The curve whose equation is y = f(x) is rotated about the x-axis. The area ABCD sweeps
out a volume. Each cross-section of the resulting solid, taken perpendicular to the x—y
plane, is a circle.

Consider an element of the volume swept out, which has thickness dx (Figure 12.9).
The cross-sectional area of the disc is nearly constant throughout if ox is small. We
approximate the element of volume by a cylinder of radius v and thickness dx.

y ¢ y=f{v) C
) D
3V
0 a4 X x+dx b X
A B
D’
c
(a) {h)

Figure 12.9 Element of a volume of revolution
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The cross-sectional area of the surface with radius v. is my*.

The volume 64 of the clement > r)? dx.

The total volume of the solid between x = @and x = h =~ §~ v ox.
where the clements are summed forx = atox = b.

Hence. regarding integration as the limit of a sum. we have

V= rny’ dx (12.6)

Examples 1. Find the volume of a cone of height & and radius . Placing the axes as shown in Figure
12.10, the cone can be regarded as the result of rotating a line about the x-axis. The
cone is that part of the resulting solid between x =0 and x = r.
The cquation of the line is found from the relationship

y A th.r)

h

'

[

[

~ [
[

~

Figure 12.10 Volume of a cone

<= I_: (using similar trianglcs)
. A
Le. v=o.
, "R e U el
Then the volume = xl:) dx = RJO h—zd\’ = ﬂ['y'—;]o— "[‘3‘,,7] -0

2. The curve v = ¢* is rotated about the x-axis. Find the volume } swept out by the
area  enclosed between the curve, the x-axis and the following ordinates

(a) x=-1, x=0 (b) x=0 x=1

Refer to Figure 12.11.
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'
I
1
' :
iy 01

Figure 12.11 Volume when y = &* is rotated about the x-axis

h oh P

2 2x €
Ingeneral. ¥V =n | yvdx=n| e"dv=n 5|
Ja « o

20 _2 2
(a) V:TC|:()T] :n[l_e_]:_n_[l_()Z]:E[L _ 1]
-1

3. The area bounded by the curve v = cosx, the x-axis and the ordinates atx = 0, x = n/2
is rotated about the x-axis. Find the volume swept out. Refer to Figure 12.12

/2
V=n yodx
Jo

pr/2

cos® x dx

I
S

J0
n/2

(1 4+ cos 2x)dx

I

JO

|

|

_sin 2 n/2
2

L
-

0

[N AR T S R I S R |
—
N
+
<
[l

il
INES
[ |

ol

tq|ﬁ

Figure 12.12 Part of the curve y = cosx rotated about the x-axis to obtain a
volume of revolution
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Exercise 12.3
1 Determine the area cnclosed by the parabola y = x? and the line y = 4.

2 Sketch the curve x = p(y — 1) and determine the area enclosed between the curve and the
v-axis in the second quadrant.

3 Draw the curves v = x? and »* = x on the same axes. Determine their intersection points
and the area enclosed between them.

4  Determine the common area enclosed by the curves
r=x" 492+ 14x+9 and y=3("+x+1)

Where do the curves meet?

5 On the same axes sketch the curves y = Inx, y = ¢' and the straight lines y = x, y = p.
x = p. By considering a suitable area enclosed by v =¢' and the y-axis, determine
i
[ Inx dx.
Ji

6  The parabola v* = 4ax and the circle x> 4+ 2 =
and 7.

2 meet at (1, 1) and (1, — 1). Determine a

P=t

o
M

Use integration to obtain the area AQC and the circle formulae to find the area of the cap
ABC. What is the combined area?

7 Determine the mean value of the following definite integrals and draw a sketch in each
case
"t [ dx

(a) sinx dx (b) —
JO J1 X



12.3 APPLICATIONS TO AREA, VOLUME AND MEAN VALUES 627

10

11

12

13

14

15

16

17

2n fIn 3
(c) [ cosx dx (d) J ey

In2

Find the RMS of the integrals in parts (b) and (d) of Question 7. Obtain an exact value for
part (b) and give your answer for (d) correct to 4 d.p.

Draw the graph of the function

0 x <=3
x+3 —3<x<0
3-42 0<x<?2
ftx) = 1 2<x<3

4 —-x J<x<4
0 x> 4

and determine

(a) the mean value {(b) the RMS (4d.p.)

Indicate the mean and RMS on the graph.

What is the area enclosed by x > 0.y > x>, x* 417 < 2.

The area under the curve y = ¥* from x = 0 to x = | is rotated by one revolution about the
x-axis. Find the volume swept out.

The area enclosed by the curve y = x(1 — x) and the x-axis s rotated about the x-axis. Find
the volume swept out.

The curve y = sinx is rotated around one revolution about the y-axis. Find the volume
swept out from x = 0 to x = 2x.

The curve v = x is rotated about the x-axis by half a revolution. Sketch the curve and
calculate the volume swept out from x = 0 to x = 2.

The curve v = tanx is rotated about the x-axis. Find the volume swept out from x = 0 to
x = n/4.

The curve v = 2¢%? is rotated about the x-axis. Find the volume swept out from x = 0 to
x=1

Using the equation of a circle radius ~ centred at the origin, find the volume of a sphere
radius r.
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18  Use integration as the limit of a sum to find the volume of a square pyramid of height 3cm
and edge of base 8cm.

