GRADE 8 MATHEMATICS
ANA REVISION

Developing skills for overall school success!

Learner Workbook

CONTENTS PAGE

ANA TEST 1 PAGE 1-17
ANA MEMO 1 PAGE 18-25

REMEDIATION EXERCISES PAGE 26-89

ACKNOWLEDGEMENTS PAGE 91

MARKS	

ANNUAL NATIONAL ASSESSMENT 2014 GRADE 8 MATHEMATICS EXEMPLAR PAPER

MARKS: 120								
TIME: 2½ hours								
PROVINCE								
REGION								
DISTRICT								
SCHOOL NAME								
EMIS NUMBER (9 d	igits)							
CLASS (e.g. 8A)								
SURNAME								
NAME								
GENDER (✓)	ВОҮ				GIF	RLS		
DATE OF BIRTH	C	C	γ	Υ	D	D	1	

This test consists of 15 pages, excluding the cover pages

Instructions to the learner

- 1. Read all the instructions carefully.
- 2. Question 1 consists of 10 multiple-choice questions. Circle the letter of the correct answer.
- 3. Answer questions 2 to 14 in the spaces or frames provided.
- 4. Show all working.
- 5. Give a reason for each statement in Question 7.
- 6. The test counts 120 marks.
- 7. The duration of the test is $2\frac{1}{2}$ hours
- 8. The teacher will lead you through the practice exercise before you start the test.
- 9. You may use an approved scientific calculator (non-programmable and non-graphical).

Practice exercise

Circle the letter of the correct answer.

Which of the numbers is an irrational number?

- A. 3
- B. -3
- C. $\sqrt{11}$
- D. $\sqrt{9}$

You have answered the question correctly if you have circled B.

QUESTION 1

1.1 Which number is missing?

$$\frac{1}{2}$$
; $\frac{1}{4}$; $\frac{1}{8}$; ...; $\frac{1}{32}$

- A. 16
- B. $\frac{1}{64}$
- C. $\frac{4}{6}$
- D. $\frac{2}{16}$
- 1.2 Which statement is incorrect?
 - A. The only prime factors of 24 are 2 and 3.
 - B. The difference between 8 and 3 is 11.
 - C. All integers are natural numbers.
 - D. $\sqrt[3]{-27}$ is a rational number.
- 1.3 R 120 decreased by 5% is equal to
 - A. R 95
 - B. R 100
 - C. R 114
 - D. R 18
- 1.4 Complete the statement $\sqrt{144} 2^2 + \sqrt[3]{8} =$
 - A. 11
 - B. 14
 - C. 12
 - D. 10

- 1.5 The expression $2x+2-x+\frac{3x^2}{3x}$ has ...
 - A. 4 terms
 - B. 2 terms
 - C. 3 terms
 - D. 1 term
- 1.6 Complete $\frac{3}{4}$ of $1\frac{1}{3} + 1\frac{1}{3} =$
 - A. 3
 - B. 5
 - C. 2
 - D. 12
- 1.7 The area of a rectangle with length of 15 cm and width of 7 cm is
 - A. 105 cm
 - B. 45 cm²
 - C. 105 cm³
 - D. 105 cm²
- 1.8 Write down the equation defining the relationship between the input(x) on the left and output(y) on the right:

- A. y = 2x + 1
- B. y = 2x 1
- C. y = 3x 2
- D. y = x 2

1.9 Why is $\triangle ABC /// \triangle DCB$?

- A. SSS
- B. AAA
- C. 90°,HS
- D. SAS

1.10 A visitor to the Kruger National Park recorded the following number of impala over 15 days:

25, 80, 34, 26, 21, 65, 28, 21, 39, 21, 30, 34, 21, 28, 40

The mean of the data is

- A. 26
- B. 45
- C. 34,2
- D. 34

Total [10]

QUESTION 2

Write	0,000 003 56 in scientific notation.	
Divide	R5 600 in the ratio 4 : 5 : 7.	
Simpli		
2.3.1	$\sqrt{x^4} + 2\sqrt{x^4}$	-
2.3.2	$\frac{12x^3y^4 + 15x^4y^3}{3x^3y^3}$	-
		-

2.4	Multiply and simplify if possible.	
	$3x^2(x+2) + 2x(x^2 + 3x)$	(3)

[19]

QUESTION 3

3.1 If $x = 2$ and $y = -5$ find the value of	f
---	---

$$4x^2 + 3y^2$$

(3)

3.2 Solve for x.

3.2.1
$$7 - 3x = 2x - 3$$

(3)

3.2.2
$$10 - 4(2x - 1) = -2(3 - x)$$

(5)

(4)

$$3.2.4 3^{x+1} = 81$$

(3)

QUE	STION 4	[18]
4.1	Twenty two litres of petrol cost R300. How much will you pay for one litre of petrol?	(2)
4.2	A car travels a distance of 330 km at an average speed of 110 km/h. How long does it take the car to travel this distance?	(4)
4.3	Calculate the amount that will be in the bank after 4 years if R2500 was invested at 9% p.a. simple interest.	(3)

4.4		of jeans marked at R250-00 is sold at a discount of Determine the selling price.	(3)
QUES	STION !	5	[12]
5.1	follow		
		Find the terms represented by x ; y and z	(3)
	5.1.2	Describe the pattern in 5.1.1 in your own words	(2)
	5.1.3	Write down the equation representing the general term of this pattern in the form $T_n = \dots$	(3)

5.1.4	Use your formula to find the 9 th term in the sequence	(3)
		_
		_

[11]

QUESTION 6

Study the flow diagram below and answer questions that follow.

6.1 Copy and complete the table using the flow diagram. (4)

x	-2	-1	0	2
У	а	b	С	d

- 6.2 Use your table in 6.1 to draw a graph defining the equation y = 2x 3. Use Annexure A. (3)
- 6.3 Is the graph an increasing or decreasing function? Explain. (3)

[10]

QUESTION 7

7.1 In the diagram below PQ // SR, \angle PQR = 30 $^{\circ}$, \angle PRS = 90 $^{\circ}$. Calculate, with reasons, the size of:

$$7.1.2 \angle QPR$$
 (2)

7.2 $\angle LJI = 90^{\circ}$, LI = LK and LH = HJ.

7.2.1	Prove, with reasons, that	Δ LGJ \equiv Δ JIL.	(6)
	·	· · · · · · · · · · · · · · · · · · ·	

7.3 Δ PQR /// Δ MNO. Find the lengths of unknown sides.

[22]

QUESTION 8

8.1 Study the diagram below and answer the questions that follow

8.1.1	Calculate the perimeter	(2)

8.1.2 Calculate the area (3)

8.2 Calculate the area of the shaded region. (Remember $\pi \approx \frac{22}{7}$) (4)

(3)

8.3 Calculate the volume of the prism

[12]

QUESTION 9

The table below shows the number of learners per sport offered at a school in a year.

Sport	Number of	Number of	Number of		
	learners	boys	girls		
Rugby	60	60	0		
Netball	65	0	65		
Swimming	60	20	40		
Cricket	80	20	60		
Soccer	80	80	0		
Hockey	135	60	75		

9.1 Draw a bar graph representing the number of learners per sport. **Use Annexure B.** (3)

9.2 Draw a double bar graph representing the number of boys and number of girls per sport in the school. **Use Annexure C.**

[6]

(3)

Total [120]

ANNEXURE A

QUESTION 6.2

ANNEXURE B

QUESTION 9.1

ANNEXURE C

QUESTION 9.2

ANNUAL NATIONAL ASSESSMENT 2014 GRADE 8 MATHEMATICS EXEMPLAR PAPER MEMORANDUM

MARKS: 120

TIME: 21/2 hours

QUESTION 1

С
С
С
D
В
С
D
В
В
С

Total [10]

QUES	TION 2								
2.1	0,000 (003 56	(2)	-					
	= 3,56 ×	$= 3.56 \checkmark \times 10^{-6} \checkmark$							
2.2	4+5+7	′ = 16 √	(4)						
	$\frac{4}{16} \times 56$								
	$\frac{5}{16} \times 5$	600 = R1 750 ✓							
	$\frac{7}{16} \times 56$	00 = R2 450 ✓							
2.3	2.3.1	$\sqrt{x^4} + 2\sqrt{x^4}$	(3)						
		$= x^2 \checkmark + 2(x^2) \checkmark$							
		$=3x^2$							
	2.3.2	$12x^3y^4 + 15x^4y^3$	(3)	-					
		$\frac{12x^3y^4 + 15x^4y^3}{3x^3y^3}$							
		$= \frac{12x^3y^4}{3x^3y^3} + \frac{15x^4y^3}{3x^3y^3} \checkmark$							
		$=4y\checkmark+5x\checkmark$							
	2.3.3	$\frac{(3x)(2x^5) - 2x^3(6x^2)}{6x^4}$	(4)						
		$= \frac{6x^6 - 12x^5}{6x^4} \checkmark \checkmark$							
		$= x^2 \checkmark - 2x \checkmark$							
2.4	$3x^2$	$(x+2) + 2x(x^2 + 3x)$		\exists					
	$= 3x^3 +$	$6x^2\checkmark + 2x^3 + 6x^2\checkmark$	(3)	-					
	$= 5x^3 +$	$-12x^2 \checkmark$							
Total			[19]	1					

