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Introduction

“Know, love, and believe what you’re doing—and you’ll be the happiest
person there is.” This is the message I’ve been carrying across the United
States and Canada for the past three years. I’m living proof that the
statement is true.

In 1989, J. B. Lauchner, Sue Colwell, and I formed a company, which we
called Youth Enterprises, Inc. Our goal was to make a difference in
children’s way of looking at and relating to math. We believe there are no
mathematical illiterates—only people who have yet to learn to do math in a
way that works for them. As with any problem in life, there’s more than one
way to solve a math problem.

While on our mission, we ran into a surprise. Our original program,
Motivation thru Mathematics, was aimed at children. We discovered,
though, that their parents and other adults were just as eager to learn our fun
and creative way to manipulate numbers. Lifelong math phobias had left
scars on their psyches—they had even altered their career choices to avoid
math—but now they were faced with the responsibility of helping their
children learn math. Cold with fear, willing to try anything, they found our
program was as useful for themselves as for their children.

To our delight, too, teachers were just as excited to learn new methods
they had never seen before.

Can you imagine being a teacher today? Imagine keeping children raised
with remote control multichannel gratification interested in math taught
with the same methods that have been used for the last one hundred years! I
come into a classroom for an hour, have fun, and show some new ways of
looking at math. Usually, the teachers are seeing these methods for the first
time.



The responsibility for educating our children cannot be left to teachers
alone. We all must take a part—not just teachers, but parents, grandparents,
and corporate America. We all offer creative new methods that can reach
both left and right-brain learners, girls and boys. Everyone is capable of
learning math and enjoying it.

Numbers are around us every day. There isn’t a profession that doesn’t
use math. A person who can’t understand numbers is just as handicapped as
a person who can’t read. And yet as a society, America approaches math in
a self-defeating way.

If you take all the fallacies that we labor under—“girls can’t learn math”;
“people who are good with words are bad in math”; “you don’t need to
know math because calculators and computers will do it for you”—then add
a tradition of teaching that consists of put-downs and tests guaranteed to
build counterproductive tensions, you have a formula for failure. In what
other class is a student asked to stand at the blackboard, in front of all the
other kids, and prove whether he or she can or cannot perform! Where else
do you have ten minutes to solve 20 problems, for a grade?

It’s frightening, too, how little we challenge the young minds in the
classrooms. Many students today can graduate from high school with only
one math course: general math in the ninth grade. We demand less and less
from our kids. The less we expect, the less we get.

It doesn’t have to be that way. One of my most exciting experiences with
children happened in Phoenix, Arizona. I had been invited to speak to a
group of second-graders. I was showing them how to add left-to-right, but I
was limiting my examples to two-digit numbers. They were, after all, only
in the second grade, and we normally visit the third grade and up. After a
few exercises, the kids said, “Let’s do three-digit numbers.” We did three-
digit numbers. Then they were asking for four digits. Suddenly they were
raising their hands faster than we could write on the board. They were
screaming out the answers! Every kid in that room was excited, and not a
single one was lost. They were all participating. Some of them got wrong
answers, but that was all right, because they knew it was okay to be wrong.



When children are given a creative tool to overcome their own anxiety,
they create enthusiasm and self-motivation. Once teachers understand that
there are many different approaches to math, their enthusiasm is contagious.
That’s when math scores start to go up.

I greeted you with “Know, love, and believe what you’re doing—and
you’ll be the happiest person there is.” I’ve always enjoyed math. When I
was younger, I thought all adults could do what I could do. I thought I was
just ahead of my peers. I was also fortunate in having teachers in upstate
New York who were very liberal. They said that if I could explain my
methods to everyone, they would allow me to continue using them. I’ve
heard a lot of horror stories in the last few years about experiences learning
math—enough to help me realize how fortunate I was in receiving my math
education the way I did.

I hope I can dispel the myth that math is only for nerds. After high
school, I joined the Air Force “to see the world,” and that’s what I did. I
spent three years in Japan. I learned to speak Japanese and found the culture
there fascinating. But what was most important to me was that the Japanese
were as intrigued by my math methods as my fellow Americans. People
everywhere have a need to learn what makes math work and how to make it
work for them.

While I was in the service, a friend asked me to help his son. The boy
was failing in math. As I showed him new ways of doing math, I
experienced great satisfaction in watching his mind and self-esteem open
up. His teacher was amazed at his new abilities, and she asked me to speak
to the rest of her class. That’s when I began to believe in what I could do for
both children’s and teachers’ confidence in themselves and in math. I
believe in everyone’s ability, and my own ability to touch their lives. That
leads me to loving what I’m doing! I now have the opportunity to speak on
national television, on radio, and in front of corporations. I speak to
thousands of students and maybe, just maybe, I help to change their lives
for the better. What more can one ask from life?

I give you this book. Remember to have an open mind. Have fun, and
grow rich with confidence.



PART I

 THE BASICS



Chapter Zero

WELCOME TO MATH MAGIC! In this book, I’ll be sharing with you my secret
to numbers. Most magicians won’t share their secrets, but I’m a numbers
wizard, and I’m willing to share my secrets with you.

First you’ll have to forget everything you remember about numbers. Zero
out your mind. I’ll show you how zero is the first digit. That’s why this
chapter begins with the number Zero. When you learn this, you’ll not only
improve your math skills, you’ll increase your love of numbers.

Some people call this improving “math literacy.” Have you heard of
literacy programs at school to help kids get better at reading and writing?
This is a different kind of literacy—it’s about seeing numbers as another
language, with 0 through 9 being an alphabet. In English, we use our ABCs
to spell words and form sentences. In math, we use 0 through 9 to “spell”
numbers and form equations.

With this book, you will learn amazing math techniques they don’t teach
you in school. I promise, you will understand it and be able to do the
problems yourself. You will also be able to use what you learn to complete
your math work faster and with more enjoyment.

We’ll be working on essential addition, subtraction, multiplication, and
division skills that will have you figuring out difficult math equations in
your head. No “problem!”

Remember how in school you learned to add columns of numbers from
right to left? Forget about it. Here, we’ll add from left to right, just the way
we read. Same goes for subtraction. And you’ll learn an entirely new way to
multiply and divide.

One last thing to forget: rote memorization. In this book, you will not be
asked to memorize any tables or calculations. My goal is to help you learn a



new way to think about numbers and to turn on the “calculator” in your
own mind.

How does this revolutionary approach work?
It’s simple—Math Magic.
We live in a one-through-ten world and have been taught to start counting

with one. Most of the math we do is base 10, which means our system uses
ten digits altogether. Yet the digits are not 1 through 10, as we have been
taught to count on our fingers; instead, they are the digits 0 through 9, and
every number higher than 9 is made up of those ten digits. The number 10,
for example, is made up of 1 and 0; 45 is 4 and 5, and so on.

The secret to numbers is that every number higher than nine adds down
to nine. Try it. Pick a number. Add each of the digits in the number
together, and then subtract the total from the original number.

And if you ever want to check your addition, you can use a “Nines Check.”
Let’s say you want to add 8+8. You think the answer is 16. So you subtract
your answer (16) from a number made out of the equation (88):



Then you add those two numbers together, and if you get 9, you know your
answer is correct. Since 7+2=9, the Nines Check says you are right!
8+8=16. Look at these examples:

If you understand this, then you have just turned on the calculator in your
brain.

Here is a fun way to remember the ten digits:

0 1 2 3 4    5 6 7 8 9

Question: Which of the digits, spelled out, has the same number of letters as
the number itself?

Answer:

“Z-e-r-o” has four letters, so that’s not it.

“O-n-e” has three letters, so that’s not it.

“T-w-o” has three letters, so that’s not it.

“T-h-r-e-e” has five letters, so that’s not it, either.

How about “F-o-u-r?”

Yes! Four has four letters.

Four is a very interesting digit too.

Question: Which digits have four letters?

Z-e-r-o    O-n-e    T-w-o    T-h-r-e-e    F-o-u-r
N-i-n-e    E-i-g-h-t    S-e-v-e-n    S-i-x    F-i-v-e



That’s right!
Zero, four, five and nine each have four letters. Notice how these four

digits act as “bookends” to each half of the 0 through 9 series. If you were
counting on your fingers, these numbers would be on your thumbs and
pinkies.

Can you see the magic in what you’ve learned so far? I’m counting on
you to become a numbers wizard too!!!
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 Five Keys to Human
Calculating 

MATH BECOMES A LOT easier when you understand a few basic principles,
some or all of which you probably learned in school. But because most of
us are taught to add and subtract backward—right to left, instead of left to
right—the real significance of these principles and their use may have
escaped you. Let’s start with a simple question:

WHAT DO NUMBERS REALLY MEAN?

A number’s meaning is found from the order in which we write down its
digits. The digits of a number are those figures that, like letters in a word,
make up the total.

For example,  contains four digits.

The value of a number depends on how many digits it contains. A single
digit means its value is somewhere between zero and nine.

A one-digit figure is called the ones or units when it’s part of a larger
number, and we write it on the far right side of the number: 8,976. When we
write the number there, we say we are placing it in the “ones column” or
“units column.” In this number, the 6 means there are six ones in 8,976.

A two-digit figure stands for ten or more. It means you can count as
many tens in the number as the left digit says. For example, 20 holds two



tens; 28 has two tens and eight ones. In a larger number, we write the digit
that counts the tens just left of the ones digit: 342 has four tens and two
ones. Using our example number, 8,976, picture what this number contains
by counting to the tens digit (the 7 in 8,976) by tens: ten, twenty, thirty,
forty, fifty, sixty, seventy. It has seven tens and six ones: 8,976.

Three digits stand for one hundred or more. After seeing how tens work,
you get the idea: The number 136 contains one hundred, three tens (or
“thirty”), and six ones (the digit “six”). And 554 stands for five hundreds
plus five tens (“fifty”) plus four ones (“four”). We write hundreds in the
third column from the right, just to the left of the tens. Using our example
number again, 8,976, we find it contains nine hundreds: 8,976. As we work
from right to left, we separate each three digits with a comma: 1,876,325.
This helps make the larger numbers easier to read.

Thousands are written in the fourth column from the right (to the left of
the hundreds), and of course they stand for how many thousands a number
contains. The enormous 1,876,325 has six thousands, found in the fourth
from the right column. In our example, the number of thousands is eight:
8,976.

So it goes toward infinity. As you read from right to left, you come to ten
thousands, hundred thousands, millions, and so forth. The figures in each of
a number’s columns are called its place values: 8, 9, 7, and 6 are place
values. Remember that term.

THINKING FROM MOST TO LEAST IMPORTANT

When students first learn to add, they start with ones. Maybe that’s why
in school we learn to add larger numbers right to left—from ones to tens to
hundreds—instead of the more logical way, from left to right—from the
biggest digits to the smallest ones. But the way you learned to calculate in
the second grade is not the only way, or even the best way, to add and
subtract.



Instead, you may find it easier to work from left to right, in the same
direction that you read plain English. If you understand that the first digit
you see—the figure on the left—means that a number contains so many
thousands, or so many hundreds, or so many tens, you can estimate at a
glance how many thousands (or hundreds, or tens, or whatever) the sum of
several numbers will contain.

Think of it in terms of dollars and cents. Suppose you wanted to add

Big numbers Dollars and cents
4,823 $48.23
2,762 27.62
1,827 18.27

Pennies and dimes don’t make much difference when you’re dealing with
twenty- and fifty-dollar bills. In larger numbers, the ones and the tens are
like pennies and dimes.

So, start with the important numbers! Look at the digits on the left: 4 plus
2 plus 1 equal 7. In the first list of numbers, that stands for thousands:
7,000. You know your answer can’t be less than 7,000, and—sneaking a
peek at the hefty numbers in the hundreds column—it probably won’t be
more than 9,000. Over in the money list, the 7 stands for seven tens or 70.
The big bucks there add up to no less than $70, and a few pennies on the
right of the decimal point are just pocket change.

The Human Calculator’s System for Marking Place Values

In this book, I will use one or more 0s in parentheses to mark places that
I want you to keep in mind. For example, if we’re working with digits in the
hundreds column and we don’t want to forget the tens column and the ones
column, I will write the number as 1(00). If we’re working in the thousands
column, I might write something like 2(000). The 0s in parentheses mark
the places of the other columns.



Pretty easy to understand, isn’t it! You’ve just discovered two of the five
keys to becoming a human calculator, and it hardly hurt at all. The idea that
the value of a number falls into different columns of digits is called place
value. Using that idea to guess at how much a bunch of numbers adds up to
is called estimation.

USE YOUR MEMORY

Your brain and your desire are the only equipment you need to become a
human calculator. Most people use about 10 percent of their brain’s
capability. Think of what would happen if you used only 10 percent of any
other organ in your body. If your legs worked at just one tenth of their
potential, you would have to use a wheelchair or a cane, and that would be
considered a great tragedy.

You can train your mind to work at a higher capacity by using it more.
That means reading and writing and searching for answers to the questions
your natural curiosity brings to you.

Where math is concerned, remember that your brain can store things like
a computer. With practice, you can train yourself to hold numbers in your
memory—upgrading your mental powers by two. How? By using your
imagination to visualize numbers as you add, subtract, and multiply them in
your mind. Form a clear picture of the problem in your mind, and work out
the solution in your head.

Sound hard? It’s not, really. In fact, it’s nearly impossible not to visualize
numbers, even if you try not to. As you add or subtract from left to right,
you will work from a base number that gives you a rough estimate of the
answer. Commit this easy figure to memory—it’s usually shorter than your
phone number—and you will find it surprisingly easy to figure the exact
total in your head later.

PRACTICE, PRACTICE, PRACTICE



Sure, your piano teacher told you the same thing. But that old saying
“Practice makes perfect” has a lot of truth. Three factors will improve your
math ability:

1. Simple strategies to add, subtract, multiply, and divide
2. Memory
3. Practice

Even though the strategies are simple to learn and use, you can’t expect to
read about them once and then pull them out of your memory at will.
Instead, you need to make them as natural as breathing. You do that by
practicing—every chance you get.

Practice doesn’t necessarily mean you have to spend hours sweating over
a workbook. Math, as we have noticed, is everywhere. Use your
imagination to see the numbers around you, and play with them as you go.
On a trip to the grocery store, add up the prices of the goodies you toss in
your shopping cart. When you arrive at the checkout line, subtract all your
discount coupons from your total and add the tax. With some practice,
you’ll soon have the tab before the cashier can add it up on the cash
register! In your head, keep track of the family car’s mileage by watching
the odometer and the gallons of gas the car guzzles. Down at the beach,
estimate how many surfer-size waves roll into shore during a good day by
counting the number of good breakers in 10 minutes and multiplying by 6
and then by 24.

BE CREATIVE

Math is more than rote memorization and practice. Math is a creative
activity, like drawing or writing or playing basketball. In fact, one of the
best definitions of creativity that I have heard says that “creativity is play.”

Yes! The things in life that are the most fun are creative things. I am
always looking for new ways to manipulate numbers, for new relationships
between figures, for quirky or interesting things to do with math. All the



time, numbers are going through my head. I’ll take a goal number, such as
1,000, and try to figure out what numbers I could multiply and then add
together to come up with that goal. Finding new strategies and shortcuts is
like a game, as challenging and exciting as painting a picture or working
out new plays for a football team.

A touch of creativity will help you see the fun in practicing math as you
go through each day. And it will also show you that numbers are really
nothing more than common sense. Math is far from dull and difficult. It’s
fun, exciting, and sometimes even kind of crazy.

THE KEYS TO HUMAN CALCULATING

In this chapter, you have discovered the five keys to mental math.

1. Understanding what numbers mean
2. Thinking about numbers forward instead of backward
3. Memory
4. Practice
5. Creativity

Now let’s take those keys and use them on the front door to mathematics:
addition. Adding is the most basic part of arithmetic. Learn it well, and it
will open the house of mathematics to you.



2  

 Addition

BASIC STEPS OF LEFT-TO-RIGHT ADDITION

THERE’S ONLY ONE POINT to doing arithmetic: to get the right answer. It
doesn’t matter how you get the right answer, as long as your method works.
It works if you get the right answer every time you do it.

If you’ve heard me on television or radio, you know that I can add 123
plus 226 plus 121 plus 214 as quickly as the participants from the audience
can total those numbers on their calculators—the answer is 684. I haven’t
memorized the problem and the answer, and it is not a trick. I’ve learned to
solve math problems fast by combining estimation with left-to-right
addition and holding a few figures in my head as I go.

You can learn to do this, too. Let’s try a strategy on those numbers:

Notice that the digits in the hundreds column are in italic type; the digits
in the tens column are boldface; and the digits in the ones column are in
ordinary type.

Add from Left to Right

Remember what we learned in the last chapter? The most important
numbers in a problem are the digits on the far left, because they’re the



largest. The largest numbers have the biggest impact on your answer. So
start with the important digits, the hundreds (the ones that are italicized).

Add the 2 and the 1. Because they’re hundreds, you’re really adding 200
plus 100, which gives you 300. Now you’ve started a base number—the
figure you’ll work with in your mind as you go. We’ll mark the place values
that we have yet to work out with 0s in parentheses: 3(00).

Add the rest of the figures in the hundreds column to the base number of
3(00): 2 (which is really 200) plus 3(00) makes 5(00); 1(00) plus 5(00) is
6(00).

Now, we’re going to keep building on our base number of 6(00). Move
over to the tens column. Start with 2 (which is really 20, or, in our system
of holding place values open, 2[0]) and add it to the base number of 6(00),
giving you 62(0). The next number down is also 2(0); add it to 620 and you
get 64(0). Add the next number down, another 2(0) for 66(0). And finally
add on the 1(0) to get a new base number, 67(0).

Now hop over to the ones column next. The first number is 3, which we
know stands for plain old one-digit 3. Add it to 670 and change the base
number to 673. Next is 6, which added to 673 equals 679. The next number
is 1, raising the base number to 68(0). When we add the last number, 4, we
get the new base number—and the answer: 684.

The answer to an addition problem, by the way, is called the sum.
As you were following this simple procedure, you may have picked up

right away on a handy fact. The final answer could not be less than 600! It
would have taken awhile to figure that out if you worked the problem the
traditional way, from right to left.

Now, you understand that when a column of numbers adds up to more
than 9, the amount more than 9 flips over to the left-hand column. This
number can be used to tell that an answer will not be more than a certain
amount.

Let’s see how that works with the following problem.



Start with the hundreds column: 2(00) plus 1(00) is 3(00), plus 4(00)
gives us a base number of 7(00). Okay. We know the answer cannot be less
than 700.

“Carrying” from Column to Column

In the tens column, the base number is 7(00) plus 4(0) equals 74(0). Next
we add the 6(0) to get . . . uh oh. The sum is 10(0) when you add 6(0) to
4(0). You can’t write the two-digit number “10” in the one-digit tens
column. What to do?

Well, 60 plus 40 is 10 tens. What’s happened? You’ve collected enough
10s to make a hundred—that is, 10(0), or 1(00), or 100. So, you add a
hundred to the hundreds column in your base number: 700 plus 1(00) gives
you 800. In this case, no tens are left after adding the 6(0) and 4(0)—the
number in the tens column is now 0. So you add nothing to the tens column
in the base number. The new base number is 8(00).

Now, the tens left in the problem after adding the new 1(00) to the
hundreds column are simply added to (00) in the tens column. Pretend, for
example, that instead of 40 we were adding 50 to 60. Our base number from
the hundreds was 7(00); then 50 plus 60 would make 110, or 1(00) and 1(0).
We would have added our 1(00) to our old base number to get 800. We then
would have picked up the leftover 1(0) in the tens column, to get 810.
Remember: When you flip over to the next column, clear the old column to
zero first, before you add leftover digits.

Back to the original problem: One more number remains in the tens
column: 3(0)—8(00) plus 3(0) equals 83(0).

Finish with the Units Column



All right! We’re ready for the ones, and we know that, no matter what,
the answer will not be more than about 860 because three digits in the ones
column must be less than 30. Add on the little numbers on the far right: 830
plus 2 is 832, plus 3 is 835, plus 1 is 836. The last base number (836) is the
answer.

Now You Can Do It

Add from left to right, instead of the old-fashioned way, and see how
much faster you can find the sums of these numbers:

Estimating the Answer

Going back to our example on page 21, whose answer was 836, how did
I know that the solution to this example would not be more than 860 once
I’d finished with the tens and gotten a base number of 830? Easy.

I know the largest numbers that can possibly appear in the ones column
are 9s. There are three numbers in the problem, so even if each of them had
ones of 9, the highest possible total of ones digits is 27. Three 9s are 27.
Add 27 to 830, and the answer is 857. Try it:



No question of it! Our problem can’t add up to more than 857. Chances are
you won’t ever have three 9s, but you know the highest possible total is
857, or about 860.

Now you know how to make your teacher and your friends think you’re
brilliant. Halfway through a problem, strike a brainy pose and murmur
something like “Hmm. The answer lies between 800 and 860.” You will
sound impressive!

This technique is called estimation, and it comes in handy in a lot of
other situations. Often there’s no need to calculate an answer right down to
the penny. Let’s say that you want to figure how much to tip the efficient
waiter who served you and your three friends. The lunches cost $4.28,
$7.46, $5.53, and $6.21. Adding from left to right, you see the total will not
be less than $22.00. A glance at the numbers in the tens column suggests
the bill won’t run much over $23.00. You don’t need to know that the total
is $23.48 to realize you need to tip a little more than 20 percent of $20.

Now You Can Do It

A glance at the hundreds and tens digits of these numbers tells you their
sum is larger than what but smaller than what? 289 plus 444 plus 562
plus 867.

MAKING IT WORK ON BIGGER NUMBERS

So far, this has been pretty easy. But what if the numbers are bigger?
What if there are more of them? Will this strategy keep working? Let’s try it



out on a few more serious challenges.
First, some larger figures. Let’s add:

Start from the left, in the thousands column: 8(000) plus 7(000) is 15(000),
plus 6(000) makes a base number of 21(000). Now move to the hundreds:
21(000) plus 4(00) is 21,400, plus 3(00) is 21,7(00). Add 1(00) to arrive at
21,8(00). Now add the tens: 21,8(00) plus 6(0) equals 21,860. Six (tens)
plus 5 (tens) will give us more than 10 (tens)—get ready to carry some
numbers. Think: 6(0) plus 5(0) is 11(0). That’s 1 hundred plus 1 ten, or
1(00) plus 1(0). Add another 1(00) to the hundreds column: 8(00) plus
1(00) equals 9(00). One ten, or 1(0), is left in the tens column, making the
new base number 21,91(0). We still have two more tens to add, for
21,93(0). Now all we have left to count up are the ones: 21,91(0) plus 1 is
21,911, plus 3 is 21,914. Add 7 and you get 11 ones, or 1 ten—1(0) and 1
unit. Carry that 10 over to the tens column and clear the ones column to
zero: 3(0) plus 1(0) is 4(0), changing the base number to 21,94(0). Now add
the leftover unit and you have the answer: 21,941.

Picturing the Strategy in Your Mind

Four-digit numbers are about the largest figures most people can add in
their heads, although the principle works on any number you can conjure
up. Describing this procedure in writing makes it look more complicated
than it is. Actually, it helps to think about figures this size by forming
pictures of them in your mind. So, picture what we just did like this:



Working the Strategy on a Long Column

It’s just as easy to add up a long string of numbers. Try your new left-to-
right skill, for example, on this one:

Remember to start on the left—in this case, in the tens column. From the
top: 2(0) plus 1(0) is 3(0), plus 4(0) is 7(0). Adding 6(0) will push our tens
column into the hundreds, because 7(0) plus 6(0) is 13(0). We’ll do it again
when we add 9: 3(0) plus 9(0) makes 1(00) and 2(0). So, add 1(00) to the



1(00) in the hundreds column of the base number, 130, to get 2(00), and
then add the leftover 2(0) to 2(00) for a new base number, 22(0). Add 3(0)
to get 25(0). Pick up another hundred when you add 5(0): 5(0) plus 5(0) is
the same as 10(0), which is the same as 1(00). Just as you did before, add
the new 1(00) to the old hundreds column, 2(00), to get 3(00). Add 7(0) for
370. Another 8(0) gives us one more hundred, like this: 7(0) plus 8(0)
equals 15(0), or 1(00) and 5(0). Add the 1(00) to the hundreds column and
get 400, and keep the 5(0) for a base number of 450.

Now jump over to the ones column and start adding units to the base
number: 45(0) plus 2 is 452, plus 8 is 45(0) plus 1(0) or 460. Add 5 to get
465, plus 2 is 467. You get a new ten when you add 4: 467 plus 4 equals
4(60) plus 1(0) plus 1, or 471. Adding nine gives us another new ten and
with no units left over: 1 + 9 makes 1(0), added to 471 is 480. And 5 to get
485, plus 1 equals 486. We gain one more ten when we add 6: 6 plus 6
makes 12, the same as 1(0) plus 2; 48(0) plus 1(0) is 49(0), and the leftover
2 brings us to the answer: 492.

Picturing the Strategy for a Long Column

How does this procedure look to you when you try to visualize the
numbers in your mind? Here’s how it looks to me:



Add the units:

APPLYING THE KEYS TO HUMAN CALCULATING

As you can see, the trick to being fast and accurate is really just a matter
of common sense and of using your five keys to mental math.

Understand what numbers mean. Keep thousands, hundreds, tens, and
units straight, and remember that whenever a column has more than 9, it



will flip the column to the left up in value.

Think about numbers forward instead of backward. Figuring from left to
right makes it easy to estimate an answer. It’s also a logical way of looking
at math.

Develop your memory. Getting a correct answer depends on your
knowing the math facts. Yes—all those addition, subtraction, multiplication,
and division tables. You need to know the math facts through the tens, and
preferably through the twelves. This is not as hard to learn as it looks, if you
train yourself to exercise your memory. Whenever you get a chance—at the
grocery store, down at the fast-food restaurant, in the gas station—add,
subtract, multiply, and divide the one-digit numbers you see. If you can’t
remember the answer quickly, add it up on your fingers. Pretty soon you
will remember.

Practice. Give your brain a mental workout each day, just as a healthy
person works out his or her body. Your brain is like your muscles. The more
you use them, the faster they get and the better they work.

Be Creative. Don’t hesitate to try new strategies and shortcuts. If they
work, find out how and why, and look for ways to use them to make math
easier and faster for you.

SHORTCUTS AND HELPFUL HINTS

When you free up your mind for a few creative approaches, you find all
sorts of tricks and gimmicks to speed up your mental calculating.

Take, for example, the fact that you can add or multiply numbers in any
order. That is, 2 + 5 + 8 is the same as 5 + 2 + 8, which is the same as 8 + 2
+ 5. Since multiplying is just another form of adding, 2 × 5 × 8 equals the
same thing as 5 × 2 × 8 or 8 × 2 × 5. You can put this reality to good use.
Because some numbers are naturally easier to add or multiply than others,
you can use them out of order for quicker results.



Ten and its multiples, for example—10, 20, 30, and so on—are especially
easy. When you’re adding a long series of numbers, you don’t have to take
them from the top and go straight to the bottom. Instead, look for sets of
numbers that add up to 10, and keep track of the 10s as you go.

Look back at the long problem under “Working the Strategy on a Long
Column.” Notice that the left column has four sets that make 10: 4 + 6, 1 +
9, 3 + 7, 2 + 8. Four 10s make 40. Since we started in the tens column, that
means 40(0) or 4(00). The only number left is 5(0). Add it to 400 and you
get an instant base number: 450. Now add up the units the same way: 2 + 8,
5 + 5, 4 + 6, 9 + 1. Four 10s again: 4(0). In the units column, we don’t have
to add any 0s. The digit 2 is left, so we have 42 units, or four 10s—4(0)—
and 2 units. Add 4(0) to the base number 45(0) to get 490 and then add the
2 for the answer: 492.

Now that was fast! Creativity plus understanding equals speed.
Other sets of figures are easy to spot. You can, for instance, add by

multiplying. Actually, multiplying is just a shortcut through addition. Three
times 9, for example, means the same as 9 + 9 + 9. It also means the same
as 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3. If you notice three nines in a column,
think “3 × 9 = 27.” Several 3s should make you think of, say, “4 × 3 = 12.”
It’s faster by far than thinking “3 + 3 = 6 + 3 = 9 + 3 = 12.”

If you don’t need a specific figure but only want to know approximately
how much something adds up to, try rounding off numbers in a problem.
For example:

Even though Samuel Johnson once said, “Round numbers are always false,”
there are times when a round number is “good enough for government
work.” And they do offer an easy way to check your math.

How do you round off numbers? If the digit on the right is 5 or more, add
1 to the column you’re working with. If it’s 4 or less, let the column stay as
it is.



Let’s add up these figures and see how big the difference is. The first
column comes to 82,407. The second column totals 82,940. The amount
that has been estimated is only 533 off the precise figure, not much when
you’re talking tens of thousands.

Speaking of small change, when you’re rounding off dollars and cents,
count 50 cents or more as a dollar and drop 49 cents or less.

Here’s one last creative trick to smooth your way to high-speed mental
math. You can solve a difficult-looking addition problem in a snap by
simplifying the numbers in your head. You do this by adding or subtracting
small numbers to the figures you have to total. Try it:

Add 3 to 97 to get 100, which is easy to work with. Now, 100 + 84 = 184.
Subtract the 3 you added: 184 − 3 = 181.

Or, if you prefer, add 3 to 97 to make 100. Then subtract the 3 from 84,
giving you 81. Add 81 and 100 for the answer, again 181.



This works because the answer to an addition problem will remain the
same whenever you add and subtract the same amount. Thus, you can make
a horrible-looking example very simple:

The easy way: 999 + 1 = 1,000

Keep your eyes and ears tuned for easier ways to figure. With practice,
you’ll start to see them everywhere.

Now You Can Do It

Use all the shortcuts you know to add these numbers in your head:



3  

 Cross-Multiplication

THERE ARE SEVERAL WAYS to break down a multiplication problem to make it
amazingly easy to do. These strategies are fun, and because most people
think multiplication is so hard, you can amaze your friends, teachers, and
coworkers after mastering a few tricks.

The explanations only look complicated, but once you see the beauty of
these techniques, you’ll realize that they are really very easy to work. In
fact, you can multiply most three-digit numbers in your head.

Remember that multiplying is really a form of adding, something we do
naturally. Most people are adding all the time in their minds. When we say
9 × 3, we’re really just taking a shortcut to arrive at the same answer as 9 +
9 + 9. People who don’t know the multiplication table very well will think,
“9 + 9 = 18, and 9 is . . . umh [they count on their fingers, also a form of
adding] 19, 20, 21, 22, 23, 24, 25, 26 . . . sure! 27.” Obviously, this is the
hard way to add—so, you can see it’s worth learning your “times” through
12s.

The number you are multiplying, by the way, is called the multiplicand.
The number you want to multiply it by is called the multiplier, and the
answer to a multiplication problem is the product.

RIGHT-TO-LEFT CROSS-MULTIPLICATION



Our first multiplying strategy is called right-to-left cross-multiplication.
Let’s try an example slowly.

To get the last digit in the answer, multiply the two numbers on the right.
Multiply 2 × 4. Write the answer, 8, as the rightmost (ones) digit in the
problem’s answer.

Now, to get the middle digit we’ll cross-multiply both sets of numbers, and
then add them together. Multiply 1 × 2 (the answer is 2) and 4 × 1 (the
answer is 4). Add the answers to get the middle digit (tens) in the problem’s
answer.

To get the last digit, which in this problem will be hundreds, just multiply
the left digits: 1x1 = 1. Write it down in the hundreds column.

“Wow, Scott! That was easy.” I hear those words every time I explain this
method. You will be delighted at how much easier it gets with practice.

Try it on a couple of three-digit numbers.

All right. It looks like a nightmare, but don’t be afraid of it. Start on the
right side: 1 × 4 = 4. Couldn’t be simpler.