19 A circular cone of height 9 ¢m and base radius 6 cm has a plane cut off the top, i.e. a cone
is removed from the top part. If the height of the remaining frustrum is 3cm find its
volume by integration.

20* A solid is formed by rotating the area defined by v =x2.0 <y < 1.0 < x < 1, about the
line x = —1.
(a) Write down a form for the integral, noting that v is the independent variable.

(b) Evaluate the integral.

i

!

|
—
|

t

(-

|

[

I

H

|
!
L
|
l
1
!
|
l
|

21* The curve y = (x — 1)'/2, I < x < 5 is rotated through 360- about

/’—~ (5.2)

(a) the v-axis (b) the v-axis (©) the line x = 1

Obtain the volume general in cach case and draw a sketch for part (c).
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12.4 CENTRES OF GRAVITY

Moment of a force

A force of magnitude P is applied to a bar OA of length / such that the direction of the
force is perpendicular to OA4, as shown in Figure 12.13(a). The turning cffect of the force
on the bar is measured by its moment. The clockwise moment M about the point O is
given by the product of the magnitude of the force and its (perpendicular) distance from

0, i.c.
M = Px
x- (- x) {72 | 172
0 L A 0 A
(@)
P 2%

Figure 12.13 Moment of a force

Centre of gravity

The weight W of the bar may be regarded as acting at a point (. the centre of gravity. If
the bar is uniform then G is midway between the ends of the bar, as in Figure 12.13(b).
To see this, divide the bar into short sections of length ox, as in Figure 12.14, and find the
moment about O of the weight of each section. It each section is very short then its
weight may be regarded as being at the left-hand end. to a reusonable approximation.
If the weight of the bar is W then the density of the weight is (W //) per unit length. The
weight of the section is (W /)dx. Its turning point about O is approximately given by

OM = (W /hox x x = (W /hx ox

v |

O 1 A

— by —

Figure 12.14 Centre of gravity
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The total moment M due to the weight of the bar is given approximately by
M~ (W/hx dx

As Ox shrinks to zero, we obtain the exact result:

/ / 27!
M:J Kxa’x:Zdex:Kx—
o\ ! ), 1124,
W\ (12 wi
-(D)E)-%

If the weight is assumed to act as a single force at the centre of gravity G, where OG = X,
then

Centre of gravity of a plane area

We wish to find the centre of gravity of the isosceles triangle DEF shown in Figure
12.15(a). That is, we wish to find the point on which a cardboard triangle in the shape of
DEF will balance.

y
F B
a o | ET)
*G
D E [ 1
a (o] a A x

(a) (b)
Figure 12.15 Centre of gravity of a triangular area

First we align the triangle with the coordinate axes, as shown in Figure 12.15(b). We
can make three general remarks about the position of the centre of gravity G. For
convenience we have labelled its coordinates (x, y).

(i) We would expect x to be less than (a/2) since more of the triangle lies to the left of
the line x = a/2 than to its right.
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Example

(i) We would expect ¥ to be less than (¢/2) since more of the triangle lies below the line
v = a/2 than above.

(i) We would expect G to lie on the line y = x since this is an axis of symmetry of the
triangle.

To locate the position of G exactly we make two statements.

The moment of the area of the triangle about the x-axis, M,, is equal to the product of
the area and the distance of G from the x-axis. (In other words, the moment or turning
effect of the area about the x-axis is the same as if the arca were concentrated at the point
G.) Hence

M, = Ay
Similarly, when considering the amount of the area about the y-axis, M, we may state
M, = Ax

Each moment of area can be found as follows. Divide the area of the triangle into small
elementary areas d4; find the moment of each clementary area about the appropriate axis;
then add these moments to obtain the total moment of area.

Find the first moment of the triangle of Figure 12.15(b) about
(a) the v-axis (b) the x-axis
hence determine the coordinates of the centre of gravity G.

(a) Consider the vertical strip is shown in Figure 12.16(a). Its base is on the x-axis and its
top lies on the line segment 48, described by the equation x + y = a ory = a — x. The
height of the strip is approximately (a — x) throughout and its area approximately
(a — x)ox.

Yy y
B A
X=a-v
mg-x P .
v y=ua
S VI,
¢
g
U
0 x v+ dx A x [¢] a B x
(a) ()

Figure 12.16 Finding the first moment of area
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If the triangle OAB is divided into such strips then its area is approximately
> (a — x)ax. Letting ox — 0 the area is given exactly by
d X2 a
(a — x)dx = I:ax - —}
-[() 2 0
2
, a
= -——=]-0
(<-3)
I
=—u".
2
We could have found this by elementary geometry.

The moment of the shaded strip about the v-axis is approximately x(a — x)dx on the
assumption that we can regard a// points in the strip as being approximately the same
distance, x, from the y-axis.

The total moment of the area about the y-axis is approximately

> x(a — x)ox
If éx — 0 then the total moment is given exactly by
M, = | x(a — x)dx
) 0
= | (ax — x*)dx
Jo
[ x? x3]a
= |ld— — —
L 2 3],
33
=(£-%) -0
2 3
L s
= ga
(b) The horizontal strip shown in Figure 12.16(b) has its left-hand end on the x-axis and

its right-hand end on the line segment 4B, which can be described by the equation
XxX=a-—-y.