QUEST	UESTION 3									
3.1	$4x^2$	$+3y^2$								
	= 4(2)	$^{2} + 3(-5)^{2} \checkmark$		(3)						
	= 16+	= 16 + 75 ✓								
	= 91 \									
3.2										
0.2	3.2.1	7 - 3x = 2x - 3		(3)						
		$-3x - 2x = -3 - 7 \checkmark$								
		$-5x = -10 \checkmark$								
		$x = 2 \checkmark$								
				(=)						
	3.2.2	$10 - 4(2x - 1) = -2(3 - x)$ $10 - 8x + 4 \checkmark = -6 + 6x \checkmark$		(5)						
		$-8x - 6x = -6 - 4 - 10 \checkmark$								
		$-14x = -20 \checkmark$								
		$x = \frac{10}{7} \checkmark$								
		$\frac{x-\sqrt{7}}{7}$								
	0.00	2x±1		(4)						
	3.2.3	$\frac{3x+1}{2} = 5$		(4)						
		$\frac{3x+1}{2} \times 2 = 5 \times 2 \checkmark$								
		$3x + 1 = 10 \checkmark$								
		$3x = 9 \checkmark$								
		x = 3								
	3.2.4	$3^{x+1} = 81$		(3)						
		$3^{x+1} = 3^4 \checkmark$ $x+1=4 \checkmark$								
		x = 3								
Total				[18]						

			\Box
ION 4			
22 <i>l</i> :	<i>tr</i> → R300	(2)	
1 <i>l</i> :	(2)		
	= R13,64 ✓		
spee	$ed = \frac{dis \tan ce}{time} \checkmark$	(4)	
tim	$ae = \frac{dis \tan ce}{speed} \checkmark$		
tim	$ae = \frac{330km}{110km/h} \checkmark$		
	= 3km ✓		
<i>A</i> =	P(1+in)	(3)	
<i>A</i> =	$2500(1+0.09\times4)$ \checkmark		
=	R3400 ✓		
Selling	$g \Pr{ice} = R250 \times \frac{87}{100} \checkmark \checkmark$	(3)	
	$= R217,50 \checkmark$		
		[12	<u>']</u>
ION 5		1	
5.1.1	$x = 11 \checkmark$	(3)	
	$y = 14 \checkmark$		
	$z = 17 \checkmark$		
5.1.2	(2)		
	the first term 2. ✓✓		
	Speed times time	$22 \ ltr \rightarrow R300$ $1 \ ltr \rightarrow \frac{ltr \times R300}{22 \ ltr} \checkmark$ $= R13,64 \checkmark$ $speed = \frac{dis \tan ce}{time} \checkmark$ $time = \frac{dis \tan ce}{speed} \checkmark$ $time = \frac{330 km}{110 km/h} \checkmark$ $= 3km \checkmark$ $A = P(1+in) \checkmark$ $A = 2500(1+0,09 \times 4) \checkmark$ $= R3400 \checkmark$ $Selling Price = R250 \times \frac{87}{100} \checkmark \checkmark$ $= R217,50 \checkmark$ $= R217,50 \checkmark$ $5.1.1 x = 11 \checkmark$ $y = 14 \checkmark$ $z = 17 \checkmark$ $5.1.2 3 \text{ is added every time to get the next term starting with}$	22 $tr \rightarrow R300$ 1 $tr \rightarrow \frac{1tr \times R300}{22tr}$ = R13,64 \times = \frac{dis \tan ce}{time} \frac{\sqrt{time}}{time} = \frac{dis \tan ce}{speed} \frac{d}{time} \frac{d}{110km/h} \frac{d}{time} = \frac{330km}{110km/h} \frac{d}{d} = 3km \frac{d}{d} \tag{3} A = P(1 + in) \frac{d}{d} = R250\frac{87}{100} \frac{d}{d} \tag{3} Selling \text{Price} = R250 \times \frac{87}{100} \frac{d}{d} \tag{3} = R217,50 \frac{d}{d} \tag{3} ION 5 5.1.1 x = 11 \frac{d}{d} = 11 \frac{d}{d} \tag{3} = 17 \frac{d}{d} = 17 \frac{d}{d

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		
$T_{3} = 8 = 3(3) - 1 $		5.1.3	$T_1 = 2 = 3(1) - 1$	(3)
Tn = 3n - 1 \checkmark Tn = 3n - 1 \checkmark (3)			$T_2 = 5 = 3(2) - 1$	
5.1.4 $Tn = 3n - 1$ $T_9 = 3(9) - 1 \checkmark$ $= 27 - 1 \checkmark$ $= 26 \checkmark$ Total [11] QUESTION 6			$T_3 = 8 = 3(3) - 1 \checkmark (method)$	
Total [11] QUESTION 6 6.1 Copy and complete the table using the flow diagram. (4)			$Tn = 3n - 1 \checkmark \checkmark$	
QUESTION 6 Copy and complete the table using the flow diagram. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.1.4	$T_9 = 3(9) - 1 \checkmark$ = 27 - 1 \((3)
6.1 Copy and complete the table using the flow diagram. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total			[11]
6.2 $y = 2x - 3$.	QUEST	ION 6		
6.2 $y = 2x - 3$.				
6.2 $y = 2x - 3$.	6.1	Сору	and complete the table using the flow diagram.	(4)
6.2 $y = 2x - 3$. $y = 2x - 3$			x -2 -1 0 2	
line \(\sigma \)			y -7 √ -5 √ -3 √ 1 √	
line \(\sigma \)				
x-intercept \(\sqrt{y} \) y-intercept \(\sqrt{y} \) -3 \(-2 \) -1 \(\sqrt{-1} \) -2 \(\sqrt{-3} \)	6.2	y = 2x	c-3.	
y-intercept \(\) y-intercept \(\) 3 2 (3)			15	
-3 -2 -1 0 1 2 3 -1 -2 -3			4	x-intercept√
2 -3 -2 -1 -2 -3 -3 (3)			3	y-intercept√
-3 -2 -1 0 1 2 3 -1 -2 -3				(3)
-1 -2 -3			1	(6)
-1 -2 -3			-3 -2 -1 0 1 2 3	
-3				
			_2	
			-3	

	-5	
6.3	Increasing. ✓ As <i>x</i> increases ✓ y also increases. ✓	(3)
	Thorodollig. The self-ordered by also morodoco.	
Total		[10
OUEST	FION 7	
QUEST		
	7.1.1 \angle SRT = 30 ⁰ \checkmark [corresponding \angle s] \checkmark	(2)
	7.1.2 $\angle QPR = 90^{\circ} \checkmark [alternate \angle s] \checkmark$	(2)
	7.1.3 ∠PRQ + 30^{0} + 90^{0} = 180^{0} ✓ [sum of ∠s of Δ] ✓	(4)
	$\angle PRQ = 180^{\circ}_{-}(30^{\circ} + 90^{\circ}) \checkmark$	
	= 60° ✓	
7.2	\angle LJI = 90 $^{\circ}$, LI = LK and LH = HJ.	
	7.2.1 In ΔLGJ and ΔJIL	(6)
	GJ = IL [given] ✓	
	LJ is common ✓	
	\angle LJI + \angle GLJ = 180 ⁰ [co-interior \angle s] \checkmark	
	$\angle GLJ = 180^{\circ} - 90^{\circ} \checkmark$	
	= 90 ⁰ = ∠LJI ✓	
	$\triangle LGJ \equiv \Delta JIL [90^{\circ}, HS] \checkmark$	
	7.2.2 $LI^2 = LJ^2 + JI^2$ [Pythagoras]	(3)
	$JI^2 = LI^2 - LJ^2 \checkmark$	
	$= 8^2 - 5^2$	
	= 39 ✓	
	$JI = \sqrt{39}$	
	= 6,2 cm ✓	

7.3	$\frac{x}{17} = \frac{69}{23}$ $x = \frac{69}{23}$	- ✓ ×17✓		(5)
	23 = 51			
	$\frac{y}{75} = \frac{23}{69}$	3 ✓		
	$y = \frac{23}{69}$			
	y = 25	✓		
Total				[22]
QUES	TION 8			
8.1				
	8.1.1 Perimete	er = 15 cm + 8 cm + 6 cm + 11cm + 9 cm + 19 cm		(2)
	8.1.2 Area = 1	5 cm × 8 cm + 11cm × 9 cm √		(3)
	= 1	20 cm ² + 99 cm ² ✓		
		19 cm ² √		
8.2	Area = Ib			(4)
	= 25 38,5cm² ✓	cm × 7cm - $\frac{22}{7}$ × (3,5cm) ² = 175cm ² –		
	= 13	6,5cm ² ✓		
Total				[9]
		QUESTION 9	<u>I</u>	

GRADE 8 MATHEMATICS

Learner:	
School:	
Year	•

Task 1 (Number systems)
Worksheet Activity 1

1. Use a drawing to show that the following numbers are not prime numbers but composite numbers.

1 x 8

8 can be divided by 1, 2, 4 and 8

In later lessons learners will understand that these are factors

2 x 4

- 2. Identify all the prime numbers from 1–100.
- 3. How would you write the following numbers in prime numbers?