Now, multiply crisscross: 2 × 4 = 8; 1 × 8 = 8. Add the answers to get 16.

Now, you’ll remember what we said about place value in Chapter 1.
Going from right to left, the digits in a number represent units, tens,
hundreds, thousands, and so on. We already have the rightmost digit in our
answer—the 4—and it occupies the units column. The next digit in the
answer will occupy the tens column. But 16 has two digits. We can put the
6 in the tens column, and that will give us the second digit in the answer.
But what about the 1?

That 1 in the 16 is actually a hundred. If we were just to write the 16 next
to the 4, we’d get this number: 164. To remind us that the 1 is really a
hundred, we could write it in the system we developed in Chapter 1: 1(00).

Meanwhile, we’re not finished with the problem—we still have some
other numbers to multiply, and they will give us the digit that goes in the
hundreds column. When we finish multiplying for the next step, we will
have the 1(00) left over from multiplying l0s. We will simply add that 1(00)
to the result of the next step. This procedure is called carrying. Watch this:

So far, we’ve multiplied with the right and the middle digits on our top
number. Now move over to the top left digit and start crisscross multiplying
and adding. Go 6 × 4 = 24; 5 × 1 = 5; 2 × 8 = 16. Add those answers, 24 + 5
+ 16, for a total of 45. Now add the 1 you carried: 45 + 1 = 46. Once again,
we’ll have to write down one digit and carry the other.



Write down the hundreds digit:

Now, understand that because we were multiplying hundreds, the 6 in
46(00) is really 6(00) and the 4 is really 4(000). We’re carrying the 4 into
the thousands place.

One more crisscross: 6 × 8 plus 2 × 5. That’s 48 plus 10, or 58. Add the 4
that you carried to get 62, and once again write down the right digit—the 2
—and carry the left digit—the 6.

Write it down:

We carry the 6 into the ten-thousands place. Now, the last step! It repeats
the first step, only on the far left instead of the far right. Multiply 6 × 5, to
get 30. Remember that you carried 6—just add it to the 30, which gives you
36. Write it down, and you have the answer:



The answer is 362,664!
“Gee, Scott. You thought that was easy? How am I supposed to do that in

my head?” Well, it is pretty simple, as long as you have a pencil and can
write down the answer as it builds from right to left. You will need some
practice before you can do that as mental math, though.

But here’s another strategy that you probably can do in your head—
again, with a little practice. It works like addition, from left to right.

LEFT-TO-RIGHT CROSS-MULTIPLICATION

It’s easiest to see how this works on a couple of two-digit numbers. Let’s
try:

We start on the left—in this case, with the tens column—to build a base
number. We are going to multiply 2 × 3, which will give us 6, but we must
remember that we are really multiplying 3(0) × 2(0). That means our base
number of 6 takes with it those two magic zeros, and so it is really 6(00).

Now multiply 2(0)—the tens digit in the bottom number—times 6, the
units digit in the top number.

Add that to our base number, 6(00), to get a new base number, 72(0).
All right, now move over to the units digit in the bottom number, which

is a 4. Multiply the tens digit in the top number, 3(0) times 4:



Add it to the base number of 720 for a new base number, 84(0).
And finally, multiply both units digits, 4 times 6:

Add the result to the base number of 84(0), and this should give us our
answer:

Do you see the principle? Multiply the top number by the digits, going
left to right, in the bottom number. Add up the answers in your mind.

Here’s a faster way to do left-to-right multiplication with two-digit
numbers. Let’s take 36 × 24 again. Remember that in our basic example
above we took each digit one at a time. If you prefer, you can multiply 36 ×
2(0) and then multiply 36 × 4. This way, you add the whole top number by
each of the digits on the bottom. Add the results and you’ll have the answer:

Let’s try it on the three-digit example we used above:

Once again, we start on the left to build a base number, the same way we
did with adding. Remember that when you start with that 6 and that 5,
you’re in the hundreds column: 600 and 500, or 6(00) and 5(00). When you
move over to the 2 and the 8, you’re in the tens column, so those numbers
are really 20 and 80, or 2(0) and 8(0). And the digits on the far right, 1 and
4, are simply ones, 1 and 4.



Here goes: 6(00) × 5(00) is 30(0,000), our new base number. Why?
Because when you multiply a hundred (two zeros) by a hundred (two
zeros), you get ten thousand. We show that we’ve passed the ten thousands
mark in this example by writing four zeros.

Now, visualize the first two digits in the multiplier and the multiplicand
and cross-multiply: 6(00) × 8(0), for 48,(000). Add that to the base number,
300,000, for a new base number, 348,(000). And again: 2(0) × 5(00) =
10(000). Add that in to get the new base number, 358,(000).

The next step is to multiply 6(00) × 4, for 2,4(00). What are we doing
here? We’re picking up the ones unit in the multiplier (584). Add the result
to the base number, making it 360,4(00).

Now go to the ones unit in the multiplicand and multiply it times the
hundreds unit in the multiplier. In other words, take 1 × 5(00), which is
5(00), and add that in, for a new base number of 360,9(00). Here’s what we
did in these two steps:

Now visualize the last two digits in each number and cross-multiply them: 2
× 4 and 1 × 8. Figure 2(0) × 4 equals 8(0), changing the base number to
360,98(0). Then multiply 1 × 8(0) to get another 80, add it to the base
number, and get 361,060.



Remember: 361,060

Finally, we multiply 2(0) × 8(0), for 1,6(00), and that brings the base
number to 362,660. Then multiply 1 × 4, giving us 4, and add that to the
base number to get the answer: 362,664.

The answer is 362,664

Now You Can Do It

Try the strategies for cross-multiplication on these numbers. When you
get to the third example, remember that the product of 3 × 4(0) is 12(0).



USING THE FIVE KEYS ON MULTIPLICATION

The keys to mental math are just as important here as with addition.

Understand what numbers mean. The only way you can keep track of
multiplication in your head is to have a firm grip on which digits are units,
which are tens, which are hundreds, and so forth. If you can picture this
concept and hold it in your mind, you can do even the more difficult right-
to-left cross-multiplication mentally.

Think about numbers forward instead of backward. Left-to-right cross-
multiplication lets us do this. Some of us, particularly people who work best
with words instead of pictures or numbers, find the left-to-right method
much easier.

Develop your memory. Obviously, learning the “times” tables lets you
figure a lot faster and easier than adding the long way. And if you train
yourself to follow a base number in your head, you will soon find you don’t
need a pencil to multiply or to add.

Practice. Cross-multiplying is a little tricky until you get the technique
down pat. Keep at it, though. Practice takes the trick out of the method.

Be creative. Multiplication is full of possibilities. Everywhere you look,
there are shortcuts. Look at the following, for example:

Shortcuts and Helpful Hints

When we started to talk about left-to-right cross-multiplication, we found
that we could get the answer to 6(00) × 5(00) by adding four zeros to 30
(which is 6 × 5). That’s a clue to one quick math shortcut.

If you want to multiply any number by 10, you just add a zero.



Something like that happens whenever you multiply by any of the tens—20,
30, 40, 50, 60, 70, 80, 90. Multiply the number by the digit in the tens
column, and then put a zero in the ones column of the answer:

The principle applies to all multipliers that end in zero. When you
multiply by 100, you tack on two zeros; by 1,000, three zeros. And so on.

We multiplied 5(00) × 6(00):

The five and the six each represented a hundreds number. That’s two
hundreds. So multiply 30 by a hundred, twice:

When you do that, you get 30 with four zeros.
Or you could arrive at the same answer by multiplying:

Now only one hundred is left. So you multiply:

Look closely and you’ll notice something. In each case, the number of
magic zeros in the final product is the same as the number of zeros found in
both the multiplicand and multiplier combined. Count the zeros in 3,000 ×
100: five. Count them in the answer: five!

Count them in 600 × 500: four. In the answer, 30(0,000), there are really
four of our magical zeros. We multiplied 6 × 5 for a base number of 30,
then added four zeros for the answer. The first zero after the 3 doesn’t count
as a magic zero, because it’s part of the base number, 30.



Now You Can Do It

Use the keys to human calculating to help find the answers to these
challenges:



4  

 
Complementary
Multiplication

HERE’S A THREE-STEP strategy that is mind-boggling in its simplicity.
Suppose you want to multiply a couple of tricky-looking numbers—say, 96
and 94.

The first thing you notice is that both numbers are pretty close to 100.
Quickly figure out the difference between each number and 100.

The difference between 96 and 100 is 4.
The difference between 94 and 100 is 6.

Let’s write these numbers down like this:

Now, the second step is to subtract diagonally. By that I mean subtract 6
from 96, or 4 from 94. 96 − 6 = 90. Write that down under the first two
numbers. (Note that this is the same as 94 minus 4. It does not matter which
you choose. Whichever you diagonally subtract, you get the same number.)

This gives us a base number of 90. That number stands for 90 hundreds, or
90(00).

In the third step, we multiply the two numbers we got by figuring the
difference between our original numbers and 100: 4 and 6. 4 × 6 = 24.
Write that to the right of the 90.



Got that? Guess what? You’ve got the answer: 9,024. Too easy? Let’s try
it again.

Too easy? Let’s try it again.

If the numbers are larger than 100, you add the difference instead of
subtracting. Let’s multiply 103 times 107.

The difference between 103 and 100 is three.
The difference between 107 and 100 is seven.
Write the numbers down as before:

Now, instead of subtracting, we will add diagonally. You can add 3 plus
7 or 7 plus 3; obviously, the result is the same, 110. Write it under the
original numbers.

And now multiply 3 times 7 and write the result, 21, to the right of the 100.

There’s the answer: 11,021.

Here’s another example.



Sometimes you will find that you have to carry a digit. For example:

Now, don’t add these the conventional way. That is, don’t do this:

Instead, we combine these two numbers so that the 1 in the hundreds
column in 156 is added to the 5 in 75, which is really in the hundreds
column of the answer. Remember, the 75 is really 75(00). So, add it like
this:

Complementary multiplication works most simply on numbers around
100. However, you can use it on numbers around 50 and numbers around
75, and also on numbers that are near multiples of 100.



Now You Can Do It

Now is a good time to practice complementary multiplication. Even
though it’s very different from what you may have learned in school,
many people find it easy and extremely fast, once they get used to the
method. Try these examples:

MULTIPLYING NUMBERS AROUND 50

First, I want you to keep a fact in mind: 50 is half of 100.
Remember the first part of the answer to 94 × 96, which we got by

subtracting diagonally? It was 90, and we said it was a base number. Well,
the last digit of that base number always lands in the hundreds column. So
when we got 90 by subtracting 4 from 94 or 6 from 96, it was really 90(00).
That’s why we tacked on the second half of the answer, instead of adding it
as 94 + 24 = 118 (a wrong answer). We were actually adding 90(00) and 24:

Now, with numbers near 50 instead of numbers near 100, the first part of
the answer still falls in the hundreds column. But because 50 is half of 100,
the base number—which forms the first part of our answer—will be half
what we get when we subtract diagonally.



Let’s multiply 46 times 44. Both numbers are close to 50. Figure the
difference between 50 and each number, and write those numbers down in
the same way we did for 96 × 94.

Now, 40 is not the first part of the answer. Because 50 is half of 100, you
take one-half of 40 to get a base number, which is the start of your answer.

Just as you did with numbers near 100, multiply the two differences
together to get the last part of the answer.

Remember that our base number of 20 is really 20 hundreds, and add the
two together:

Let’s run through that again: What is 48 × 42?



In case you thought that was too simple, there’s a trick: If the result of
subtracting diagonally is an odd number, you’re going to end up with a
fraction when you divide it in half. What to do?

It’s simple: Remember that the first part of the answer—the base number
—is really in the hundreds! Half of a hundred is 50. One quarter of a
hundred is 25. Three quarters of a hundred is 75. So, if you get, say, a 45
after you subtract diagonally, you’re going to end up with 22½ when you
divide it in half. That’s 22(00) plus half of a hundred, or 50, or 2,250.

We’d better try that on some real numbers. Suppose we were multiplying
45 × 46.

Like the strategy for multiplying numbers near 100, this method can be
reversed for numbers over 50 by adding diagonally instead of subtracting.
For example, let’s try 54 × 58.



Here again, if the result of adding is an odd number, you will end up with a
fraction when you divide in half. Express that as a part of 100—50 for ½,
25 for ¼, or 75 for ¾.

Now You Can Do It

Once you understand that your base number is really in the hundreds,
it’s easy to write the fractions that sometimes come from dividing as
digits in the tens. Try complementary multiplication on these examples:

MULTIPLYING NUMBERS AROUND 25

A similar strategy works on numbers near 25. In this case, we bear in
mind that 25 is one fourth of 100. When we get the result of subtracting
diagonally, therefore, we will want a quarter of it, instead of a half. How do
you find a quarter of a number? Divide by four.



Let’s multiply 21 × 24.

Does it work on numbers over 25, if we add instead of subtracting
diagonally? Sure it does! Let’s try it on 26 × 32.



Now You Can Do It

Practice is like physical exercise—it develops the muscles of the mind.
Work out on a few of these muscle machines:

MULTIPLYING NUMBERS AROUND 75

To use the strategy on numbers near 75, you have to be in top mathletic
shape, because it involves another step. It can be done. The principle is
exactly the same. This time, though, instead of taking a half or a quarter of
the result of your diagonal figuring, you need to find three quarters of the
result to find the base number. To do that, you divide the number by 4 and
then multiply the answer by 3. Take 70 × 73:

The added step of multiplying by 3 complicates things when you run into
fractions. Take 71 × 74:



Even though this is a little more involved than multiplying numbers around
25, 50, or 100, with practice it’s not difficult. That’s why practice is one of
the five keys to human calculating!

Remember: When you’re dealing with hundreds, ¼ is the same as 25; ½
is 50; and ¾ is 75.

Here, as with 25, 50, and 100, the strategy works for numbers higher than
75, too. Because one step involves multiplying by a fraction, you almost
always will have to deal with 25, 50, or 75 in your base number. Let’s
multiply 76 × 80.



Now You Can Do It

Ready for the 10K run in complementary multiplication? This could be
a serious workout!

MULTIPLYING WITH NUMBERS NEAR MULTIPLES OF
100

Just as this strategy works easily when you’re dealing with numbers on
either side of 100, it works for numbers around 200, 300, 400, etc. To get
your base number, you multiply the result of diagonal adding or subtracting
by 2, 2, 4, etc. For example, 194 × 196:

Yes, it works on numbers larger than a multiple of 100, too. Let’s try 411
× 422:



Now You Can Do It

After the workout on numbers near 75, these mental gymnastics should
be a piece of cake. Try them on your friends!

SHORTCUTS AND HELPFUL HINTS

You can instantly multiply any number by 101 just by multiplying the
number by 100 and adding the number.

Why does this work? Remember that multiplying is really a form of adding.
When we say “18 × 101,” we’re really saying the same as “18 + 18 + 18 . . .



101 times. If we go “18 × 100,” we’ve added 18 one hundred times. So to
multiply 18 times 101—which is the same as adding 18 to itself 101 times
—all we have to do is multiply it by 100 (which is easy) and then add one
more 18 to the product. You could think of the examples above like this:

To multiply a number by 99, multiply it by 100 and then subtract the
number. To figure the answer to 99 × 42, for example:

The same principle is at work here. Multiplying a number by 99 is the same
as adding it 99 times. We know it’s easy to multiply by 100. In this case,
though, 99 is one less than 100, and so we subtract the number once from
the product. You could think of the example above like this:

Okay. So how would you multiply a number by 98?
We see that 98 is two less than 100, and we know that multiplying the

number by 98 is the same as adding it 98 times. Multiplying the number by
100 is the same as adding it 100 times. To find the product of the number
times 100, first multiply it by 100. Double the number and then subtract the
result from the product of the number times 100. For 3 × 98, for example:

And picture the process in this way:



Or, if you prefer:

Every time you are faced with a difficult-seeming problem, look at it to see
if the numbers are close to something easy. You may find it surprisingly
simple. Remember, creativity is one of the five keys, and a very important
one at that!



5  
 Box Multiplication 

HERE’S A STRATEGY THAT appeals to “word people”—people who are good in
English but think they can’t do math. Language buffs like this method
because it reminds them of a crossword puzzle. It’s also an excellent tool
for kids who have trouble keeping numbers organized, because it gets the
answer while it helps you keep your figures in order. “Box multiplication,”
as I call it, works by breaking a challenge down into simpler problems.

Suppose you want to multiply 24 by 12. First, draw a box and divide it
into four squares, one for each of the four digits in the problem. Write the
digits next to the squares in the order that they appear. Put the digits of the
first number along the top of the box, starting with the top left square. Put
the digits of the second number along the right side of the box, starting with
the top right square and moving down the side. Now draw lines to divide
the four little boxes in half diagonally:

Next, you multiply around the box, entering your answer in the top and
bottom halves of the boxes you have made. The units digits go into the
bottom parts, and tens go into the top parts. Starting at the top left, 2 × 1 =
2. That’s a unit with no tens, so you put it in the lower triangle of the 2 × 1



box. Drop down to the box below it: 2 × 2 = 4. Put the 4 in the lower
triangle of that box. Move over to the 4 in 24, and multiply 4 × 1 = 4; put it
in the lower triangle of its box. And last, 4 × 2 = 8, which also goes in its
lower triangle.

Now we are going to add the numbers in the box diagonally, starting with
the lower right-hand box. There’s nothing to add to 8, so just write that
below its box. In the next diagonal row up, starting with the lower triangle
in the square on the upper right, the 4, add diagonally down and to the left.
In this case, 4 + 4 = 8. Write that beneath its box. The only number in the
next row, which starts with the upper triangle on the top right box, is a 2.
Write it next to the box. In the last row, which consists only of the upper
triangle in the upper left-hand square, there are no figures. Now, read off the
figures from upper left to lower right: 288. That’s the answer.

What happens when you have to carry a number? You carry it to the next
segment in its box, like this:



Starting on the upper right, 4 × 2 = 8; enter the one-digit answer in the
lower triangle of its box. Then down to the lower right box, 4 × 3 = 12;
enter the 2 in the lower triangle, or the units triangle, and the 1 in the upper
or tens triangle. Next, in the upper left box, 3 × 2 = 6; place it in the lower
triangle. And in the lower left box, 3 × 3 = 9; put it in its lower triangle.

Start from the lower right, adding diagonally: the lower right 2 stands by
itself, and so you write it below the lower right-hand box. In the next
diagonal row, 8 + 1 + 9 = 18. Write the 8 below its row and carry the 1,
which is a “tens” digit, into the tens triangle of its box, putting it in the next
row to be diagonally added.

Now add that row: 1 + 6 = 7. Write it on the left side of the box next to
its row. All that remains is to read the answer: 782.

This works with numbers of any size. You just draw larger boxes.
Visualize 345 × 27 as it appears below.



THINK:     3, 4, and 5 go across the top.

2 and 7 go down the right side.

5 × 2 = 10; write 1 in the tens triangle and 0 in the units
triangle.

5 × 7 = 35; 3 in the tens and 5 in the units triangle.

4 × 2 = 8; into the units triangle.

4 × 7 = 28; 2 in the tens and 8 in the units triangle.

3 × 2 = 6; 6 in the units triangle.

3 × 7 = 21; 2 in the tens and 1 in the units triangle.

Add diagonally from the lower right:

5 alone is 5.

8 + 3 + 0 = 11; write 1 and carry 1 to the next row.

The carried 1 + 1 + 2 + 8 + 1 = 13; write 3 and carry 1
to the next row.

The carried 1 + 2 + 6 = 9; write it by its row.

There are no figures in the last row. Read the answer:
9,315.

Read the answer: 9,315.



As you can see, one of this method’s beauties is that it helps you picture
and understand place values. It gives you a diagram in which to work with
ones, tens, hundreds, and so forth. I’ve always liked this strategy, gimmicky
as it seems, because of the way it organizes numbers. And it never ceases to
amaze me how quickly and easily kids can learn it.

Let’s try box multiplication on a serious problem—say, a four-digit
number times a three-digit number. What is 9,878 × 849?

First draw the box: four cubicles across the top and three on the side.
Divide them into triangles for the tens and the units, as they appear below.

THINK:     9, 8, 7, and 8 go across the top.

8, 4, and 9 go down the right side.

8 × 8 = 64; put the 6 in the tens triangle and the 4 in the units
triangle.

8 × 4 = 32; write the 3 in the tens triangle and the 2 in the units
triangle.

8 × 9 = 72; 7 in the tens triangle and 2 in the units triangle.

Moving left along the top row:

7 × 8 = 56; 5 in the tens triangle and 6 in the units triangle.



7 × 4 = 28; 2 in the tens triangle, 8 in the units triangle.

7 × 9 = 63; 6 in the tens triangle, 8 in the units triangle.

Move left again:

8 × 8 = 64; 6 to the tens triangle, and 4 to the units triangle.

8 × 4 = 32; 3 in the tens triangle; 2 in the units triangle.

8 × 9 = 72; 7 in the tens and 2 in the units.

And finally, 9 × 8 = 72; 7 in the tens triangle and 2 in the units
triangle.

9 × 4 = 36; 3 in the tens triangle and 6 in the units triangle.

9 × 9 = 81; 8 in the tens triangle, 1 in the units triangle.

Add diagonally, starting at the lower right:

2 alone is 2.

3 + 7 + 2 = 12; write down the 2 and carry the 1 (0) to
the next row.

2 + 1 + 6 + 8 + 3 + 4 = 24. Write down the 4 and carry
the 2.

1 + 2 + 7 + 2 + 2 + 6 + 6 = 26. Repeat what you did in
the last step.

2 + 8 + 6 + 3 + 4 + 5 = 28; write down the 1 and carry
the 2.

2 + 3 + 2 + 6 = 13; write down the 3 and carry the 1.

1 + 7 = 8.

Now read off the answer: 8,386,422.

Those of us who learned to multiply the traditional way—by writing the
product of each digit in offset lines, one beneath the other, and then adding,



need only think a moment to see that box multiplication does essentially the
same thing. Visualize 48 × 16 in each strategy.

Remember how hard it was, unless you were the tidy type, to keep those
columns straight? Just think of the erasures, scribbles, and mistakes you
made when you tried to multiply two figures whose product came to more
than 6 million! Box multiplication lets you add up each digit’s product
without having to write down a series of long numbers in visually confusing
form.



Now You Can Do It

To use this strategy, you bring two of the five keys to human
calculating into play: memory and practice. Once you have learned the
times table, box multiplication becomes extremely easy. You learn your
times table with lots of practice. Try these challenges:
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 Squaring

SQUARING IS MULTIPLYING A number by itself. For example, 2 × 2 = 4, or
2,489 × 2,489 = 6,195,121. The answer—in these examples, 4 and
6,195,121—is said to be the square of the number. Or we may say that
6,195,121 is 2,489 squared, and we write that expression like this: 2,4892.
So, we can write about squaring and its results in this way:

Once you’ve learned the times table, it’s easy to square the numbers from
one to 12—you already know them. When you get into larger numbers,
such as 64, you start to meet some challenges.

There are ways to simplify squaring. Here are three strategies that will
make you look like a real mathlete.

SQUARING NUMBERS AROUND 100

If a number falls under 100 and above 51, you simply figure the
difference between 100 and the number. Subtract the difference from the
number being squared, and write the answer as the first digits in your
answer.

Let’s try this on the number 96. We see right away that 96 is 4 less than
100. Then we subtract this difference from the number being squared:



 

Subtract that amount from the number.

The first two digits of this number (92) form the first part of your answer.
I want you to keep in mind that the last digit of this number is actually in
the hundreds column of the answer. Visualize it as 92(00).

Now, to get the second part of the answer, take the difference between
100 and the number being squared (in this case, 4), and square it:

Place that number after the digits you got in your first step, and you have
the answer: 9,216.

Let’s run through that again with a number in the 90s. What’s the square
of 92?

Numbers less than 91 create a new problem: The square of the difference
is larger than 99. If the squared difference is larger than 99, add the digit in
the hundreds column to the second digit in the first part of the answer. For
example:



Now, remember that this 76 is really 76(00). The last digit of the number
you get when you subtract the difference-from-l00 from the number being
squared is always a hundreds digit.

In the next step, you square the difference between 100 and 88. That
difference is 12. Now, 122 is 144, and that is larger than 99. Knowing that
our 76 is really 76(00) tells us that we have to break our 144 into 1(44) and
add accordingly. We’ll add the 1(00) in 144 to the hundreds column in
76(00). Then we’ll add the 44 in the tens and units columns.

If the number to be squared is more than 100, you add the difference to
the number, rather than subtracting. Complete the strategy in the same way
as you did with numbers from 52 to 100. What is 1062?

Again, if the difference squared has more than two digits, add this
hundreds digit to the hundreds digit in the first part of the answer, just as
you did before. This will always happen when you square numbers larger
than 109. For example:



Let’s try that with a number whose answer will not end in zero; say, 1122.

Now You Can Do It

Remember, the first key to human calculating is understanding
numbers. When it comes to squaring, that means keeping the place values
straight. Just keep in mind that, with numbers near 100, the last digit in
the first part of the answer actually falls in the hundreds column. When
you add the second part, be sure to add units to units, tens to tens,
hundreds to hundreds, and so on. Express these numbers in their longer
form:

The third key to human calculating is memory. Write the answers to these
squares. If you don’t already know them like your own name, write each



one ten times. Then recite the answers without looking at your crib sheet.

Teaser: If writing each of these expressions takes you two seconds, and
writing a math fact ten times commits it to your memory, how many
minutes will it take to learn all 12 squares?

SQUARING NUMBERS AROUND 1,000

You apply the same thinking when you square a number that’s near
1,000. The trick is to make sure you keep track of your place values. Let’s
try it on 9962:

This strategy works for numbers higher than 1,000, just as it works for
numbers above 100.



Now You Can Do It

Don’t forget the place values of the digits you come up with.

SQUARING NUMBERS THAT END IN 5

Any number that ends in 5 is easy to square.
To start with, you know that 5 × 5 = 25. So the answer will automatically

end in 25.
To get the first part of the answer, just take the number’s first digit, add 1

to it, and multiply the result by the first digit of the number to be squared.
For example:

What is 352?
THINK: The answer will end in 25.



If you’re using this technique with a larger number, add 1 to the number
that’s formed by the digits to the left of the 5. Let’s find the square of 105.

You may have to use pencil and paper to square larger figures, but the
strategy is the same and it’s much easier than multiplying out the whole
problem.

There are plenty of other tricks to make squaring easier.

SQUARING NUMBERS THAT END IN 1

Consider this: Numbers that end in zero, up to 120, are easy to square if
you’ve learned your times table. For example, 1202 = 120 × 120 = 12 × 12
and two 0s = 144 and 00, or 14,400. So, when you want to square a number
that ends in 1, first square the next lower number—it will always end in
zero.

Now, add that next lower number (20) and the number being squared (21):



Add the two results together to get the answer.

Let’s try that on a larger number. How about 812?

We can apply this principle to numbers that come close to ending in 5,
just as we apply it to numbers that almost end in 0.

SQUARING NUMBERS THAT END IN 4

This strategy uses a technique we’ve already learned, squaring numbers
that end in 5. Suppose you want to find the answer to 342. Instead of 34,
we’ll first square the next higher number, 35. The number higher than a
number ending in 4 will always end in 5, of course, and we know a fast way
to square numbers ending in 5. As we’ve seen, 352 = 1,225.

Now, add the number being squared (34) to the next higher number (35).
The result is 69.

Subtract this from the square of the larger number, and the result will be
your answer:

SQUARING NUMBERS THAT END IN 6



Numbers ending in 6 are just on the high side—instead of the low side—
of numbers ending in 5. So we can reverse our ending-in-4 strategy for an
easy way to square numbers ending in 6. Let’s try it on 362.

This time, we square the next lower number, which naturally will end in
5. Again, add the number to be squared with the 5-number. And this time
you add the result from the square of the 5-number.

SQUARING NUMBERS THAT END IN 9

This strategy is similar to squaring numbers ending in 4. You square the
next higher number (which will always end in zero); then you add the
number to be squared to the next higher number and subtract the result from
the square you’ve found. Find, for example the answer to 792.



Now You Can Do It

Try out what you’ve learned on these figures:

Teaser: Your friend has spotted an intriguing display at the grocery
store. Someone has stacked boxes of Chinese noodle soup mix, one box
deep, 24 boxes high, and 24 boxes wide. Ideally, when your friend gives
the box in the center of the bottom row a swift kick (as he is about to do),
how many boxes of Chinese noodle soup mix will come crashing to the
floor? Hint: Visualize! The bottom row is already on the floor.

USING SQUARES TO HELP MULTIPLY OTHER NUMBERS

As the exercise above suggests, squaring has lots of practical
applications. One that not many people know is that you can use it to
simplify certain kinds of multiplication problems. For example:

Multiplying Two Numbers Whose Difference is 1

Suppose you have two numbers—say, 25 and 24—that are only one
number apart. If you square the larger number—25, in this case—and then
subtract it from its square, you get the answer to 25 × 24. If you square the
smaller number and then add it to its square, you will get the same answer!
Let’s try that:



Those of us who cheated with a hand-held calculator know that 600 is the
correct answer to 24 × 25. What happens if we square the smaller number
and add?

Multiplying Two Numbers Whose Difference Is 2

To work this strategy, you have to know what an average is and how to
get it. The average of two or more figures is the answer that you get when
you add up the figures and divide by the number of figures you added. Say
you wanted to know the average of three numbers: 4, 8, and 18. First you
would add them up:

Then you would divide the answer, 30, by the number of figures you added
together, 3: 30 divided by 3 = 10. The average of 4, 8, and 18 is 10.

We’ll use averaging in three of the next four strategies.
To multiply two numbers when they have a difference of 2, square the

average of those two numbers and then subtract 1. For example, 17 × 15:



Remember that the numbers have to be separated by 2, and only by 2, for
this method to work.

Multiplying Two Numbers Whose Difference Is 3

To multiply two numbers when they have a difference of 3, first add 1 to
the smaller number. Square the sum. Then subtract 1 from the smaller
number and add the result to that square. Let’s try it on 24 × 21:

You can see how quickly a person who is good at squaring can find this
product by thinking of this procedure in a kind of shorthand:

Multiplying Two Numbers Whose Difference Is 4

This strategy again has you square the average of the two numbers. And
this time, you subtract 4 from your square.



To see it in a short form, think:  = 44; 442 = 1,936; − 4 = 1,932.

Remember, this method works only on numbers with a difference of 4.

Multiplying Two Numbers Whose Difference Is 6

This time you square the average of the two numbers and subtract 9.
Let’s try 26 × 32:

Once again, to see this in brief, think:  = 29; 292 = 841; 841 − 9 = 832.

Now You Can Do It

Remember to use the strategies for squaring as you find the short
answers to these challenges:
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 A Hatful of Multiplication
Tricks 

SO FAR, WE’VE LEARNED several basic strategies for multiplying and squaring
numbers. You can use those on any numbers that fit the particular method,
but you also can add a bunch of tricks to your magic act, shortcuts
guaranteed to make you look like a mathematical wizard.

MULTIPLYING BY 10, 100, ETC.

This one is so obvious it hardly seems worth mentioning, but knowing it
makes multiplying and dividing decimals and fractions so easy, we’d better
take note of it now.

Whenever you multiply a number by 10, you just add a 0 to it to get the
answer. To multiply by 100, add two zeros. To multiply by 1,000, add three
zeros. However many zeros are in the multiplier, you just add that to the
number you’re multiplying to get the answer. Like this:

ASTRONOMICAL FYI



As you can see, it’s easy to get into astronomical figures playing with
these numbers. Sometimes when you’re reading about such things as how
far apart the stars are, you’ll see a number written like this:

It means “18 with 12 zeros after it.” That is, 18 followed by 12 zeros. I’m
not even going to try to write that out!