The length of the strip is (¢ — v) and its area is approximately (a — y)dy.
The moment of the shaded strip about the x-axis is approximately y(a — y)dv.

The total area about the x-axis is approximately

> wa — y)dy.
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If 3y — O then the total moment is given exactly by

_d" a
203
1
==
6

Was it to be expected that M, = M,? Since M, = Ax it follows that

M, (1 AN
= (67)/ ) =5

- _ 1 . . 1 1
Similarly M, = Ay so that y = ga. The coordinates of G are therefore (5 a, ga). ]

Note that in this example we can find M, by an alternative method. The strip shown
. . 1 .
shaded in Figure 12.16(a) has its centre of gravity halfway up, i.e. at Ey above the x-axis.

The moment of the strip about the x-axis is approximately
1 o l 2 -
iy X yox = Ey OX.

The total moment of the area about the x-axis is approximately
S
=y dx
2}’
As dy — 0 then the moment is given exactly by

" il l
2 2
Z — | Zta=01d
L 2y dx J” 5 (@ —x) dx

(4

(@ — 2ax +x2)dx
0

_ e
2 2
ax —axt + —
3 1o

]
2
1
2
3
:% (a3—a3+%)—0}
1
6

=-d (as before)
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Examples

1
Warning: it is dangerous to rely on formulae such as [xy dx and [Eyz dx for finding

moments of area. In some cases they may not be correct. It is far better to derive the
correct integrals from first principles.

1. Find the first moment of area of a semicircle, radius » above the x-axis, about its
diameter, hence determine the position of its centre of gravity. In Figure 12.17 the
diameter lies along the x-axis and the y-axis coincides with the axis of symmetry. By
symmetry, the centre of gravity lies on the v-axis.

The equation of the semicircular boundary is
£ +y2 =r or y2 =r—¥

therefore

2).,
1 3+
[
B 23
T3
Therefore
2r2 r
Ay = — h A=—
[y 3 where 5
Hence
- 273 x 2 _ 4r
3zl 3n

dx X

Figure 12.17 Centre of gravity of a semicircular area
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2. The area under the curve y = sinx is removed from the area under the curve y = 2 sinx,
as in Figure 12.18. Find the first moment of area about the x-axis fromx =0tox ==
and hence the position of the centre of the gravity of the shaded area.

|t
!
g b
P!
P!

XX+ 8 n X

Figure 12.18 Finding the centre of gravity of the crescent y = 2sinx — sinx

The centre of gravity of the strip between ‘x’ and ‘x + dx’ is halfway up, i.e. at a
height of 5(2 sinx + sinx). The length of the strip is (2sinx — sinx) and its area is

approximately (2 sinx — sin x)ox.
The moment of the strip about the x-axis is then approximately

1
2 (2 sinx + sinx)(2 sinx — sinx)dx.
So the moment of the area about the x-axis is
L o 2
M, = 5 (4sin” x — sin” x)dx

Jo

3
} {(r—0)—0) ==
4]

3 3
=§J sin® x dx = 5[ —(1 — cos 2x)dx
3
4

_ 3 sin 2x
4 2

The area shaded is given by

e T
[ (2sinx — sinx)dx = J sinx dx
Jo 0

= [~ cosx]y

= [cosx]?
=cos0 —cosm
=1-(-1)=2
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1/3 3
Hence the centre of gravity is at a height i(fn) :% above the x-axis: by

- . n . . n 3n
symmetry it lies on the line x = 7 The coordinates are therefore (5 . ?) ]

Centre of gravity of a volume of revolution

By symmetry the centre of gravity lies on the axis of rotation. The (first) moment of the
volume of revolution about an axis perpendicular to the axis of rotation is found by
dividing the volume into elementary discs and adding the moments of each disc about the
relevant axis.

Example The arca between the x-axis, the ordinate x = 1 and the curve 32 = 4x is rotated about the
x-axis. Find the moment of the resulting volume about the y-axis and hence the
coordinates of its centre of gravity.

Referring to Figure 12.19, the elementary disc shown as a shaded strip has a volume
approximately equal to my* dx = 4my x. The volume of the solid =~ ¥~ 47x ox.

y
2 — .
/ v =gy

Y lAx+dx

o T

Figure 12.19 Cenire of gravity of a volume of revolution

As 0x — O the volume is given cxactly by

|
dnx dx = [2nx°)) = 27
JO

The moment of the elementary disk about the y-axis is approximately equal 10

x x m? ox = 4mx® dx



12.4 CENTRES OF GRAVITY 637

The total moment of the volume is approximately equal to
) dre ox
As oy — 0O the moment is exactly given by
| b4
4 4r
M = J anldy = [— | ==
0 3k 3

Now F'x = M, so that

-__I ‘37_: _2
Y=Ea\3) T

. . . . . . .
This is plausible since the cross-sectional arca increases with x. 50 ¥ > 5- By symmetry

S
v = 0. so the coordinate of the centre of gravity are (: . 0). a

fw?