Example: 12

= 2 x 2 x 3

(2 and 3 are prime numbers because $2 = 2 \times 1$ and $3 = 3 \times 1$)

 a. 36
 b. 60

 c. 105
 d. 420

 e. 48
 f. 1 800

 g. 1 375
 h. 770

 i. 56
 j. 1 575

4. What numbers are these? Why?

2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67
71	73	79	83	89	97	101	103	107	109	113	127	131	137	139	149	151	157	163
167	173	179	181	191	193	197	199	211	223	227	229	233	239	241	251	257	263	269
271	277	281	283	293	307	311	313	317	331	337	347	349	353	359	367	373	379	383
389	397	401	409	419	421	431	433	439	443	449	457	461	463	467	479	487	491	499
503	509	521	523	541	547	557	563	569	571	577	587	593	599	601	60	613	617	619
631	641	643	647	653	659	661	673	677	683	691	701	709	719	727	733	739	743	751
757	761	769	773	787	797	809	811	821	823	827	829	839	853	857	859	863	877	881
883	887	907	911	919	929	937	941	947	953	967	971	977	983	991	997			

1. Colour the 2-times table red. Colour the 3-times to 10-times tables other colours.

х	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

2. Write down the 2-times table (a). Then write down only the answers (b). Then complete the sentence (c).

a.
$$2 \times 1 = 2$$
, $2 \times 2 = 4$, $2 \times 3 = 6$, ... $2 \times 12 = 24$

c. These are multiples of _____.

Do the same with the 3-times to 12-times tables.

- 3. Complete the following:
- a. The multiples of 6 are 6, 12, 18, ... 72, or

b.
$$M_k = \{ _ \}$$

(Do the same with the multiples of 4, 7, 9 and 12).

- 1. Revise: write down the first 12 multiples of:
- a. $M_5 = \{...\}$
- b. $M_{10} = \{...\}$
- C. $M_6 = \{...\}$
- d. $M_{11} = \{...\}$
- e. $M_{25} = \{...\}$
- 2. Write down the first 12 multiples and circle all the common multiples of the following:

Example: M2 = 2, 4, 6, 8, 10, 12, 14, 16 18, 20 22, 24 M4 = 4, 8, 12 16 20 24, 28, 32, 36, 40, 44, 48 The lowest common multiple is 4.

- a. $M_3 = {...}$
- b. $M_4 = \{...\}$

What is the lowest common multiple?

Do the same with:

 ${\rm M_2}$ and ${\rm M_6}$; ${\rm M_4}$ and ${\rm M_5}$; ${\rm M_8}$ and ${\rm M_6}$; ${\rm M_8}$ and ${\rm M_9}$

- 3. What is the abbreviation for the lowest common fraction?
- 4. What is the LCM for the following?

Example: M_4 and M_7

M4: { 4, 8, 12, 16, 20, 24 28}

M₇: {7, 14, 21, 28}

- a. M, and M,
- c. $M_{\rm s}$ and $M_{\rm s}$
- e. M, and M,
- g. $\rm M_{10}$ and $\rm M_{100}$
- i. M_{25} and M_{75}

- b. M_s and M_s
- d. $M_{_{\! 4}}$ and $M_{_{\! 8}}$
- f. M_k and M_p
- h. $M_{_3}$ ' $M_{_4}$ and $M_{_{12}}$
- $\text{j. } \text{M}_{\text{s}}\text{'}\text{M}_{\text{10}} \text{ and } \text{M}_{\text{20}}$
- 1. Complete the following, using the example to guide you.

Example: i) F_{12} are 123 46 and 12

- ii) The common factors are: 1, 2, 3, 6
- iii) The highest common factor is 6.
- a. $F_8: \{...\}$ $F_{16}: \{...\}$
- d. F_a:{...}
- b. F₃: {...} c. F₃: {...} F₁₂: {...}
- e. F.:{...}
- f. F₁₂: {...}

2. Complete the table.

	Symbol	Factors	Common factors	Highest common factors
Example: 4 and 8	F ₄ and F ₈	1, 2, 4, 1, 2, 4, 8	1, 2, 4	4
a. 6 and 12				
b. 7 and 28				
c. 9 and 36				
d. 8 and 24				
e. 3 and 21				
f. 4 and 36				
g. 15 and 45				
h. 16 and 64				
i. 12 and 48				
j. 10 and 100				

Learners complete the following questions in their writing books.

- 1. What is a factor?
- 2. What does F_{12} stand for?
- 3. Revision: write the factors for:

Example: $F_{16} = \{1, 2, 4, 8, 16\}$

a.
$$F_8 = \{...\}$$

d.
$$F_4 = \{...\}$$

e.
$$F_{36} = \{...\}$$

f.
$$F_{AB} = \{...\}$$

g.
$$F_{12} = \{...\}$$

h.
$$F_{42} = \{...\}$$

i.
$$F_{60} = \{...\}$$

- j. $F_{18} = \{...\}$
- 4. What is a prime factor? Give five examples.

Task 2 (FRACTIONS)

Learner Worksheet Activity 1

Count in steps of **one half**:

Count in steps of **one quarter**:

Count in steps of one eight

Write each of these numbers in another way:

$\frac{9}{4} =$	13/8 =	$3\frac{1}{4} =$	=2 ⁵ / ₈	$\frac{7}{2} =$	= 3
-----------------	--------	------------------	--------------------------------	-----------------	-----

Task 2 ACTIVITY 2

1. Circle the greater fraction. Use the fraction wall to help.

$\frac{1}{9}$ or $\frac{1}{7}$	$\frac{7}{10}$ or $\frac{7}{9}$	$\frac{3}{4}$ or $\frac{7}{8}$	$\frac{7}{8}$ or $\frac{5}{6}$	$\frac{2}{3}$ or $\frac{5}{7}$
9 /	10 9	4 8	8 6	3 /

2. Write each group of fractions in order from smallest to largest.

$\begin{array}{cccc} \frac{1}{5} & \frac{1}{9} & \frac{1}{8} \end{array}$	$\begin{array}{cccc} \frac{2}{5} & \frac{2}{9} & \frac{2}{7} \end{array}$	$\frac{5}{6}$ $\frac{9}{10}$ $\frac{7}{8}$
$\frac{1}{9}$; $\frac{1}{8}$; $\frac{1}{5}$	$\frac{2}{9}$; $\frac{2}{7}$; $\frac{2}{5}$	$\frac{5}{6}$; $\frac{7}{8}$; $\frac{9}{10}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{3}{8}$ $\frac{1}{3}$ $\frac{3}{10}$	$\begin{array}{cccc} \frac{3}{5} & \frac{3}{4} & \frac{5}{9} \end{array}$
$\frac{1}{2}$; $\frac{2}{3}$; $\frac{1}{2}$	$\frac{1}{3}$; $\frac{3}{10}$; $\frac{1}{3}$	$\frac{5}{9}$; $\frac{3}{5}$; $\frac{3}{4}$

Task 2: ACTIVITY 3

Work out how many packages of chocolate you would need to buy for each weight in the table.

200 g

100 g

1 kg	2	
$1\frac{1}{2}$ kg		
$2\frac{1}{2}$ kg		

List what you would buy to get the exact
amount of chocolate in the Rocky Road
recipe

• • • • • • • • • • • • • • • • • • • •	•••••	 	•••••

ROCKY ROAD

800g chocolate, melted

600g raspberry jellies

100g peanuts (unsalted)

50 g marshmallows, chopped

Answer these questions to double the Rocky Road recipe

List the packages of chocolate you would buy.	How many 150g packets of raspberry jellies would you need?
How many grams of peanuts would be left over from a $\frac{1}{4}$ kg packet?	What fraction of a kilogram, more or less than $1\frac{1}{2}$ kg, is the amount of chocolate you need?

Task 2: ACTIVITY 4

Work out how many packages of chocolate you would need to buy for each weight in the table.

	500 g	250 g	100g
1 kg	2	4	10
$1\frac{1}{2}$ kg	3	6	15
$2\frac{1}{2}$ kg	5	10	25

List what you would buy to get the exact amount of chocolate in the Rocky Road recipe

1 × 500 g + 3 × 100 g

ROCKY ROAD

800g chocolate, melted

600g raspberry jellies

100g peanuts (unsalted)

50 g marshmallows, chopped

Answer these questions to double the Rocky Road recipe

List the packages of chocolate you would buy.	How many 150g packets of raspberry jellies would you need?
Double: 1600 g	Double: 1200 g
Packages: 3 × 500 g + 1 ×	Packages: 8
100 g	
How many grams of peanuts would be left over	What fraction of a kilogram, more or less than

from a $\frac{1}{4}$ kg packet?

Double: 200 g

Left over: 250 g - 200 g =

50 g

More chocolate are needed: 1,6

kg - 1,5 kg

= 0,1 kg

Task 3 (FRACTIONS)

Worksheet Activity 1

Cross cubes on the tray to show the fraction.

Complete the fraction sentence.

Write the division sentence that helps you to find the answer.

$\frac{1}{3} \text{ of 15 is}$	1/4 of 8 is
¹ / ₂ of 18 is	1/4 of 20 is
$\frac{1}{3}$ of 18 is	$\frac{1}{5}$ of 20 is

Task 3: ACTIVITY 2

Make ticks ($\sqrt{\ }$) in the table to show each combination.

2 different juices that make 1 litre			
altogether			
2 different juices that make $\frac{3}{4}$ litre			
altogether			
3 different juices that make 1 litre			
altogether			
3 different juices that make $1\frac{1}{2}$			
litre altogether			
4 different juices that make $1\frac{1}{4}$			
litre altogether			
3 different juices that make $1\frac{3}{4}$			
litre altogether			

For these problems, write an answer for each juice.