For the fun of it, though, we could write any number followed by a zero
using the same method. If we try it on the answers to the examples we used
above, we get:

The star nearest to earth is 4.3 light-years away from us. A light-year is
the distance that light travels in one year, zipping along at 186,000 miles a
second—about 5,878,000,000,000 miles. So that star is 5,878,000,000,000
× 4.3 miles from earth, or 25,275.4 × 106 miles.

Twenty-five trillion miles. That’s spacey stuff! Math is like a spaceship—
it can take you right into the cosmos.

MULTIPLES OF TENS, HUNDREDS, THOUSANDS.. .

Coming back down to earth, you can apply the same strategy to multiples
of 10, 100, and the like. Make the number that ends in 0 the multiplier and
the other number the multiplicand. Multiply the multiplicand by the first
part of the multiplier. That gives you a base number that is the first part of
the answer. The last part of the answer is the number of zeros in your
multiplier. Like so:



Our base number in 12 × 20, which is 24, is really 24(0). All we have to
do is remove the parentheses to get the answer. When we multiplied 12 ×
200, our base number of 24 was really 24(00). And yes, the answer proved
to be 2,400.



Now You Can Do It

Here, too, the trick is to remember your place values. Try multiplying
these figures:

421 billion is the same as 421 × 109. Express these figures using the
same method:

9,876,000,000,000
18,000,000,000,000
47 trillion
13 quadrillion
52 googol (a googol is a 1 followed by 100 zeros)

MULTIPLYING BY 11

There are two good ways to multiply a number by 11. The strategy that I
think is easiest goes like this: Take the number to be multiplied and add ten
times the number.



You may have noticed something odd in the last example. The middle
digit of the answer is the sum of the two digits in the number to be
multiplied. The first and the last digits in the answer are the same as the
first and last digits in the original number! That is, if you take the 1 and the
2 in 12 and add them (1 + 2 = 3), and then you stick that number in between
the digits in 12, you get the answer: 132.

You guessed it—that’s the second method for multiplying by 11. There’s a
trick to it. You add the two digits and insert the sum between the digits.
Take 18 × 11:

Let’s try it with 99 × 11.

Where did we go wrong?
When we added 9 + 9, we got a two-digit number. When that happens,

you have to add that number’s left digit to the left digit in the original
number. That is, to get the right answer we needed to carry the 1 in 18 over
to the first 9 in 99:

Let’s try it again on a smaller number:



To recap the two methods for multiplying by 11:
One way is to multiply the number by 10 and then add the number.
The other is to add the digits of a two-digit number and place the sum

between them, carrying to the tens column if necessary.

MULTIPLYING BY 21, 31, 41, AND OTHER NUMBERS
ENDING IN 1

The theory behind the first method for multiplying by 11 is that it’s easier
to multiply by 10 than by numbers ending in something other than zero. As
a matter of fact, it’s easy to multiply by any number ending in zero, as
we’ve seen. What you’re really doing is setting aside one piece of the 11
things to be multiplied, multiplying the rest of them, and then adding it back
in at the end. You can do that with any number ending in zero.

Using the method we learned for multiplying by multiples of 10, multiply
the first number by the first digit in the multiplier and tack on a zero. Then
add the multiplier to that.

That’s pretty easy. Let’s try it on 42 × 31.



Once again, how did we do that? Multiply by the next closest number
ending in zero—20 if your multiplier is 21, 30 for 31, 40, for 41, and so on.
Then add the number to be multiplied.

Use the quick-math trick for multiplying by 10s while you’re trying the
strategy for numbers ending in one:

MULTIPLYING BY NUMBERS THAT END IN 5

One thing you know when multiplying a number ending in 5: The answer
will always end in 5 or 0!

That has nothing to do with the strategy, but it can be used for a quick
check of your answers. The plan behind the strategy goes like this:

If we can change the number ending in 5 to one that ends in 0, it will be
easy to multiply. Two times any number ending in 5 is always a number
ending in 0. So the first step is to double the number that ends in 5.

Now that we’ve changed the multiplier, we can change the number to be
multiplied (you will remember that it’s called a multiplicand) so that the
end result is the same as multiplying two unchanged numbers. We doubled
the multiplier. Now we halve the multiplicand. When we double one
number and halve the other, we get the same product that we would with the
original numbers.

Let’s experiment on some small numbers:

Those of you who haven’t studied fractions yet need only remember that to
get half of a number, you divide the number by 2.



Now, that seems to be working. What happens if we apply it to some
larger numbers, say 42 × 15?

This looks good! Now we can use it on larger or clumsier numbers
without testing the answer the old-fashioned way.

If the multiplicand is an odd number, the strategy still works, but you
have to multiply with a fraction. Beginning human calculators may need to
learn about fractions and decimals before taking this on.

Suppose you want to multiply 19 × 25:

For those of you who haven’t learned fractions yet, an easy way to solve
this problem is by taking half of 50 (that’s 25) and adding it to 9 × 50 (that’s
450; so, 450 + 25 = 475). To make a long story short, when you multiply a
number by ½, you actually divide it by 2 (½ × 50 = 50 ÷ 2 = 25).

Let’s try that again:



Now You Can Do It

This strategy takes some practice, partly because you’re using fractions
for the first time, and partly because you sometimes have to perform
three math processes at once: adding, multiplying, and dividing. Once
you have it under control, though, you can work much faster than you can
when you write down and add up offset rows of figures.

First, experiment with multiplying by ½:

Now continue the warmup with some mixed numbers:

With these secrets mastered, the rest is easy.



There are some special cases for multiplying numbers that end in 5. For
example:

Multiplying a Number by 15

You can change a number that you want to multiply by 15 into a number
that you can multiply by 10 to get the same answer. How? Just add half of
the number to itself.

It isn’t magic; it’s logic. Fifteen is half again as much as 10 (that is, it’s 10
plus ½ of 10, or 5). So if you add half your multiplicand to the multiplicand
and reduce your multiplier of 15 to 10 (taking half of 10 (or 5) away from
the 15), you end up with the same answer.

When you perform an operation on one part of a math problem, the
answer remains the same if you perform the opposite operation on another
part of the problem. Here, we have added a half and subtracted a half.

Let’s try this on some larger numbers:

Of course, with this strategy you’re also apt to find yourself working with
fractions. That’s because half of an odd number is always a number and a
half.



Here’s another way to do this: Multiply the number by 10 and then add
half the product.

This version makes working with odd numbers much simpler:

Multiplying a Number by 45

To do this, we notice that 5 is  of 50. We’re going to change the
multiplier, 45, to 50. We’ll multiply by 50, and then, to change back to 45,
we’ll subtract  of the product from itself. What we’re doing is multiplying
by 50 – 5, which is the same as multiplying by 45.

Let’s try it out:

Multiplying a Number by 55

Just reverse this strategy when you want to multiply by 55. Now your
multiplier is  more than 50, instead of  less. So you’ll add  of the
product of 50 × the multiplicand, instead of subtracting it. This time, you’re
multiplying by 50 + 5.



Now You Can Do It

Remember: to get ½ of a number, divide by 2. To multiply a number by
½, do the same—divide by 2. To get  of a number, divide by 10. If
fractions confuse you, work on the product instead of the multipliers
whenever possible.

MULTIPLYING BY NUMBERS THAT END IN 9

You can apply the same strategy you used on 45 and 55. The idea is to fix
things so you can multiply by 10, instead of the head-achey 9.

Well, 9 is one less than 10. So you can multiply a number by 10 and then
subtract the number from the product to get the answer.

Does it work on larger numbers? Sure!



Multiplying by Two-Digit Numbers That End in 9

You use the same principle as in multiplying by numbers ending in 1:
Change the multiplier so that it ends in 0, multiply by the digit in the
multiplier’s tens column. Now reverse the strategy and subtract the
multiplicand from the result.

Multiplying by Multiples of 9 (Up to 9 × 9)

Amazingly, every multiple of 9, up to 81, is the same as the next number
higher that ends in 0 minus  of that number. Nine, for example, is  of 90,
which is 9 more than 81 (which is 9 × 9).

This odd fact allows us to do the same thing with these numbers as we
did when we wanted to multiply by 45.

First, let’s review the multiples of 9:



If you recognize the numbers 18, 27, 36, 45, 54, 63, 72, and 81 like old
friends, you can amaze your social circle with this trick. Multiply 12 × 36.

Multiply 12 × 36.

Any kid, taught this trick, could startle the fourth-grade teacher! To really
amaze his teacher, he could extend the practice to multiplying by multiples
of 99.

Multiplying by Multiples of 99

The same strategy works here, except that instead of subtracting , you
subtract . Try it like this:

The multiples of 99 are 198, 297, 396, 495, 594, 693, 792, 891, and 990.



Now You Can Do It

Can you see a pattern in the multiples of 9? How about in the multiples of
99? What is it?

See how many teachers or friends you can surprise by performing
these tricks in your head:
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 Subtraction

WE ARE TAUGHT IN school to think of subtraction as a negative process—a
taking away of one thing from another. But to my mind, that’s not what
subtracting is all about.

It’s really addition in reverse.
What I mean is this: When someone asks you for the answer to 74 minus

53, don’t think, “What is 74 take away 53?” Instead, think, “What number,
added to 53, equals 74?”

It’s actually one of the first steps you’ll learn in algebra. You’re
rephrasing the problem in the form of an algebraic formula: 53 + x = 74.
The letter x stands for the words “what number” in the question.

Here’s how it works:

Let’s start with the tens column. We need to take 5(0) from 7(0)— that’s 5
tens from 7 tens. Ask yourself, “If we added something to 5 tens to get 7
tens, what would it be?” Well, 5 tens plus 2 tens equals 7 tens.



Now You Can Do It

Ask yourself what number added to the bottom number makes the top
number in these examples.

That was easy. But what if you have to borrow from the tens to get the
answer in the units column?

Luckily, we have a key to human calculating: We understand numbers.
Seven tens and 1 unit is really the same as 6 tens and 11 units. That’s
because 11 is really 1 ten and 1 unit. Visualize that:



So, let’s try changing 7(0) and 1 to 6(0) and 11, in our heads. Now the
question is “What number added to 3 equals 11?” The answer is 8. But
remember, when we changed 71 to 6(0) plus 11, we stole a 10 from 7(0). So
we have to take a 10 away from thVtens column in the answer, which
started with a 2(0). Now it’s a 1(0). So our answer combines 1(0) and 8, to
make 18.

I hear it now: “Scott! That’s too complicated for my brain.” Don’t panic
—you can make this really easy by looking and thinking before you start to
figure. Here’s the thought process:



Now You Can Do It

Remember that you can change tens to units by stretching your
imagination to visualize two-digit numbers in the units column. When
you borrow a ten from the tens column and give it to the units, you end
up with more than 9 units in the right-hand column. Try your talents on
these:

Let’s try this on some larger numbers. First, an easy one:

Now for a challenger:

24(0) = 1(00) + 14(0)

THINK: 2(00) is the same as 1(00) and 10 tens. Add the 10 tens to 4 tens for
14(0), which leaves 1(00) in the hundreds column. Okay. I can add



something to 6 to get 14. But I still have a problem in the units column.

14(0) = 13(0) + 10 ones

THINK: 14(0) is the same as 13(0) and 10 ones. Ten ones and 2 units is the
same as 12. Yes—I can add something to 8 to get 12. I’m going to work
with 2 hundreds, 13 tens, and 12 ones. Visualize:

If you prefer, visualize the way you get the answer like this:

Now You Can Do It

Remember the fifth key to human calculating: creativity. Subtraction is a
very creative activity, in which you imagine yourself borrowing numbers
and invent numbers that are smaller than zero. Picturing the process in
your mind helps a lot. Now picture these:

THINKING ABOUT SUBTRACTION



How is subtraction different from addition? Even though I’ve called it
“reverse addition,” there’s one thing you can’t do with subtraction that you
can with addition. It’s this: You can’t subtract in just any order. For
example, 6 + 9 is the same as 9 + 6. But 9 − 6 is not the same as 6 − 9.

Sure, you can take a larger number away from a smaller one. The result is
a negative number—it represents numbers less than zero. For example,
when it’s really cold in North Dakota, the temperature may be 40 degrees
below zero on the Fahrenheit thermometer. That’s a negative number. We
write a negative number with a minus sign in front of it (−40), and we may
read it as “minus 40.”

To subtract a larger number from a smaller one, subtract the smaller
number from the larger one, and then mark the answer as a negative
number. To subtract 6−9, first do 9 − 6 = 3; then reverse it to 6 − 9 = −3.

By the way, in a subtraction problem, the number that you are subtracting
from is called the minuend. The number you are subtracting is the
subtrahend, and the answer is the remainder.



Now You Can Do It

Let’s see what actually happens when you try to reverse the direction of
subtracting.

In some parts of the world, temperatures can drop 40 or 50 degrees in
less than an hour. It was 35 degrees one afternoon in Fargo, North
Dakota. By nightfall the mercury had fallen 47 degrees. So how cold was
it that evening?

SUBTRACTING BY ADDING NUMBERS AROUND 100

When a number to be subtracted is close to 100, you can simplify the
problem in the same way we simplified multiplication—by changing it to a
number that ends in zero, and then converting the answer to get rid of the
changes we made.

Watch this:

SUBTRACTING BY ADDING TO EACH NUMBER



Here’s a little secret that makes subtracting numbers simple: If you add
an amount to both numbers in a subtraction problem, the difference between
the numbers stays the same.

Let’s try that on some small numbers.
Add 2 to both numbers in a problem:

If we can do that, we can change a lot of numbers into figures that end in
zero, and that will make our subtracting ever so much easier. Say:

Let’s try that on a couple of two-digit numbers. Remember that we will
add the same amount to both numbers in our problem to make new numbers
that are easier to work with. The answer will be the same. This time we’ll
try 47 − 34.

Now for some serious calculating:



Test it on your calculator, and you will find that 148 − 97 is also 51.
Will it work on four-digit numbers? Sure.

Now let’s look at this new problem:

Incredibly easy. Check it with a calculator: 4,873 − 3,492 = 1,381.



Now You Can Do It

Try the two strategies above on these numbers near 100s or 1,000s:

SUBTRACTING BY SUBTRACTING FROM EACH NUMBER

Of course, if you can simplify a problem by adding to each figure to
make one of them end in zero, you can do the same by subtracting to bring
one of the figures down to a number ending in zero. For example:

Can that possibly be right? Punch it in to a calculator: 1,486 − 12 = 1,474.
It works with numbers near 100, too.

By changing a figure that you are going to subtract into any number that
ends in zero, you make your problem 100 percent easier.

These strategies are so simple, you can look your friends straight in the
face and come up with the answer before they can get it on their machine.



All it takes is a little practice.

Now You Can Do It

Wait till Mom sees you toss these things off as though they were as easy
as . . . as easy as they are!
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 Division

IF SUBTRACTION IS REVERSE ADDITION, then division can be called “reverse
multiplication.” The trick is to find out how many times one number has to
be multiplied to get to another number.

For example, 6 ÷ 3 = 2 tells us the same thing as 2 × 3 = 6. It just says it
in a different way. And 100 ÷ 50 = 2, which is another way of saying 50 × 2
= 100. This fact makes it easy to check your answers in division—just
multiply the answer (called the quotient) by the number you’re using to
divide (the divisor), and if the result is the same as the number you were
dividing into (the dividend), the answer is correct.

People write about division in several ways. One is by using this symbol:

This statement reads “100 divided by 50 is 2.” Or you could read it as “50
divided into 100 is 2.” Or simply, “50 into 100 is 2.” You could write the
same thing like this:

You could write the same thing like this:

And that reads “100 divided by 50 equals 2.”
Division problems can also be written as fractions, like this:



Again, you could say “100 divided by 50 equals 2.” Sometimes people read
this as “100 over 50 equals 2.”

For this chapter, I am going to assume you know your multiplication and
division tables through 12. You can help yourself learn these tables using
ordinary index cards. Write the fact you want to learn on one side and the
answer on the other.

Once you know the multiplication and division tables, there is one easy
way to simplify difficult-looking problems. It’s based on the fact that you
can get the same answer by dividing a number by the parts of a divisor as
you do with the whole divisor. For example, you know that 18 is the same
as 6 × 3, or as 9 × 2. These parts of a larger number are called factors. That
is, 6 and 3 are factors of 18, and so are 9 and 2. To break a larger number up
into its smaller parts is called to factor the number.

We can use these factors to our advantage.
Suppose we want to divide 486 by 18:

It’s easier to divide 486 by 6 and then again by 3 than to divide it by 18.
First divide by one factor, then by the next, in whichever order is easiest.
Let’s try it:



Now we’re half done: we still have to divide this result by the other factor
of 18, which was 3:

Before we go on to the next strategy, let’s discuss what we did in the
second part of the example above.

When you divide one number into another and it doesn’t fit evenly—that
is, there are numbers left over—the leftovers are called the remainder. For
example, 5 does not divide into 18 evenly. The best we can do is 5 × 3 = 15,
which is three short of 18. That is, 18 ÷ 5 = 3, with a remainder of 3. The
same thing happened when we tried to divide 8 by 3: the closest we could



come was 3 × 2 = 6, which was two less than 8. So, 8 ÷ 3 = 2, with a
remainder of 2.

Can you picture these numbers as concrete objects? Imagine the number
18 as a glass jar holding 18 pretzels. When you ask yourself how many
times 18 can be divided by 5, you’re really asking how many stacks you’d
get if you took out the pretzels and piled them in stacks of 5. The answer, of
course, is 3 stacks, with a smaller stack of 3 left over. In division, the fifth
key to human calculating— creativity—can really help you. Visualizing
your numbers is the best way to understand what goes on when you divide
one figure by another.

When you get a remainder in the middle of a division problem—as we
did in the 81 ÷ 3 step above (we divided 8 by 3 to get 2, with a remainder of
2)—it’s called a partial remainder. The example above shows how you
work with partial remainders—subtract from the part of the dividend you’re
working with and bring down the next number to the right; then divide
again into that. Writing all the partial remainders down in this way is called
long division.

Ordinarily, long division is used to help you keep track of problems that
involve larger numbers. When you’re dividing by numbers up to 12, you
use short division. In that case, you either keep the partial remainder in your
head or you make a note of it, like this:



Another way to look at a little problem like this is to ask yourself, “3
times what makes 80?” Well, you know that 3 times 30 will be 90, and 3
times 20 is 60, so the answer is somewhere between 20 and 30. Your base
number can’t be 30, so it must be 20. Put a 2 in the tens column of your
answer and tack the digit in the ones column onto it: 21. Now divide 21 by
3 to get 7.

Let’s try that with 87 ÷ 3:

Let’s try the first method of short division on a larger number:



Now You Can Do It

Decide for yourself whether to use long or short division on these
examples:

Now that we’ve reviewed the basic procedure for dividing numbers, let’s
look at a few high-speed strategies.

DECIMALS AND FRACTIONS

To use the first method, we first need to know what is meant by a decimal
point.

A decimal point is a mark that looks like a period, which you sometimes
see written in a number. It is a way of expressing a fraction. This fraction—
that is, the part of a number—is a part of 10, a part of 100, a part of 1,000,
and so on to infinity. The numbers that appear to the right of the decimal
point are really fractions. For example:

.1 is really one-tenth (1/10).

.01 is one one-hundredth (1/100).

.001 is one one-thousandth (1/1,000).

.0001 is one ten-thousandth (1/10,000).



.00001 is one one-hundred-thousandth (1/100,000).

When we write dollars and cents as figures, we’re actually using
decimals. There are 100 pennies in a dollar—that’s why we call a penny a
“cent,” from the Latin word for 100. So, one penny is one one-hundredth
(1/100) of a dollar—and that’s why we write it as $.01. Fifty pennies make
50/100 of a dollar, or $.50.

Percentage works exactly the same way. The term “one percent” means
“one part of 100.” That’s the same as .01, or 1%, or 1/100.

This way of writing parts of 100 makes for some handy tricks. It gives us
a standard way to express common fractions, and once we know what part
of 100 these fractions are, we have an easy way to divide. Think about this:

1/4 of anything is the same as .25.
1/2 is the same as .50, or .5.
3/4 = .75
1/3 = .33 (approximately)
2/3 = .66 (approximately
1/8 = .125

These fractions can also be written as percentages, as decimal points, or
as fractions of 100:

1/4 = 25% .25 = 25/100
1/2 = 50% .50 = 50/100 (This is the same as: 50% .5 = 5/10.)
3/4 = 75% .75 = 75/100
1/3 = 33% .33 = 33/100
2/3 = 66% .66 = 66/100
1/8 = 12.5% = .125 = 12.5/100

Using the decimal point, then, is just another way of talking about parts of
10, 100, 1,000, or more.

The remainder in a division problem can be expressed as a fraction or as
a decimal. Instead of saying 8 ÷ 3 = 2 with a remainder of 2, we can express
that remainder of 2 as a fraction. How? By putting the remainder (2) on the



top of the fraction and the divisor (3) on the bottom, to give us ⅔. So, we
could say, 8 ÷ 3 = 2⅔. The fraction ⅔ is approximately the same as the
decimal .66—and so we could also say 8 ÷ 3 = 2.66.

Now, if you are beginning to understand this, you have a key to the next
strategy:

DIVIDING BY 10, 100, 1,000, AND SO FORTH

Any time you divide a number by 10, you simply move the decimal point
one place to the left.

What if the number doesn’t have a decimal point? Just assume the
decimal point is at the very end of the number. That is, the number 245 is
the same as 245.(0).

To divide 245 by 10, move the decimal point from 245.(0) one place to
the left, to 24.5.

245 ÷ 10 = 24.5, or 24½.
Let’s test that with some short division:

Five over 10 is 5 ÷ 10, or .5, or ½. That checks with our shortcut answer,
24.5.

To divide by 100, you move the decimal point over two places to the left.
To divide by 1,000, move it over three places. To divide by 10,000, move it
four places. In other words, move the decimal points as many places to the
left as there are 0s in the divisor. If you run out of figures, insert 0s between
the decimal point and the first figure of the dividend.



245 ÷ 100 = 2.45
245 ÷ 1,000 = .245
245 ÷ 10,000 = .0245
245 ÷ 100,000 = .00245

That last number is pretty small: You read it as two hundred forty-five
hundred-thousandths!

If you wanted to divide 876,942,235 by 1,000, you’d just move the
decimal point from the end of the number three places to the left: The
answer would be 876,942.235. It’s even easier when the number already has
a decimal point in it, because then you don’t have to remember to visualize
the decimal point at the end:

You charged $89.64 on your credit card for 10 identical dog collars to put
on the family’s pet pig. How much did you spend on each collar?

$89.64 ÷ 10 = $8,964, or, rounded off, $8.96 apiece.

We will talk more about fractions, decimals, and percentages in Chapters
13 and 14.

Now You Can Do It

What fraction of a dollar is 50 cents? Express it as two different fractions
and with a decimal point. Can you do the same for a quarter? How about
six bits? (“Two bits” means 25 cents.)

If $.50 is 50% of a dollar, what percentage of a dollar is:

And now, meet these challenges!



Canceling Zeros

As long as we’re playing with numbers that end in zero, you might as
well know that when any divisor ends in one or more zeros, you can cancel
them out before you divide. It’s a lot easier, for example, to divide by 26
than by 2,600.

To cancel zeros in a divisor, move the decimal point in the dividend one
place to the left for each zero you cancel.

This helps because, in effect, you divided both the divisor and the dividend
by the same number—100. When you did this, you ended up handling
smaller, less clumsy numbers.

MULTIPLYING OR DIVIDING BOTH PARTS OF A DIVISION
PROBLEM BY THE SAME NUMBER

When you multiply or divide the divisor and the dividend by the same
number—any number—you don’t change the answer to the division
problem! That’s why canceling zeros (dividing both parts by 100) works.

Let’s try that on something simple:



There are lots of possibilities here: If the divisor ends in 5, you can double
it and the dividend, and then you can divide by a number ending in zero.

If the divisor is a multiple of 5, you can divide it and the dividend by a
factor that will turn the divisor into a 5. This gives you a very easy division
problem:

We would have had to use long division to divide 720 by 45.

Now You Can Do It
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 A Hatful of Division
Tricks 

POTENTIAL HUMAN CALCULATORS LOVE division because it’s full of
possibilities. When you know how numbers work, you can find all sorts of
easy shortcuts that take you straight to the answer to some pretty
challenging-looking problems. While others are sweating over long
division, you can arrive at the answer in the blink of an eye.

Try these strategies on your friends and teachers:

DIVIDING BY 5

To divide a number by 5, multiply it by 2 and then divide the result by
10. For example, divide 242 by 5:

Too easy! Can we possibly believe this is true without knowing the pain of
dividing the hard way?



Dividing a Number by 50

To divide by 50, multiply the number by 2 and divide it by 100. The
principle is the same as dividing by 5:

And of course this works with the next biggest step:

Dividing a Number by 500

This time, multiply by 2 and divide by 1,000.

Dividing by 25

Multiply the number by 4 and divide by 100.

Dividing by 250

As in the previous example, multiply the number by 4 and divide by
1,000.

Dividing by 125



This strategy is simple, as long as you know your 8s multiplication table.
To divide a number by 125, all you have to do is multiply the number by 8
and divide by 1,000.

Now You Can Do It

Try the strategies you’ve learned on these test cases:

HOW TO FIGURE OUT WHETHER A NUMBER CAN BE
DIVIDED EVENLY

One of the big headaches in dividing is trying to know whether a number
can be divided evenly by another. There are several rules of thumb that will
help you determine whether a number is evenly divisible, and if so, by
what.

Odd numbers can only be divided evenly by another odd number. That is,
if the number ends in 1, 3, 5, 7, or 9, you know it can only be divided
evenly by a number that ends in 1, 3, 5, 7, or 9. It can’t be divided evenly by
a number ending in 0, 2, 4, 6, or 8.

Even numbers can be divided evenly by either odd or even numbers.
If you try to divide an odd number—such as 15—by an even number—

such as 6—the answer will always have a remainder (a fraction).

Can It Divide by 2

Numbers that end in 0, 2, 4, 6, or 8 are evenly divisible by 2.



Can It Divide by 3

Add up the number’s digits. If the sum is evenly divisible by 3, then the
number can be divided by 3.

Can we divide 786 by 3 with no remainder?

Can It Divide by 4

Look at the last two digits. If they are both zeros, or if they form a two-
digit number evenly divisible by 4, then 4 will go evenly into the whole
number.

Can we divide 7,600 by 4 with no remainder?

Can we divide 1984 by 4 with no remainder?

Can It Divide by 5



Any number that ends in 5 or 0 is evenly divisible by 5. This seems
obvious to anyone who can count by 5s: 5, 10, 15, 20, etc.

Can we divide 1,874,295 by 5 with no remainder?

Can It Divide by 6

See if the number is even. If it is not, it cannot be divided evenly by 6. If
it is, add up the digits; if their sum is evenly divisible by 3, the number can
be evenly divided by 6.

Can we divide 27,354 by 6 with no remainder?

Can It Divide by 7

Figuring out whether a number is evenly divisible by 7 is so complicated
that it is easiest to simply try dividing by 7. Sorry.

Can It Divide by 8

Look at the last three digits. If they are all zeros, or if they form a number
that is evenly divisible by 8, then the whole number can be divided evenly
by 8.



Can we divide 19,000 by 8 with no remainder?

Can we divide 14,192 by 8 with no remainder?

Can It Divide by 9

Add up the number’s digits. If their sum is evenly divisible by 9, so is the
number.

Can we divide 3,618 by 9 with no remainder?

Can It Divide by 10

Any number that ends in 0 is evenly divisible by 10. Intuition tells you
this when you count by 10s: 10, 20, 30, 40, etc. Every multiple of 10 ends
in 0—division is reverse multiplication, so every number ending in 0 must
divide by 10.



Can It Divide by 11

If all the digits in a number are the same (such as 11 or 222), and it has
an even number of digits, the number will divide by 11 with no remainder.

Why? Because 77 has two digits, an even number, but 777 has three digits,
an odd number of digits. It doesn’t matter that 77 and 777 are odd numbers;
what matters is the number of digits in the numbers.

Count the digits: 4,444 contains four digits, an even number. And 44,444
has five digits: an odd number. Four digits: divisible by 11; five digits: not
evenly divisible by 11.

If the digits are different, start on the right and count the digits. Now, add
the digits that are in the “odd” slots, and then add the digits in the “even”
slots.

Now, add up the numbers in the “odd” places and the numbers in the “even”
places.

Subtract the smaller number from the largest. If the difference is evenly
divisible by 11, then so is the number you started with.



To see whether a three-digit number can be evenly divided by 11, add the
two outside digits. If their sum is the same as the middle digit, or if the
differences between their sum and the middle digit is 11, then 11 will go
evenly into the number.

The strange fact about this trick is that if you reverse the outside digits, the
new number will also be evenly divisible by 11. Using our previous
examples of 572 and 924:

Can It Divide by 12

If a number can be evenly divided by 3 and by 4, it can also be evenly
divided by 12. Use your strategies for evenly dividing by 3 and 4 to
determine this:



Can It Divide by 15

If a number can be evenly divided by 3 and by 5, it can also be evenly
divided by 15. Here again, use your strategies for dividing by 3 and by 5 to
decide whether you can divide evenly by 15:

SEVEN MORE DIVISIBILITY STRATEGIES

You can determine whether numbers are evenly divisible by larger
numbers, too. Try these tricks:

A number can be evenly divided by 20 if the units digit is 0 and the tens
digit is even.

A number can be evenly divided by 22 if it is even and also evenly
divisible by 11.

A number can be evenly divided by 24 if you can divide it evenly by 3
and by 8.

A number that ends in 00, 25, 50, or 75 can be evenly divided by 25.



A number can be evenly divided by 30 if it ends in 0 and is evenly
divisible by 3.

A number can be evenly divided by 33 if you can divide it evenly by 3
and by 11.

A number can be evenly divided by 36 if you can divide it evenly by 4
and by 9.

Now You Can Do It

Figure out how to divide each of the following numbers evenly
(numbers divisible by 10, 5, or 2 are also evenly divisible by larger
figures):

23,775
504
52,272
64,614



545
31,779
1,275
22,590
14,976
7,044
3,874,296
1,927,160
6,786

BONUS NOW YOU CAN DO IT

Remember that one of the keys to human calculating is creativity.
Now, you will also recall that we noticed that numbers can be evenly

divided by 30 if they end in 0 and are evenly divisible by 3. The reason for
this is that 30 has factors of 3 and 10.

Any number ending in 0 has to have a 10 as one factor. That gives us the
“0” requirement for dividing by 30; all that’s left is to see whether the
number can also be divided by the other factor, 3.

Knowing this, see whether you can formulate your own rule for telling
whether a number is evenly divisible by 90.



PART II

PARTS OF
NUMBERS
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 Finding Square Roots 

LET’S SUPPOSE YOU WANT to cover your old concrete patio with oblong
pieces of slate.

The patio, which measures the same on all four sides, covers 144 square
feet of space. If each chunk of slate measures one foot long by two feet
wide, how many pieces of slate do you need to buy?

There may be easier ways to arrive at the answer than the one we’re
about to try, but after all, here’s an opportunity to use square roots.

Visualize the problem this way:
We know the patio is square, because its sides are all the same length—

that’s the definition of “square.” So picture a square slab of concrete.

It covers 144 square feet. The first thing we need to know is how many
feet it measures on each side. That is, we need to know what number
multiplied by itself equals 144. That number will be the same as the number
of feet on each side. It’s called the square root of 144.

When you figure what number multiplied by itself equals another
number, you extract the square root of the number. Unless you happen to



know or happen to have a table of square roots lying around, this procedure
is a matter of educated guesswork.

We know that 10 times 10 is 100. Because 144 is larger than 100, we
realize that the square root of 144 is larger than 10. It’s not 11, because,
using our 11s multiplication strategy, we see instantly that 11 times 11 is
121. If we know the 12s table, we recognize that 12 times 12 is 144. That is,
12 is the square root of 144.