Some useful results:

b
Since J fix)dx = F(b) - F(a). b>a

a

then J‘. f(x)dx = F(a) — F(b)
b
and ri~}'[x}}d\‘ = F(b) — Fla)
b

so that r1~;'(.1-}}m- = r_f(.x'kh
h a

Exercise 12.4

1 For the curve y = | = +° find the first moment of area of the pant above the x-axis about
{a) the x-axis (b) the yv-axis
Find also the position of the centroid.

2 Triangle ABC is right-angled at B. 48 = 3m, BC = 4m. By taking B4 and BC as the ¥
and ¥ axes respectively, find the equation of AC. Hence find the it moment of area about

{a) B4 (b) BC
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3

8

Find the first moment of area of the area bounded by the curve y = ¢*, the x-axis, the
ordinates at x = 0 and x = | about

(a) the x-axis (b) the y-axis

Hint: assume that Jxe‘dx =x-Def+C

A semicircle of radius 3 cm has a square of side 2 cm removed from it in such a way that
one side of the square lies on the diameter A8 of the semicircle. Find the first moment of
area about AB.

The quarter—circle x? 4+ y? = @?, x, y > 0 is rotated through 360° about the x-axis to form a
hemisphere.

(a) Determine the first moment of area of the hemisphere about the y-axis.

(b) Write down the coordinates of the centre of gravity,

The section of the straight line y = rx/h, 0 < x < r is rotated through 360° about the x-
axis to form a cone of radius r and height 4. Prove that the centroid is one-quarter of the
distance of the height above the base. Draw a sketch.

A particle moving along a straight line is subject to the law
o) = 2t — 32 = 5¢°

The distance travelled s(¢,) — s(#,) between ¢, and ¢, seconds is given by

i

2
s(t) —s(t)) = J w(t)dt
Iy
(a) Determine the distance travelled in the first two seconds.
(b) What is the mean velocity over the period?

A small sphere is slowly accelerated up to a terminal velocity according to the law
v=11—e".

(a) What is the velocity at t = 0, 1 second, 2 seconds?

(b) What is the distance travelled after 1 second and after 2 seconds?
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10

11

If a particle is subject 1o an acceleration a(f) over the period ¢, <t < t, then the change in
velocity, ©(t,) — v(t,), is given by

1

v{) — () = [: a(t)dt

Jn

(a) A stone falls freely under gravity, a(f) = —9.81 ms "%, constant. By integrating
twice determine how far it falls in 4 seconds. (Put 1, = ¢, 1, = 0.)

(b) Suppose a(t) = % — %
(i) Determine ¢ given that the velocity is zero when 1 = |
(i1) By integrating again determine how fur the particle travels between the

first second and the third second.

The work done in moving an object along a straight line is given by

[- F (x)dx

Jay

where F(x) is the applied force acting at displacement x, and x, and x, are two given
displacements.
Determine the work done in moving from x = 0 to x = 10 when

0 0<x<2
x—2 2<xy<4
Flx)=12 4<xyx<5
7—x S<x<7
0 T<x< 10

A comet moving in the Sun’s gravitational ficld is subject to an attractive force (hence the
negative sign) given by

where G is constant, m and M are the masses of the comet and the Sun respectively,
assumed constant, and x is the distance of the comet from the Sun.

(a) Calculate the work done in moving the comet from a distance a away from the Sun
to a distance b (b > a).

(b) What happens if away from the Sun the comet moves from b to a?
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o 13

g 14

ENRE]

88l

In a mass of ideal gas the work done in changing the volume from ¥V, to V, is given by
l; P(V)dV where the pressure P is measured as a function of the volume V. If the gas
expdnds isothermally it satisfies the gas law PV = RT where R and T are both constants.

(a) Determine _]l/l2 PV .

(b) A mass of gas with initial volume V, is expanded in two stages
(1) to twice its volume
(i1) to four times its volume.

Determine the ratio of the work done in the first stage to the total work done.

The concentration level L ot a pollutant is modelled by the integral
T
L = eO,ZIT [ 2.17(37()'8“ dt
0

where T 1s measured in weeks, following the spillage. Determine L(7) and show that it
rises to a maximum just inside two weeks.

On your calculator determine ™" for x=1.0 (0.2) 2.0 where x is measured in radians.
(a) Tabulate the calculated values to 5d.p.

(b) Plot the points on the graph and sketch the curve that runs through them

(c) Estimate the area under the curve as

2
h
I vdx = E(V” + 2y + 2y A+ 2vy + 2v, +v5) (A=02)
h

as the sum of five trapeziums of width /4, where the points on the curve are
Jjoined by straight lines.

Sin x

Consider the curve y = ¢*"* rotated through 360" about the origin.
(a) Following the steps of Question 14, determine an approximately volume 4 s.f. of
the solid of revolution, 7 _]'I2 V7 dx by using trapeziums with 2 rather than y.

(b) Determine the coordinates of the centre of mass to 3s.f.




SUMMARY

Integration is the reverse of differentiation: indefinite integration produces
a function, incorporating an arbitrary constant; definite integration produces
a numerical value.

Area under a curve: the area under the curve y = f(x) can be calculated as
a definite integral; areas under the x-axis are assigned a negative value.