How much less than 1 litre in the container?	800 ml		
How many times could the container fill a 50 ml measure?	4		
How many containers make $1\frac{1}{2}$ litres?	$7\frac{1}{2}$		

Task 3: ACTIVITY 3

Make ticks ($\sqrt{\ }$) in the table to show each combination.

	200 ml	250 ml	300 ml	500 ml	750 ml
2 different juices that make $\frac{1}{2}$ litre	1 /		1 /		
altogether	V		V		
2 different juices that make 1 litre		<u>.</u> [1
altogether		V			V
2 different juices that make $\frac{3}{4}$ litre		1 /		1 /	
altogether		V		V	
3 different juices that make 1 litre	٦/		٦/	<u>.</u> [
altogether	V		V	V	
3 different juices that make $1\frac{1}{2}$		1 /		1 /	1/
litre altogether		V		V	V
4 different juices that make $1\frac{1}{4}$					

litre altogether			
3 different juices that make $1\frac{3}{4}$	1 /	1/	1 /
litre altogether	V	V	V

For these problems, write an answer for each juice.

How much less than 1 litre in the container?	800 ml	750 ml	700 ml	500 ml	250ml
How many times could the container fill a 50 ml measure?	4	15	14	10	5
How many containers make $1\frac{1}{2}$ litres?	7 1/2	2	2	3	6

Task 3: ACTIVITY 4

Addition of Fractions:

1. Add the following and write the answers in the simplest form:

(a)
$$\frac{2}{3} + \frac{5}{6}$$

(b)
$$\frac{4}{7} + \frac{10}{14}$$

(c)
$$\frac{9}{15} + \frac{7}{30}$$

(d)
$$2\frac{1}{3} + \frac{5}{6}$$

(e)
$$1\frac{1}{2} + 3\frac{1}{4}$$
 (f) $4\frac{1}{8} + 1\frac{3}{4}$

(g)
$$12\frac{1}{4} + 6\frac{1}{2}$$

- (h) $3\frac{4}{7} + 2\frac{3}{14}$
 - 2. Determine the sum of the following numbers in the simplest form:
- (a) $2\frac{1}{6} + 3\frac{5}{24} + 5$
- (b) $16\frac{1}{2} + 3\frac{3}{4}$
- (c) $5\frac{2}{3} + 13\frac{5}{6}$
- (d) $15\frac{2}{3} + 4\frac{7}{12}$
- (e) $28\frac{1}{4} + 7\frac{3}{8}$

(Work in groups of three)

3. Why don't we add the denominators when adding the fractions? Discuss this in your groups and explain to one another. Write down the reason(s).

(Work in pairs)

- 4. Write the following as improper fractions and determine the sum.
- (a) $1\frac{2}{3} + 3\frac{1}{3}$
- (b) $4\frac{1}{5} + 7\frac{3}{5}$
- (c) $8\frac{1}{2} + 4\frac{1}{2}$

(d)
$$9\frac{2}{3} + 2\frac{1}{3}$$

5. As the demand for the special cards is so great, Petra and John have to work on the cards every day. On Thursday they work $2\frac{3}{4}$ hours, on Friday $3\frac{5}{8}$ hours and Saturday $2\frac{7}{8}$ hours. How long did they work in total?

- 6. Complete the following activity:
- (a) Add the following fractions and write the answer in the simplest form:

(i)
$$\frac{2}{7} + \frac{6}{7} + \frac{5}{7} + \frac{1}{7}$$

(ii)
$$\frac{1}{3} + \frac{2}{3} + \frac{4}{3} + \frac{10}{3}$$

(iii)
$$2\frac{1}{3} + 1\frac{2}{3} + 4\frac{2}{3}$$

(iii)
$$2\frac{1}{3} + 1\frac{2}{3} + 4\frac{2}{3}$$
 (iv) $2\frac{5}{12} + 3\frac{7}{12} + \frac{11}{12}$

(v)
$$\frac{4}{5} + 2\frac{3}{5} + 12\frac{1}{5} + \frac{8}{10}$$

(vi)
$$5\frac{1}{5} + 3\frac{4}{10}$$

(vii)
$$15\frac{2}{5} + 4\frac{1}{20}$$

(viii)
$$12\frac{1}{4} + 9\frac{1}{3}$$

Subtraction of Common Fractions:

1. Calculate:

(a)
$$12\frac{4}{5} - 6\frac{2}{5}$$

(b)
$$8\frac{1}{2} - 6\frac{1}{2}$$

(c)
$$6\frac{2}{5} - 4\frac{1}{5}$$

(d)
$$2\frac{3}{5} - \frac{4}{5}$$

(e)
$$8\frac{1}{4} - \frac{3}{4}$$

(f)
$$6\frac{2}{5} - 4\frac{3}{5}$$

(g)
$$5\frac{3}{5} + 2\frac{1}{5} - \frac{4}{5}$$

(h)
$$2\frac{4}{7} + 3\frac{5}{7} - 3\frac{2}{7}$$

(i)
$$6\frac{2}{3} + 5\frac{2}{3} - 4\frac{1}{3}$$

2. Calculate the following. First do the operations in brackets.

(a)
$$\left(\frac{7}{8} - \frac{3}{8}\right) - \frac{1}{8}$$

(b)
$$\left(\frac{7}{12} - \frac{5}{12}\right) - \frac{1}{12}$$

(c)
$$\left(\frac{10}{12} - \frac{3}{12}\right) - \frac{1}{6}$$

(d)
$$\frac{4}{7} - \left(\frac{13}{14} - \frac{10}{14}\right)$$

(e)
$$\frac{9}{15} - \left(\frac{6}{15} - \frac{2}{15}\right)$$

(f)
$$\frac{8}{10} + \left(\frac{6}{10} - \frac{3}{20}\right)$$

- 3. From a piece of cardboard that is $29\frac{3}{4}$ cm long, John cuts two pieces to make cards. The one piece is $12\frac{1}{8}$ cm long and the other piece is $9\frac{1}{4}$ cm long. How long is the piece of cardboard that remains? Give your answer in the simplest form.
- 4. John makes a triangular card. Determine the circumference of the triangular card of which the sides are $12\frac{1}{5}$ cm, $13\frac{1}{2}$ cm and $14\frac{3}{10}$ cm.

5. John bought yellow cardboard of which he only needs $\frac{5}{8}$. What part of the cardboard should he cut off? Later John realises that he only used one third of the cardboard. Which part of the original cardboard remained?

Task 3: ACTIVITY 5

1. Calculate the following and write the answer in the simplest form:

(a)
$$3 \times \frac{1}{2}$$

(b)
$$3 \times \frac{3}{4}$$
 (c) $4 \times \frac{3}{5}$

(c)
$$4 \times \frac{3}{5}$$

(d)
$$\frac{5}{6} \times 8$$

(e)
$$\frac{7}{8} \times 6$$

(e)
$$\frac{7}{8} \times 6$$
 (f) $7 \times 1\frac{1}{2}$

(g)
$$4 \times 3\frac{1}{3}$$

(h)
$$3 \times 5\frac{3}{5}$$
 (i) $2\frac{4}{5} \times 3$

(i)
$$2\frac{4}{5} \times 3$$

(j)
$$6\frac{2}{3} \times 1\frac{1}{5}$$

(k)
$$3\frac{1}{8} \times 2\frac{2}{5}$$
 (l) $4\frac{1}{4} \times 4\frac{2}{5}$

(I)
$$4\frac{1}{4} \times 4\frac{2}{5}$$

(m)
$$3\frac{3}{4} \times 1\frac{3}{7} \times 5\frac{5}{6}$$

(m)
$$3\frac{3}{4} \times 1\frac{3}{7} \times 5\frac{5}{6}$$
 (n) $3\frac{1}{3} \times 4\frac{2}{5} \times 1\frac{1}{4}$ (o) $2\frac{1}{3} \times \frac{4}{3} \times 3\frac{3}{4}$

$$2\frac{1}{3} \times \frac{4}{3} \times 3\frac{3}{4}$$

- 2. John can make $12\frac{1}{2}$ cards in one day. How many cards can he make in one week?
- 3. John owns 12 books on card design. Two thirds of the books were gifts.
- How many of the books were gifts? (a)

- (b) How many books did John buy?
 - 4. The flour for Petra's biscuits is finished. She buys another $3\frac{3}{4}$ kg flour. She needs half of the flour for the mixture she is making. Which fraction of the flour should she use? Write $\frac{1}{2}$ kg as a fraction of $3\frac{3}{4}$ kg.

Task 3: ACTIVITY 6

Division of Fractions:

1. Calculate the following and write the answer in the simplest form.

(a)
$$\frac{3}{5} \div 3$$

(b)
$$\frac{3}{5} \div 6$$

(c)
$$\frac{9}{10} \div 6$$

(d)
$$\frac{12}{5} \div 8$$

(e)
$$2\frac{2}{5} \div 8$$

(f)
$$3\frac{3}{4} \div 10$$

(g)
$$3\frac{1}{7} \div \frac{11}{2}$$

(h)
$$\frac{25}{6} \div \frac{5}{2}$$

(i)
$$\frac{35}{12} \div \frac{14}{3}$$

(j)
$$\frac{45}{8} \div \frac{14}{4}$$

(k)
$$4\frac{1}{5} \div \frac{9}{10}$$

(I)
$$2\frac{2}{5} \div 2\frac{1}{4}$$

(m)
$$5\frac{1}{3} \div 4\frac{4}{5}$$

(m)
$$5\frac{1}{3} \div 4\frac{4}{5}$$
 (n) $7\frac{1}{5} \div 2\frac{7}{10} \times 5\frac{1}{3}$ (o) $6\frac{2}{9} \div 8\frac{1}{6} \div 2\frac{2}{7}$

(o)
$$6\frac{2}{9} \div 8\frac{1}{6} \div 2\frac{2}{7}$$

(p)
$$3\frac{3}{4} \times 4\frac{2}{3} \div 2\frac{2}{7}$$

2. John has 1,5 m ribbon that he has to divide equally between 9 cards. How much will he have for each card?

- 3. John has 24 different colour gummed paper in his cupboard. He calculates that he needs $2\frac{2}{3}$ papers to make one card. How many cards can he make?
- 4. John also uses paint. Petra helps him paint. John paints a fifth and Petra paints a quarter of each card. Which section of each card have they painted? Which section still remain.