That means the patio is 12 feet long by 12 feet wide. Knowing the square
root of 144 makes it easy for us to figure how many one-by-two-foot slate
pieces we need. We divide 12 by 1 foot to show how many will fit in one
direction—that’s 12. Then we divide 12 feet by 2 feet to see how many will
fit in the other direction—that’s 6. Now multiply 12 × 6 for the answer: 72.

Okay, okay! Common sense tells you that if one piece of slate is 1 foot
by 2 feet, it contains 2 square feet. So you ought to be able to divide 144
square feet by 2 square feet to get the answer. And yes, that’s exactly what
you find: 144 square feet + 2 square feet = 72 square feet, the number of
slate slabs required to cover the patio. That’s the fast way to do it. The slow
way shows you how it works.

Short of looking up the answer in a table, there’s no quick way to extract
square roots of larger numbers. But because it’s an important procedure,
one that you’ll need to understand if you go much further in math, we ought
to take a look at the strategy for finding square roots.

Let’s try it, since we already know the answer, with 144. By the way, a
mathematical way to write “the square root of 144” is as . That symbol
that looks like the division symbol with a tail is called a radical sign. The
number inside it—the number whose square root we’re trying to find—is
called a radicand.

First, divide your number (the radicand) into groups of two digits,
starting on the right. If the number contains an odd number of digits, then
the left-hand group will contain only one digit. If the number contains a
decimal point, mark off groups of two figures going in both directions from



the point. When counting off from a decimal point, if the last group on the
right contains only one figure, add a zero.

The number of digits in the answer will be the same as the number of
groups in your subdivided number.

I like to write the answer’s digits, as I find them, to the right of the number
whose square root I’m searching for.

1   44(1

Now, square this first square root and subtract the result from the left-
hand number. Bring down the right-hand number next to this sum to form
what will be a partial dividend for an upcoming step.

Next, double the part of the answer that you’ve already found. In this case,
1 × 2 = 2. Now, divide this number, known as the partial divisor, into the
first part of the partial dividend. If there’s a remainder, ignore it. The result
is the next part of the square root.



Now put this same digit (2) next to the first digit of the partial divisor (the
other 2).

Multiply the partial divisor by the new digit in the answer: 2 × 22 = 44.
Subtract that number from the dividend, and, if there are more digits
remaining in the original number, draw down the next group. In this case,
we’ve run out of groups, and so we’ve solved our problem:

Sometimes this strategy involves some trial and error. Let’s try it with a
larger number. Find 





If you started with a number containing a decimal point, place a decimal
point in the root when you reach the two-digit group that contains the
decimal point.

This is a cumbersome procedure, no doubt about it. I don’t know of any
shortcut (other than brute memory) for deriving square roots. But knowing
how it works serves three purposes:



1.     It helps you understand numbers.
2.     It gives you a deep appreciation for the electronic calculator.
3.     It keeps you abreast of students in other countries, who do learn how

to derive square roots manually—and who are good at it.

The truth is, though, that it’s possible to get a quick approximation of an
answer. Suppose you wanted to know the approximate square root of 4,923.
Look at the first two numbers, remembering their place value: 49(00). Well,
you know the square root of 49 is 7. So, the square root of 4,923 is no less
than 70, because 7(0) × 7(0) = 49(00).

What’s the square root of 1,822, approximately? Begin with 18(00).
Okay, you know the square root of 16(00) is 4(0), and you know the square
of 5(0) is 25(00). Now 18(00) falls between 16(00) and 25(00), and so its
square root must fall somewhere between 4(0) and 5(0). That is, the square
root of 1,822 is somewhere between 40 and 50. Because 18(00) is closer to
16(00) than to 25(00), the answer must be closer to 40 than to 50. It’s
probably less than 45.

The exact square root of 4,923 is 70.16, and that of 1,822 is 42.68. Our
estimates are not far off the mark!

In olden days before the invention of the calculator, people compiled
tables of square roots. I have included such a table at the end of this book.
So, you have three ways to find a square root: figure it out with your own
mind, look it up, or punch it into a machine.
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 Finding Cube Roots 

DERIVING CUBE ROOTS, an even more complicated process than finding
square roots, lends itself to human calculating. Anyone who knows how
involved it is to find the square root of a number—much less a cube root—
will be startled when they see you perform one of these tricks.

First, let me explain that a cube is the product of a number multiplied by
itself twice. The cube root is that number multiplied to form the product or
cube. The cube root of 27, for example, is 3:

You write the expression “cube root of 27” with a radical, the same kind
of symbol used with the square root, except that you put a little 3 inside the
crook of the symbol:

That little 3 is called the root index.
When you cube a number, as we just suggested, you multiply it by itself

twice. Indicate this process with a raised 3 after the number to be cubed: 33

= 27 (“three cubed equals twenty-seven).” You may find it easier to
remember this relationship by recalling that you write the number down
three times when you multiply to find a cube.

You can visualize cubes and cube roots by thinking of a stack of blocks.
Each block is the same size on all sides, and the stack is itself the same size
on all sides—in other words.



CUBE ROOTS THE EASY WAY

To pull off this strategy, you need to know the following chart:

Let’s take a look at those answers again:

Notice that each answer ends in a different digit. This means that, when
whole numbers from 1 to 9 are cubed, no answer will end in the same digit!

Here’s how this little gem of information works for human calculators:
Take a number, such as 175,616.
Divide the number into groups of three digits:

Now look at the number formed on the right: 616. Look at the chart above
and see which number, when cubed, ends in a 6.



Next, look at the number formed by the left-hand set of three digits: 175.
Ask yourself, between which two numbers does the number 175 fit? You’ll
find those two numbers on the cube chart above. The answer is, of course,
between 125 and 216. Now, you always use the smaller of the two numbers
that the left-hand number falls between—in this case, 125. The cube root of
125 is 5, and so the first digit in our answer is 5.

The answer, then, is 56. To test it, multiply 56 by itself three times:

Yes, 563 is 175,616, and so the opposite, , is 56.
This strategy works on numbers to one million.

Now You Can Do It

Remember, divide these numbers into groups of three, starting from
the right—just as you divided numbers for square roots into groups of
two. Practice your prestidigitation well and you will stun your teachers!



Do you want to know why your teachers are stunned when they see you
derive a cube root in your head? Because they learned to find cube roots in
this way:

THE LONG WAY TO DERIVE A CUBE ROOT

Let’s try this on one of the numbers whose cube root you’ve found the
easy way: 704,969.

First, divide the number into three-digit groups, exactly as above:



You persist with this exercise until you run out of groups of figures—or,
more likely, until you run out of steam. If you need to derive the cube root
of a number with a decimal point in it, you mark off your groups of three in
each direction, starting from the left and from the right of the decimal point;
if the right-hand group has fewer than three digits, add zeros to fill. The
answer has as many numbers to the left of the decimal point as there are
groups to the left of the point in the original number.

Our parents and grandparents were subjected to this awful procedure in
grade school. Today’s teachers are either more enlightened or less persistent



than teachers of yesteryear—it’s hard to find a modern arithmetic textbook
that explains how to derive cube roots.

If you have to find the cube root of a number larger than six figures, look
it up in a table. I’m including a table of cube roots at the end of this book.

USING THE ELECTRONIC CALCULATOR TO DERIVE
HIGHER ROOTS

A square is the product of a number multiplied by itself.

Or, to put it another way, the second power of 3 is 9. Remember, you write
a number down two times when you multiply to find the second power.

A cube is the product of a number multiplied by itself twice. A cube root
is the number that is multiplied to form the product or cube.

That is, three cubed is 27, or, the third power of 3 is 27. The cube root of 27
is 3.

Now, a fourth root is a number multiplied by itself four times to form a
new number:

Or, the fourth power of 3 is 81. The fourth root of 81 is 3. You write a
number down four times when multiplying to the fourth power.

Similarly, the fifth power of 3 (35) is the same as 3 × 3 × 3 × 3 × 3 = 243.
The fifth root of 243 ( ) is 3.

So it goes. You could proceed with these higher powers indefinitely. For
example, 49 is the same as 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4. And of course,
as we all recognize, 49 = 262,144. Which is to say, .

Many higher roots can be found by combining square and cube root
extractions. (Too bad the word for this sounds like dental surgery—



although, given what our parents had to go through in school, it’s not
surprising.) Consider: The fourth root is the square root of the square root.
Take the square root of 81, which is 9; now get the square root of that,
which is 3, and you have the fourth root of 81.

It’s easy to perform this on a calculator. Most calculators have a square
root button—it’s usually marked with a radical sign (V). To use it, you
simply enter the number whose square root you want to derive and then
press the square root button. Every time you enter “square root,” the
calculator derives the square root of the number shown in the display. This
allows you to derive fourth roots and eighth roots very simply.

To find the fourth root of 531,441, for example, you would first find its
square root:

Then you would find the square root of 729, which is 27. And if you
worked it out the long way, you would find that

Other rules of thumb for extracting higher roots:
The sixth root is the cube root of the square root. (Find the square root on

your calculator and then do the cube root the Human Calculator’s way.)
The eighth root is the square root of the fourth root, which is the same as

the square root of the square root of the square root. (Push the square root
button on your calculator three times.)

The ninth root is the cube root of the cube root.



Now You Can Do It

Some of us may regard this as the Ultimate Challenge. However,
knowing what you do now, you should find it relatively easy (say,
compared with the way your grandmother found it) to derive these roots:



13  
 Fractions and Decimals 

A FRACTION IS SIMPLY a part of a whole number. Look at a ruler, for
example, and examine the way an inch is broken into smaller parts: it shows
the inch has two halves, four quarters, eight eighths, and sixteen sixteenths.
These fractions are expressed like this:  . Sometimes the horizontal
line is replaced with a slash separating the two figures: 1/2; 1/4; 1/8; 1/16.

These numbers are called common fractions. When you write them with
a whole number above a line and a whole number below the line, the top
number is called the numerator and the bottom number is the denominator.
Derived from Latin, the word “denominator” means “this is the number we
use to name the fraction.” In , for example, we know we’re talking about
quarters of some object or quantity. “Numerator” is another Latinate term
meaning “this is the number we use to count the fractions.” In  we’re
saying that we have three of our quarter things. The numerator and the
denominator are sometimes called the terms of a fraction.

A fraction represents a kind of division. Until we get further into our
discussion, keep this in mind: The line in a fraction means that you divide
the upper number (numerator) by the lower number (denominator). It has
the same meaning as a division sign. That is:

When a whole number and a fraction occur together, you have a mixed
number. Measure off one and one-half inches on your ruler, for example,
and you’ll have a mixed number:  inches.



In order to work with mixed numbers, you have to convert them into
common fractions. There are two ways to do this. One is by converting the
whole number into a fraction with the same denominator as the fraction that
accompanies it. Then add the new numerator to the numerator of the
accompanying fraction to change the mixed number into a fraction. You can
do this by remembering that any fraction with the same numerator and
denominator equals 1 provided that the numerator and denominator are not
0s.

If we try this , on we see that:

You also can convert a mixed number into a common fraction by
multiplying the whole number by the fraction’s denominator and then
adding the result to the numerator. Like this:

Now You Can Do It

Change these mixed numbers into fractions:

You can add, subtract, multiply, and divide fractions and whole numbers,
but there are a few tricks you need to know first.



HOW TO ADD FRACTIONS

Before you can add or subtract fractions, you have to change them so
they have the same denominator. This is called finding a common
denominator. You can find the common denominator of two or more
fractions several ways.

Suppose, for example, that you wanted to add  and .
If one fraction’s denominator divides evenly into the second fraction’s

denominator, multiply both terms of the first fraction by the number
required to make the first fraction’s denominator the same as the second
fraction’s denominator.

Suppose we want to add  + 

Another way to accomplish the same goal—more complicated, but useful
with larger numbers—is to find a common denominator by multiplying both
denominators together. Using the same example, multiply the denominator
2 by the denominator 4 to find the common denominator, 8:

2 × 4 = 8

Now change each fraction to eighths:



That maneuver—dividing both parts of a fraction by the same number—
is called reducing the fraction. It allows you to turn a ridiculous-looking
number, such as , into a more understandable number:

The fraction  is said to have the same value as . They’re really just two
ways of saying the same thing.

The secret behind this is the same that works in some of our division
strategies: You don’t change the answer (or the “value” of a fraction) when
you multiply or divide both parts of the division problem—or the fraction
—by the same number.



Now You Can Do It

Make these fractions have common denominators:

WEIRD-LOOKING FRACTIONS

When a fraction’s numerator is the same as or larger than its
denominator, it’s called an improper fraction. Any fraction that is not
reduced to its lowest number or is not written in its simplest form is an
improper fraction.  is an improper fraction. So are , , and . Ordinary,
normal-looking fractions whose numerators are smaller than their
denominators are called proper fractions. How do you bring an improper
fraction back into the fold of propriety? Always divide and conquer!

Remember, any time a fraction’s numerator and denominator are the same,
the fraction equals 1.

Nine seventy-seconds? What does that mean? Notice that nine goes evenly
into 72. Divide both parts by 9 to reduce the fraction:



So, .
To reduce a fraction like , divide both terms by a number that will go

into both. We see that 9 is divisible by 3, and so is 15. Fifteen is also evenly
divisible by 5, but 5 doesn’t go into 9. So let’s divide both parts by 3:

Some fractions, such as  or , cannot be reduced. Use the strategies for
figuring divisibility, learned in Chapter 10, to help you see whether the
terms of a fraction can be evenly divided by the same number. We know
that 53 divides by 1 and by 53, which doesn’t do us much good, since we
also can see that 120 does not divide evenly by 53. Dividing both parts by
1, of course, changes nothing. Although 120 can divide by lots of factors,
none of them go evenly into 53. So, we’re stuck with trying to imagine 
as a real quantity.

I wonder how much  is. Does this crazy-looking figure have any
meaning?

If I divided a huge pizza into 120 pieces, half of it would be 60 pieces.
Fifty-three pieces would be seven pieces less than half the pizza, so  must
be a little less than . A third of the pizza would contain 40 pieces (120 ÷ 3
= 40). Fifty-three is 13 more than 40, so  must be a fair amount more than
 By visualizing this number as part of a real object, I can estimate quickly

that  is closer to  than .
What are we doing here? We’re using the fifth key to human calculating

—creativity—to help us understand what numbers mean. Never be shy
about using something different to help you follow math. If it works, use it!



Now You Can Do It

Add these fractions. If some of them result in improper fractions,
change the fractions to mixed numbers.

ADDING FRACTIONS THE HUMAN CALCULATOR’S WAY

Here’s a fast strategy to add any two fractions:
First, multiply the denominators. Then, cross-multiply the numerators

and denominators and add. Let’s try it:
What is  + ?

Astonishingly simple, isn’t it? Maybe that example was too easy. Let’s
try  + .



One other magic trick in this department: If you get to add two fractions
whose numerators are 1, just put the sum of the denominators over the
product of the denominators. Like this:

Now You Can Do It

Try adding these fractions the easy way:



HOW TO SUBTRACT FRACTIONS

Subtracting with fractions works the same way as addition. Find a
common denominator. Change all the fractions to new fractions that have
that common denominator. Subtract the smaller numerator from the larger.
And, if necessary, reduce the resulting fraction to understandable terms.

Let’s start with a couple of fractions that have the same denominator:

Pretty easy: just subtract 96 from 112. Put the result, 16, over the
denominator (143) for the answer: .

And if we wanted to subtract  from ?



Now You Can Do It

Don’t forget to reduce the answer to its lowest terms whenever possible.

ADDING AND SUBTRACTING MIXED NUMBERS

When you have to work with mixed numbers, convert the mixed numbers
into fractions and proceed with the same steps we just went through.

For example: I have a bowl that holds 3  cups. My cake recipe calls for a
total of 2  cups of flour, sugar, and baking powder, plus a total of if 1  cups
of milk, shortening, and vanilla. Can I use the bowl to mix up this cake?

To know that, I have to know how much 2  cups and 1  cups of
ingredients adds up to.

Remember: To change mixed numbers into fractions, multiply the whole
number by the denominator and add the product to the numerator.



So far, so good. Now, to get the new numerator, we will multiply the old
numerators together, then multiply the old denominators together, and then
add the products. The result will be the new numerator.

Now You Can Do It

Find the answers to these puzzles:

Well, 4  cups is pretty clearly more than my 3 -cup bowl will hold.
Unless I have a larger bowl, I'll have to reduce my recipe to about  of the
original.

MULTIPLYING BY FRACTIONS



Wouldn’t you know it? I don’t have a larger bowl. Guess I’ll have to cut
my recipe down. So what’s  of 4  cups?

To find a fraction of a larger number, you multiply the number by the
fraction, instead of dividing. That means I need to multiply 4  × .

Multiplying fractions is easy. You just multiply the numerators together
and then multiply the denominators together. You can sometimes simplify
things even further by reducing one or more of the fractions to lower terms,
or by performing a strategy called canceling, which we’ll describe below.

Now, 4  is a mixed number. To multiply it by , first convert it to a
fraction.

Now, multiply numerators and denominators:

Two and three-quarter cups will fit handily inside my bowl, which holds
3  cups. I’ll have to multiply the amount of each ingredient by , and the
cake will only be  as large as it might have been.

What if you want to multiply a whole number by a fraction? You have
two choices, and you can use whichever is easier. You could (1) multiply
the whole number by the numerator and then divide the product by the
denominator, or (2) divide the number first and then multiply that result by
the numerator. Either strategy works; choose the simpler path.



Now here’s a neat little activity known as canceling or cancellation. It
lets you reduce the terms in a bunch of fractions to smaller, more
manageable figures. Sometimes you can cancel numbers out altogether!
Then you don’t have to deal with them at all.

Suppose you want to multiply

See those two 3s? They cancel each other out. Three divided into 3 equals
1; 1 × 5 = 5 and 1 × 2 = 2. Those 3s might as well not be there. Just cross
them out. All you have left now is a 2 in the numerator and a 5 in the
denominator. And yes, the answer to  ×  is 

Cross-divide the numbers in the numerators and denominators, and then
replace the originals with the new numbers. Like this:



If you have fractions whose terms end in 0s, you can cancel out the same
number of 0s from numerators and denominators.

You can get completely carried away with this procedure and end up
simplifying what looks like a very complicated problem. For example:

When a numerator and a denominator each have numbers that end in 0,
you can cancel as many 0s as you find in the number that has the fewest 0s.
For example:

Of course, this can come in extremely handy when you’re multiplying:

Put it all together, and you arrive at a shortcut like this:



Now You Can Do It

DIVIDING BY FRACTIONS

To divide a number (any number, including another fraction), invert the
divisor and follow the same steps you use in multiplication.

Let’s try dividing  by .

Very simple. Now try something a little more complicated:



If the divisor is a whole number and the dividend is a fraction, invent a
fraction for the divisor by placing the whole number over 1 (any number
divided by 1 is itself; since a fraction is an expression of division, dividing
by 1 makes a fraction with a denominator of 1: 4 = 4 ÷ 1 = ).

Now You Can Do It

WHAT ARE DECIMALS?

A special type of fraction is called a decimal fraction. That is any
fraction that has 10, 100, 1,000, 10,000, etc., as a denominator.



Like other fractions, decimal fractions can be expressed by using a decimal
point, which is a period that appears to the left of the number that represents
the fraction. We don’t write commas in decimal fractions.

A mixed number with a decimal fraction can be written like this:

Or like this:

1.3

The number of figures to the right of the decimal point tells us whether
we’re dealing with tenths, hundredths, thousandths, or whatever. One figure
means the decimal fraction stands for tenths. Two figures, and it means
hundredths. For example:

.3 = three tenths



.34 = 34 hundredths

.345 = 345 thousandths

.3456 = 3,456 ten thousandths

.34567 = 34,567 hundred thousandths

Okay. What if you want to write three hundredths? Use a 0 to mark the
tenths place, just to the right of the decimal point:

.03 = three hundredths

.003 = three thousandths

.0003 = three ten thousandths
and so on to infinity. . . .

What if a zero appears in the far right-hand column of a decimal number?
It may change the way you read the number, but it doesn’t change the value
of the number.

.5 = five tenths = 

.50 = fifty hundredths = 

.500 = five hundred thousandths = 

By canceling 0s, you can see that all these numbers have the same value:

This is the reason that your calculator may surprise you when you add
$2.25 and $.25—it gives you an answer of 2.5. Where did the fifty cents
go? Nowhere: to the calculator, .5 is the same as .50, and unless you tell it
otherwise, it doesn’t know you’re thinking in terms of “cents.”



Now You Can Do It

Write these numbers in numerals:

four tenths
fifteen hundredths
twenty-seven thousandths
eighty hundredths
one hundred sixty-four ten-thousandths
forty-seven millionths

Write a two-digit number, a three-digit number, four-digit number, and
a five-digit number that all have the same value.

ADDING AND SUBTRACTING DECIMAL NUMBERS

Adding and subtracting decimals is just like adding and subtracting
ordinary numbers. The only difference is that, in addition to keeping track
of your place values, you also pay attention to where the decimal point falls.
In other words, you keep track of place values on either side of the decimal
point. To do this, you simply write a column of numbers to be added or
subtracted so that the decimal points are aligned one below the other.

We can start with 2.61 plus 3.21 plus 24.12.

Try adding 3.87, 7245.789, 42.6, and 256.21.



Subtracting is just as simple. Try 8.69 minus 4.23:

If the decimal fraction in the subtrahend is longer than the decimal in the
minuend, then add 0s to fill in the blank spaces:

Remember: Keep the decimal points in line and the decimal numbers in
the correct columns below each other. Visualize!

Now You Can Do It

Find the sum of 4.8, 27.635, 234.21, and 867.96.

Add 87.6 plus 4.325 plus 18 plus 102.33.

Find the difference between 876.8255 and 309.3346.

Subtract 98.254 from 149.15.

Add 34.2 to the difference between 45.9 and 67.



MULTIPLYING DECIMAL NUMBERS

Use any strategy that works for you in multiplying ordinary numbers.
Then figure out where the decimal point goes in the answer by counting up
the number of total number of digits to the right of the decimal points in the
multiplier and the multiplicand. This is the number of digits that go to the
right of the decimal point in the answer. An easy starting point is 2.4 × .12.

DIVIDING DECIMAL NUMBERS

There are two ways to do this. In either strategy, you divide the numbers
just as you would whole numbers.

With method number one, count the digits to the right of the decimal
points in the divisor and the dividend. Then subtract the divisor’s number
from the dividend’s. This gives you the number of digits to the right of the
decimal point in the answer.



To use the second method, write the division problem in the conventional
way:

Now, with a pencil or with your mind’s eye, move the divisor’s decimal
point all the way to the right. Then move the dividend’s decimal point the
same number of places to the right.

Divide as usual, keeping the place values straight:

Write the decimal point in the answer directly above the decimal point in
the dividend, and you will have it in the right place.

Now You Can Do It

Multiplying and dividing decimals is just a matter of keeping track of
place values. Watch your step with these:

CONVERTING FRACTIONS TO DECIMALS



You can change any fraction into a decimal, simply by dividing the
denominator into the numerator. For example:

How do you divide a larger number into a smaller number? Create a
decimal point in the dividend and add 0s after it. The resulting quotient will
have a decimal point, too. Like this:

If you wanted to find the decimal equivalent to 4/50, you would divide 4 by
50:

As with multiplication, we can insert 0s just to the right of the decimal point
to fill spaces.

This relationship between decimals and fractions greatly simplifies things
when you have to calculate with strange-looking fractions. To multiply 5
times 4 , for example, you can convert both sides to decimals and move
forward:

This type of conversion is suspect.
As a matter of fact, you don’t need a weird-looking fraction to take

advantage of decimals. To the contrary, some of the most common fractions



convert into easy-to-use decimals. As we saw in Chapter 9, 1/4 of anything
is the same as .25. And:

1/2 = .5
1/3 = .33 (and a string of 3s extending into the distance)
2/3 = .66 (and a string of 6s)
3/4 = .75
1/5 = .2
2/5 = .4
3/5 = .6
4/5 = .8
1/8 = .125

1/12 = .08 (approximately)

Now You Can Do It

Express these numbers in decimals:

What common fraction could you use to say that the town water tank is
seventy-five hundredths full?

How many tenths of the moon are showing when it’s at the half-moon
phase?

If we sliced the biggest pizza in the world into 1,000 pieces and then
ate 125 pieces, what fraction of the pizza would be left?
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 Percentages

THE WORD “PERCENT” comes from the Latin phrase per centum—“by the
hundred.” Percentage is a variation on decimal numbers. It is a way of
figuring parts of a whole by hundredths.

The commercial world uses percentages so widely that understanding
how to use them is an essential part of any educated person’s knowledge.
Dollars and cents are really a form of percentage—there are 100 pennies to
the dollar, and when we speak of a half-dollar, a quarter, or 27 cents, we are
really talking about 50 percent, 25 percent, or 27 percent of a dollar,
respectively. The interest that you pay on your house or car loan is
computed in percentage, as are your income taxes and the tip you leave for
the waiter.

When we say something like “Twenty percent of the crowd was
American,” we mean that 20 of every 100 people were Americans. If there
were 200 people in the crowd, 40 of them would have been Americans. Of
1,000 people, 200 would have qualified as Americans. All these proportions
are the same as . Let’s examine how this works.

HOW TO EXPRESS A FRACTION AS A PERCENTAGE

Any fraction can be converted into a percentage. If it’s already a
hundredth, you’re in luck. Just express the hundredth as a decimal, delete
the decimal point, and place the percent sign (%) after it.



To express other fractions as percents, first convert them into decimals.
Then shift the decimal point two places to the right—as we did in the
examples above.

Because “percent” means “per hundred,” 1% means one in every
hundred, or .

If 100% represents the whole of some quantity or object, then 160% means
you have more than the whole you started with. Let’s go back to our giant
pizza for an example.



We cut it into 100 slices, each piece about enough to feed one person. We
thought that would be enough for the 100 people we invited to our party,
but some guests brought their friends. So actually, 160 people showed up.
We need 160 slices of pizza—or 160% of the pizza we started with.

Now You Can Do It

Practice converting fractions to percentages with these:

HOW TO EXPRESS A PERCENTAGE AS A DECIMAL
FRACTION

Easy as pizza pie: just move the decimal point in the other direction.
Instead of shifting it two places to the right, you move it two places to the
left.

15(.0)% = .15
97% = .97
25% = .25
6% = .006
3.33% = .0333
176.2% = 1.762



Now You Can Do It

What percentage is represented by these decimal fractions:

Hold this thought: we’ll be using it soon. But first, consider one more
point.

HOW TO EXPRESS A PERCENTAGE AS A COMMON
FRACTION

To change a percentage into a common fraction, write the percentage
number as a numerator over 100 as a denominator. Then reduce the
resulting fraction to its lowest terms.

Now You Can Do It

What fractions are these percentages?

CALCULATING WITH PERCENTAGES



You know that 47 percent of the students in your school plan to vote for
you for student body president. If there are 850 students in the school, how
many votes will you get?

To figure this out, you need to find 47 percent of 850. You know 47
percent is a fraction—it’s the same as .47. So to find the size of your
constituency, you simply multiply 850 times .47.

399.50 people plan to vote for you.
Round the answer off to 400 and you’ll have an accurate count of your

fan club.
So, to find a percentage of a number, change the percent to a decimal and

multiply by the number.
Suppose the question goes the other way around. Suppose 170 students

have said they will vote for you. You want to know what percentage of the
total student body that is. How do you figure what percentage one number
is of another?

Simple. Take the number that follows the question “What percent is . . (in
this case, 170) and make it the numerator of a fraction. Make the other
number the denominator. Reduce the fraction as far as possible, and then
change it to a decimal number. All that’s left is to move the decimal point
two places to the right.

What percent is 170 of 850 students?

Some fractions are easily recognized as percentages. If you know that
some quantity is  of a whole, for example, you recognize that it’s 25
percent of the whole. And vice versa—25 percent of something is a quarter
of it.



Say your whale-watching club has spotted a pod of 48 whales off the
coast of Seattle. Reporters say 25 percent of the pod has been spotted
swimming up Puget Sound. How many whales were seen?

Knowing that 25 percent is the same as , you quickly see that 48 ÷ 4, or
12 whales, have split off from the main group.

Here are percentages that you should learn to spot instantly as easy-to-
work-with fractions:

So, if someone asks you to find 10% of a number, just divide the number
by 10.

To find:



Those are the really commonplace fractional equivalents to percentages.
Everybody knows them—or ought to. But we human calculators know a
few others. With these in mind, you can instantly come up with the answer
to 37  percent of 72 (it’s 27).

What they mean is that to find:

Now You Can Do It

What percent of 82 is 6?
How much is 20% of 320?
What percent of 150 is 25?
How much is 25% of 180
What percent of 95 is  of 95
How much is 16 % of 424



MATH IN REAL LIFE

Percentage is one part of arithmetic that haunts your daily life. You’ll
find it everywhere you turn.

SALE! TAKE 40% OFF THE ALREADY DISCOUNTED PRICE!!!!
Boy, does that sound exciting! But what does it mean?
Suppose you go to the appliance store that is running this ad in the local

paper. You find a refrigerator with a price tag of $688.99. (You realize, of
course, that this is only 1 cent short of $689 and is so close to $700 that, by
the time you pay a sales tax, you’ll pay more than $700.)

But, the $688.99 price tag has been crossed out and marked down to
$598.99. (Which, you recognize, is really about $600.)

According to the ad, though, if you buy this refrigerator, you get to take
another 40 percent off the $598.99.

To figure out how much you would have to pay, you first take 40 percent
of the round figure of $600. This is easy when you remember that 40
percent is the same as 2/5. All you have to do is divide $600 by 5 and then
double the quotient ($600 ÷ 5 = $120; $120 × 2 = $240). An even simpler
way to do this is to multiply by 40 and then divide by 100 (move the
decimal point two places to the left): $600 × 40 = $24,000; $24,000 ÷ 100 =
$240. This number—$240—is the 40 percent that will be taken off the
original price. So, to find the new price, you simply subtract $240 from the
old price of $600: $600 − $240 = $360.

So, you would pay $360 for a refrigerator whose original price was about
$700. Not a bad deal.

Percentage also affects most Americans when they have to buy a car or a
house. Few people have the resources to pay the amounts that these crucial
items now cost, and so they have to buy them on time.

That means you take out a loan for the amount it costs to buy, say, a car.
You have to repay the loan with a payment each month. But the bank that
lends you the money earns its money by charging you something for the
privilege of using its cash and paying it back over several months or years.



This fee is called interest. The original amount you borrowed is called the
principal, and the total of the interest and the principal is called the amount.

The percentage you pay in interest (in the example, 10 percent) is called
the rate. Interest rates are usually expressed as a certain percentage of the
principal for one year.

There are two kinds of interest: simple interest and compound interest.
Simple interest is the annual interest multiplied by the number of years

the loan runs—that is, from the time you borrowed the money until the time
you pay it back.

Suppose you borrow $150 at 8 percent interest, agreeing to repay it over
two years. How much will you have to pay back, all told?

Well, in one year you will pay 8 percent of the principal. In two years,
you will pay 2 times 8 percent, or 16 percent, of the original $150. That
means you will owe 100 percent of the principal (the original $150) plus the
16 percent interest, or 116 percent of the principal. The amount you will
owe will be 116 percent of $100, or 1.16 times 150, which is $174.00.

With compound interest, the principal draws interest for a specific period
of time. At the end of this time, the principal and the accrued interest are
added together, and this amount is taken as a new principal. The interest is
figured on the sum for the next period of time. The interest is said to be
compounded. If the period is one year, the interest is “compounded
annually.” If the period is six months, the interest is “compounded
semiannually.” For a period of three months, the interest is “compounded
quarterly” (a quarter of a year). And so forth.