The fundamental theorem of calculus: the area under the curve y = f(x)
between the ordinates x = a and x = b is given by

rf(x)dx =F(b)— F(a)  where F'(x) = f(x)

The mean value of a function in the interval a < x < b is

1
mEf(x)dI

The root mean square value of a function in the interval a < x < b is

I 2 g
bTaEIf{-l‘)} dx

The volume of a solid of revolution formed by rotating the graph of
¥ = f(x) about the x-axis through 2x radians is n_[:’ y* dx.
Moment of area

Moment about the y-axis = JJI'V dx

a

1
Moment about the x-axis = EJ.A ¥ dx



Centre of gravity of a plane area

The centre of gravity of a solid revolution lies on the axis of revolution.
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Answers

Exercise 12.1

7 5 3
(a) "7+c (b) §+c
©  —19Injx| +C () 3——;+C
2 3 4 _ 2
() §x3/2+C 6 x(3x :(S)x + 15)+C
4 112 3 1
(®) %+2x3+7+6x+C (h) %——2x—;+C
9 5 7 2 1 3
. 95,7 . . | 2 1 3
) x+4x+6x°+ 0 nx+x 2x2 2+C
5/2
(a) 2x5 (b) $x7/2 - gxs/z + §x3/2
1833 51x%3 148
- —30x7'7 d 4194 —
(©) 5 5 x (@ 5197 38

(e) 14—3)('3/4 — %me +%‘x7/4 + %x”" — ?xw — 16x!/* — 12064

(f) 3 an _1_4x|9/14 _ﬁxzm/eﬁ + 77 124077

23" 69 287 124 s

(@ 65+ C (b) —1le™ + 78—‘ +C
1 5 .

(c) ~§c055x+C (d) —§c055x—sm4x—lllnx—+-C
(e) —cosax +sinbx + C
(b)
3X

C
In3 +

Xu+('+l xu+d+1 xh+c+l xb+d+|

direri Tardr Thter 1 Thrdr

b+cor b+d is equal to —1. If any of ¢ + ¢ = —1, etc., when Inx is the indefinite
integral.

+ C provided that none of a + ¢, a +d,

2% 25712 2 2% =2d) xX*a+b) N 208 dx3?

B ST P bx+C
9 7(( d)+3+ S 5 3 + abx +

3
5
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Exercise 12.2

1 U/E O/E True value
(a) 1/16 1/2 1/4
0.0625 0.5000
(b) 9/64 25/64 1/4
0.1406 0.3906
(c) 49/256 81/256 1/4
0.1914 0.3164
5 17
2 -—=0.3063 b — =10.2656
ST ®
1
Much better estimates than underestimate and overestimate, even with step size of 5
1 14 ] 2
« _ ( ) _ —_ J—
4 @ 5 b T D5 e ; O 10
, 37 ) 33 . 1 0 64
®g > Wog g
5 36
6 Pis(2,0)8/3
9
7
2
1 1 ] 1
8 (a) 4_1 - Z (b) Z. - Z
25 . . . .9
9 - Z: it is the algebraic sum of the area fromy =0t v =3 (w. 5) and from x = 3 to
/

s 26
x=51e ——= ).
X e 3

10  0: the area above the x-axis is equal to the area below the x-axis.

L
6
12 =43

11
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13 y
h a
a b X
I} b
(a) ]nl (b) —In-
a a
14 (a) 1 (b) e—1 (©) 0
) 274 © 1 | 1
315 ¢ ¢ ¢
01 @ lopolaX o
hl\'#l = u4\+!
i bh—
15 () N (b h —
(©) Inh/a (note that b/a > 0 and Inb/a < 0)
(d) as (a)
(e) No: any real values will suftice.
() No: In0 does not exist.
(g) No: [x"*'] cannot be defined if x =0 and N < —1.
(h) Yes., if a < b < O formula as in (a).
16 (a) 0.171 768 (b) 1394.55
() 6.120 83 (d) 3.898 32
17 () (1) ! lhl 1 (0d. | (i) : r flx)d :
: - < X)dx ) — < X)dy < =
a 12 I, Oy < 3 ‘l_rv 3
ol
(b) 0.65 < ] fxydx < 0.90
J0
18 (a) Maximum at v = (/3 — 1)/2
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1

1
(b) % < J fx)dx < @eﬁl{ﬁ_”' or 0.7358 < [ f(x)dx < 1.1947
¢ J0

(exact value 1.0629)

19 0.592 (exact value 0.586)

20 0.566

Exercise 12.3

0. 1)

0,0)

1
Area = 6 dey is negative

(1.h

h \\

1

|

|

Area:[ Vxdx — [ xzd.\':g
Jo )

n

4 Curves meet at (—3,21),(=2,9),(-1,6)

1
Common area = 5
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5
p
p
x
inp
Arca:plnpf[ edy=plnp — 1) +1
Jo
1
6 u=-.r=V2
4
Arca=" 4+ = 1.9041
reca=—+-= 1.
2 3
7 w (b}

(c) (d)

Mean value = 0
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8

10

11

12

13

14

15

16

17

18

19

20

(a)

Sl -

(b)

(c)

!
V2

Mean—4
3

281
RMS = /—7—21.6359
S Vios

= 1.0354

(m+1)
4

wia

gl

(4 — 1)

4n(e — 1)

4y

64 cm’”

767 cm®

1
(a) bid [ v+ 1)2 dx
Jo

(b)