Task 4 Learner Worksheet Activity 1

DECIMALS

Introduction: Place value, ordering and comparing decimals

Introduce the lesson by asking what a decimal fraction is. Write 4,236 on the board.

Tell learners that in South Africa we make use of a decimal comma.

Note that we can also say decimal number

Concept development

Revise place value of decimal fractions with your learners.

Use your example on the board and label the decimal fraction.

units tenths hundredths thousandths

Ask learners to write the decimal fraction in expanded notation:

4,236 = 4 + 0.2 + 0.03 + 0.006

1. Write the following in expanded notation:

Example: 3,785

= 3 + 0,7 + 0,08 + 0,005

a. 4,378

b. 5,213

c. 14,678

d. 5,036

e. 8,305

f. 9,006

g. 14,002

h. 18,060

i. 29,002

j. 100,001

k. Show this using your calculator, e.g. 4 + 0.3 + 0.07 + 0.008

2. Write the following in words:

Example: 4,326

= 4 units + 3 tenths + 2 hundredths + 6 thousandths

a. 5,376 d. 7,036 g. 28,001

b. 8,291 c. 3,589 e. 8,005 f. 19,060 h. 200,202 i. 3,999

35,024 k. Use a calculator to check your answers.

3. Write the following in the correct column:

		thousands	hundreds	tens	units		tenths	hundredths	thousandths
a.	4,765				4	,	7	6	5
b.	18,346					,			
c.	19,005					,			
d.	231, 04					,			
e.	7685,2					,			
f.	3676,289					,			
g.	234,002					,			
h.	200,05					,			
i.	1000,101					,			

4. Write down the value of the underlined digit:

Example: 3,7<u>8</u>4

= 0,08 or 8 hundredths

a. 6,<u>3</u>57 d. 8,9<u>9</u>9

b. 4,32 e. 88,080 c. <u>5</u>,809 f. 34,00<u>2</u>

5. Write the following in ascending order:

- a. 0,04; 0,4; 0,004 b. 0,1; 0,11; 0,011 c. 0,99; 0,9; 0,999 d. 0,753; 0,8; 0,82 e. 0,67; 0,007; 0,06 f. 0,899; 0,98; 0,99 g. 0,202; 0,2; 0,22 h. 0,345; 0,45; 0,5 i. 0,003; 0,033; 0,030 j. 0,702; 0,72; 0,072

- 6. Fill in <, >, = a. 0,4 ___ 0,04 b. 0,05 ___ 0,005 c. 0,1 ___ 0,10 d. 0,62 ___ 0,26 e. 0,58 ___ 0,85 f. 0,37 ___ 0,73 g. 0,123 ___ 0,321 h. 0,2 ___ 0,20 i. 0,4 __ 0,40 j. 0,05 ___ 0,050

Task 4 Learner Worksheet Activity 2

- 1. Draw place value columns in order to place the following numbers in correct columns:
 - a) 2, 9
 - b) 82, 747
 - c) 200, 4
 - d) 841, 6
- 2. Write these numbers in ascending order:
 - a) 0,7;0,6;0,8;0,9;0,2
 - b) 1,7; 2,7; 0,7; 4,9; 5
- 3. Write these numbers in descending order:
 - a) 76,391; 76,396; 76,390; 76,298;
 - 76,392
 - b) 4,999; 0,999; 2,999; 3,999; 8,999
- 4. Fill in > or < :
 - a) 0,006 ___ 0,004
 - b) 0,033 ___ 0,093
 - c) 2,4 ____ 2,399 d) 2,7 ____ 7,2

Task 4 Learner Worksheet Activity 3

A. R	ound off t	he following	decimals	to the	nearest	100 th	:
------	------------	--------------	----------	--------	---------	-------------------	---

- a) 45
- b) 50 c) 70
- B. Round off the following numbers to the nearest whole number:
- a) 4, 38b) 9,915
- c) 0,3012
- d) 123,56
- e) 35,47
- f) 30,06 g) 451,14
- h) 7,698
- i) 12,545j) 0,123
- C. Round off the numbers in B to one decimal place:
- D. Which numbers are halfway between:
 - 1. 3,9 and 4,0
 - 2. 4,63 and 4,64
 - 3. 0,6 and 0,61
 - 4. 7,6 and 7,7
 - 5. 5,85 and 5,89

Task 5 ACTIVITY 1 (DECIMALS) R6,5 R1,50 160c 360c 90c 250c R15 Solve these problems: Determine the cost of 3 What is the cost of 3 and 2 How much change will you get from R10 if you Calculate the cost of 2 and 2 ? buy can you buy with If you had R25, how much would you How many have left after paying for the following: R2? Draw the lunch you would buy for a family of 2 adults and 2 children with R100 to spend.

What is the total cost? How much change would you get?

Task 5 ACTIVITY 2

Calculate the cost of one CD in each of these packs.

Task 5 Learner Worksheet Activity 3

1. Simplify

- a. 7,463 x 10
- b. 0,279 x 10
- c. 0,029 x 10
- d. 0,006 x 10
- e. 4,267 x 100
- f. 0,285 x 100
- g 0,063 x 100
- h. 0,08 x 100

2. Calculate the following and show all your workings.

- a. 4 x 0,3
- b. 0,6 x 4
- c. 5 x 0,3 d. 8 x 0,6
- e. 0,7 x 7
- f. 0,7 x 2
- g. 5 x 0,07 h. 7 x 0,03
- i. 8 x 0,02

Task 5 Learner Worksheet Activity 4

Use a calculator to find the answers:

- 1.
- a. 1,7 x 4,3
- b. 2,9 x 8,4
- c. 7,6 x 9,3
- d. 8,4 x 0,7
- e. 1,9 x 2,6
- f. 0,9 x 3,8
- 2. Simplify without using the calculator
- a. 0,2 x 0,7
- b. 0,2 x 0,4
- c. 0,3 x 0,3
- d. 0,6 x 0,6
- e. 0,5 x 0,3
- f. 0,9 x 0,4
- g. 0,2 x 0,8
- h. 0,7 x 0,7
- 3. Calculate the following:
- a. 46,9 ÷ 10
- b. 729,6 ÷ 10
- c. 274,3 ÷100
- d. 12,4 ÷ 100
- e. $9,275 \div 5$
- f. 16,38 ÷ 7

4. Fill in the missing numbers

b.
$$0.5 \times 30 = 0.5 \times 3 \times \dots = \dots$$

c.
$$0.5 \times 500 = 0.5 \times ... \times 100 = ...$$

d.
$$3,796 \div 20 = 3,796 \div \dots \div 2 = 0,198$$

e.
$$72,75 \div 50 = 72,75 \div 10 = \dots \div 5 = \dots$$

TASK 5 ACTIVITY 5

Highlight the correct answer:

	QUESTIONS	Α	В	С	D
1	0.3×0.2	0,6	0,06	0,006	0,0006
2	0.3×0.4	0,0012	0,012	0,12	1,2
3	0.5×0.01	0,005	0,05	0,5	0,0005
4	0.06×0.03	0,18	0,018	0,0018	0,00018
5	0.05×0.04	0,2	0,02	0,0002	0,002
6	$1,01 \times 0,03$	3,03	0,303	0,03	0,3
7	$0,005 \times 0,06$	0,0003	0,003	0,0303	0,33
8	0,04 ²	0,16	0,08	0,0016	0,0008
9	0,0028 ÷ 4	0,7	0,07	0,007	0,0007
10	$0,00054 \div 6$	0,00009	0,0009	0,009	0,09
11	0,24 ÷ 2	0,3	0,003	3	0,03
12	$0,0015 \div 3$	0,0005	0,05	0,5	0,005
13	0,004 ÷ 8	0,2	0,02	0,0002	0,002
14	$0.2 \times 0.6 \div 4$	3	0,3	0,03	0,003
15	$0.05 \times 0.4 \div 2$	0,001	0,1	0,01	10

TASK 6 Learner Worksheet Activity 1:

PERCENTAGE

- 1. Write the following as percentages:
- (a) $\frac{4}{100}$
- (b) $\frac{25}{100}$
- (c) $\frac{30}{100}$
- (d) $\frac{40}{100}$
- (e) $\frac{1}{100}$
- (f) $\frac{90}{100}$
- (g) $\frac{9}{100}$
- (h) $\frac{50}{100}$
- 2. Write the following percentages as common fractions:
- (a) 5%
- (b) 25%
- (c) 1%
- (d) 50%