As you can imagine, the formula for figuring compound interest over a
period of months or years is involved. Most people use a table of compound
interest to figure amounts due on such loans. To use the one I have included



at the end of this book, just read off the amount of one dollar at a specified
rate for the period desired, and multiply that amount by the principal.

Let’s imagine you want to open a lemonade stand. Unfortunately, you
don’t have the cash required to buy the frozen lemonade you need to get
started. Your kid brother offers to lend you the money you need out of the
untold hundreds he earned by selling all his Nintendo games in a garage
sale.

You borrow $10 and agree to repay him in one month. He demands 5
percent interest per day, compounded daily. How much will you have to
earn to pay him off?

Go to the 5 percent column. Run your eye down to the line for the period
marked 30. The number you see in the 5 percent column is 4.32194.
Multiply times 10 to get the amount owed: $43.22!

Now You Can Do It

You decide a loan in the amount of $43.22 will send you straight to the
poorhouse. So you tell your kid brother that you will pay him 5 percent
interest, all right—but 5 percent simple interest, figured over one month.
If he goes for this, how much will you have to repay him on your $10
loan?

He rejects your offer. Instead, he proposes to charge you 5 percent per
week compounded weekly. Now how much is he trying to extort from
you? (Thirty days is 4.28 weeks, or slightly more than four periods.)



PART III

HANDY
THINGS TO
KNOW
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 Simplifying Math by
Estimating 

WE’VE SEEN A LOT of math in the past fourteen chapters, and we’ve learned
how to figure things with some degree of precision. But now we have to
look at two awful truths:

1.     Sometimes it’s just not necessary to get the answer right down to the
nth decimal point.

2.     Sometimes it’s not possible to calculate an absolutely exact answer.

To start with that second hypothesis, consider the decimal fraction
representing ⅓. We arrive at it by dividing 3 into 1. If you try that with long
division, you can go on forever: .333333333 . . . and so forth. The decimal
.33 is an approximation of ⅓. Similarly, the decimal version of 33 percent is
.33333 etc. To figure a third of something, we either divide by 3 or multiply
by .33. The answer is close enough for most applications.

Then we have numbers such as the square root of 2. You could calculate
this figure until the sun burned into an ember, and you still would not have
the precise value of . The distance around a circle is 3.14159 (etc.) times
the diameter—but that number (known as pi, or π) cannot be calculated
exactly.

Any answer is only as accurate as the figures you are given. If the
original numbers are accurate only to a point, you waste your time figuring
an answer to a precision beyond that point.

So, sometimes we are stuck with having to accept a reasonably close
approximation of reality.



In other cases, it’s actually useful or desirable to use an approximation. In
the last chapter, for example, when we considered buying the cut-rate
refrigerator, it was helpful for us to think of the original price as $700,
rather than the $688.99 on the sales tag. And we had a better sense of what
was real when we thought of the sale price as $600, rather than $598.99.
These round numbers helped us see the real price—a hundred dollars more
than the “$500” the mildly deceptive price was meant to make us think.
Sometimes a good estimate is all you need, and it’s enough to let you avoid
a lot of needless figuring.

When we talked about adding from left to right, we noted that the most
important digits appear in the leftmost columns, and that the value of the
digits gets less significant as you move toward the right.

Take a number like 4,381—that’s 4 thousands, 3 hundreds, 8 tens, and 1
unit. The digit 1 represents  of the number. The 8 represents  of 4,381;
the 3 is ; and the 4 is . If you rounded 4,381 to 4,380, the rounded-off
number would be only  off the correct figure. You could say it was
correct to three figures. The fourth figure is not known to be correct, and so
if you multiplied 4,380 × 2, the answer, 8,760, would also be correct only to
three figures. But an error of  is so small that in most cases you can
accept it.

If you rounded 4,381 to 4,000, the approximated answer when you
multiply by two would be 762 off plumb—that is, significantly changing
the answer in the hundreds column. In many circumstances, this would be
too inaccurate to be acceptable.

The “significant figures” for a calculation, then, depend on the
circumstances. You must judge for yourself just how accurate an answer
should be.

To identify the significant figures in a number, round it off as far as you
need, starting with the right-hand digits. If the digit on the right is 5 or
more, drop it (or change it to a 0) and add 1 to the digit to its left. This is
called “rounding a number up.” It means that whenever the right digit is 5,
6, 7, 8, or 9, you give the rounded figure a higher approximate value.



If the right-hand digit is less than 5, drop it without changing the next
digit. This is rounding down, and it means that whenever the right digit is 4,
3, 2, or 1, you give the rounded figure a lower approximate value. Here’s
how it looks in action:

4,381
Rounded to the nearest ten: 4,380
Rounded to the nearest hundred: 4,400
Rounded to the nearest thousand: 4,000

6,627
Rounded to the nearest ten: 6,630
Rounded to the nearest hundred: 6,600
Rounded to the nearest thousand: 7,000

You see that you can keep moving toward the right, from the ones to the
tens to the hundreds. By the time we’ve rounded 6,630 to 7,000, we’re off
the accurate figure by 370. That’s quite a bit for some purposes—an
engineer building a bridge could not accept this approximation, but it would
do fine for a guess at the number of beans in a jar.

This principle works on decimal fractions, too. If the last figure on the
right is less than 5, leave the digit to its left alone; if it’s 5 or more, add to
the next digit.

2.8653
Rounded to thousandths: 2.865
Rounded to hundredths: 2.87
Rounded to tenths: 2.9
Rounded to the nearest unit: 3



Now You Can Do It

If 23.6783 is rounded to 23.68, how far from accurate is the round
number?

You need to know what fraction of an hour is represented by 38.67
minutes. What are the significant figures in 38.67?

Round:
34,894 to the nearest ten
12,555 to the nearest hundred
66.66 to the nearest unit
2,389,476.2338 to the nearest thousandth
79.7856 to the nearest unit
80 to the nearest hundred

Rounding numbers helps you precheck just about any calculation. If you
have to multiply 1,496 × 98, for example, you see that the answer is not
more than 1,500 × 100, or 150,000. If you come up with an answer that’s
more than that—or a lot less—you know you’ve made a mistake.

With division, you can eliminate a lot of work by omitting figures that do
not affect the result’s accuracy.

Let’s look at a hefty example of long division:



Suppose, however, that we did not need the answer correct to hundredths.
Suppose instead we only needed an answer correct to four figures. Here’s
how we come up with a good round number for an answer and shorten the
division process:

Needless to say, this eliminates several steps. If the first digit in the
decimal had been 5 or more, dividing by 34 would have produced an 8—
neatly giving a rounded number correct to four figures.



Now You Can Do It

Find a sum, correct to three figures, for these numbers: 3,482; 1,765;
26; 814; 9,029.

Find the difference, correct to hundredths, between 1,278.97666 and
359.82963.

Find the product, correct to five places, of 347,896 and 27,433.

An ice rink measures 38.67 feet long by 50.28 feet wide. How many
square feet does it contain, correct to  of a square foot?

Find an answer, correct to four figures, to 67,435 divided by 27.

Divide 100 by 3.14159, correct to .01.

ESTIMATION AS A SURVIVAL TECHNIQUE

You have to make an emergency run to the grocery store. Your family
needs provisions for tonight’s dinner and tomorrow’s breakfast, but all you
have in your pocket is a ten-dollar bill. You want to get past the checkout
counter without being embarrassed.

In this case, the best thing to do is always round up instead of down. As
you walk through the grocery store, round the prices of the things you need
to the nearest quarter, fifty cents, or dollar, and keep a running total of the
rounded prices in your head. Fudging the amounts on the high side means
that your estimated grocery tab will be more than the actual cost, and so you
should be safe at the checkout line. Let’s try it:



Your change is $1.18, almost enough to rent a movie tonight.
Another evening, you’re hanging out in your favorite Greek restaurant

with your buddies. You’re feeling fairly rich—you do have more than
$10.00 burning a hole in your pocket. Nevertheless, you’d like to have
something left after tonight’s frolic. Before you order, you make a ballpark
estimate of how much this Dionysian feast is going to cost you. So you
think about what you’d like for dinner, and again run up a mental adding-
machine tape. Here, too, you fudge the amounts on the high side.

You know you can’t get by without a hummus appetizer. This joint
charges $2.50 for that, and they clip you another dollar for a basket of pita
bread. You crave one of the incredible lamb dishes— the cheapest of those
is $10.50, but you’d really like the awesome rack of lamb, $19.50. So, to
the $3.50 you add $20, for $23.50. A half carafe of house wine is $4.90—
add $5.00 to the $23.50 for a new total of $28.50. Baklava for dessert,
$3.50, brings the bill close to $32.00, and you certainly need a cup of
strong, sweet Greek coffee with which to swill down the baklava—that’ll be
$2.35, which, rounded to $2.50 brings the estimated total to $34.50. Now
tips are on the bill not including tax, so you tip 15 percent on the rounded
total of $35—that’s 10 percent plus half of 10 percent, or $3.50 plus $1.75,
which comes to a tip of $5.25. Since the bill and tax is around $36.50,
round the $5.25 up to $5.50 and add for an even $42.00. Wow!

Let’s see how the real tab would compare:

Hummus $ 2.50
Pita bread 1.00



Rack of lamb 19.50
Baklava 3.50
Coffee 2.35
Subtotal: 33.75
Tip (15% of $35) 5.25
Tax (4.5%) 1.52
Total: 40.52

Your estimate was very close to reality. Good thing you inflated the prices
for your guesstimate, or you might have found that your appetite was larger
than your checkbook!

Now You Can Do It

You have a food budget of $50 per week for two people. Make a
shopping list for a week’s worth of groceries and go to your favorite
supermarket. Walk through the aisles and seek out your items, keeping a
running tab of what they might cost you. How close to $50 do you come?
Do you have anything left over for a meal at a restaurant?
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 Quick-Check Your
Answers 

BEFORE WE BEGIN TO talk about how to check answers to addition,
subtraction, multiplication, and division problems, I want you to know
something extraordinary about the number 9.

Whenever a number is divided by 9, the remainder is equal to the sum of
the number’s digits. This strange fact, which can be proven mathematically,
can be used in checking all four kinds of arithmetic computation.

Check it out:

The sum of the number’s digits equals the remainder.

The sum of the number’s digits equals the remainder.
“Oh yeah?” I can hear you saying. “Look here, Scott: 4,487 divided by 9

is 498, with a remainder of 5. But 4 plus 4 plus 8 plus 7 equals 23. That’s a
far cry from 5. How do you explain that?”

Well, there is an explanation. If the sum of the digits is more than 9, you
have to cast out the nines from it, too. Add the digits, and then subtract 9
until the result comes to 9 or less.



The sum of the number’s digits less all possible 9s equals the remainder.
Or, here’s another way to deal with that: Cast out 9s by adding the digits

in the sum of the digits:

The remainder of 4,487 ÷ 9 is 5.

5 = 5

“Okay, Scott. That sounds great. But what happens when the sum of the
number’s digits is evenly divisible by 9? Then the remainder is 0.” Unless
all the digits are 0s, it’s not very likely that their sum will be 0!

If the sum of the digits is 9 or an even multiple of 9 (such as 18, 27, 36,
etc.), then you count the remainder as 0.



There’s one more way to cast out 9s: by omitting them. As you add the
number’s digits, leave out the 9s and the combinations equal to 9 (such as 6
and 3, 4 and 5, 8 and 1, etc.)

Now, remember this technique. It forms part of the next four strategies.

CHECKING ADDITION

Here are five ways to check addition. Use the one that’s easiest for you,
under any given circumstances.

When you are adding only two numbers, the simplest way to check your
addition is to subtract either of the numbers from the sum. If the remainder



of your subtraction equals the other number in the addition problem, then
your sum is correct. Let’s try it on something simple:

Yes, the correct answer to 10 + 7 is 17. What if, in a moment of inattention,
we had written down 19 as the answer to 10 + 7?

Uh oh. We see right away that 12 does not equal either of the numbers in
our original problem, and immediately we know we made a mistake.

Let’s try it on some larger numbers:

When you have more than two numbers in a problem, the most common
way of checking addition is simply by adding the numbers in a different
order. Add

Of course, as a human calculator you spotted the numbers that added to
10, counted the tens, and tossed in whatever numbers were left:

To check, you’d just add in a different combination: 4 + 7 = 11 + 3 = 14 + 8
= 22 + 2 = 24. The pitfall here is that if you think 14 + 8 is 23, you’ll get a
wrong check figure, which will make your head ache.



Because addition works no matter in what order you add the numbers,
you can check your addition by adding the digits in the opposite direction
from the way you added the first time. If you added from top to bottom,
check by adding again, this time from bottom to top.

Another method for checking addition is casting out 9s. The idea is to
find all the ways that 9 appears in a number and then to get rid of all the 9s,
in one of the ways we discussed above. The result is called a check figure.

First find the check figure for each of the numbers in the addition
problem. Then find the check figure for the sum you obtained for the
problem.

When you add the figures in the problem, you get a sum. If you find the
check figures for all the numbers in the problem, you will find that the sum
of the check figures results in a number that is the same as the check figure
of the sum! Try it on 267 + 342 = 609.

The check figure for 267 is 6. The check figure for 342 is 0 (9 minus 9 = 0).
The check figure for 609 is 6. Add the check figures for 267 and 342: 6 + 0
= 6. Compare this with the answer’s check figure: 6 = 6.

When you add all the check figures that correspond to each of the
numbers in the original problem, their sum should equal the check figure of
the answer you got to the problem. To visualize that, think:

For me, the easiest way to cast out 9s when the sum of the digits is more
than 9 is to add the digits in the sum of the digits. It is also possible to
simply subtract 9 over and over, until you arrive at a number lower than 9.
(Obviously, if the digits don’t add up to 9, you don’t have a 9 to cast out.)

In this method, we will count a sum of 9 as 9. Let’s try it:



Okay, now we have a sum for our real numbers (14,055) and a sum for our
check numbers (24). The first thing we do with these two figures is cast out
the 9s in the check figure of 24. The easy way to do that is to add the two
digits in the check figure: 2 + 4 = 6.

If our answer to the original problem is correct, we should be able to add
the digits in the answer, cast out 9s, and come up with the same number as
the answer that we got when we cast out nines from our check figure of 24.
Let’s try that:

To cast out 9s from 15, add the digits: 1 + 5 = 6, the check figure of the
sum for the original problem.

Hallelujah! It’s the same as the number we got when we cast out 9s from
the sum of the check figure for each number in the problem: 6 = 6.

You can see the potential problem here. If, in adding the original
numbers, you accidentally added 231 as 321, the check figure you would
get in casting out 9s would be the same: 2 + 3 + 1 = 3 + 2 + 1. This mistake
would give you an answer to your problem of 14,145.

Heaven help us! Our check would show this error to be correct.
To detect an error caused by reversing the order of two digits, you can

check an addition problem by casting out 11s.
For each number in the problem, start with the units digit and add every

second figure, moving to the left. Then go to the tens column and add the
rest of the digits. Subtract the second sum from the first sum to get your
check number. If the first sum is smaller, add 11 or a multiple of 11 until



you can subtract. To cast out 11s in the number 83,275, for example, do
this:

To check an addition problem, add the check figures for each number in the
problem; they should equal the check figure of the original problem’s sum.

Now find the check figure for the sum that you obtained in the original
problem, 14,055:

Compare this with the figure that you got when you added up the check
figures and cast out 11s:

8 = 8

If we had accidentally reversed 231 to read 321, its check number would
have been (1 + 3) − 2 = 4 − 2 = 2. The total of the check figures would have
been 10, and since 10 does not equal 8, we would have known something
was amiss.

Notice that when mathematicians put numbers and signs inside
parentheses, it means those figures should be calculated before you do the



calculation indicated by the signs outside the parentheses. That is, first add
5 + 4 and 2 + 3; then subtract the results.

Casting out 9s or casting out 11s does not provide proof positive that
your answer is right. But if the sums of your check figures don’t tally, you
can be sure there’s a mistake somewhere.

The last method of checking addition is by adding up the columns and
then, offsetting figures to allow for tens, hundreds, thousands and such (just
as you might do in multiplication), adding the subtotals. The grand total
should equal the sum obtained by whatever other method you used.

Now You Can Do It

Show your stuff as a human calculator on these posers:

Now check three of the sums by casting out 9s or 11s. Decide for
yourself which is the easiest of the four methods to check the remaining
three, and prove them.



CHECKING SUBTRACTION

This is ludicrously easy. Since subtraction is reverse addition, how do
you check it? Right: by adding!

Add the remainder to the subtrahend, and (if your calculations are
correct) you’ll get the other number in the problem.

If you feel that you absolutely must keep subtracting, you can check a
subtraction problem by subtracting the remainder from the minuend. And if
you’re right, the result will be the same as the subtrahend.

You also can check subtraction by casting out 9s or casting out 11s. To
cast out 9s, remember the sum of the check numbers of the remainder and
the subtrahend should equal the check number of the minuend.

Add the check number (4) of the subtrahend (22) to the check number (1) of
the remainder (64). The result should equal the check number (5) of the
minuend (86).



Now You Can Do It

Which of these answers is wrong?

2,705 − 297 = 2,408
87,673 − 57,944 = 92,729
235,934 − 68,292 = 168,642
843,209 − 234,586 = 690,613
476,704,398 − 25,873,252 = 21,797,246
87 − 99 = −12

Checking subtraction by adding is so simple that I think casting out 9s is
more trouble than it’s worth. However, this strategy is the easiest way of
checking multiplication.

CHECKING MULTIPLICATION

Find the check numbers of the multiplicand, the multiplier, and the
product. Multiply the first two check numbers and cast out 9s; the result
should equal the check number of the product.

Multiply the check number (3) of the multiplier (16) by the check number
(7) of the multiplicand: (21).

3 × 7 = 21



Now cast out 9s from this figure, 21. You can do this by subtracting 9s until
there you arrive at a number less than 9, or simply by adding the digits of
the figure 21.

After casting out 9s, the check number that you get when you multiply the
check numbers of the original numbers in the problem (the multiplier and
the multiplicand’s check numbers) is 3. Now compare that check number
with the check number you derived from your original product, 336. Its
check number, you will recall, was also 3.

3 = 3   Compare check numbers.

As with addition, you could accidentally reverse the digits in one of a
problem’s figures. Here again, the cure is to cast out 11s. Let’s cast out 11s
to get check numbers for these figures:

This strategy is easier and lots more fun than the traditional way of
checking multiplication, because you get to use new numbers. Yes, you
guessed it: The usual way is to exchange the multiplier and multiplicand
and start all over again. That is, 212 × 163 should equal the same as 163 ×
212. Tedious, but it works.



It doesn’t matter whether you use the conventional method (as we have
here, just to show how much boredom awaits the unenlightened) or the
faster strategies of cross-multiplication or complementary multiplication,
you still end up repeating yourself. Casting out 9s or 11s gives you some
variety and, once you get the hang of it, is very easy. Certainly for large
numbers it’s much quicker than remultiplying figures upwards of the
hundred thousands.

The fourth and perhaps most obvious way to check multiplication is by
reversing the process and dividing. If 3 × 9 = 27, then 27 divided by 9 = 3,
or 27 divided by 3 = 9. When you divide the product by the multiplier, you
should get the multiplicand. When you divide the product by the
multiplicand, you should get the multiplier.

Now You Can Do It

Are any of these statements correct? What makes you think so?

9 × 276 = 2,503
27 × 23 = 621
8.2 × 4.4 = 3.608
333 × 666 = 222,778
1,789 × 9,871 = 17,650,219
42,368 × 965 = 40,664,120
878,943 × 722,654 = 635,171,684,722.

If you think two are right, you missed a trick question. Look harder at
those numbers.



CHECKING DIVISION

I recommend that before you divide you try to estimate the answer.
You’ll be surprised at how many big mistakes this helps you to avoid.

Divide 897 into 54,793, for example. If you round off both numbers—
900 into 55,000—you can arrive at a ballpark figure for the answer: Cancel
the 0s and divide 550 by 9. This is a little over 61, and so the answer to the
original problem is probably something near 61. The Human Calculator
sees the answer is actually 61.08.

Be sure, when you round off the divisor and the dividend, that you go in
the same direction: Either increase both numbers or decrease both numbers.
Don’t increase one and decrease the other!

You can keep tabs on long division as you go, by checking the
subtraction step by step. I do this by adding the partial remainders to the
number above it:

Once you’re finished, you can check your answer by multiplying it by the
divisor. The result should equal the dividend.



Or, check the answer by dividing it into the dividend.

Or you can use any of the human calculator strategies to double- check
division. For example, dividing and dividing again by factors of the divisor:

The easiest and fastest way to check division, especially if it involves
large numbers, is by casting out 9s or 11s. Once the problem is solved and
you think you have the answer, find:

the check number of the divisor
the check number of the dividend
the check number of the whole number in the quotient
the check number of the remainder

Then remember: The dividend’s check number = (divisor’s check number ×
quotient’s check number) + remainder’s check number.

Let’s make up some larger numbers to experiment with casting out 9s:



Now You Can Do It

Check these answers, using the method that works easiest for you:

988 ÷ 19 = 52
2,993 ÷ 48 = 62, r. 35
7,200 ÷ 17 = 42.352
52,100 ÷ 99 = 526, r. 26
782 ÷ 23 = 34, r.
5 6,360 ÷ 76 = 83
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 How We Measure Things 

AMERICANS IN THE UNITED STATES grow up using the English system of
weights and measures—ounces, pounds, feet, miles, and the like. We also
speak of temperatures in degrees Fahrenheit. The rest of the world,
including Canadians and Latin Americans, uses the metric system for
weights and distances and speaks of temperatures in degrees Celsius.
Although efforts to change our national habits have so far not taken hold,
the United States approved the metric system in 1866, and metric is the
official system used by scientific and technical departments of the United
States government.

Because it is the international system of weights and measures,
Americans need to understand metrics. Each of us will use it someday,
whether to repair a foreign car, to cook up a French recipe, or to study the
mysteries of outer space.

USING THE METRIC SYSTEM

Human calculators love the metric system, because instead of two or
three sets of measures for volume, weight, and length, there’s just one.
Everything is expressed in decimal units, so to convert from one unit to
another, you have only to move the decimal point.

All measures in the metric system are based on a single unit, the meter.
This is supposed to represent one ten-millionth of the distance from the
earth’s equator to either pole. A meter is about 392/5 inches long—a bit
more than a yard.



Lengths shorter than a meter are measured in decimal fractions of the
meter. The meter, then, is divided into ten parts, each called a decimeter.
The decimeter is also divided into ten parts—each one one-hundredth of a
meter—called centimeters. Centimeters are in turn divided into tenths—
which are one one-thousandth of a meter—and that unit is called a
millimeter.

Longer distances are measured in multiples of 10 meters. After the meter
comes the decameter—10 meters. Next largest is the hectometer (10
decameters or 100 meters), and after that comes the kilometer (10
hectometers, or 100 decameters, or 1,000 meters). The kilometer is a little
more than half a mile—actually, about ⅝ of a mile. The longest unit is
called a myriameter, which is 10 kilometers.

These names come from Latin and Greek words meaning tenths,
hundredths, thousandths and tens, hundreds, thousands. The same prefixes
are used for measures of length, volume, and weight. When you speak of
measures longer than the main unit, you’re using terms of Greek origin; for
measures smaller than the main unit, you’re influenced by Latin. In a
nutshell, they look like this:

milli- = thousandths (.001)
centi- = hundredths (.01)
deci- = tenths (.1)
Main Unit = one (1)
deca- = tens (10)
hecto- = hundreds (100)
kilo- = thousands (1,000)
myria- = ten thousands (10,000)

Most commonly used are thousandths (milli-), hundredths (centi-), units,
and thousands (kilo-). Measurements in tenths, tens, hundreds, and ten
thousands show up in science, but rarely appear in everyday use.

Length, then, is measured in multiples or fractions of meters: 1 meter
(abbreviated m) equals



10 decimeters (dm)
100 centimeters (cm)
1,000 millimeters (mm)
.1 decameter (dam)
.01 hectometer (hm)
.001 kilometer (km)
.0001 myriameter (mym)

10 millimeters = 1 centimeter
10 centimeters = 1 decimeter
10 decimeters = 1 meter
10 meters = 1 decameter
10 decameters = 1 hectometer
10 hectometers = 1 kilometer
10 kilometers = 1 myriameter

Myriameters, hectometers, and decameters are rarely used—for most
practical purposes, long distances are expressed in kilometers.

To figure out how many decimeters are in a meter, move the decimal
point one place to the left. To see what part of a meter is represented by so
many decimeters, move the decimal point one place to the right.

1 meter = 10 decimeters
1 decimeter = .1 meter
25 meters = 250 decimeters
25 decimeters = 2.5 meters
252 meters = 2,520 decimeters
252 decimeters = 25.2 meters

To change centimeters to meters, move the decimal point two places to
the left. To change meters to centimeters, move the decimal point two
places to the right.

1 meter = 100 centimeters
1 centimeter = .01 meter



25 meters = 2,500 centimeters
25 centimeters = .25 meter
252 meters = 25,200 centimeters
252 centimeters = 2.52 meters

To change millimeters to meters, move the decimal point three places to
the left. And to change meters to millimeters, move it three places to the
right.

1 meter = 1,000 millimeters
1 millimeter = .001 meter
25 meters = 25,000 millimeters
25 millimeters = .025 meter
252 meters = 252,000 millimeters
252 millimeters = .252 meter

To go in the other direction—toward larger numbers instead of smaller—
simply reverse the movement of the decimal point. That is, to change
meters to decameters, move the decimal point one place to the right. To
change decameters to meters, move it one place to the left.

1 decameter = 10 meters
1 meter = .1 decameter
25 meters = 2.5 decameters
25 decameters = 250 meters
252 meters = 25.2 decameters
252 decameters = 2,520 meters

Similarly, to change meters to hectometers, move the decimal point two
places to the right. To change hectometers to meters, move it two places to
the left.

1 hectometer = 100 meters
1 meter = .01 hectometer
25 meters = .25 hectometer



25 hectometers = 2,500 meters
252 meters = 2.52 hectometers
252 hectometers = 25,200 meters

And to change meters to kilometers, move the decimal point three places
to the left. To change kilometers to meters, move it three places to the right.

1 kilometer = 1,000 meters
1 meter = .001 kilometer
25 meters = .025 kilometer
25 kilometers = 25,000 meters
252 meters = .252 kilometer
252 kilometers = 252,000 meters

If you are an American driving in Latin America or Europe, you need to
remember that a kilometer is not the same as a mile. In fact, it’s a little more
than half a mile, and when your speedometer reads “80 kph,” you are
holding up traffic on the Autobahn!

To measure area—such as the size of your front yard—we use square
meters. One square meter is a meter long by a meter wide. It’s also 10
decimeters long by 10 decimeters wide, or 100 square decimeters. Five
square meters is 5 meters by 5 meters. One square decameter is 10 meters
long by 10 meters wide, which is the same as 100 square meters. These
measures also fit conveniently in a nutshell:

One hundred square millimeters (mm2) equal 1 square centimeter (cm2).
A square decameter, in measuring land, is called an are, and the more

commonly used square hectometer is called a hectare. One hectare is about
2½ acres.



Volume—the amount of space, for example, that is enclosed by a
shoebox—is measured in cubic meters. Actually, a shoebox’s volume would
probably be measured in cubic decimeters or cubic centimeters.

Volume is different from capacity. Volume measures the amount of space
inside a real or imagined object. Capacity measures the quantity of stuff a
real or imagined space or vessel can hold. In the English system, volume is
measured in cubic feet, cubic inches, cubic miles, etc. In the metric system,
as we have seen, volume is a matter of cubic centimeters, cubic decimeters,
cubic meters, etc. English capacity is measured in quarts, gallons, bushels,
etc. In the metric system, capacity is measured in fractions or multiples of
the liter.

A liter is a little less than one liquid quart. It’s based on the cubic
decimeter—one liter is an imaginary square container 1 decimeter high, 1
decimeter wide, and 1 decimeter deep. That is 1 dm × 1 dm × 1 dm, or 1
dm3.

Like other metric measures, the liter is reckoned in decimal numbers,
with the same prefixes: 1 liter equals

10 deciliters
100 centiliters
1,000 milliliters
.1 decaliter
.01 hectoliter
.001 kiloliter
.001 myrialiter

1 decaliter = 10 liters
1 hectoliter = 100 liters



1 kiloliter = 1,000 liters
1 myrialiter = 10,000 liters

Metric weight is measured in grams. The gram is based on the weight of
one cubic centimeter of water. Now, water’s weight changes according to its
temperature, and so the temperature of the water scientists use to determine
the weight of a gram is 4 degrees Celsius—at which water reaches its
maximum weight. A gram is about 1/28 of an ounce, and a kilogram is about
21/5 pounds.

Fractions and multiples of the gram are designated in exactly the same
way as other metric measures: 1 gram equals

10 decigrams
100 centigrams
1,000 milligrams
.1 decagram
.01 hectogram
.001 kilogram
.001 myriagram

1 decagram = 10 grams
1 hectogram = 100 grams
1 kilogram = 1,000 grams
1 myriagram = 10,000 grams

There is such a thing as a metric ton, which is the weight of one cubic
meter of water at 4 degrees Celsius. A metric ton weighs about 2,205
pounds, a little more than the 2,000 pounds Americans commonly call a ton
—which is more properly known as a short ton.

Speaking of degrees Celsius, the metric system also has a measure for
temperature.

The two common temperature measures are Fahrenheit—most often used
in the United States—and Celsius or centigrade.



In the Celsius system, the temperature at which water freezes is marked
as 0° C., and the temperature at which it boils is 100° C. Temperatures
higher and lower than the boiling point and freezing point of water are
numbered accordingly. In Celsius degrees, the melting point of iron is at
about 1,530° C., “room temperature” is about 20° C., and the temperature
of the sun is about 6,000° C. A temperature below freezing is called a
negative temperature and is marked by a minus sign (−). Positive
temperatures, above freezing, are indicated by a plus sign ( + ). So you
would say that the boiling point of water is +100° C., and the air turns
liquid at −192° C.

The older Fahrenheit system has the boiling point of water at 212° F. and
its freezing point at 32° F. There are 180 degrees between those two points.
Zero degrees, Fahrenheit, is 32 degrees below freezing. On this scale, iron
melts at 2,786° F., and the temperature of liquid air is about −459° F.

Now You Can Do It

How many meters theoretically cover the distance from the equator to
the North Pole?

How many centimeters from the equator to the North Pole? How many
decameters? Kilometers?

Convert 8,764,522.33 milligrams to grams. How many hectograms
would this be?

CONVERTING METRIC TO ENGLISH MEASURES

If you go to Canada, you may see signs in gas stations advertising
gasoline for $0.50. Sounds like a bargain—until you realize that’s $0.50 a
liter. Since a liter is about a quart, and there are four quarts in a gallon, the
price is actually more than $2.00 a gallon!



You recover from the shock and buy enough gas to drive to the
supermarket. There you find milk sold by the liter, cheese by the centigram,
bulk rice by the kilogram, spices by the milligram, and pizza by the slice.
What on earth is this stuff really costing you?

Puzzled, you retreat to your motel room and turn on the television. The
weather announcer says tomorrow’s temperature will be around 20° C.
Should you wear a jacket or a sundress?

To put the cost of a liter, a gram, or a centigram into familiar terms, you
need to know approximately what those metric measures mean in English
measures. At the end of this book I’ve included two tables that summarize
what you need to know about the English and metric systems, and a
conversion table to help translate one to another. One of the most complete
sets of conversion tables, by the way, is in the back of Webster’s New World
Dictionary.

To use a conversion table, look up one of the units you want to convert.
See what that unit equals in the other system, and multiply by the other
system’s equivalent.

For example, suppose you need to know how many kilometers are in
eight miles.

Look up 1 mile. You see that it equals 1.6 kilometers. If 1 mile = 1.6
kilometers, then 8 miles = 1.6 × 8 kilometers, or 12.8 kilometers.