14n

0.8942
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2067 o
5 ¢ 5

21 (a) 8n (b)

Exercise 12.4

8 2
1 (@ 15 above (b) 0 (5‘0)
2 v= _43_x+4 (@2 8m’ (by  6m’

(e* = 1)
3 (@ ) (b) t
4 l4cm®

4
5 () % b Gis (38—”0)
G
Yy

6 th, r)

G

X
G (3h/4,0)
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(a) — 24 (h) —12
8 10,11 — /e 11 — 172 (b) 104 1/e.21 + 1/&*
9 (a 78.48 m

(b) (i1 - 3 +g, (i) 19 3In 3=0.0375

t 3

10 6
1 GmM(a_bb) >0 (atoh)

GmM(b —4) < 0 (b to a) negative

ab

12 (a) RT In(V3/V))

13

14

15

(b) First stage R7 In2; both stages, RT In4; ratio=1n 4: In2 =2

13.66 days; f"(1.951) < 0

(a) «x 1.0 1.2 1.4 1.6 1.8 2.0
et 23198 2.5397 2.6790 27171 2.6481 2.4826

(b)

7N

(©) Trapezium integral = 2.5970

X 1.0 1.2 1.4 1.6 1.8 2.0
¥ 5.381 6.450 7177 7.383 7.012 6.163
w? 5.381 7.740 10.043 11.813 12.622 12.326

Volume =21.23  Centre of mass is (1.51. 0)
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abscissa 90
absolute error 23, 24
absolute value 75, 477-8
actual error 22
acute angle 183
acute-angled triangle 186
adjacent angles 184
adjacent side 282
algebraic expressions 36-7
algebraic fractions 68-70
algorithms 375
alternate angles 185
alternate segment theorem 255, 256
altitude of a pyramid 224
altitude of a triangle 188, 189, 204
angle at circumference 267
angle between a line and a plane 310
angle between two planes 310-11
angle between two straight lines 416-18
angle bisectors 188, 204, 247-8
‘angle in a segment’ theorem 251-3, 255
angles 1834
bisectors 188
in solids 309-19
annulus 214
approximately equal to (symbol) 261
arbitrary constant 599, 600
Archimedes’ axiom 241
area 191-200
definite integration 605-18
area between two curves 618-9
area estimates, improving accuracy of 607
area of a circle 213
area of a general polygon 191
area of a parallelogram 191
area of a rectangle 191
area of a sector 216
area of a triangle 191, 192, 299-301, 415-6
area under a straight line graph 605

area under the curve v = f(x) 612
area under the curve v = x? 606
argument
in arithmetic and algebra 261-5
of a function 475
arithmetic mean 263, 354
arithmetic progression 34347
sum of 344-6
arithmetic scries 345
asymptotes 379, 380, 429, 430, 509
average rate of change 541-2
axes 89
axioms 241

base 5, 35, 222
BODMAS (order of precedence) 7
brackets 7

expanding bracketed terms 40

calculus, fundamental theorem of 608-9
cardioid 442-3
Cartesian coordinates 405, 443
and polar coordinates 438—40
CAST rule 319
centre of a circle 211, 213, 421
centre of gravity 629-40
of plane area 630-6
of semicircular area 634
of triangular area 630
of volume of revolution 636-7
centroid 251
chord 212, 554
circles 211-221
equation on given diameter 427-30
equation through three given points 428-9
general equation 427
intersection with straight line 429-432
locus 421-3
theorems 251-61

651



652

INDEX

circular measure 214-21
circumcirele 213
circumference of a circle 211, 213
circumscribed polygon 212
circumscribed triangle 212
classical plane geometry 247-61
coefficients 36
coincident lines 107
common difterence 343
common factor 3
common line 308
common multiple 4
common ratio 347
complementary angles 183, 285
completing the square 143-4
composition of functions 489
concave downwards 575
concave upwards 575
concentric circles 212, 213
cones 225-6, 228
congruence 2004
congruent triangles 201-4
right angle, hypotenuse and side (RHS) 203
three sides (SSS) 202
two angles and joining side (AAS) 203
two sides and included angle (SAS) 202
constant 45, 163
constant of integration 599, 601
constant of proportionality 59, 62
continuous function 482
coordinate geometry 406472
coordinate plane 90
corresponding angles 185
cosine 280
graph 282-3
of any angle 322
cosine rule 292—4
cross-sectional area of a prism 224
cube 222,227
cube roots 15, 164
cubic curves 164-9, 168
general 166-8
cubic expression 163
cubics 134, 163-9
cuboid 222, 311-12
curves in polar form 440-46
cyclic quadrilateral 254
cylinders 224-5, 227

decay tunction 506
decimal equivalent 13
decimal places (d.p.) 12-13
decimals 12-15

conversion to fractions 13

deductive reasoning 241, 247, 265
definite integrals 609
evitluating 610-13
definite integration, arca 605—18
degree 183
denominator 8
dependent variable 114, 475
derivatives 549, 550, 556
derived function 544-5, 549, 556, 574
diameter of a circle 211
differentiation 540-61
alternative notation 545
definition 545
reversal of 599-604
direction cosines 448
direction ratio 448
directrix 423—
discriminant 146
distance between two points 405-6, 448
distance of a point from a straight line 412-15
dividing a line segment in a given ratio 406-10