- (e) 80%
- (f) 100%
- 3. How much is sold if 100% is sold?
- 4. Your teacher will hand out Worksheet 2.5. The following is an example of the worksheet:
- (a) Write the following as percentages:
- (i) $\frac{30}{100}$

(ii) $\frac{57}{100}$

(iii) $\frac{108}{100}$

(iv) $\frac{5}{100}$

(v) $\frac{15}{100}$

(vi) $\frac{128}{100}$

(b) Write the following as percentages:

(i) $\frac{17}{50}$

(ii) $\frac{4}{20}$

(iii) $\frac{18}{25}$

(iv) $\frac{5}{2}$

(v) $1\frac{1}{2}$

(vi) $\frac{2}{5}$

(vii) $\frac{1}{100}$

(viii) $\frac{1}{10}$

(ix) $\frac{6}{12}$

 $(x) \qquad \frac{1}{12}$

(xi) $\frac{12}{15}$

(xii) $\frac{13}{15}$

(c) Convert the following percentages to common fractions (remember to simplify the answer):

(i) 36%

(ii) 6%

(iii) 65%

(iv) 97%

(v) 1%

(vi) 10,5%

(Individual)

(d) Write the following percentages as fractions in their simplest form:

(i)
$$5\frac{1}{2}\%$$

(ii)
$$6\frac{1}{4}\%$$

(iii)
$$87\frac{1}{2}\%$$

(iv)
$$27\frac{1}{3}\%$$

(v)
$$\frac{1}{2}$$
 %

(vi)
$$5\frac{3}{4}\%$$

5. Write the following common fractions as percentages:

(a)
$$\frac{4}{50}$$

(b)
$$\frac{25}{50}$$

(c)
$$\frac{30}{50}$$

(d)
$$\frac{40}{50}$$

(e)
$$\frac{1}{25}$$

(f)
$$\frac{18}{50}$$

(g)
$$\frac{9}{25}$$

(h)
$$\frac{50}{50}$$

6. Write the following as percentages:

(a)
$$\frac{4}{10}$$

(b)
$$\frac{2}{4}$$

(c)
$$\frac{3}{4}$$

(d)
$$\frac{4}{20}$$

- (e) $\frac{1}{2}$
- (f) $\frac{3}{5}$
- (g) $\frac{9}{20}$
- (h) $\frac{40}{40}$
- 7. Complete the following activity:
- (a) Convert the following percentages to common fractions in the simplest form.
- (i) 10%
- (ii) 40%
- (iii) 5%
- (iv) 60%
- (v) $2\frac{1}{2}\%$
- (vi) $3\frac{3}{4}\%$
- (vii) $\frac{1}{2}$ %
- (viii) $\frac{1}{4}$ %
- (ix) $\frac{3}{8}$ %
- (x) 95%
- (b) Convert the following to decimal fractions:
- (i) 10%
- (ii) 15%
- (iii) 85%

- (iv) 12%
- (v) $62\frac{1}{2}\%$
- (vi) $8\frac{1}{3}\%$
- (vii) $4\frac{1}{4}\%$
- (c) In newspapers and magazines the word "percentage" is often used as well as the "%" sign.
- (i) Collect these articles and cut them out for discussion in your groups.
- (ii) Explain what the concept percentage means in each of the pieces you have cut out, e.g. increasing, decreasing.
- (iii) Make a poster out of your cut-outs.
 - 8. Complete the following activity:

(Individual)

- (a) What percentage is:
- (i) 20 of 100?
- (ii) 5 of 60?
- (iii) 8 of 40?
- (iv) 15 of 15?
- (v) 9 of 27?
- (vi) 20 of 300?
- (vii) 90 of 150?
- (viii) 51 of 75?
- (b) What percentage is:

- (i) 15c of R6,00?
- (ii) 15c of R1,25?
- (iii) R1,10 of R4,40?
- (iv) 15 minutes of $1\frac{1}{2}$ hours?
- (v) $\frac{3}{4}$ of an hour of $6\frac{1}{4}$ hours?
- (c) The ASB cellphone company advertises in the following manner in the daily pages: A Mampodi III cellphone @ R60,00 per month for 24 months. 85 minutes in off-peak time and 15 minutes in peak time are included in the price. Additional costs:
- R20,00 per month for specified billing.
- Sim-card: R114,00 (once-off)
- (i) What percentage of the free minutes can be used during peak time?
- (ii) What percentage of the free minutes can be used during off-peak time?
- (iii) What percentage of each month's compulsory payment is spent on additional costs?
- (iv) What will the total expense be during a 2 year period?
- (d) Harry has 56 pigeons. He sells 14 of them. What percentage of his pigeons did he sell?
- (e) A chicken farmer orders 2 500 chicks. He only receives 2 100. What percentage of his order did he receive?
- (f) The book that Lucy is reading has 120 pages. She has already read 72 pages. What percentage of the pages has she already read?

(g) Sandra achieved the following marks in her tests:

English: 150 out of 200
Afrikaans: 90 out of 150
Mathematics: 105 out of 150
Geography: 45 out of 60
Business Studies: 42 out of 60
Biology: 34 out of 40
Natural Sciences: 32 out of 40

- (i) Calculate the percentage that she achieved in each learning area.
- (ii) How many marks did she get out of 700?
- (iii) Calculate her percentage out of 700.
- (h) What percentage does your Grade 7 group represent out of the total number of learners in your school?
 - 9. Complete the following activity:
- (a) Calculate:
- (i) 25% of 60 (ii) 80% of 70
- (iii) 60% of 810 (iv) 40% of 350
- (v) $3\frac{1}{3}\%$ of 120 (vi) $6\frac{2}{3}\%$ of R400
- (vii) $2\frac{1}{2}$ % of 50 (viii) 90% of R800
- (b) Calculate (a calculator is permitted):
- (i) 6% of 1 200 cars (ii) 12% of 820 kg (iii) 100% of 560 men (iv) 65% of R725,00
- (v) 10% of R1,00 (vi) 72% of R118,00

Write down the answer: (c) 15% of R1,00 (i) 12% of R1,00 (ii) (iii) 18% of R10,00 (iv) 25% of R10,00 1% of R100,00 (v) (vi) 10% of R100,00 (vii) 100% of R10,00 (viii) 35% of R1 000,00 (d) Dave sells 10% of his pigeons. How many pigeons does he sell?

TASK 7 ACTIVITY 1 (EXPONENTS)

William got 75% of his 20 math problems correct. How many were correct?

has 90% of the amount. How much money does he have? What amount does he need?

The squares of certain numbers are the sum of two other squares. The best such example known, is:

Billy sees an advertisement for a remote control car that he really wants. It costs R450. He only

$$\begin{bmatrix} 5 \end{bmatrix}^2 = \begin{bmatrix} 4 \end{bmatrix}^2 + \begin{bmatrix} 3 \end{bmatrix}^2$$

These five numbers have the same property. Complete these patterns.

(e)

(f)

The number 25 can be reached in two different ways. Find both.

$$\begin{bmatrix} 25 \end{bmatrix}^2 = \begin{bmatrix} 2 \\ + \end{bmatrix}^2 + \begin{bmatrix} 25 \\ \end{bmatrix}^2 = \begin{bmatrix} 2 \\ + \end{bmatrix}^2$$

The number 64 can be reached in four different ways. Find all four

$$\begin{bmatrix} 64 \end{bmatrix}^2 = \begin{bmatrix} 2 \\ + \end{bmatrix}^2 + \begin{bmatrix} 64 \end{bmatrix}^2 = \begin{bmatrix} 2 \\ + \end{bmatrix}^2$$

$$\begin{bmatrix} 64 \end{bmatrix}^2 = \begin{bmatrix} 2 \\ + \end{bmatrix}^2 + \begin{bmatrix} 64 \\ \end{bmatrix}^2 = \begin{bmatrix} 2 \\ + \end{bmatrix}^2$$

Introduction: Square roots

Draw the diagram on the **board**. Introduce the topic by showing the diagram. Ask them: What do you think this diagram represents?

Write down the square root and ask the learners how this links to the square number.

1	2	3
4	5	6
7	8	9

Introduce the square root symbol.

 $3 \times 3 = 9$, so the square root of 9 is 3.

Concept development

Write the following on the board.

Solve the sum step by step with your learners on the board.

Do a few more examples like this on the board.

1. What square number and root does the diagram represent?

Use the example to guide you.