What we’ve done, really, is set up a ratio and multiplied both sides by 8.
This will work for any equivalent and any quantity.

1 cubic yard = .76 cubic meter
15 cubic yards = .76 × 15 = 11.4 cubic meters
1 cubic meter = 1.3 cubic yards
976 cubic meters = 1.3 × 976 = 1,268.8 cubic yards

As to what to wear on that trip to Canada, it’s not difficult to convert
Celsius to Fahrenheit, and vice versa.

One degree Celsius equals 9/5 degrees Fahrenheit, and 1 degree
Fahrenheit is 5/9 degrees Celsius; and we know that 0° C. is 32° F. So:



To go from Celsius to Fahrenheit, multiply the degrees Celsius by 9/5
and then add 32.

To go from Fahrenheit to Celsius, first subtract 32 and then multiply the
remainder by 5/9.

The Canadian weatherman said the temperature would be 20 degrees, and
we’re pretty sure he meant Celsius.

Sounds like a nice day.
You were told the weather would be quite warm this week in the

Canadian July, and so you brought clothes meant for 85° F. days. What
would an 85-degree temperature read on the Celsius scale?

Start by subtracting 32:

Now You Can Do It

Your kid brother has told your mom he has to stay home from school
because he has a temperature of 37.4 degrees. You doubt he’s that
abnormal. Assuming he’s giving her a Celsius figure, does he really have
the body temperature of a cadaver? Or maybe he has a fever?

WHY BOTHER WITH METRIC?

Not only when you travel abroad do you need to know metric and Celsius
measures. In the United States, the movement to adopt the metric system in
all parts of daily commerce survives. Eventually, liters, grams, and meters
will replace quarts, ounces, and yards. At that point, you as a consumer will
have to be on the alert.



A liter is not exactly a quart. It’s slightly more than a quart. And so if
milk measured out in liter containers is sold for the price of a quart, you
will get more milk. No big deal for one consumer— but over the years, and
over hundreds, thousands, and millions of milk buyers, it will add up.
Remember, even if you use round numbers for conversion: A yard is not a
meter; a quart is not a liter; a ton is not a metric ton.

There are times when it is in your interest to be precise.
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 The Calendar Formula 

HERE’S SOMETHING YOU WON’T find in just any math book. I can’t resist
including it because it’s so much fun. Once you master this, you will
become a confirmed human calculator.

With this strategy, you can ask a friend what day, month, and year he was
born. Think for a few seconds, and then announce— with perfect accuracy!
—which day of the week he came into the world.

Here’s how it works.
First, you learn the significant value of each month in the year. These

figures are as follows:

January 0
February 3
March 3
April 6
May 1
June 4
July 6
August 2
September 5
October 0
November 3
December 5

In addition, we assign each day of the week a number, starting with 0 for
Sunday:



Sunday 0
Monday 1
Tuesday 2
Wednesday3
Thursday 4
Friday 5
Saturday 6

Now, you take the year the person was born and drop the “19.” If she was
born in 1945, for example, take 45. Divide it by 4 and drop the remainder
without rounding up.

Add that back to the year:

11 + 45 = 56

To that, add the day of the month—our subject was born on May 7.

56 + 7 = 63

Now add the significant value for the month she was born in. The
significant value for May is 1.

63 + 1 = 64

Divide this by 7, the number of the days in a week:

64 ÷ 7 = 9, r. 1



Now all you have to do is take the remainder and translate it into one of the
assigned days of the week. Monday is 1, and so our friend was born on
Monday, May 7, 1945.

I like to express this as a formula, which I call the calendar formula. In
this statement, SV stands for “significant value.”

Once you have committed the significant values of the months to memory,
this trick is incredibly easy. And incredibly amazing.

Before we leave this subject, there are a few details you need to know.
When you’re working with a leap year (that’s any year that’s evenly
divisible by 4), you should subtract 1 from the significant value when you
have to find a day in January or February.

The formula above works only for dates in the twentieth century (January
1, 1902–December 31, 1999). The reason is that the significant value for the
months change as the centuries pass. The days rotate over a 400-year
period. Every 400 years, a leap century occurs. Amazingly, every leap
century begins with a Saturday. So any time you have a century that is
divisible by 400, you know that January 1 of the first year in that century
falls on Saturday. The year 2000 will begin on Saturday.

What if you want to use the calendar formula for a date that falls in
another century? Well, with slight variations the formula works for any
century that’s reckoned by the Gregorian calendar. If you’re looking for a
day in the nineteenth century, add 2 to the significant value. To move
forward a century from ours, subtract from the significant value: For the
twenty-first century, you will subtract 1 from the SV.



Now You Can Do It

July 20, 1969: Neil Armstrong walked on the moon.
August 1, 1956: The Salk polio vaccine went into mass distribution.
December 8,1914: Irving Berlin’s first musical, Watch Your Step,

opened on Broadway.
June 27, 1936: Franklin Delano Roosevelt said, with more prescience

than he perhaps knew, “This generation of Americans has a rendezvous
with destiny.”

July 4,1776: The Declaration of Independence was signed.
On which days of the week did these events occur?

More About How We Measure Years

Our 365-day year has not always been with us. Ancient Asians thought the
year was 340 days long. They didn’t know that the earth revolves around
the sun, and so of course they couldn’t measure a year in that way. Instead,
they based their year on the passage of the seasons. They reckoned months
according to the phases of the moon, and since the moon takes about 28
days to go from full all the way back to full, their months were also shorter
than ours. They counted 12 months in a year, as we still do today.

The Babylonians, who developed a sophisticated knowledge of
astronomy and mathematics, made closer observations. They figured a year
was about 360 days, which they divided into 10 periods of 36 days each.
Although they no longer corresponded to lunar phases, these intervals were
still named after the moon.

By Roman times, several of the months had taken on names we use, in
Anglicized form, to this day. Some of the months were named after Roman
gods; others took on the Latin words for the numbers the Romans gave
them.



January, from Janus, the two-faced god who looks forward and back at
once

February, named after a Roman festival, Februa
March, after Mars, the Roman god of war
April, from the Latin Aprilis, perhaps “month of Venus”
May, probably from Maia, the goddess of increase
June, from the name of a prominent Roman family, Junius
July, the month of Julius Caesar
August, the month of Augustus Caesar
September, the Romans’ seventh month (septem, “seven”)
October, their eighth month (octo, “eight”)
November, their ninth month (novem, “nine”)
December, their tenth month (decem, “ten”)

The Roman year began in March, and so October, November, and
December were for them the eighth, ninth, and tenth months.

By Julius Caesar’s time, people had learned that the year consisted of
365¼ days. Caesar decided to make the calendar conform to this. So he
decreed that the year would henceforth consist of 365 days, that six hours in
each year would be disregarded for three years, and that an entire day
would be added to the second month in the fourth year to make up for the
lost ¼ day. From this comes our leap year—the year that February contains
29 days.

Actually, the year contains 365 days, 5 hours, 48 minutes, and 46
seconds, a slight deviation from the Roman figure of 365 days, 6 hours.
Over the centuries, this adds up. By the year 1582, the calendar was 10 days
out of sync with the seasons. To fix this, Pope Gregory XIII decreed that 10
days would be erased from the calendar, and the day following October 4,
1582, would be called October 15. This brought the spring equinox—when
daylight hours and nighttime hours are equal—to March 21. Most of the
world’s Catholic countries immediately adopted this Gregorian calendar.

The British, however, did not. They clung to the Julian calendar until
1752, by which time they were eleven days behind the Continent. Finally,



Parliament agreed to strike eleven days from the calendar, and the day
following September 2, 1752, became September 14. This is why
documents written by English correspondents in the sixteenth, seventeenth,
and eighteenth centuries do not agree in date with many of their continental
contemporaries. In the Eastern Church, the old Julian calendar was retained
until the twentieth century.

European nations number the centuries from the beginning of the
Christian era. The years after the supposed year of Jesus Christ’s birth are
tagged A.D. (from the Latin anno domini “in the year of our Lord”). To be
strictly correct, place the A.D. before the year: “The American Revolution
began in A.D. 1776.” Years before Christ are marked B.C., which comes after
the date: “Julius Caesar died in 44 B.C.”

Technically, the last year of a century is the year ending in two 0s. Thus
1800 was not the first year of the nineteenth century but the last year of the
eighteenth century. The twenty-first century begins in the year 2001. It will
begin a new millennium—that is, a thousand-year period.



PART IV

MATH
IN
REAL
LIFE
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 Tips, Tax, and Change 

TIPPING

Tips are figured in round numbers on the before-tax tab: 15 percent give
or take a few pennies. Precisely 15 percent of an $8.75 check is $1.31.
Leave $1.30, $1.35, or—if the service was really primo—$1.50.

Figuring .15 of any bill is easier if you first find 10 percent (.10) and then
add 5 percent (.05). Since 5 percent is half of 10 percent, all you have to do
is find 10 percent by moving the decimal point one place to the left, and
then add half of that to the result.

Say the bill is $14.62.



Now You Can Do It

You fly into Denver for a business trip. The client is paying, so you
take a taxi from the airport. The cabbie loads your three bags into the
back of his car and drives you from Stapleton Airport to the Brown
Palace Hotel. The fare is $14.95.

He and a bellboy load your bags onto a cart, and the bellboy wheels
them into the lobby. You check in and are escorted by the bellboy to your
room, where he unloads your bags and shows you where the bathroom is
and how to operate the air-conditioning. You tip the bellboy 50¢ a bag.

You’re starved, so you call room service and order a plate of cheese
and crackers, to the tune of $10.50. A soft drink is another $2.25.
Moments later, the food arrives at your door, delivered by a white-gloved
waiter, who places the tray on a table and holds his hand out.

How much does your arrival in Denver cost your clients in tips? How
could you save them money?

TAXES

Unlike tips, taxes are not optional. Many states and some cities charge a
sales tax on restaurant meals, liquor, nonfood items purchased in grocery
stores, and purchases such as clothing and appliances. In some places, such
as New York City, sales taxes are high enough to significantly increase the
cost of living there.

You figure the tax in much the same way as you do tips: on the net bill
(before tipping, of course). To do this, you need to know how much tax
your state levies, and, if there’s a city tax, how much that is, too.

Suppose your state has a 4.5 percent tax, and your city a 1.2 percent tax.
The easiest approach is to add them together: 4.5 + 1.2 = 5.7 percent.



Convert this to a decimal by moving the decimal point two places to the
left: 5.7 percent = .057.

To figure the tax precisely, multiply the total taxable bill by .057. To
estimate the bill, round the multiplier up to .06.

Now, it’s a rare municipality that charges tax on food items purchased in
grocery stores. So, suppose your supermarket bill looks like this:

1 pound hamburger $1.99
potato chips 1.28
canned soup .67
canned soup .67
canned soup .67
fresh berries .99
furniture polish 3.98
dishwasher detergent 4.26
plastic container 1.16
coffee 2.89
coffee maker 17.59
 $36.15

Your tax would not be 5.7 percent of $36.15. You would pay sales tax only
on the nonfood items: furniture polish, dishwasher detergent, the plastic
container, and the coffee maker. That would be $3.98 + $4.24 + $1.16 +
$17.59, or $26.77. And 5.7 percent of that subtotal is $1.54. Add that to the
subtotal of $36.15 to get your total grocery bill: $37.69.

There are many, many other kinds of taxes. Liquor and cigarettes, for
example, carry various hidden taxes, depending on in what part of the
country you purchase them—manufacturers, importers, distributors, and
retailers are charged certain taxes that are passed along to you. State and
federal income and social security taxes remove a chunk from your income.

COUNTING CHANGE



In some fast-food restaurants, the cash registers have keys marked with
pictures of the items sold: hamburger, double hamburger, cheeseburger,
salad, soft drink, french fries. Punch the milkshake key, and the machine
adds $1.50 to the customer’s tab. When you’ve punched in everything the
customer ordered, the machine tells you what to charge him. He hands you
a $20 bill to cover an $11.45 meal. You punch in $20, and the machine tells
you to give him $8.55 in change.

Very convenient. But, you know, these devices came into being not for
your convenience, but because over the past twenty years business owners
have found that the employees who staff their stores have a hard time
making change. They blame this phenomenon on the sinking quality of
American education.

It’s time we brought a screeching halt to that attitude! If your mom and
dad could figure correct change, so can you. And while we’re not likely to
make retailers replace their cash registers, you will know how to check the
change you receive at stores and restaurants, and you will be able to count
change correctly at your next garage sale.

To start, let’s be sure you know how to count by 5s, 10s, and 20s. You
certainly can count from 1 to 100 by 1s: 1, 2, 3, 4, 5, 6 . . . and so on. When
you count by 5s, every other number ends in 0, and the rest end in 5:

5, 10, 15, 20, 25, 30, 35, 40, 45 . . .

Count by 10s, and every number ends in 0:

10, 20, 30, 40, 50, 60, 70, 80, 90, 100 . . .

Counting by 20s is the same as counting by 2s, except that you add a 0 to
each number:



20, 40, 60, 80, 100 . . .

It seems obvious, but you would be amazed at the number of restaurant
managers who have interviewed job applicants who can’t do this.

When you make change, you start with the smallest units of change due
and work up to the largest. The object is to hand the customer the largest
pieces of money you can. For example, if you owe someone $8, you don’t
give her eight $1 bills; you give her three $1 bills and a $5 bill.

Making change is a simple matter of counting. You start your count with
the amount charged and add up to the amount the customer gave you.

The customer’s bill is $11.45. He gives you $20.00.
You say aloud, “That was $11.45.”
Now you start taking money out of the bill. You start with a nickel. Say

aloud, “Here’s $11.50.” Switch to quarters, and keep counting, “$11.75,
$12.00.” Now go to dollar bills and count till you come to a number ending
in 5 or 0: “$13.00, $14.00, $15.00.” Now you can fill in the rest with a $5
bill. As you hand it to him, you finish your count by saying, “And $20.00.”

Easy, isn’t it?
Let’s try it again. You buy some items in a small-town drugstore whose

proprietor still uses a cash register manufactured in 1946. The cost comes to
$21.37. You give her two $20 bills, or a total of $40.00. The cashier counts
your change:

“That was $21.37. Here’s $21.38, 39, 40 (she puts three pennies in your
hand); 50 (she gives you a dime), 75, $22 (she gives you two quarters); 23,
24, 25 (she gives you three dollar bills); $30 (she adds a $5 bill); and $40.00
(she finishes with a $10 bill).” If you count up your change, you will see it
comes to $18.63, which is $40.00 less $21.37. She counted the change
quicker than you could pull your calculator out of your pocket, and she was
every bit as accurate as any electronic gadget.

Always count your change when you come away from a cash register.
Machines and human beings make mistakes. You’ll be surprised at how



often incorrect change is offered—a little alertness will save you a lot of
money.

Now You Can Do It

You go to dinner at a Greek restaurant and are charged $40.54. You
have three $20 bills, which you hand to the waiter. He comes back with
$19.66. Did he give you the right change? Figure it out by counting,
rather than subtracting.

You are throwing a yard sale. To a single buyer, you sell one Nintendo
game ($1.99), three jam jars and a peanut butter jar ($0.75 apiece), nine
of the brand-new jeweled pig collars you bought awhile back ($2.98
apiece), and a stuffed elephant ($5.80). The customer gives you a $50
bill. Count his change for him.

To your amazement, the customer offers you a tip. If the generous
customer gives you 15 percent of his total bill, how much is the tip?
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 Time: Jet Lag, Military
Hours, Telling Time 

LAST WEEK I TOOK a jet from Phoenix, Arizona, to San Diego, California. I
left at 8:30 in the morning and arrived in San Diego at 8:35 the same
morning. It was the shortest plane ride I’ve ever made!

Not really. In fact, the flight to southern California takes about an hour.
But because San Diego is one time zone to the west of Phoenix, the local
time there was an hour earlier than local Phoenix time. When I left Phoenix,
it was 7:30 in California.

In the good old days, local time was really local. Time schedules were
about as standardized as some of the early measures of weight and distance
—some of which had to do with how far a man could holler across an
empty plain. Each community kept its own time.

During the nineteenth century, people began to see the need for some
standardized system of timekeeping. This was brought about by the
invention of the steam engine and the subsequent development of long-
distance, rapid railway routes. The patchwork of local times caused great
confusion, not just for passengers but for shippers, train engineers, and
railway operators. The problem was especially acute in the United States
and Canada, where moving people and goods across the wide-open spaces
meant crossing thousands of miles.

So, in 1884 representatives of twenty-seven nations met in Washington,
D.C., where they agreed to adopt a uniform international time system. It’s
based on the relationship between longitude and time.



LONGITUDE AND LATITUDE

To understand this concept, let’s look briefly at the way mapmakers
locate positions on earth.

The earth is divided into two sets of standard reference lines. The lines
are imaginary, of course—if you stand on the 45th parallel of latitude, you
won’t see a line running under your feet.

Latitude is a way of measuring distances north and south of the equator.
It consists of parallel lines running in circles around the globe, starting at
the Equator. These circles girdle the earth in layers, all the way up to the
North Pole and all the way down to the South Pole. They are numbered in
degrees, minutes (indicated by the symbol ′), and seconds (″), from 0° 0′ 0″
at the Equator to 90° at the Pole. If a person were standing halfway between
the Equator and the North Pole, she would be at 45° north latitude. If she
were halfway between the Equator and the South Pole, she would be at 45°
south latitude.

You understand that a circle contains 360 degrees. If you draw a line
around the globe that passes through each pole, you’ve drawn a circle. Now,
if you travel along that line from the Equator to the North Pole, you’ve gone
¼ of the circle, or 90 degrees. Keep moving back down to the Equator, and
you’ve gone ½ the circle, or 180 degrees. Continue down to the South Pole,
and you will have traversed ¾ of the circle, or 270 degrees. And when you
make it back to where you started, you will have traveled 360 degrees
around the earth.

One degree contains 60 minutes (60′), and one minute contains 60
seconds (60″). These figures make it possible to locate a spot on the earth
with some precision. The Tropic of Cancer, for example, is 23° 30′ north of
the Equator. The border between Canada and the United States is at 49°
north latitude. New York City’s Museum of Natural History is at 40° 46′
47.17″ north latitude.



Longitude measures distances east and west. Longitude is pictured in
circles, too, called meridians. Instead of being parallel, these circles all pass
through the poles. Therefore, they draw closer together as they approach the
poles, and spread wider apart closer to the Equator.



The starting point for measuring longitude is called the Prime Meridian.
It passes through the British Royal Astronomical Observatory in
Greenwich, England, and so it’s sometimes called the Greenwich Prime
Meridian. Degrees of longitude east and west are marked along the Equator.
The Prime Meridian starts at the North Pole and crosses the Equator at 0° of
longitude. It continues to the South Pole. From there it starts its way back
up toward the North Pole, and on the other side of the globe it crosses the
Equator at 180° of longitude. Longitude is figured from 0° to 180°, in each
direction. Thus it divides the Equator into two half-circles. Anything in the
west half-circle (called the Western Hemisphere) is said to be in west
longitude. Places in the east half-circle (the Eastern Hemisphere) are in east
longitude. New York City is about 74° west longitude, and the Museum of
Natural History is precisely at 73° 58′ 41″ west longitude.

So, as you can see, if you have the exact latitude and the exact longitude
of any place on earth, you can find it with precision. Knowing that the
Museum of Natural History is at 40° 46′ 47.17″ N. and 73° 58′ 41″ W., we
would have no trouble locating it on a detailed map. To find it, we would
simply run a finger up the latitude scale to 40° 46′ 47.17″ north, and then go
across to 73° 58′ 41″ west. The museum will be right where those two lines
intersect.

. . . AND TIME AGAIN



Because the earth turns on its axis approximately once every twenty-four
hours, longitude (lines drawn from the top to the bottom of the axis) has a
great deal to do with time.

In one complete rotation, the earth turns through all 360 degrees of
longitude. In one hour, it turns 360 degrees ÷ 24, or 15 degrees. So, one
hour of time is equivalent to 15 degrees of longitude.

Picture the sun directly over the Greenwich meridian on the Equator. At
that point, it’s noon at 0° of longitude. But as we go east from the Prime
Meridian, local time is one hour later for every 15 degrees of longitude. As
we go west, local time is one hour earlier for every 15 degrees. Take a look
at the figure below.

When the sun is directly over the Prime Meridian, it is noon at 0° of
longitude and midnight on the other side of the globe, at 180°. At 90° west,
the sun appears to be rising, and it’s 6:00 in the morning. At 90° east, the
sun is setting, and it’s 6:00 in the evening. So you see that the time of day
depends on where you are on the earth.

INTERNATIONAL TIME

The potentates who gathered in Washington back in 1884 to divide the
earth into twenty-four standard time zones, started with the Greenwich
Prime Meridian. Each time zone centers on a standard meridian of
longitude, and these are set 15 degrees apart at the North Pole. So, each



time zone represents one hour of time. If it’s noon at Greenwich, it’s 1:00
P.M. in the next time zone to the east. Two zones to the east, it’s 2:00 P.M. Six
zones east, it’s 6:00 P.M. One time zone to the west, it’s 11:00 A.M. Two
zones to the west, it’s 10:00 A.M. Six zones west, it’s 6:00 A.M. As you go
east from Greenwich, you add one hour of clock time for each time zone
you pass through. As you go west, subtract one hour for each time zone.

All the way on the other side of the earth, where longitude measures 180°
east and west, it’s midnight at noon Greenwich time. And when you cross
that line, you move into another day! If you’re traveling west, you lose a
day—it’s Sunday at 179° W. and Monday at 179° E. If you cross the line
going in the other direction, eastward, you gain a day—that is, you go from
Monday to Sunday. For this reason, the 180th meridian is called the
International Date Line. Conveniently, it crosses the Pacific Ocean for most
of its length, and few people live near it.

Now, this time zone theory sounds cut-and-dried. But in reality, the
borders of the various time zones have been altered for various special
interests. If you’ll look at the map in the front of your local telephone book,
you’ll see the edges of the time zones in North America wriggle all over the
place. In some places, they coincide with state boundaries; in other places
they don’t. This is true all over the world—the time zone that would split
Siberia in two, for example, has been redrawn to take in the whole region.
Needless to say, in some parts of Siberia, the sun is in an odd position at
noon.

The continental United States is divided into four time zones. They are
called the Eastern, Central, Mountain, and Pacific zones. The easternmost
provinces of Canada are in the Atlantic time zone. Alaska is one hour
earlier and Hawaii is two hours earlier than Pacific time.

To figure the local time in another zone, count the number of zones east
or west (not counting your zone) and add or subtract that many hours.
When it’s 4:00 P.M. in New York City, it’s 3:00 P.M. in Des Moines, 2:00 P.M.

in Denver, 1:00 P.M. in San Francisco, noon in Anchorage, and 11:00 A.M. in
Honolulu.



TIME ZONES, JET PLANES, AND TELEPHONES

What does it all mean in practical terms?
Well, if we still got around by horse and buggy and communicated by

smoke signals, it wouldn’t mean much. But lately, we humans have taken to
flying around the world at six hundred or seven hundred miles per hour.
This means we can cross time zones in a matter of minutes. We talk to each
other over telephones bouncing microwave signals off satellites—and that
means I can call you at 10:00 P.M. my time and wake you up at 2:00 in the
morning your time.

When I fly from New York to Paris, I cross six time zones traveling east.
That means that when I arrive in Parity I need to set my watch six hours
ahead of New York time. If I fly from New York to Honolulu, I pass
through five time zones traveling west. So, when I reach Hawaii, I set my
watch five hours behind New York time. And if you’re in Hawaii and I
decide to telephone you from New York to let you know when I will arrive,
I must remember not to call you at 9:00 A.M. my time—that would be 4:00
A.M. your time!

How will I know what time my plane will land in Paris, if it takes off
from New York at 7:30 P.M.?

It takes about six hours to fly from New York City to Paris, and Paris is
east of New York. So, I add six hours to 7:30 P.M.

7:30 P.M. + 6 hours = 1:30 A.M. New York time

Now, to adjust for Paris time, add the 6-hour time difference:

1:30 A.M. + 6 hours = 7:30 A.M. Paris time



If I leave New York at 7:30 P.M. bound for Honolulu, what time will I
land there?

First add the ten-hour flight time, then subtract the five-hour time
difference.

Suppose it takes about 10 hours to fly from New York to Honolulu. I first
add the flight time:

7:30 P.M. − 10 hours = 5:30 A.M. in the morning New York time

Now, there’s a five-hour time difference between Hawaii and New York.
Hawaii is five hours behind New York. So, subtract five hours from New
York time to get the local arrival time:

5:30 A.M. − 5 hours = 12:30 A.M. Honolulu time

Some people’s bodies get confused by these time changes. Boarding a
plane at dawn and getting off a few minutes later—after six hours in the air
—can make you feel tired, cranky, and out of sorts. Your body thinks it’s
bedtime, but the sun is telling you it’s time to rise and shine. This is known
as jet lag.

For most people who are bothered by jet lag, it feels worse to travel long
distances east than to go west. As you can see by our Paris and Honolulu
trips, when you go east—flying into the sun— you’re more likely to arrive
at a local hour much different from the hour that your internal clock is set to
register. For this reason, if you have to fly from California to England, it’s
wise to stop for a day in New York to let your body catch up.

Many people like to leave their watches set at their back-home time. I
find this counterproductive. The faster you can adjust psychologically to the
local time, the quicker you will get back to normal.



MILITARY TIME

You and Granddad go out to the nearby Air Force base, where he is a
member of the Air Force Reserve. On a bulletin board, you see a notice that
the accounting office opens at 1400 hours.

Say what?
Actually, they mean that the office opens at 2:00 P.M. All branches of the

United States military, as well as scientists around the world, use a twenty-
four-hour scale for telling time. In this scheme, time is expressed in four-
digit numbers, from 0100 (oh one hundred) hours to 2400 (twenty-four
hundred) hours. Midnight occurs at 2400 hours, and the day begins at one
minute after midnight, or 0001 hours. Noon is called 1200 hours. Instead of
starting to count the hours over after noon, though, the military keeps
counting toward 2400: 1:00 P.M. is 1300 hours; 2:00 P.M. is 1400 hours;
5:00 P.M. is 1700 hours.

You translate P.M. hours into military time simply by adding 12(00):

2:00 P.M. = 2 + 1200 = 1400 hours
9:00 P.M. = 9 + 1200 = 2100 hours

Minutes go in the tens and units places:

8:10 A.M. = 0810 hours
12:27 P.M. = 1227 hours
4:56 P.M. = 1656 hours
Quarter to two P.M. = 1345 hours
One minute after midnight = 0001 hours

NAUTICAL TIME

Mariners used to toll the time by the number of hours in a shift, or watch.
Because someone has to watch a ship at sea twenty-four hours a day, crew
members divided the day into four-hour watches. Each hour, the ship’s



clock tolls in multiples of two, up to eight bells. A shift would start at 12:00
noon or midnight. The first hour, 1:00, was marked by two bells. The clock
chimes twice: bong-bong. At 2:00 A.M. and P.M. , the clock chimes four
times: bong-bong bong- bong. At 3:00, it chimes six times, and at 4:00, it
chimes eight times, marking the end of a watch. The cycle starts over at
5:00, which is again two bells. Half hours are marked by a single chime.
For example, 1:30 is three bells: bong-bong bong.

If you listened to the clock, you knew how long you had to work or rest,
and how much time was left before the next meal:

  1:00 two bells
  1:30 three bells
  2:00 four bells
  2:30 five bells
  3:00 six bells
  3:30 seven bells
  4:00 eight bells
  4:30 one bell
  5:00 two bells
  5:30 three bells
  6:00 four bells
  6:30 five bells
  7:00 six bells
  7:30 seven bells
  8:00 eight bells
  8:30 one bell
  9:00 two bells
  9:30 three bells
10:00 four bells
10:30 five bells
11:00 six bells



11:30 seven bells
12:00 eight bells
12:30 one bell

This system seems quaint and even confusing to landlubbers, and probably
not many modern sailors are familiar with it, either. But mariners who
navigated by the sun and the stars were sensitive to the turn of the hours,
and when “six bells” sounded, they knew instantly whether the time was
3:00, 7:00, or 11:00—A.M. or P.M.

Now You Can Do It

Granddad is going on a short assignment for the Air Force Reserve. He
will leave his home in Seattle at 0945 hours and fly to San Antonio,
Texas, arriving there at 1330 hours, local time. How long will he be in the
air?

On a globe map, find a place located about 37°N. and 3°E. What city is
located there, and what country is it in? When it is 1:00 P.M. where you
live, what time is it there? This city is in the first time zone west of the
Greenwich meridian.

How would an Army sergeant express “twenty to six in the evening” if
she had to write it in an official report?

In what ways does an analog clock resemble the earth’s longitude?
Identify as many as you can.

Popeye the Sailor Man says dinner is at four bells. What time do we
eat?



21  

 How Big Is the Back
Forty 

“THE BACK FORTY” is probably what you call the yard in back of your house
every time you have to mow it. That was what our agricultural forebears
called the remote forty acres down on the back end of the farm. On a hot
summer Saturday, that overgrown lawn seems as big as a forty-acre field!

You can figure out how many square feet the backyard really covers, and
you can do it pretty easily even if your yard is a strange shape. Once you
know how many square feet it contains, you’ll know just how close to forty
acres it really is.

Areas of flat shapes are measured in square units—square feet, square
yards, square inches, square miles, square meters, square whatever. The
sides of such a shape, called its dimensions, are given in linear measures—
feet, inches, miles, meters, etc. In geometry, a flat shape is called a plane
figure; it has only two dimensions, length and width. Objects with more
than two dimensions are called solid figures.

Flat things, obviously, come in lots of different shapes. The way we
figure the area of a plane figure depends on its shape.

Figures with three sides and three angles are called triangles. Four-sided,
four-angled figures are called quadrilaterals. After that, Greek prefixes
before the suffix -gon are used to say how many sides (and angles) the
figure has. A pentagon has five sides (penta- means “five”); a hexagon has
six sides; a septagon has seven; an octagon has eight; and so forth.



If all four angles of a quadrilateral are right (90-degree) angles, it is
called a rectangle. And if all four sides of a rectangle are equal, it’s a
square. If the opposite sides of any quadrilateral are parallel, the figure is
called a parallelogram. Rectangles and squares, for example, are
parallelograms—but not all parallelograms are rectangles or squares. If only
two sides of a quadrilateral are parallel and the other two go every which
way, then the figure is called a trapezoid.

A perfectly round plane figure is a circle. Roundness is the only
characteristic that distinguishes the circle, and so circles can differ only in
size.

Finding the areas of these figures is simple, and knowing how comes in
handy every now and again.



THE AREAS OF RECTANGLES

Below is a rectangle. So that we can talk about it easily, I’m going to
mark certain points on it with letters. Let’s tag each corner (that is, each
angle) with upper-case letters, starting on the lower left. We’ll call them A,
B, C, and D. I’ll also mark two sides with lower-case letters: The bottom
side is a, and the right side is b.

We know this thing is a rectangle because it has four sides (not
necessarily the same length) and four angles, and because all four angles are
the same. This last characteristic also makes each pair of opposite sides
parallel.

Angles are measured in degrees, on a scale from 0 to 360. The angles you
see in the rectangle above are right angles. A right angle measures 90
degrees.

If our drawing were a square, the only difference would be that all four
sides would be the same length. It would still have four 90- degree angles.



As you can see, an oblong box is called a rectangle. A square is also a
rectangle, but it is a rectangle whose four sides are equal.

To find the area of a rectangle, just take the length of the base (from A to
B, or, as mathematicians say, AB) and multiply it by the height (B to C, or
BC). Because we’ve given AB the tag a and we’ve named BC b, we could
simply say that the area = a × b.

Area = a × b

Okay. Suppose our rectangle is 5 centimeters long and 3 centimeters
high. If we draw those even units inside the rectangle below, we see they
amount to squares. We read the area as “square” units.