cecentricity of ellipse 430
edges of 222
cllipse
eceentricity 424
locus 430-1
equal (symbol) 261
eqguation
plotting a graph from 92
straight lines 99-103
equations 53-9, 102
equilateral polygon 189
equilateral triangle [87
equivalent fraction 8
errors 22
estimating heights 206, 281
Euler line 251
even function 135, 496
expanding bracketed terms 40
exponent 13
exponential function 512-15
and logarithmic function 517
exponential law 15
exterior angle 187, 188
extrapolation 91, 369
extrema 580

faces in three-dimensional objects 222
factor theorems 371-81

factorisation 65-72, 376

family of solution curves 599

focus of a parabola 423

formulac 45-6



INDEX 653

transposing 47
fractional error 22
fractional powers 15-16. 38
fractions 8-9
addition 41-2
conversion to decimals 13
division 9
multiplication 9
subtraction 41-2
tunctions 474-540
“absolute value’ 477-8
composition of 489
*double” 475-9
see also inverse functions: inverse trigonometric
functions
fundamental theorem ot calculus 608-9

geometric mean 263, 354
geometric progression 347-52

sum of 348-9

sum to infinity 349-52
geometric series 349
global maximum 570-1
global minimum 570-1
gradients 94-6, 100, 103, 541, 545, 551, 552, 562-5
graphs

cosine of an angle 282-3

of ratios of angles 323-5

of v = afx" 378-9]

of 1= x" 359-63

plotting 89-93

plotting from an equation 92

polynomials 359-63

sine of an angle 282-3

straight line 94104

tangent of an angle 282-3
greater than (symbol) 72, 261
greater than or equal to (symbol) 72, 261
growth function 496

harmonic mean 354

height estimation 206, 279
height of a prism 224

height of a pyramid 224
highest common factor (HCF) 3
Hooke's law 88

horizontal point of inflection 566
horizontal tangents 564-5
hyperbola, locus 425-6
hyperbolic functions 515
hyperbolic tangent 515
hypotenuse 186, 280, 283

identities 52-3, 285-6

ill-conditioning 107
implicit functional relationship 502
improper fraction 8
improper rational function 378
incircle 213
indefinite integral 600
indetinite integration 600
independent variable [14, 475
indextindices) 5-7
inequalities 72-7, 261
inscribed circle 212
instantancous rate of change 542-6
integer 3, 242

relatively prime 4
integral, notation 600-1
integrand 601
integration 598-651
intercept 94, 101, 102
interior angle 187, 191
intermediate value theorem 367
interpolation 91

with polynomials 366-9
intersecting chords theorem 254, 255
intersection of straight line and circle 429-32
intersection of straight line and parabola 157-8
intersection of two lines 105
intersection of two loei 420-1
intervals

closed 74

finite 75

modulus sign 75

on real line 74

open 74
inverse function 494-5

graphical approach 4967
inverse function of a function 497-8
inverse prapoertion 59
inverse trigonometric functions 499-500
irrational numbers 20
irreducible quadratic 366
irreducible quadratic factors 367
isometry 484, 486
isosceles triangle 187

leading coefticient 361
length of arc of a sector 216
less than (symbol) 72, 261
less than or equal to (symbol) 72, 261
line 183
linear combination 601
derivative of 550
lincar equations 55
lincar factors 369
lincar inequalities 10914
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linear interpolation 362—4 ordinate 90
linear polynomials, ratio of 381-3 origin of axes 89
linear relationship 94 origin of polar coordinates 436
local maximum 166, 566, 569, 570 over-estimation 607
local minimum 166, 566. 569, 570
locus 419-27 parabola 139
circle 421-3 intersection of straight line 157-8
ellipse 424--5 locus 423-26
hyperbola 425-6 parallel lines 107, 183, 185
parabola 423-9 parallelepiped 222
logarithmic function 509-11 parallelogram 190
logarithms 17-19, 35, 114 parameter 433
log-lincar paper 116-18 parametric representation of a point on a circle
log-log paper 118-21 43940
fower limit of integration 609 pentagon 189
lowest common multiple (LCM) 4 percentage 15
percentage error 22, 23
major arc 212, 251 perfect square 146
major segment 212 perimeter 189
mantissa 13 period 319
mean value of a function 619-21 periodicity 319
measured values 24 perpendicular bisector 188, 204, 248-50
median 188, 204, 251 perpendicular lines 184
minor arc 212, 252, 253 piecewise function 479
minor segment 212 plane 183, 314-15
mixed fraction 8 equation in three dimensions 456--8
modulus function 477 plotting a graph 89-93
modulus sign 23 point of contact 212
incqualities 75-6 point of contraflexure 566
intervals 75 point of inflection 163, 166, 576-80
linear inequalities 111-13 test for 577
moment of a torce 629 polar coordinates 43547
multiplication. surds 20 and Cartesian coordinates 438—40
polar curves 4404
Naperian logarithms 510 polar graph paper 441
natural logarithms 510 polygon 189
necessary condition 2667 polyhedron 222
negation 267-9 polynomial equation 361
negative angle 322-3 polynomials 357-67
negative exponential function 507 ascending order 358
nested multiplication 169, 358-62 degree n 337, 360-2
non-linear relationship 14 descending order 358
normal to a curve 562-5 graphs 359-62
numerator 8 interpolation 362-5
nested multiplication 358-62
obtuse angle 183 positive angle 322-3
obtuse-angled triangle 186 power S-7, 37-8
obtuse angles, ratios 2867 power function 505
obluse triangle 188 power law 115, 505-6
octants 447 prime factor 4
odd function 490 prime number 267-9
opposite angles 184 primitive 600
opposite side in a triangle 282 principal value 506