1	2	3
4	5	6
7	8	9

Example: $3 \times 3 = 9$, so the square root of 9 is 3.

b

2. Write the following in symbols:

- a. The square root of 9
- b. The square root of 25
- c. The square root of 81
- d. The square root of 100
- e. The square root of 36

3. Calculate the square root:

Example: $\sqrt{9}$ $= \sqrt{3 \times 3}$ = 3

a. √9

b. √1

c. √121

d. √81

e. √36

f. √169

g. √64

- h. $\sqrt{100}$
- i. √49

j. √144

1. Write the following in ascending order.

a.
$$\sqrt{16}$$
, $\sqrt{4}$, $\sqrt{25}$, $\sqrt{9}$, $\sqrt{36}$

b.
$$\sqrt{100}$$
, $\sqrt{144}$, $\sqrt{81}$, $\sqrt{121}$, $\sqrt{64}$

c.
$$\sqrt{25}$$
, $\sqrt{49}$, $\sqrt{4}$, $\sqrt{64}$, $\sqrt{36}$

d.
$$\sqrt{9}$$
, $\sqrt{25}$, $\sqrt{64}$, $\sqrt{81}$, $\sqrt{36}$

e.
$$\sqrt{49}$$
, $\sqrt{1}$, $\sqrt{9}$, $\sqrt{144}$, $\sqrt{121}$

2. Write the following in ascending order.

a.
$$\sqrt{4.4}, \sqrt{3.3}, \sqrt{2.2}$$

b.
$$\sqrt{5.5}, \sqrt{4.4}, \sqrt{6.6}$$

c.
$$\sqrt{2.2}, \sqrt{5.5}, \sqrt{7.7}$$

d.
$$\sqrt{10.10}, \sqrt{6.6}, \sqrt{8.8}$$

e.
$$\sqrt{9.9}, \sqrt{11.11}, \sqrt{4.4}$$

3. Write the following in descending order.

a.
$$\sqrt{25}, 2^2, \sqrt{16}, \sqrt{100}, 9^2$$

b.
$$\sqrt{36},11^2,\sqrt{100},3^2,\sqrt{16}$$

c.
$$4^2, \sqrt{131}, \sqrt{9}, 7^2, \sqrt{81}$$

d.
$$12^2, \sqrt{49}, 5^2, \sqrt{144}, 8^2$$

e.
$$6^2, \sqrt{64}, \sqrt{16}, \sqrt{81}, 10^2$$

a.
$$\sqrt{36} - \sqrt{25}$$

e.
$$\sqrt{4.4}$$
 _ $\sqrt{16}$

b.
$$\sqrt{81}$$
___ $\sqrt{27}$

d.
$$\sqrt{2.2}$$
 _ $\sqrt{3.3}$

f.
$$\sqrt{9}$$
 ___ $\sqrt{3.3}$

5. Fill in <, > or =

- a. $\sqrt{81}$ ___3² b. 3² ___ $\sqrt{36}$ c. 4² ___ $\sqrt{25}$

- d. $\sqrt{81}$ ___9² e. $\sqrt{16}$ ___2² f. 4^2 ___ $\sqrt{4}$

j. $\sqrt{144}$ ___11²

TASK 7 Learner Worksheet Activity 2

- (a) Complete the following (use a calculator to confirm your answers):
- (i) $1^3 =$
- (ii) $11^2 =$
- (iii) $11^3 =$
- (iv) $28^3 =$
- (v) $100^3 =$
- (b) Seeing the square of 5 can be written as 5^2 = 25, we say that the square root of 25 = 5. We write it as $\sqrt{25}$ = 5.
- (i) $4^2 = 16$ and therefore the $\sqrt{16} =$
- (ii) $9^2 = 81$ and therefore the $\sqrt{81} =$
- (iii) $1^2 = 1$ and therefore the $\sqrt{1} =$
- (iv) $7^2 = 49$ and therefore the $\sqrt{49} =$
- (v) $11^2 = 121$ and therefore the $\sqrt{121} =$
- (c) Seeing the cube of 5 can be written as 5^3 = 125, we say that the cube root of 125 = 5. We write it as $\sqrt[3]{125}$ = 5.
- (i) $4^3 = 64$ and therefore the $\sqrt[3]{64} =$
- (ii) $9^3 = 729$ and therefore the $\sqrt[3]{729} =$
- (iii) $1^3 = 1$ and therefore the $\sqrt[3]{1} =$
- (iv) $7^3 = 343$ and therefore the $\sqrt[3]{343} =$
- (v) 6^3 = 216 and therefore the $\sqrt[3]{216}$ =
- (d) Fill in the missing numbers:

- (i) 1; 4; 9; 16; ____; ___;
- (ii) 8; 27; 64; ____; ____; ____;
- (iii) $\sqrt{10\ 000} =$

TASK 7 Learner Worksheet Activity 3

- (a) Complete the following:
- (i) $\sqrt{-81} =$
- (ii) $\sqrt{-121} =$
- (iii) $\sqrt[3]{-343} =$

Fill in the missing numbers:

- (i) -1; 4; 9; -16; ____; ___; ____
- (ii) -8; -27; -64; ____; ____; ____;

3. Calculate:

Example:
$$\sqrt[3]{125} + \sqrt{16}$$

= 5 + 4

a.
$$\sqrt[3]{81} - \sqrt{25} =$$

b.
$$\sqrt{16} + \sqrt[3]{8} =$$

c.
$$\sqrt{25} + \sqrt[3]{8} =$$

d.
$$\sqrt{25} - \sqrt[3]{27} =$$

e.
$$\sqrt[3]{27} - \sqrt{4} =$$

f.
$$\sqrt[3]{81} + \sqrt{81} =$$

g.
$$\sqrt[3]{125} + \sqrt{25} =$$

h.
$$\sqrt{144} - \sqrt[3]{125} =$$

i.
$$- = \frac{3\sqrt{64}}{\sqrt{64}}$$

j.
$$\sqrt{64} + \sqrt{64} =$$

4. Calculate:

Example:
$$\sqrt[3]{27} + \sqrt[3]{3} - \sqrt{25}$$

= 7

a.
$$\sqrt[3]{216} + 4^2 - \sqrt{16} =$$
 b. $9^2 - \sqrt[3]{27} + \sqrt{4} =$

b.
$$9^2 - \sqrt[3]{27} + \sqrt{4} =$$

c.
$$3^3 + 4^3 + \sqrt{25} =$$

d.
$$\sqrt{144} - 2^2 + \sqrt[3]{8} =$$

IN	38	59	23	54	62	18	59
OUT	59	88	51	33	43	50	78
RULE							

SUBSTITUTION

If p = 3, q = -4, r = 5 and s = -6, find the value of the following algebraic expressions and circle the correct answers.

	QUESTIONS	Α	В	С	D
1	p-q+r+s	-2	10	6	18
2	4p + 2q + 3r	35	19	5	11
3	pr – qs	-3	9	-5	-9
4	$p^2 + s^2$	45	-27	18	-6
5	$p^2 + q^2 - r^2$	-32	0	50	4
6	$2p^2 + 2q^2$	-14	100	-28	50
7	$3(q + r)^2$	54	243	3	6
8	$(5p + 3q)^2$	4	-9	38	9
9	qrs	-90	-120	90	120
10	6p – qr	38	70	110	93
11	rs ÷ p	10	8	-10	-8
12	$p^2q - pq^2$	48	12	-12	0
13	$r^2 + s^2 \div p^2$	$6\frac{7}{9}$	$-1\frac{2}{9}$	12	29
14	$(2s)^2 - 2s^2$	72	0	-48	216
15	$8r^2 - (5q)^2$	200	1200	-200	120

A *prime number pair* is two consecutive prime numbers which differ by 2. There are eight such number pairs less than 100. Complete the diagram:

The puzzle here is to find a route through each of these grids from top left to bottom right.

Whenever there is a shift to their right there is a multiplication.
Whenever there is a shift downwards
There is an addition or subtraction.

		× 2		
1	2	4		ı
		6	12	
			14	▼ + 2
			16	

The example above shows a rout from 1 to 16

Now find the route for these three grids.

The puzzle here is to find a route through each of these grids from top left to bottom right.

Whenever there is a shift to their right there is a multiplication.
Whenever there is a shift downwards
There is an addition or subtraction.

_		× 2		
1	2	4		ı
		6	12	
			14	▼ + 2
			16	

The example above shows a rout from 1 to 16

Now find the route for these three grids.

	——→×3					
1	3	9	27			
			30			
			33	↓		
			36	+3		

		→ ×	4	-
1	4	16		ı
		12		
		8		↓ -4
		4	16	

1	5			ı
	10			
	15			↓ + 5
	20	100	500	

(Communicative, Associative Distributive Properties)

Use the pictures to help multiply.

Write the missing numbers to show each step.

9 × 14

9

= 90 +

= ,,,,,,,,,,

 8×13

= (8 ×)(8 ×

10

3

=

 9×24

= (...... ×) + (.....×)

=+

20

9

4

=

TASK 9 Learner Worksheet Activity 2

Example exercises:

1. Use the commutative property to calculate:

b)
$$7 \times 6 =$$
 d) $6 \times 7 =$

c)
$$12 \div 3 =$$
 f) $3 \div 12 =$

d)
$$100 - 50 = \dots$$
 h) $50 - 100 = \dots$

2. Use the distributive property to calculate:

b)
$$5 \times (3 + 7) = \dots = \dots$$

c)
$$(3 \times 7) + (3 \times 2) = \dots = \dots$$

3. Use the associative property to calculate:

a)
$$43 + (7 + 55)$$

b)
$$(43 + 7) + 55$$

TASK 9 Learner Worksheet Activity 3

- Calculate the following by using two different methods: (a)
- $6 \times (2 + 5)$ i)
- $(8 + 4) \times 3$ (ii)
- $(7 + 4) \times 11$ (iii)
- Use the distributive property to complete the following: (b)
- $6 \times (2+5)$ = $(6 \times __) + (6 \times __)$ $\times (8+13)$ = $(5 \times 8) + (5 \times 13)$ $(8 \times 103) + (8 \times 78)$ = $8 \times (__ + __)$ $(42 \times 5) + (65 \times 5)$ = $(42+65) \times __$ (i)
- ii)
- (iii)
- (iv)
- Place a = or ≠ symbol in each of the spaces to make the following (c) true:
- $3 \times (16 4)$ ___ $(3 \times 16) (3 \times 4)$ (i)
- $(12-5) \times 4$ ____ $(12 \times 4) (5 \times 4)$ (ii)
- $8 \times (20 6)$ ____ $(8 \times 20) (8 \times 6)$ (iii)
- Use the distributive property to calculate the following: (d)
- $8 \times (7 4)$ (i)
- $10 \times (12 5)$ (ii)
- (iii) $(8-2) \times 9$
- (iv) $(14-9) \times 12$
- (v) $(7 + 2 + 3) \times 8$

TASK 9 Learner Worksheet Activity 4

Learner do the following Classwork exercise:

1.