Multiply the length, 5, times the height, 3, to get the area in square units:

Area = 5 em × 3 em
5 × 3 = 15

Area = 15 cm2



Since we know that division is really reverse multiplication, we also
realize instantly that if we have the area and the length of one side, we can
figure out the length of the other side. All we have to do is divide the area
by the side to get the length of the other side:

15 em ÷ 3 em = 5 em
15 em ÷ 5 em = 3 em

THE AREAS OF SQUARES

Amazingly simple, isn’t it? Life is even easier if all four sides of your
rectangle are equal, so that it is a square. Then a is the same as b, and to get
the area of a square you—that’s right—square one of the sides.

Say a rectangle is 5 inches long by 5 inches high. The area then is 52.

Area = a2

Area = 52 = 5 × 5 = 25 square Inches

If you know the area of a square and want to know how long its sides are,
all you have to do is find the square root of the area.



So, given a square whose area is 64 square meters, you know that each side
is 8 meters long. Why? Because the square root of 64 is 8.

THE AREA OF A PARALLELOGRAM

The figure below depicts a parallelogram.

Once again, I’ve labeled the corners with upper-case letters. In this case,
we don’t find the area by multiplying one short side by one long side.
Instead, we draw a perpendicular line from the top to the bottom sides,
which is called the parallelogram’s altitude. I’ll mark it a. The bottom line
is called the base of the parallelogram, and I’ll call it b.

Find the area by multiplying the base times the altitude.

Area = altitude × base
Area = a × b

If the figure above has a base of 8 feet and an altitude of 5 feet, its area is
what?

Area = a × b
Altitude = 5 feet

Base = 8 feet
Area = 5 feet × 8 feet = 40 square feet



Why does this work? Notice that when you draw the altitude from the
angle D, you form a triangle. If you cut that triangle off and moved it over
to the right side of the figure—just sort of fit it along the line BC—you’d
end up with a rectangle. The part you cut off would neatly fill up the space
needed to form a rectangle. And of course, you’d find the area by
multiplying a × b. In effect, by drawing and measuring the altitude, you
convert the parallelogram into a rectangle.

THE AREAS OF TRIANGLES

A triangle is a plane figure with three straight sides and three angles.
They come in many shapes.

If the three sides are equal in length, the triangle is called equilateral.
Sometimes equilateral triangles are called equiangular, because if all three
sides are equal, all three angles will be equal, too. The figure below shows
an equilateral triangle.

If the sides and angles are not equal and one of the angles is larger than a
right angle, then the triangle is called an obtuse or oblique triangle.



If one of the angles is a right angle, the triangle is called a right triangle.

Each of the three corners of a triangle is called a vertex of the triangle.
The bottom side of the triangle is called its base, and a line drawn
perpendicular to the base from the top vertex is called its altitude. In the
triangles below, the upper-case letters A, B, and C are at the vertexes. The
line AB is the base, and the line CD is the altitude.

You can take any triangle, copy it exactly, and put the triangle and its
copy together to form a parallelogram. This means that any triangle forms
half a parallelogram with the same base and altitude!



So—how easy is it to find the area of a triangle? It’s this easy:
If a triangle always forms half a parallelogram, then the area of a triangle

is equal to half the area of a parallelogram having the same base and
altitude as the triangle.

Remember that the area of a parallelogram is found by multiplying its
base times its altitude. The area of a triangle, then, is half of that, or ½ of
the base times the altitude. To find this, first multiply the base by the
altitude, and then divide the product by 2.

Let’s take any odd triangle—say, one shaped like the one below, and
measure its base and its altitude. If our triangle is 14 feet across the bottom
and its altitude is 12 feet, what is its area?



Weird Fact About Triangles

Here’s a piece of information to file in your memory for future reference:
The sum of the three angles of any triangle always equals 180 degrees. If
you are lucky enough to go on to geometry and trigonometry, you will use
this fact. People in the construction trades make use of it all the time, as do
surveyors, mapmakers, and many scientists.

The Amazing Properties of the Right Triangle

The queen of triangles is the right triangle. Its unusual characteristics
make it a practical tool in many trades, particularly building, transportation,
and surveying.

As you recall, the right triangle is defined by having one right angle in it.
Since the sum of a triangle’s angles is 180 degrees, that means the other two
angles of a right triangle add up to 90 degrees.

The sides that make up the right angle are called the right triangle’s legs,
and the long side opposite the right angle is its hypotenuse.



As you can see, if you set a right triangle on one of its legs, the other leg is
always the same as its altitude. Therefore, you can always find the area of a
right triangle by multiplying the legs and dividing the product in half.

By the way, the standard way of drawing and lettering a right triangle
designates the hypotenuse as side c—so that side c is opposite the right
angle, C.

Here’s a strange and useful fact about the right triangle: The square of the
hypotenuse equals the sum of the squares of the legs.

In this right triangle shown, leg a is 3 centimeters long, leg b is 4
centimeters long, and leg c is 5 centimeters long.

The square of c equals the square of a plus the square of b.

c2 = a2 + b2



Does 52 = 32 + 42?
32 = 9
42 = 16

9 + 16 = 25
52 = 25

c2 = 25 square centimeters

It works. Imagine those squares as paper cutouts. Flip the 25-cm2 box
over so it still extends along the hypotenuse AB, but instead of extending
above the triangle it folds back over it. Now draw a big square, which we’ll
mark DFHI, around this figure. Extend the leg AC out to point G and the
leg BC down to point E.

Now the large square DFHI is made up of the 4-cm2 square and the 3-
cm2 square on the legs—they appear as square BCGH and square ACED—
plus two equal rectangles, CEFG and ACBI. We see that one of these two
equal rectangles, ACBI, divides evenly into two identical triangles, ABC
and ABI. The four triangles formed around the outside of the big box—I’ve
numbered them 1, 2, 3, and 4—are identical and they are equivalent to the
two rectangles (if two of them equal one rectangle, four equal two
rectangles).

Now, if you remove the four triangles from the big square, you’re left
with the dotted line square from the hypotenuse.



If you remove the two rectangles from the large square, you get the two
squares on the legs AC and BC.

But we recall that the four triangles are the same size as the two
rectangles. Therefore, the two remainders are also the same: The square
along the hypotenuse equals the sum of the squares on the legs.

From this, it follows that the square of either leg of a right triangle equals
the difference between the squares of the hypotenuse and the other leg.

c2 = a2 + b2

a2 = c2 − b2

b2 = c2 − a2

Using our values of 5 for c, 3 for a, and 4 for b, let’s see if that works. We
know that c2 = 25; a2 = 9, and b2 = 16.

That checks.

This strange relationship, first defined by a Greek mathematician and
philosopher named Pythagoras about 500 B.C., plays an important part in the
branch of math called trigonometry. It’s called the theorem of Pythagoras,
and the explanation or proof you see above is thought to have been invented
by the ancient mathematician himself.

Two practical applications are widely used: (1) If you know the lengths
of the legs, you can find the hypotenuse by squaring the figures you have,
adding the results, and finding the square root of the sum; (2) If you know
one leg and the hypotenuse, you can find the other leg by squaring the
hypotenuse and the known leg and subtracting the results. The square root
of the remainder is the missing leg.



THE AREA OF A TRAPEZOID

Back from the Twilight Zone! The trapezoid is a much more ordinary
figure. Let’s take a close look at it.

The two parallel sides are called the trapezoid’s bases. The perpendicular
distance between the two is its altitude. I’ve marked the altitude here with a
dotted line between points G and H. The bases are AB and DC.

Now, if you draw a few extra dotted lines, you see that it’s possible to
regard the trapezoid as a shape formed by two triangles.

The triangles here are formed between the points ABD and BCD. And, as
you can see, their altitudes—DE and BF—are the same as the trapezoid’s.
One triangle’s base runs along the trapezoid’s bottom base—AB—and the
other runs along the trapezoid’s top base—CD. So, to find the area of the
trapezoid, we simply find the areas of the two triangles. To do that, find half
the product of the trapezoid’s altitude times the sum of its bases.



Let’s call the trapezoid’s altitude a. The bottom base is b′ (referred to as
“b prime”) and the top base is b″ (pronounced “b second”). (See Figure
21.20.) To express our formula in symbols, we would write:

A, of course, stands for “Area.” The formula tells us to add b′ and b″, then
multiply the sum by a, and finally to divide in half. Or, if we prefer, we can
find half of a, add b′ and b″, and then multiply the two results.

Suppose, then, that our bottom base is 15 yards long. The top is 10 yards.
The altitude is 8 yards. In our formula,

THE PROPERTIES OF A CIRCLE

Another figure much loved by mathematicians is the circle. Like the
triangle, it also implies some relationships that have many practical uses.



The outside line of a circle is called its circumference. Every point on the
circumference is exactly the same distance from the center. A line passing
through the center of the circle and touching the circumference on both
ends is called the circle’s diameter. A line from the center to the
circumference is called its radius (plural, “radii”). And this leads us to the
following well-known facts.

Weird Facts About Circles

If you measure the circumference and the diameter of any circle and then
divide the circumference by the diameter, you will always get the same
answer. It doesn’t matter whether the circle is as big as a spaghetti plate or
as small as your pinky ring. The magic number is approximately 3.1416—
or about 3 . Mathematicians call it pi, written with the Greek symbol π and
pronounced “pie.”

One other odd fact: As the circle is the symbol of a never-ending story
(because it is a line that goes around and around without ending), so pi is a
never-ending number!

The quotient is not an exact decimal, as far as anyone has been able to
tell—and some fixated souls have divided it out to hundreds of places. To
ten places, pi is 3.1415826535. It is always the same for every circle, no
matter how far you divide the diameter into the circumference.

Finding an exact value for pi became a kind of obsession for number
lovers in many cultures, because if you knew the precise value of pi, you
would be able to find the dimensions of a square with the same area as that
of a circle of any size. This goal was called “squaring the circle.” In the



year 1768, however, it was proven that pi has no exact value, and therefore
it is impossible to square the circle.

However, we have found plenty of other practical applications for pi.

Using pi on the Circle

Because we found pi by dividing circumference by diameter, we know
that the circumference of any circle is pi times the diameter, and the
diameter is the circumference divided by pi. Or, to put it in math code:

C = π × D
D = C ÷ π

C stands for “circumference” and D for “diameter.”
If a circle has a diameter of 10 feet, the circumference is 3.1416 × 10, or

31.416 feet.
Since the diameter is twice the radius, we can find the circumference

using either the diameter or the radius (r):

C = π × D
C = 2 × π × r

In mathematical statements, we often leave the “times” symbol out to
signify multiplication:

C = πD
C = 2πr



Two times pi is 6.2832. So if you know the radius, you can find the
circumference easily by multiplying the radius times 6.2832. Similarly, if
you know the circumference, the radius is the circumference divided by
6.2832.

r = C ÷ 2π

Now, to find the area of a circle, conjure up our enormous pizza pie. If
we slice it into a lot of small pieces, we divide it into what are essentially
triangles. The altitude of each pizza slice is the same as the pizza’s radius.
The sum of all their bases is the pizza’s circumference. The sum of their
areas is the area of the pizza.

Since the area of each slice is half the product of its base times its
altitude, the sum of all the areas is the sum of all the products. The altitude
is the same for all the slices, and the sum of the bases is the same as the
pizza’s circumference. So, the area of the pizza is one half the product of its
radius and circumference.

Because the circumference is the same as 2C times the radius, we can
also say that the area is 3.1416 times the radius times the radius, or 3.1416
times the radius squared.

 of 2 = 1, so they cancel each other out. The shortened formula is:

One of our pizza slices is four feet long (this is, after all, a gigantic
pizza). So, we can apply this formula to find the area of the whole huge
pizza pie:



A = πr2

A = 3.1416 × 42 = 3.1416 × 4 × 4 = 50.2656 square feet

If we had sliced the pizza in half and measured the length of that cut, we
would have the diameter. Since the radius is half the diameter, the square of
the radius is ¼ of the diameter squared. This means we can figure the area
from the diameter by multiplying ¼ of C times the square of the diameter.
A fourth of C is .7854, by the way. The diameter of this crazed pizza is 8
feet.

A = π/4 × D2

A = .7854 × 8 × 8 = 50.2656 square feet

It’s easy to reverse this process to find the diameter or the radius from a
known area. To find the diameter, divide the area by .7854, and then find
the square root of the quotient. The radius, then, is half the diameter. Or to
find the radius directly, divide the area by 3.1416 and find the square root of
the quotient.

D = A ÷ .7854
r = A ÷ 3.1416

Let’s round off the area of our pizza to 50 square feet—some hungry
soul, having grown impatient with our mathematical chat, has taken a
couple of bites out of it.

To find the radius, divide that in half: 3.85 feet. Or use the direct approach:



The grass in the backyard has grown another inch since we began this
conversation. And so, at last, now for the answer to the puzzle that started it
all.

HOW BIG IS THE “BACK FORTY”

This yard is oddly shaped. It started out as a rectangle, 35 feet deep by 40
feet long. Then somebody widened the driveway on the west side, cutting
out a triangular slab. As a result, the yard is a trapezoid, 40 feet long on the
south side, 32 feet on the north, and 35 feet on the east. The two corners on
the west side are right angles.

Your kid sister felt it would be decorative to place two triangular flower
beds in the northeast and northwest corners. She thought that they would be
the same size if each ran 3 feet along the back fence and 4 feet along the
side fence. She was wrong, but she was only five years old at the time. Your
brother planted his favorite tree—hemlock—on the far side of the
swimming pool. It occupies a tree well 5 feet across. The swimming pool
itself is a rectangle, 20 feet long and 10 feet wide. A 3-foot-wide brick
walkway extends 6 feet from the back door to the pool.



To figure how many square feet of grass you have to mow, we need first
to find the area of the trapezoidal yard. Then we subtract the areas of all the
landscaping elements that interrupt the lawn.

We have:

One trapezoid, 32 feet on the top, 40 feet on the bottom, and
35 feet perpendicularly from top to bottom
One circle, 5 feet in diameter
Two rectangles, one 20 feet × 10 feet and one 3 feet × 6 feet
One right triangle, whose legs are 3 feet and 4 feet long
One obtuse triangle, with a base of 4 feet and a leg of 3 feet

All right! To find the area of a trapezoid, we add the bases and multiply
by half the altitude. Luckily, the 35-foot depth of the yard is the same as the
trapezoid’s altitude, since the east fence runs at right angles to the north and
south fences.

Next, the tree well, which is a circle:



A = π/4 × D2

A = .7854 × 5 × 5 = 19.64 square feet

The rectangular swimming pool:

A = a × b
A = 20 × 10 = 200 square feet

The little brick walk:

A = a × b
A = 3 × 6 = 18 square feet

The flower bed in the northwest corner, which is shaped like a right
triangle:

The other flower bed, which is an obtuse triangle:

We have to find the altitude for this triangle.
First, some fieldwork. Get a compass or a protractor (a plastic template

showing the degrees of a half circle) and measure the angle formed by the
northwest corner of the yard. Let’s say it is 100°. With that information in
mind, we can draw a scale model of the flower bed.

Let’s take the 4-inch side as the base. Use a metric ruler, and count 1
centimeter as 1 foot. Draw a 4-centimeter base. At the left end, draw a line
that meets the base at a 100° angle. Now, for a feeling of completeness,
draw the third side of the triangle.



Extend a dotted line out from the left of the base. From the top vertex,
drop an altitude line at right angles to the base. Measure its length, from the
vertex to the extended baseline. I get about 2.5 centimeters. And now we
have something to work with. Since each centimeter equals one foot, the
altitude of the obtuse triangle-shaped garden is 2.5 feet.

The rest is simplicity itself. Add up the areas of the shapes inside the
yard:

Subtract the total from the trapezoid’s area:



ΡARΤ V

THE NEXT
STEP



22  
 Introducing Algebra 

EVEN THOUGH YOU HAVEN’T been formally introduced, you’ve already met
algebra. In the last chapter, when we were figuring the areas of various
figures, we used statements like A = πr2and A =  a × (b′ + b″). When we
were explaining how to stun your associates by revealing the day of the
week they were born, we came up with an expression that said

If you decided that these strategies, which are really algebraic formulas,
were sort of easy and kind of fun, then algebra has already wormed its way
into your affections. There’s nothing mysterious or weird about algebra. It’s
just another way of describing the thoughts we’ve already begun to express.
That’s all math is: a way of expressing certain kinds of thoughts.

In algebra, numbers may be represented by letters, which are used to
solve problems by creating and playing with equations. Algebra uses
negative numbers in addition to positive numbers, something you have
already learned about. The use of powers—such as 33—is associated with
algebra, as are “complex numbers”—such as 3 + 

The word “algebra” comes from the Arabic al-jebr, which means “the
reuniting of broken parts or bones.” By extension, it implies the equating of
like to like. As one writer remarks, it suggests the fitting together of broken
bones inside limbs, where the surgeon could not see but had to work with
unknowns. There is more than one kind of algebra. The garden-variety
algebra you have already begun to learn is called “elementary algebra.”
Other types, such as Boolean algebra, may deal with special mathematical



entities. In any case, all forms of algebra are characterized by the use of
letters to represent variables.

A variable is a number whose value may change, as opposed to a
constant, whose value is always the same. In the formula A = πr2, we know
that π is a constant. Its value is always 3.1416. The area of a circle (A)
could be anything, and so could its radius (r); thus A and r are variables.

In algebra, some procedures are written differently from the way we
write them in arithmetic. Let’s survey the symbolism of algebra:

Suppose x stands for any number, and y stands for any number, which
may or may not be the same as x.

When we write  We mean:

x + y  the sum of x and y (read it “x plus y”)

x − y  the result of subtracting y from x (“x minus y”)

xy  x times y (read it “xy”)

x·y  x times y (“x dot y”); raised dot may be used to
indicate multiplication, to avoid confusion

x/y  x divided by y (“x over y”)

 x divided by y (“x over y”)

x ÷ y  x divided by y

xn  x raised to the power represented by the letter n
(“x to the nth power”)

x = y  x equals y

x > y  x is greater than y

x < y  x is less than y

x ≥ y  x is equal to or greater than y



x ≤ y  x is equal to or less than y

±y  plus or minus y

(x + y)  a number that is the sum of x and y

(xy)  a number that is the product of x and y

(x − y)  a number that is the remainder of x minus y

Parentheses are used to group figures together; when you see them, they
mean you should perform those operations first, and then proceed with the
rest of the formula. Normally, all multiplications and divisions are done
first, followed by additions and subtractions. So, if you saw something like
this:

(x + 6) (a2 + b2 + c2) − 36y

Then, if you know the values of the variables represented by the letters, you
can fill them in. Say that

Normally, you would perform the arithmetic calculations in a certain
order: first multiply, then divide, then add, then subtract. But whenever
letters and figures are grouped inside parentheses, you should do the
calculations inside the parentheses first. So, let’s start there:



2 + 6 = 8
32 = 9; 52 = 25; 12 = 1; 9 + 25 + 1 = 35

Now you have

8 × 35 − 36 × 4

Again, first multiply:

8 × 35 = 280
36 × 4 = 144

And finally, subtract:
280 − 144 = 136

The best thing about algebra is that your variables don’t have to be nailed
down to one value or another for your statement to make sense. Through
logic and common sense, you can identify relationships between numbers
that always hold true. The equation A = πr2is just one example. Another is
Einstein’s famous statement of the theory of relativity, Ε = mC2: Energy
equals mass times the speed of light squared. No matter what figure you put
in the place of m, the potential energy represented by that mass equals the
mass times the square of the speed of light.

Algebra, then, is a tool that helps you deduce and express certain truths.
Learning algebra trains you to think logically. This is why advanced math
courses form an important part of any educated person’s background.



Now You Can Do It

Translate these statements into algebra:
One number is added to a second number.
Multiply an unknown variable by three.
Three hundred forty-eight less 27.
Twenty-two is larger than 11.
Twenty-two is 2 times another number.
Take the result of subtracting 47 from 93 and divide it by 12.
First add 3 plus y; then subtract 5 from y; and then multiply the two

results.

THE GROUND RULES

Algebra has a few basic rules, which are similar to those of arithmetic.
For example:

•    The sum of a series of numbers is the same, no matter in what order
they are added.

•    The product of numbers is the same, no matter in what order they are
added.

•    If you multiply a sum by a common factor, you get the same result
that you would by multiplying each term contained in the sum by the
same common factor.



(x + y)z = xz + yz

•    You can subtract any number from any other number. This means, as
we have seen, that the remainder is sometimes a negative number.

•    You can divide any number by any other number, except 0.
•    The number 0 is unique. Any number subtracted from itself equals

zero, and any number multiplied by 0 equals 0. To put that
algebraically, for every number, a:

a − a = 0
a · 0 = 0

•    The number 1 is unique. Any number (other than 0) divided by itself
equals 1. That is:

a ÷ a = 1

And any number divided by 1 equals itself:

a ÷ 1 = a

•    Any positive number multiplied by a negative number becomes a
negative number; any negative number multiplied by another
negative number becomes a positive number. For example:

a · − l = −a
−a · −1 = a
1 · −1 = −1



−1 · −1 = 1

•    Equal quantities can be added to equals, subtracted from equals,
multiplied by equals, and divided by equals (except that division by 0
is not permitted), and the results will be equal. That is, if x equals y
and z is another number, then:

x + z = y + z
x − z = y − z

xz = yz
x/z = y/z

Now You Can Do It

You have four numbers—a, b, c, and 14. Show how many ways they
can be multiplied.

If a = 5 and b = 15, what is the result of ab ÷ 75?
Show another way of finding the answer to x(14 + c).
If x = 6 and y = 12, what is the result of xy ÷ 3x − y?
If x = 6 and y = 12, what will happen if you multiply (x + y) by −1?

MORE ON POWERS

With algebra, you can describe a number of operations that can be done
with numbers raised to any power.

We’ve already talked about squaring and cubing numbers, and even
touched on raising numbers to higher powers. Using algebraic symbols, you
attach the exponent to a letter, just as you would for a number:



x2  is read “x squared”

x3  “x cubed”

x5  “x to the fifth power”

xn  “x to the nth power”; n is used as a variable,
like x

It’s possible to have a power of zero, and a power of a fraction.

x0  equals 1 for all values of x except 0

x1  always equals x

x−n  x raised to any negative power is the same as 1
divided by an; in other words, x−n = 1/an

x−1  always equals 1/x. It's called the reciprocal of
the number

 always equals the square root of x; that is, 

 always equals the nth root of x; 

To multiply powers of the same number together, you add the exponents.
For example, a2 times a3 = a5. This is pretty obvious: a2 = a · a, and a3 = a
· a · a. Run them all together and you get a · a · a · a · a, or a5.

Similarly, to divide powers of the same number, subtract the exponents.
Thus, a4 ÷ a2 = a2.

ALGEBRAIC EXPRESSIONS AND EQUATIONS

An expression is just a way of saying something in mathematical
symbols. For example, in ordinary English we would say something like



“10 less than b” The corresponding algebraic expression would say

b − 10

To say “20 more than 6,” we would write

b + 20

Expressions that have letters in them are called literal expressions.
When two expressions equal each other, then you have an equation. If we

know that a is 10 less than b, for example, we can write

a = b − 10

And suppose we find out that the sum of b and 20 is 30. We could express
that as an equation, too:

b + 20 = 30

If we happened to know that a is ½ of b, then we would say that

a = b/2   “a equals b divided by 2”
2a = b   “2 times a equals b”

Given the figures in the previous equation, we could deduce that

2a + 20 = 30 “two times a plus 20 equals 30”



Each part of the equation is called a term. The terms of the equation above
are 2a, 20, and 30.

Now You Can Do It

What is the product of 2x3 times 14x7?
Divide 32c6 by 8c2.
Multiply 26a2 times 4(a5 + y).

KEEPING EQUATIONS IN BALANCE

You can think of an equation as a scale that’s in balance. You can do
things to one side or another of it—add or subtract things, for example—but
to keep it level, you have to do the same thing to both sides.

Suppose, then, that we have a scale such as the one the statue of Justice
holds in her hand. We set a five-pound weight on the left side. The left side
of the scale immediately drops. When we set another five pounds on the
right side, the left side rises back to the level of the other side, and the scale
is in balance.

Now, think of this equation as a balance pivoting on the equal sign:

5x = 2y

If we add 5 to the left term, we will throw the equation out of balance.
And so, to keep it level, we must add 5 to both sides. Like this:

5x + 5 = 2y + 5

Let’s experiment to see whether that seems to work. Let x = 4 and y = 10:



5x = 2y
5 × 4 = 2 × 10

20 = 20

That seems to be true. If we add 5 to one side, we get

5x + 5 = 2y
5 × 4 + 5 = 2 × 10?

20 + 5 = 20???

Nope! Add 5 to both sides:

5x + 5 = 2y + 5
5 × 4 + 5 = 2 × 10 + 5

20 + 5 = 20 + 5
25 = 25

This works for all the arithmetic operations. You can add to, subtract
from, multiply, or divide both sides of an equation without throwing it out
of whack.

Given what seems like an obvious piece of information, we can use it to
manipulate equations and to solve them.



Now You Can Do It

Three pens cost $1.15. We can express this as an algebraic formula by
letting ρ stand for pens:

3p = $1.15

Now write a formula to show how much 1 pen costs (hint: divide both
sides by 3). And how could you calculate how much each pen costs if 15
pens cost $1.15?

ALGEBRAIC ADDITION

Here’s an equation:

a − b = 8

Now, suppose we know that b is 4, but we don’t know the value of a.
And we do want to know. . . . First, let’s substitute 4 for b.

a − 4 = 8

If we add 4 to both sides, two things will happen: (1) The equation will stay
in balance; and (2) the 4 on the left side will be canceled out.

a − 4 + 4 = 8 + 4



a = 8 + 4
a = 12

We actually found a concrete answer to that one—a real number that we
can picture! But in algebra you don’t always end up with a numeral.
Sometimes the best you can do is simplify an expression. For example,
suppose you come up with something like this:

2b − 6a = 3x + 4a + 86y

If you add 6a to both sides, you can at least see the simplest way to find 2b:

2b − 6a = 3x + 4a + 86y
2b − 6a + 6a = 3x + 4a + 6a + 86y

2b = 3x + 10a + 86y

As you observe, you can combine like members in an equation. We had two
multiples of a in the right term, and we managed to turn them into one by
adding them.

What if we subtracted 2b from both sides? Then we would be left with a
negative term on the left side: −6a. The revamped equation would look like
this:

− 6a = 3x + 4a + 86y − 2b

When we take 2b away from the left side, we leave nothing from which to
subtract 6a. That is, we leave 0: Subtract a positive number from 0 and you
get a negative number.



You can combine multiplied terms that are being added, too, if each
contains a common factor. The common factor becomes the multiplier, and
you add the other two factors separately. In ab and bc, for example, the
common factor is b. So if you added them, you would get

ab + bc, or
(a + c)b

ALGEBRAIC SUBTRACTION

Nowhere other than in algebra is it more obvious that subtraction is a
reverse form of addition. Subtracting a positive number (we’ll talk more
about positive and negative numbers below) is the same as adding a
negative number; and subtracting a negative number is the same as adding a
positive number. Take, for example:

2b − 6a = 3x

Let’s subtract a negative number from this, say, −4a:

2b − 6a − (−4a) = 3x − (−4a)

Two negatives, as it were, make a positive: −(−4a) becomes + 4a. You
combine the terms on the left side, and change the subtraction sign on the
right side to an addition sign:

2b − 2a = 3x + 4a



Consider this expression:

97x − (a − b + c2)

The subtraction sign tells you to change the signs inside the parentheses.

97x − a + b − c2

In other words:

97x − (a − b + c2) = 97x − a + b − c2

Subtraction works the same way as addition to help solve an equation.

a + 4 = x

We see that 4 is added to one term, and so we can move it over to the other
side by subtracting. If we have the value of x, this maneuver would allow us
to learn what a is:

a = x − 4

Does this work, in real-world numbers? Let’s say that x is 6 and a is 2.

a + 4 = x    a = x − 4
2 + 4 = 6    2 = 6 − 4



ALGEBRAIC MULTIPLICATION

In algebra, when you multiply single terms you write them next to each
other and simplify. For example:

ac · bd = abcd
7xy2z5 · 2yxz2a3 = 14x · x · y2 · y · z5 · z2 · a3

= 14x2y3z7a3

In combining the terms, we also have combined powers. Because y is the
same as y1, the product of y times y2is y3. And z5 times z2 equals z7.

To multiply expressions, you just multiply a term at a time:

(a + b) (c + d) = ac + ad + bc + bd
(a + b) (a − b) = a2 + (−ab) + ab + (−b2) = a2 − b2

The −ab cancels out the ab, and adding a negative b2 is the same as
subtracting b2.

(7x + 3y) (2x + qz) = 14x2 + 7xqz + 6xy + 3yqz
= 14x2 + x(7qz + 6y) + 3yqz

We simplified the terms 7xqz and 6xy by combining them in a new
expression. We could do this because x appeared as a factor in both, so we
took the x out, multiplied and added the other factors as indicated, and then
multiplied the result by x.

ALGEBRAIC DIVISION



Like terms may cancel each other out in a division problem. To divide
powers, as we have seen, you subtract;

Thus, x ÷ x2 = x−1 and z3 + z2 = z. With nothing to divide into it, y2 remains
unchanged.

It’s also possible to divide algebraic expressions the long way. Treat the
entire expression that functions as the divisor the same way you would a
single arithmetical number:

A FEW MORE WORDS ABOUT SIGNED NUMBERS

You learned what positive and negative numbers mean in Chapter 8,
where we discovered that you can subtract a larger number from a smaller
number. We used the time-honored example for teaching this concept, the
thermometer, which has a scale that goes below 0°.

Algebra deals more extensively with signed numbers. In fact,
mathematicians have devised some rules for dealing with positive and
negative numbers.

Whatever a number’s sign, its numeral is called its absolute value. For
example, +16 and −16 have the same absolute value, 16. There are 16 units
in each figure.

When a number is written with no sign in front of it, it is assumed to be
positive. That is, 6 is the same as +6.

To add numbers that have the same sign, add their absolute values and
give the sum the common sign.



To add numbers that have different signs, subtract the smaller absolute
value from the larger and give the difference the sign of the larger absolute
value.

−6 + 8 = 2
−8 + 6 = −2

−40x + 10x = −30x
−10x + 40x = 30x

To subtract a negative number from a positive number, or to subtract a
positive number from a negative number, change the sign of the subtrahend
and add.

15 − (− 3) = 15 + 3 = 18
−15 + 3 = −12
2x − (−x) = 3x

− 2x − (−x) = −1x or −x

To multiply two numbers with the same sign, multiply the figures in the
simplest way and give the product a positive sign.

−45 × −2 = 90
−3x · −4x = 12x2

6x · 5x = 30x2

To multiply two numbers with different signs, give the product a negative
sign.



−45 × 2 = −90
−5y · 7y = −35y2

To multiply three numbers, first multiply two of the figures, and then
multiply the product by the third number.

2 × 3 × −5 = 6 × −5 = −30
5x · 4x · −3x = 20x2 · −3x = −60x3

−2 × −3 × 5 = +6 × 5 = 30
−2 × −3 × −5 = 6 × −5 = −30

To divide numbers with the same signs, give the quotient a positive sign.

6 ÷ 3 = 2
−6 ÷ −3 = 2

14x2 ÷ 7x = 2x
−14x2 ÷ 7x = −2x

To divide numbers with different signs, give the quotient a negative sign.

6 ÷ −3 = −2
−6 ÷ 3 = −2

22x2 ÷ −2x = −11x
−22x2 + 2x = −11x



Now You Can Do It

As I write this, a storm is rolling in. Temperatures have dropped 30
degrees in the past half-hour. If the high today was 80° but the
thermometer had fallen 15 degrees before the clouds came in, what is the
temperature now? What if the thermometer drops another 40 degrees
between now and midnight?