order of precedence, BODMAS 7 prism 222-4, 227
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praduct of integers 3
proof 240-77
by induction 265, 268-Y
methodology 265-74
proper fraction 8
proper rational function 378
proportionality 59-65
miscellaneous forms 61-2
proposition 265
pyramid 224, 227, 313

Pythagoras’ theorem 186, 242-5, 283, 292, 310, 396,

432, 448, 452
Pythagorean sets 244

quadrant 90, 212, 318-21
quadratic curve 135-41
quadratic equations 141

formula method 144

intersection of straight line with parabola

157-8

with one meaningful solution [53
quadratic expression 66-8. 139
quadratic factors 369
quadratic forms 115-16
quadratic function 484
quadratic inequalities 158-63
quadratic interpolation 368
quadratic roots and coetficients 148-50
quadrilateral 190

with reflex angle 189
quartic polynomial 369

radian 214-15, 320, 323
radius of a circle 211. 213, 427
rate of change 541
ratios of an angle 318-22

graph of 321-3
ratios of angle greater than 360 321-2
ratios of linear polynomials 381-3
ratios of negative angle 322-3
ratios of special angles 284
rational function 377-85
ray 183
real line 72, 74
rectangle 190
rectangular hyperbola 426
rectangular parallelepiped 222
reductio ad absurdum 265, 267-8, 270
reduction to hinear form 114-21
reduction to lowest terms 8
reflection 484, 486
reflex angle 183, 189
regular octagon 189
regular pentagon (89, 193

regular polygon 189, 193

regular polyhedron 224

relative error 22, 24

remainder theorem 369-71

repeated root 147

reversing differentiation 599-604

rhombus 190

right angle 183, 191

right-ungled triangle 186, 279-81

right circular cone 225

right circular cylinder 224

right prism 222

root mean square value of a function
621-3

round down 3

round off 13

round up 13

scalar multiple 601
derivative of 550
scated variables 553-8
scalene triangle 187
scaling 493—4
sine function 554
scientific notation 13
second derivative 574-89
geometrical interpretation 575-7
sector 212
semicircles 212
sequence 343
sigma notation 355-6
significant tigures (s.£.) 14
similar triangles 204-6, 279
similarity 204
simultaneous equations 54-5, 153-7
algebraic approach 106
graphical approuach 105
simultaneous proportionality 62-3
sine 280
graph 282-3
sine formula (or sine rule) 290-2
sine function 552
inverse 495
scaling 557
sine of an angle 322
sine rule (or sine formula) 290-2
solids 222
angles in 307-17
solution of triangles
three sides are given 295
two angles and one side are given 296

two sides and an angle opposite one of them

are given 296
two sides and included angle are given 295
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INDEX

solution of trigonometric equations 323-8

spheres 226
square root 13
standard form 424-6
stationary points 565
locating and identifying 578
test for 567-9, 577
types 566-7
straight angle 183
straight line
coincident 107
equation 99-103
equation in three dimensions 4514
equalion in two dimensions 449-50
graph 94-104
intersection with circle 429-32
intersection with parabola 157-8
parallel 107, 183, 185
parallel to axes 97
straight line segment 183
subject of formula 47
subseript 36
substitution 38
subtraction, fractions 41-2
sufficiency 266-7
sum, derivative of 550
sum of two functions 60
supplementary angles 183, 186
surds 19-21
multiplication 20
rationalising the denominator 20
surface 183
surface area 227-9
symbols 72, 261
manipulation 35-45
symmetrical expressions 157
systematic argument 265

tangent, length from given external point 432-3

tangent-chord theorem 256

tangent of an angle 281. 321
graph 282-3

tangent theorem 256

tangent to a circle 212, 214, 430-2
tangent 1o a curve 544, 562-5
tungent 10 a parabola 157
tessellations 193
tetrahedron 224, 225
theorems 241

in classical plane geometry 247-61
threc-dimensional geometry 447-59
three-dimensional shapes 222-31
transformation 114
translations 484-7
transposing, formulae 47
transversal [85
trapezoid 190
triangle incquality 23
triangles 186-7

solution 290-307

theorems 247-51

trigonometric equations, solutions of 325-30

trigonometric functions 551-3
inverse 499-500

trigonometry 278

turning points 567

two-dimensional shapes 183-221

under-estimation 607
upper limit of integration 609

variables 45, 94

vertex(vertices) 135, 183, 184, 222, 225
vertically opposite angles 184

volumes of solids 227-9

volume of u cone 624

volume of a solid of revolution 623-5
vulgar fraction &

x-axis 89, 96, 99
x-coordinate 90, 100

v-axis 89, 96, 99, 109

v-coordinate 90, 94, 100

y-intercept 94