- a) 14 × 0
- (b) 0×28
- (c) -6×0
- (d) any number × 0
- (e) $25 \times \frac{0}{25}$
- (f) 25 + 0
- (g) $25 \times \frac{16}{16}$
- (h) $\frac{99}{99} + 99$
- (i) $\frac{99}{99} + 98$
- (j) -16 + 0
- (k) 0-27
- (I) -27×1
- $(m) 0 \div 6$
- (n) $15 \div 0$

$$\begin{array}{c} 0 \times 18 \\ \text{(o)} \end{array}$$

- 2. What are the possible values of A?
- (a) $0 \times A = 0$
- (b) 0 + A = A
- (c) $1 \times A = A$
- (d) $0 \times A = 5$
- (e) $10 \times A = 1$
- (f) $3 \times A = A \times 3$

$$\frac{1}{4} \times A = 1$$

(h) A + A = 0

Simplify the expression and circle the correct answer.

	QUESTION	Α	В	С	D
1	2 + 3 × 4 - 5	15	-5	9	-36
2	$24 \div 3 + 10^2$	108	1,1	28	8
3	$\sqrt{16+9}$	7	25	12	5
4	$(2)^3 \times 2$	12	16	4 ³	8
5	$3 \times 12 + 2 \times 5$	22	210	46	190
6	$6 - 18 \div 3$	-4	0	4	undinfined
7	$2^0 + 15 \times 2$	31	34	32	30
8	$(4+9)^2$	25	13	169	26
9	$2\times3-24\div3$	-6	6	2	-2
10	$7^2 + 4 \times 3$	54	62	159	61

TASK 9 ACTIVITY 6

Simplify the expression and write the letter that matches the answer that differs from the other three in the last column.

	А	В	С	D	Answer
1	4 × 6	3 × 8	$\frac{1}{2}$ of 48	15 + 8	
2	3 × 12	16 × 2	9 × 4	6²	
3	8 + 8	20 - 4	2 × 9	80 ÷ 5	
4	5 ²	$\frac{1}{4}$ of 100	32 - 7	19 + 7	
5	8 × 8	15 × 4	3 × 20	8 ² - 2 ²	
6	7 × 8	9 × 6	$\frac{1}{2}$ of 112	14 × 4	
7	10 × 5	7 ² + 1 ²	25 × 3	$\frac{1}{5}$ of 250	
8	12 × 7	2 × 42	100 - 26	6 × 14	
9	12 × 8	88 + 6	10² - 2²	6 × 16	
10	8 × 18	35 × 4	9 × 16	3 × 48	-

TASK 10 Learner Worksheet Activity 1 INTEGERS

A. Inequalities

I. Compare +10 and +6:

10 is the greater of the two numbers and is further to the right on the number axis.

thus: 10 is greater than 6

thus: 10 > 6

or 6 is smaller than 10

thus: 6 < 10

II. Compare –2 and –5:

If we compare -2 and -5, -2 lies to the right of -5 on the number axis:

thus: -2 is greater than -5 thus: -2 > -5

or -5 is smaller than -2 thus: -5 < -2

< Smaller than

III. Compare –4 and 2:

2 lies to the right of –4 on the number axis

thus: 2 is greater than -4 thus: 2 > -4

or -4 is smaller than 2 thus: -4 < 2

6.8

(a) Arrange from great to small:

- (i) 2; -7; 0; -1
- (ii) -3; -2; 2; 3
- (iii) 2; -4; 1; 0; 9; 3
- (iv) -30; -6; 4; 28; -10

(Individually)

(b) Arrange from small to great:

- (i) 4; -5; 7; -12; -4
- (ii) -4; -8; -6; -10; 14
- (iii) 2; -18; 0; -13; 1; -20
- (iv) 35; -112; -12; 21; -6

(Individually)

(c) Use the symbols <, > or = to make the following sentences true:

(i) 3 ... −3

(ii)	− 5 − 2

(x)
$$2^2 + 3^3 \dots 5^2$$

(Individually)

(d) Which one indicates a warmer temperature?

(i)
$$2 ^{\circ}C \text{ or } -2 ^{\circ}C$$

(Individually)

(e) What is the temperature if it:

(i) rises with 1 °C from 3 °C?

(ii) falls with 2 °C from 2 °C?

(iii) rises with 15 °C from -12 °C?

(iv) falls with 10 °C from 8 °C?

(v) rises with 12 °C from -16 °C?

6.9 Your teacher will hand out Worksheet 6.9. The following is an example of the worksheet:

(Work in pairs)

- (a) Use a number axis to calculate:
- (i) (+4) + (+1)
- (ii) (-5) + (+2)
- (iii) (-5) + (-3)
- (iv) (-2) + (+8)

(Individually)

- (b) Calculate the sum of the following without using a number axis:
- (i) (+4) + (+8) =
- (ii) (-4) + (-8) =
- (iii) (-6) + (+2) =
- (iv) (-3) + (+6) =
- (v) (+8) + (+10) =
- (vi) (+8) + (-10) =
- (vii) (-6) + (-6) =
- (viii) (-6) + (+6) =
- (ix) (+6) + (-6) =
- (x) (+2) + (-8) =

(Individually)

- (c) Use the rearrangement concept to determine the following:
- (i) (-4) + (+6) + (-2) + (+8)
- (ii) (+6) + (-1) + (+5) + (+1)
- (iii) (-16) + (+18) + (-2) + (+1)
- (iv) (+20) + (-10) + (-15) + (+30)
- (v) (-3) + (-12) + (+8) + (-5) + (-3)

(Individually)

- (d) Calculate the sum of:
- (i) +9 and -4
- (ii) +3 and +9
- (iii) -7 and -8
 - (iv) 27 and -20

(Individually)

- (e) Calculate the number which has to be written inside the frame in order for the number sentences to be true:
- (i) +2 + = +10
- (ii) +2 + = 0
- (iii) + (-7) = 5
- (iv) (+8) + = -2
- (v) (-4) + (-6) + = -15
- (vi) (-12) + (-18) + = -22
- (vii) + (28) + (-14) = -26

ACKNOWLEDGEMENTS:

TO THE GDE MATHEMATICS PROVINCIAL TEAM FOR THEIR INVALUABLE INPUTS SHARED THROUGHOUT THE DEVELOPMENT PROCESS OF THIS RESOURCE.

TEACHERS NEEDING FURTHER SUPPORT ARE ENCOURAGED TO COMMUNICATE WITH THEIR RESPECTIVE DISTRICT MATHEMATICS OFFICIAL.

District	Name	Phase	Tel Number
Head Office	Dumisani Maphanga	INTERSEN	011 355 0815
Ekurhuleni N	Prinivin Moodley	Senior	011 746 8090
Ekurhuleni N	Busi Sekobane	Intermediate	011 746 8674
Ekurhuleni S	Themba Tshabalala	Intermediate	011 740 8074
Ekurhuleni S	Louine Pretorius	Senior	011 389 6202
Tshwane N	Hugo Mulder	Intermediate	011 589 0135
Tshwane N	Peter Lekalakala	Senior	012 543 1094
Tshwane S	Cindy Mamabolo	Senior	012 343 1094
	Suliman Motala		012 401 6358
Tshwane S		Intermediate	012 401 6358
Tshwane W	Finky Sekao	Intermediate	
Tshwane W	Joseph Mthembu	Senior	012 725 1300
Gauteng N	Denzil Jordaan	Intermediate	012 846 3783
Gauteng N	France Machaba	Senior	012 846 3783
Gauteng W	Zaheda Sooliman	Intermediate	011 693 4904
Gauteng W	Elna van Zyl	Senior	011 831 5438
Gauteng E	Thabo Chiloane	Senior	011 736 0666
Gauteng E	Richard Mophali	Intermediate	011 736 0666
Gauteng E	Stompie Maimela	Intermediate	011 736 0649
Jhb Central	Siphiwe Kgatla	Intermediate	011 983 2162
Jhb North	Patrah Masingi	Intermediate	011 694 9414
Jhb North	Ahmed Sulliman	Senior	011 694 9475
Jhb South	Wilna Barkhuizen	Intermediate	011 247 5872
Jhb South	Charles Thomas	Senior	011 247 5763
Jhb West	Claudette Wentzel	Intermediate	011 831 5532
Jhb East	Valentine Mokale	Intermediate	011 666 9035
Jhb East	Charles Ramoshebi	Senior	011 666 9120
Sedibeng E	Calvin Madisha	Intermediate	016 440 1885
Sedibeng W	Martin Koekemoer	Intermediate	016 594 9358

Published in 2014

Copyright of the material in this file is the sole property of the Gauteng Department of Education (GDE). Educators can reproduce this material for educational use.

Anyone else wishing to reproduce any or part of the material should obtain written permission from The Head of Department GDE

Box 7710 Johannesburg 2000

111 Commissioner Street
Johannesburg, 2001
Tel: 011 355 0000
www.education.gpg.gov.za