Joe owes Oliver Boxankel $50. He has $20 in his checking account.
How deep in the red is Joe?

Joe pays Oliver $20 toward the above debt. Now he has nothing left for
groceries. “Oliver,” he says, “Lend me another fifty dollars so I can buy
enough to eat till payday.” Oliver, a generous soul, agrees. Now how deep
in the red has Joe gone? Express his debt as a negative number.

Oliver works out an outrageous deal with Joe. If Joe doesn’t pay in full
within a week, he will pay Oliver three times his current debt. The debt
will multiply by three with each passing week. Joe is a hopeless deadbeat
and of course he doesn’t pay up. After three weeks, how much does Joe
owe Oliver on the debt he accrued in the last paragraph?

Finally, after sixteen weeks, Joe gets the job of his dreams. With one
paycheck he is able to pay Oliver the entire debt that has built up over the
past sixteen weeks. Oliver wants to buy a television, on sale at $565.98 at
his favorite discount warehouse. Will the amount Joe owes pay for
Oliver’s television?

INTO THE FUTURE WITH ALGEBRA

As you go on in this branch of math, you learn to solve blindingly
complicated-looking equations. There is, for example, the solution to the
quadratic equation ax2 + bx + c = 0, which is



If your friends think you’re a math whiz after this book, wait till they see
what you do next!
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 A Test of Your Human
Calculating 

Just for fun, let’s put all your new math skills together and figure out these
problems.

1.   To 1,020, add 1,020. Then add 20, and 20 again. Now add 10, and 10
again. What’s the total?

2.   You are on your way to fabulous riches, but until you reach your
destination, you need to economize on small luxuries such as . . . well,
furniture. You need a lamp table to go next to the easy chair you inherited
from Great-aunt Matilda. Down at the Interior Deco Gallery they’re
charging an out-of-the-question $486.99 for a circular table of the sort you
want.

However, you have some cinder blocks in the backyard. For the cost of a
length of fabric and a piece of plywood sawed in the shape of a circle, you
can build a piece of furniture that will be Just the Thing.

You stack the cinder blocks next to the chair and balance the plywood
tabletop on them. Now all that remains is to disguise this construct with a
round, handmade tablecloth.

The tabletop is 2 feet in diameter and 2½ feet high. You will run a ⅛-inch
hem around the bottom of the tablecloth. The dime- store is selling the
fabric you crave at $2.49 a yard. It is 48 inches wide. If the sales tax is 4.5
percent, how much will it cost to complete this project?

3.   Oliver Q. Boxankle started a business. He owned  of the stock, and
a silent partner, who bankrolled him, owned . A year later, Boxankle sold



¼ of his stock. How much of the company does he still own?

4.   How many minutes are there in the month of December?

5.   A stock clerk divides a number by 6 and gets a result of 12. He made
a mistake: He should have multiplied. What is the correct answer he was
looking for?

6.   Check your answer to the preceding question by casting out nines.

7.   In 1819, Simón Bolívar founded the Republic of Colombia. At that
time, it had an area of 996,385 square miles and included the modern-day
countries of Colombia, Ecuador, Panama, and Venezuela. In 1829,
Venezuela seceded, leaving Colombia with 644,235 square miles. A year
later, when Ecuador seceded, Colombia had 468,405 square miles. Panama
stayed with Colombia until 1903, when it seceded and left its parent country
with today’s area of 439,830 square miles.

How many years after the founding of the Republic of Colombia did each
of the daughter countries secede?

What is the area of each daughter country?

8.   “I go one step backward for every two steps forward,” cries Mom in
frustration. If you take her literally, how many steps will she have to make
in order to walk the twenty paces from the front door to the mailbox?

9.   Using your powers of estimation, decide which of these two stacks of
figures comes to the larger sum.



10.   As part of your community’s campaign to conserve electricity,
you’re keeping an eye on your electric meter. On January 1, the meter read
7,385 kilowatt-hours (kwh). Over the next six months, your electric-meter
readings looked like this:

January: 7,642 kilowatt-hours (kwh)
February: 7,890 kwh
March: 8,142 kwh
April: 8,385 kwh
May: 8,624 kwh
June: 8,865 kwh

What was the difference, in kilowatt-hours, between your months of
highest and lowest monthly energy consumption?

How many kilowatt-hours did you use during the spring months? The
first day of spring comes in March.

If the power company sells electricity at 27 cents per kwh, what was your
highest power bill? What was your lowest bill? What was your average
monthly bill? How much did you pay the power company for the months of
January through June?

11.   Jet Set Jane drove from New York City to Denver, a distance of
2,100 miles, in 30 hours. How fast was her average speed?

12.   Thanksgiving is coming up. Turkey is selling for $.89 a pound. You
plan to have 18 people to dinner. Allowing for ¾ pound per person, how
large a turkey should you buy? How much will it cost? How much will each
serving cost?

13.   On the other hand, turkey is pretty stereotyped. What if instead you
served steak, at $3.59 a pound? Because the steak you will serve has no
bones, you can allow ½ pound per person. How much steak will you buy to
serve 18, at what cost? What will be the cost per guest?

14.   You decide on turkey, and, to be sure you have enough, you
purchase an 18-pounder. It takes 20 minutes per pound to cook a turkey.



How long (in hours and minutes) will your turkey need to roast?

15.   You happen to be in England this Thanksgiving, which means you
will have to roast your turkey in an oven calibrated to Celsius rather than
Fahrenheit temperatures. You know a turkey is supposed to cook at 350° F.
To what heat do you set your English oven?

16.   Luckily, the English butcher shop that sold you the turkey weighed
it in pounds. However, to make the stuffing, you’re following a recipe in a
French cookbook. It uses metric weights. To figure out how much stuffing
to use, you need to know how many kilograms your 18-pound turkey
weighs.

17.   This French stuffing recipe calls for 25 cl of white wine. Estimate
about how much this is in cups.

18.   All the conversion between Fahrenheit and Celsius and between
English and metric is driving you to the eggnog bowl. Before you can have
a belt of eggnog, however, you must mix rum into the eggnog mix at a ratio
of 1:4. If you have 3 quarts of eggnog mix, how much rum will you need to
render you incapable of converting another number from English to metric
figures?

19.   Workers at the Boxankle Widget Manufacturing Corporation get one
working day of vacation for each month in the 12 months of employment
preceding their vacation date. As incentive, management adds an extra day
of vacation time for each 5 years a person stays on the job. This is Joe’s
24th year with Boxankle Widget. If he starts his vacation on the Tuesday
after this year’s three–day Fourth of July weekend, how many days will he
be away from the factory?

20.   You need new flooring covering in your house. The carpet you have
chosen retails for $26.99 a square yard, plus 4 percent tax. You need to
carpet this space:

Bedroom: 14 feet long, 12 feet wide
Bedroom: 13 feet long, 11 feet wide



Living room: 20 feet long, 14 feet wide
Dining room: 12 feet long, 10 feet wide
Hall: 10 feet long, 4 feet wide

How much carpet do you need to purchase? How much will it cost you?

21.   Olivia bought a dress on sale for 75 percent of the marked price. She
paid $62.50 for it. How much was the original price?

22.   Tom Jones’s Television and Repair Shop did well this year. Business
increased 35 percent. Last year, the store earned $235,000. How much did it
make this year?

23.   About how many liter bottles of soft drink can be filled from four
10-gallon cans of soft drink?

24.   What percentage of a quart is a pint?

25.   Write these as signed (+ or −) numbers:
30 degrees below zero, Celsius
a debt of $42
a deposit of $152.65 to your savings account
a gain of 14 pounds
dropping 5 floors in an elevator
20° north latitude
15° south latitude

26.   How many whole numbers between 1 and 10 can you form by using
the digit 4 four times—no less, no more—by adding, subtracting,
multiplying, or dividing?

For example: 1 = 44/44
2 = 4/4 + 4/4

If you include , you should be able to reach 18 whole numbers.
—Martin Gardner

27.   Write an equation to express the solution to each of these
conundrums:



A number increased by 5 gives 42.
The length of one side of a square whose perimeter is 16 inches.
A number decreased by 12 produces 18.
Christine is 5 years older than Peter. The sum of their ages is 45.

Find their ages.
Separate 30 into two parts such that one part is four times the other.
The volume of a box equals its length times its width times its

height.

28.   Express algebraically:

The number of feet in y yards
The number of inches in f feet
The number of months in x years
The number of quarters in d dollars
The number of cups in p pints

29.   Juan Garcia went to the grocery store and purchased the following
items on sale:

3 cans green beans, 90 cents (regularly 37 cents a can)
10 pounds of potatoes, 59 cents (regularly 15 cents a pound)
2 pounds of T-bone steaks, $6.78 (regularly $3.90 a pound)
3 avocados, $1.20 (down from 50 cents apiece last week)
2 fresh lemons, 30 cents (regularly 20 cents apiece)

How much did Juan save off the regular prices by buying sale- priced
items?

30.   The bank charges Eldon 10 cents for every check he writes. What
will be left after he writes three checks—one for $14.98, one for $52.67,
and one for $30.00—on a balance of $268.45?

31.   A pizza is divided into 10 slices. If Maria gets .4 of the pizza, how
many pieces does she get? How do you express that as a fraction?

32.   If n and m represent two numbers, write the following:



The sum of the two numbers
The difference between the two numbers
The product of the two numbers
The first number divided by the second
The sum of the two numbers divided by the difference of the two

numbers times the second number
The first number squared times the second number cubed minus the

product of both numbers

33.   Combine similar terms:

5a + 2b + a + 4b
1x + 2x + 3y + 4y
2n + 3m + n + p
3x − x + y + 3y

34.   The Elm Street Giants have 25 players on their baseball team. Four
players are 22 years old. What percent of the team is this?

35.   Pete and Emily fly out of San Francisco at 11:45 A.M. Pacific
Standard Time. They arrive 4 hours later in New York City. What time do
they land?

36.   You drive your car to school 5 days a week. Round trip from school
to your home is 24 miles. Your car gets about 18 miles to the gallon. Gas at
your favorite filling station is 99 cents a gallon. How much gas does it take
to carry you back and forth to school each week? How much did it cost you
to drive to school this week? If an 8 percent tax is included in the price of
gas, how much gas tax did you pay this week?

37.   You hire a chauffeur-driven limousine to drive you back and forth to
school. This limo company charges $.89 a mile, and the round trip is 37
miles. How much do you tip the driver each day?

38.   Christopher Gotrocks hires the limo driver to take him from his
mansion to his fifteen-room summer cabin. The road takes them 248 miles



east. Then they make a sharp left and drive 310 miles north. By the time
they get to Christopher’s cabin, they have put 558 miles on the limo. How
much driving would they have saved if they could have driven to the cabin
in a straight line? Write an equation showing how to find the length of this
line, and solve it.

39.   Christopher pays the limo driver $496.62. Now it’s time to figure
the tip. Christopher didn’t get rich by letting money slip through his fingers.
In fact, he’s a bit of a cheapskate. He rounds the driver’s fee down to $495
instead of up to $500, and he pays a gratuity of 16⅔ percent. How much
does Christopher tip the driver?

40.   Your dad takes you and your teacher to lunch at a popular coffee
shop. She orders a bacon, lettuce, and tomato sandwich ($4.25), a chocolate
milkshake ($1.90), and a side of french fries ($1.25). You amaze her and
make Dad pleased as punch by quickly calculating her tab and 20 percent
tip. What are these figures?

41.   Naturally, the conversation during this luncheon turns to higher
powers. You continue to floor your teacher by casually revealing the answer
to 98, which of course you do by combining lower powers. With what figure
do you bring her to her knees?

42.   For your parting shot, you remark on the cube root of 17,576. Your
teacher is forever wrapped around your little finger and you instantly
supplant your kid brother, the Brat, as the apple of your father’s eye. What
number accomplishes this marvel?

ANSWERS FOR CHAPTER 23

1.   2,100—not 3,000!

2.   $36.43, if you buy two 7-foot strips of fabric.

3.   2/5 × 1/4 = 2/20 = 1/10, the total amount of the company’s stock he
sold.



Boxankle still owns 3 times that amount: 1/10 × 3 = 3/10.

4.   44,640 minutes

5.   432

6.   Check number of 31 = 4
Check number of 24 = 6
Check number of 31 × 24 = 6

4 × 6 = 24; cast out nines to get 6
6 = 6

Check number of 744 = 6
Check number of 60 = 6
Check number of 44,640 = 18; cast out nines to get 0
6 × 6 = 36; cast out nines to get 0
0 = 0

7.   Venezuela, 10 years; 352,150 square miles
Ecuador, 11 years; 175,830 square miles
Panama, 84 years; 28,575 square miles

8.   58

9.   They add up to the same total: 1,083,676,269

10.   a)   18 kwh
b)   975 kwh
c)   $69.39; $64.53; $66.60; $339.60

Monthly kwh consumption:
January: 257
February: 248
March: 252
April: 243
May: 239
June: 241

11.   70 miles per hour



12.   13½ pounds; $12.02; $0.67 a serving

13.   9 pounds; $32.31; $1.80 a serving

14.   6 hours

15.   176.6°

16.   8.18 kilograms

17.   1 cup. A liter is about a quart; 25 cl is a quarter of a liter; there are 4
cups in a quart, and so 1 cup is about a quarter of a liter.

18.   ¾ quart

19.   25 days. Because Joe starts his vacation on the day after a holiday, he
gets an extra 3 days away from the assembly line. Weekends do not
count as working days. Joe gets 4 bonus days because of his 24 years
with Boxankle Widget.

20.   Divide the linear foot measures by 3 to get linear yards.

21.   $62.50 ÷ .75 = $83.33

22.   $235,000 × 1.35 = $317,250

23.   Approximately 160 liters

24.   50 percent

25.   −30° C
−$42
+$152.65
+14 pounds
−5 floors



+20°
−15°

26.

27.   x + 5 = 42
x = 16/4
x − 12 = 18
(P + 5) + P = 45; P = 20; C = 25
30 = x + 4x
v = 1wh

28.   3y
12f
12x
4d



2p

29.

Difference: $12.31 − $9.77 = $2.54

30.   $14.98 + $52.67 + $30.00 = 97.65
$97.65 + $.30 = $97.95
$268.45 − $97.95 = $170.50

31.   4 slices; 2/5 of the pizza

32.   n + m
n − m
nm
n/m
(n + m)
(n − m)m
n2m3 − nm

33.   6a + 6b
3x + 7y
3n + 3m + p
2x + 4y

34.   16 percent

35.   6:45 P.M.

36.   24 × 5 = 120 miles
120 miles ÷ 18 mph = 6.66 gallons per week



6.66 gallons × 99 cents = $6.59, cost of gas this week
6.59 × .08 = 53 cents gas tax

37.   20% of the daily charge of $33 is $6.60.

38.   The roads from Christopher’s mansion to his summer home form the
altitude and the base of a right triangle. A straight line between the
two houses would form the hypotenuse of this triangle. We know that
the square of a right triangle’s hypotenuse equals the sum of the
squares of the other two sides.
Let the hypotenuse be c, the altitude be a, and the base be b.
c2 = a2 + b2

c2 = 96,100 + 61,504 = 157,604
c = 396.99 miles, or about 397 miles
Christopher and his chauffeur could have saved 558 − 397, or 161
miles, if they could have driven straight to the summer cabin.

39.   Divide by 6 to find 16⅔%: $82.50.

40.   $7.40 plus tip of $1.50

41.   43,046,721. The eighth power is the square of the fourth power, or the
square of the square of the square: 81 × 81 × 6,561.

42.   26



PART VI

APPENDICES



Glossary

Acute angle: An angle of less than 90° and more than 0°.
Acute triangle: A triangle whose angles are all acute.
Addend: One of two or more numbers to be added together.
Altitude: The height of a figure, measured perpendicularly to the base.
Algebraic expression: A statement that expresses arithmetical processes or

relations with letter symbols.
Amount: A sum to be paid back after interest is computed.
Analog clock: A clock with a circular face on which hours, minutes, and

seconds are marked.
Area: The amount of space, expressed in square units, inside a plane figure.
Base: The line on which a plane figure rests.
Celsius: A system of measuring temperature in which water freezes at 0°

and boils at 100°.
Centigrade: Celsius.
Circle: A perfectly round plane figure.
Circumference: The distance around a circle.
Constant: A value that is always the same; for example, π is a constant

(3.1416).
Common denominator: A number into which several fractions’

denominators can be divided evenly.
Compass: A device for drawing circles.
Cube: A three-dimensional figure with six equal square faces. The product

of a number multiplied by itself two times; for example, 9 is the cube
of 3 (3 × 3 × 3 = 9).

Cube root: A number, which multiplied by itself twice, yields another
number; for example, 2 is the cube root of 8 (2 × 2 × 2 = 8).



Decimal fraction: A part of a whole expressed in tenths, hundredths,
thousandths, etc.

Decimal point: The dot at the left of a decimal fraction.
Degree: A unit used in measuring angles. A circle contains 360 degrees. A

unit of temperature, Fahrenheit, Celsius, or Kelvin. Degrees are
indicated with this symbol: °.

Denominator: In a fraction, the number that appears beneath the line.
Derive a root: To find a square root, cube root, fourth root, etc., of a

number.
Diameter: A straight line drawn through the center of a circle from one

side to the other.
Digit: One of the figures in a number; any of the ten numbers from 0 to 9.
Digital clock: A clock that shows the time in lighted or liquid-crystal digits.
Dividend: A number into which another number is to be divided.
Divisor: A number to be divided into another number.
Equation: A statement that shows two quantities are equal.
Exponent: A small raised figure appearing after a number, which indicates

how many times the number is to be multiplied to reach the indicated
power.

Extremes: The first and last numbers in a proportion.
Factor: One or more numbers multiplied together to give a product.
Fahrenheit: A system of measuring temperatures in which water freezes at

32° above 0° and boils at 212°.
Gratuity: Tip.
Height: The distance from the top to the base of a figure.
Heptagon: A plane figure with seven sides and seven angles.
Hexagon: A plane figure with six sides and six angles.
Hypotenuse: In a right triangle, the side opposite the right angle.
Interest: Money paid for the privilege of borrowing or using money,

usually expressed as a percentage of the amount borrowed or used.
International Date Line: A line passing between the North and South

poles at 180° of longitude.



Kelvin: A system of measuring temperatures in which one unit equals one
Celsius degree and absolute 0° equals − 273° Celsius.

Latitude: The distance north or south of the earth’s Equator, measured in
degrees, minutes, and seconds.

Longitude: The distance east or west of the Prime Meridian, measured in
degrees, minutes, and seconds.

Lowest terms: The farthest possible reduction of the numerator and
denominator of a fraction; for example, 1/2 is 6/12 reduced to its
lowest terms.

Means: The two inside numbers in a proportion.
Minuend: A number from which another number is to be subtracted.
Minute: 1/60 of an hour, or 1/60 of a degree.
Multiplicand: A number to be multiplied by another number.
Multiplier: A number used to multiply another number.
Negative number: A number whose value is less than 0; it is preceded by a

minus sign (−).
Numerator: In a fraction, the number that appears on top of the line.
Obtuse angle: An angle of more than 90° and less than 180°.
Obtuse triangle: A triangle containing an obtuse angle.
Octagon: A plane figure with eight sides and eight angles.
Parallelogram: A four-sided figure whose opposite sides are parallel.
Pentagon: A plane figure with five sides and five angles.
Percent: A value expressed in hundredths; indicated by the percent sign

(%).
Perimeter: The distance around the outside of a plane figure.
Perpendicular: At right angles.
Pi: The ratio between the circumference of a circle and the diameter,

symbolized π. Its approximate value is 3.1416 or 22/7.
Place value: The value of a digit according to where it is located in a

number.
Plane figure: A flat shape.
Polygon: A closed plane figure.



Positive number: A number whose value is more than zero; may be
preceded by a positive sign ( + ).

Power: The number of times a number appears as a factor in another
number, as indicated by an exponent.

Prime Meridian: A line extending from the North to the South poles
through Greenwich, England; it marks 0° of longitude.

Principal: An amount of money borrowed or used, upon which interest is
calculated.

Product: The result of multiplying two or more numbers.
Proportion: A relationship in which two ratios are shown to be equal.
Protractor: A device for measuring angles.
Quadrilateral: Any four-sided figure.
Quotient: The result of dividing one number by another.
Radical sign: A symbol indicating a number is to be reduced to an

indicated root: √
Radicand: The number placed under the radical sign.
Ratio: A comparison of two like quantities.
Rectangle: A plane figure with four sides and four right angles.
Remainder: The result of subtracting. Also, in division, the amount left

over when a number does not divide evenly into another.
Right angle: Any 90° angle.
Right triangle: A triangle containing a right angle.
Root index: A raised number inside the crook of a radical symbol; used to

indicate roots other than square roots.
Round number: An approximate number.
Second: 1/60th of a minute of time ; one 1/60th of a minute of angular

measure.
Sexagon: A plane figure with six sides and six angles.
Signed number: A number with a positive (+) or negative (−) sign in front

of it.
Significant figure: In estimating, a number that it is important to have

accurate.



Square: A rectangle whose sides are equal in length. The product of a
number multiplied by itself once; to square: to multiply a number by
itself once (for example, 2 × 2 = 4).

Square root: A number that, multiplied by itself, yields another number;
for example, 2 is the square root of 4.

Straight angle: A 180° angle—which is a straight line.
Subtrahend: A number that is to be subtracted from another.
Sum: The result of adding.
Tax: An amount charged by a government to citizens who use government

services; usually expressed as a percentage of income, sales, property
value, etc.

Terms: The numbers in a fraction.
Time zone: A geographical area in which the same time is used.
Tip: An amount of money given to a person providing a service, in

recognition of good work; usually expressed as a percentage of the
cost of the service.

Trapezoid: A quadrilateral having two parallel sides.
Variable: A quantity that may assume one of various values.
Vertex: The point where the sides of an angle intersect.
Volume: The quantity that a solid figure can hold.

































Answers to Math Problems

CHAPTER 2

Page 14
69; 116; 540; 1,128; 1,233; 5,120; 8,012; 182; 12,007; 25,671

Page 15
Larger than 200 but smaller than 220.

Page 25
225; 373; 2,522; 2,840; 3,758; 24,747; $17.79; $11.49

CHAPTER 3

Page 36
288; 644; 126; 224; 2,548; 3,564; 132,678; 189,288

Page 38
4800; 19,700; 1,440; 42,800; 7,956; 3,198,400,000; 1,775,000

CHAPTER 4

Page 43
8,370; 9,118; 8,832; 9,405; 8,160; 7,656; 10,608; 12,208; 12,305

Page 47
2,205; 2,112; 1,880; 1,554; 2,970; 2,964; 3,480; 3,233



Page 49
728; 504; 616; 506; 725; 792; 1,184; 999; 1,326

Page 51
5,254; 4,526; 5,400; 6,162; 4,964; 4,690; 6,396; 6,320; 4,736

Page 53
47,515; 86,724; 150,508; 241,560; 266,240; 482,318; 993,010

CHAPTER 5

Page 63
392; 10,296; 55,566; 129,558; 150,080; 2,177,355

CHAPTER 6

Page 69
8,836; 7,921; 12,769; 7,056; 11,881; 16,129

Page 71
986,049; 996,004; 1,008,016; 996,004; 1,012,036; 952,576; 1,024,144

Page 75
Rows, horizontally: 225; 7,225; 11,025; 119,025; 1,525,225; 308,025; 961;
5,041; 12,321; 2,601; 3,721; 8,281; 33,856; 196; 4,096; 7,056; 2,916;
12,996; 3,136; 11,236; 9,216; 5,776; 256; 4,356; 361; 9,801; 4,761; 11,881;
3,481; 1,521
Word problem: 242 − 24 = 552 boxes of Chinese soup mix. This assumes all
the boxes in every row above the bottom tumble to the floor.

Page 79
1,672; 216; 572; 3,965; 304; 6,804; 728; 5,624; 210; 2,652



CHAPTER 7

Page 83
4,820; 367,200; 19,960; 82,800; 8,640; 1,350,000
42110 × 9; 9,87610 × 9; 1810 × 12; 4710 × 12; 1310 × 15; 5210 × l00

Page 87
198; 492; 837; 4,026; 4,182; 2,604

Pages 89, 90
2; 4; 13; 27; 54
10; 28; 117; 297; 702
60; 540; 2,870; 1,980; 1,530

Page 93
210; 1,125; 1,710; 1,035; 2,610; 6,390; 1,045; 3,520; 6,655

Page 96
684; 2,268; 486; 3,069; 6,930; 6,831; 32,076

CHAPTER 8

Page 98
9; 12; 49; 40; 50; 102

Page 100
6; 6; 16; 18; 18; 28

Page 102
329; 115; 206; 172; 139; 79

Page 103
8; −8; 25; −25; 114; −114



Page 107
88; 25; 144; 66; 344; 3,245

Page 108
35; 39; 51; 125; 250

CHAPTER 9

Page 115
How you choose to work these problems depends on your taste and your
skill. Answers: 20.6; 4760.6; 7.16; 7207.91; 308.069

Page 118
12%; 25%; 36%; 5%; 100%
2487.6; 4,868.2732; 92,367.4163; .1248; 4.86; .98

Page 121
2.8; 57.3; 5,2; 3

CHAPTER 10

Page 124
61.8; 36.08; 6.832; 14.4; 1.724; 38.944

Pages 132, 133
Divisible by 3: 126; 1,704; 168; 171
Divisible by 4: 96; 236; 944; 3,780
Divisible by 5: 15,670; 42,345; 12,000
Divisible by 6: 270; 3,954; 3,996; 25,452
Divisible by 8: 576; 31,536
Divisible by 9: 369; 693; 963; 8,847
Divisible by 11: 9,856; 7,194
Divisible by 12: 9,468; 5,472; 11,556



Divisible by 15: 11,115; 2,310; 945; 147,795

If a number ends in 0 and is evenly divisible by 9, it is also evenly
divisible by 90. For example:

CHAPTER 12

Page 147
89; 92; 44; 18; 66; 91; 97; 17

Page 152
Cube roots: 28; 57; 98
Fourth roots: 4; 21; 87
Sixth roots: 6; 11; 32
Ninth root: 2

CHAPTER 13

Page 155
11/4; 19/5; 123/12; 78/8; 525/32

Page 157
16/40 and 20/40; 3/4 and 2/4; 21/30 and 4/30; 60/90 and 72/90, or 30/45
and 36/45; 40/60, 48/60, and 45/60; 396/660, 540/660, and 550/660



Page 159
3/8; 19/24; 1 13/18; 1 23/60; 1 31/40; 61/72; 1 7/80

Page 161
1 11/36; 29/30; 1 67/120; 7 19/40; 11 33/54; 1 88/195; 5/6; 17/72; 1/72

Page 162
2/5; 1/20; 1/8; 11/40; 1/2

Page 164
3 15/28; 10 7/10; 3 3/4; 3 86/165; 1 61/80

Page 168
1/3; 5/14; 10/21; 3 97/270; 1/10; 2/13

Page 170
15; 1/2; 4/5; 4/35; 4 11/16; 1/9

Page 172
4/10 or .4; 15/100 or .15; 27/1,000 or .027; 80/100 or .80; 164/10,000 or
.0164; 47/1,000,000 or .000047
Any decimal followed by the appropriate number of zeros will do. An
example: .01; .010; .0100; .01000

Page 174
1,134.605; 212.255; 567.4909; 50.896; 55.3

Page 176
4056.1; 37.0736; 4665.3642; 34.713; 3.0955; 195; 515.46; .0776

Page 178
.9; .75; .75; .185; .533; .625
3/4; 5/10; 7/8



CHAPTER 14

Page 181
80%; 88.8%; 25%; 87.5%; 62.5%; 45%; 211.6%; 50.5%; 211.1%

Page 182
48%; 22%; 50%; 87%; 225%

Page 183
9/50; 1/3; 1/10; 9/10; 41/50

Pages 186, 187
7.3%; 64; 16.6%; 45; 33.33%; 70.38

Page 189
5 percent of $10.00 = 50 cents. Add this to the principal to get the total
owed after one month: $10.50.

At 5 percent interest compounded weekly over slightly more than four
weeks, $1.00 would earn the lender about $1.22. Multiply by $10.00 to get
the total you would owe to your kid brother: $12.22.

CHAPTER 15

Pages 195, 196
.0017; 39; 34,890; 12,600; 67; 2,389,476.234; 80; 100

Page 197
15,100; 919.15; 9,543,800,000; 1,944.3 square feet; 2,498; 31.83

Page 199
The answer depends on your choice of grocery items, the current prices,
and the amount you’re inclined to eat. However, if you have much money
left over for a restaurant meal, you probably ate a lot of potatoes during the
week.



CHAPTER 16

Page 209
43; 99; 1,821; 25,887; 16,486; 58,025

Page 211
92,729 (correct answer is 29,729)
168,642 (correct answer is 167,642)
690,613 (correct answer is 608,623)
21,797,246 (correct answer is 450,831,146)

Page 214
The only correct answer is 27 × 23 = 621. These are the correct answers:
2,484; 621; 36.08; 221,778; 17,659,219; 40,885,120; 635,171,674,722

Page 217
Correct answers: 52; 62, r. 17; 423.52; 526, r. 26; 34; 83.68

CHAPTER 17

Page 224
10 million
1,000,000,000; 1,000,000; 10,000
8,764,522,330; 87,645,223.30

Page 226

Your brother is running a temperature of 99.32. Since a normal temperature
is 98.6, he may have a slight fever, but he’s not very sick.

CHAPTER 18

Page 231
Sunday; Wednesday; Tuesday; Saturday; Thursday



CHAPTER 19

Page 238
You round off your tips to the nearest 5 or 10 cents, so that you’re not

handing out pennies. All told, you spend $5.65 in tips.
You tip the following:

You could have saved your client some change by doing several things
differently:

1.     Take the shuttle bus instead of a taxi from the airport to the hotel.
Shuttles are cheaper than taxis, and if the driver doesn’t carry your
luggage, you don’t have to tip him.

2.     Carry your own bags to your room. This kind of behavior, however,
would look tacky in a swell hotel like the Brown Palace. If you
stayed in a motel, you would be expected to carry your bags, and
you would probably save on the room rate, too.

3.     Go down to the coffee shop for a snack, instead of having it
expensively delivered to your room.

4.     Bring your own cheese and crackers in your luggage and walk down
the hall to the soft drink machine for a soft drink.

Page 242
The waiter owed you $19.46.
The total bill is $36.86, out of $50:
36.86 + 1 cent
    .87 + 1 cent
    .88 + 1 cent
    .89 + 1 cent
    .90 + 10 cents
37.00 + $1.00
38.00 + $1.00
39.00 + $1.00



40.00 + $10.00

$50.00

Your customer receives $13.14 in change. He gives you a tip of $5.53, or,
in round numbers, $5.50.

CHAPTER 20

Page 253
2 hours, 45 minutes
Algiers, Algeria (time depends on your time zone)
1740 hours
An analog clock is circular and so is the Equator of the earth; both the
Equator and an analog clock contain 360 degrees; like longitude, time is
measured on an analog clock in minutes and seconds; the movement of the
hour hand corresponds to the movement of the sun overhead as it passes
from meridian to meridian.

6:00 P.M., if by “dinner” we mean the evening meal.

CHAPTER 22

Page 285

Page 287
14abc; 14(abc); 14a(bc); (14ab)c; cba14; bca14; abc14; a(14b)c; and so
forth
ab ÷ 75 = 1



14x + 14c
xy ÷ 3x − y = 12
You will get − 18.

Page 289
28x10; 4c4; 104a7 + 4y

Page 291
p = $1.15 ÷ 3
p = $1.15 ÷ 15

Page 298
35°; −5°
Joe has $30 too little to pay his debt.
−$80
$720
Yes
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