
 

 

 

ELECTROSTATICS 
 

 
 

1. INTRODUCTION 
 The branch of physics which deals with electric effect of static charge is called electrostatics. 
 

2. ELECTRIC CHARGE 
 Charge of a material  body or particle is the property (acquired or natural) due to which it produces and 

experiences electrical and magnetic effects. Some of naturally charged particles are electron, proton,  
α-particle etc.  

 

 Charge is a derived physical quantity. Charge is measured in coulomb in S.Ι. unit. In practice we use mC 

(10–3C), μC (10–6C), nC(10–9C) etc.  
 C.G.S. unit of charge = electrostatic unit = esu. 
 1 coulomb = 3 × 109 esu of charge  
 Dimensional formula of charge = [MºLºT1Ι1] 
 

    2.1  Properties of Charge  
(i) Charge is a scalar quantity : It adds algebraically and represents excess, or 

deficiency of electrons. 
 

(ii) Charge is of two types : (i) Positive charge and (ii) Negative charge Charging 

a body implies transfer of charge (electrons) from one body to another. Positively 
charged body means loss of electrons, i.e., deficiency of electrons. Negatively charged 
body means excess of electrons. This also shows that mass of a negatively charged 
body > mass of a positively charged identical body. 

 

(iii) Charge is conserved : In an isolated system, total charge (sum of positive and 

negative) remains constant whatever change takes place in that system. 
 

(iv) Charge is quantized : Charge on any body always exists in integral multiples of a 

fundamental unit of electric charge. This unit is equal to the magnitude of charge on 
electron (1e = 1.6 × 10–19 coulomb). So charge on anybody Q = ± ne, where n is an 
integer and e is the charge of the electron. Millikan's oil drop experiment proved the 
quantization of charge or atomicity of charge 

Note : Recently, the existence of particles of charge ± e and ± e has been postulated. These 
particles are called quarks but still this is not considered as the quantum of charge 
because these are  unstable (They have very short span of life). 

 (v) Like point charges repel each other while unlike point charges attract each other. 
 (vi) Charge is always associated with mass, i.e., charge can not exist without mass though 

 mass can exist without charge. The particle such as photon or neutrino which have no 
 (rest) mass can never have a charge.  
(vii) Charge is relativistically invariant: This means that charge is independent of frame of 

reference, i.e., charge on a body does not change whatever be its speed. This property 
is worth mentioning as in contrast to charge, the mass of a body depends on its speed 
and increases with increase in speed. 

(viii) A charge at rest produces only electric field around itself; a charge having uniform motion 
produces electric as well as magnetic field around itself while a charge having 
accelerated motion emits electromagnetic radiation. 

 

2.2  Charging of a body   
 

 A body can be charged by means of (a) friction, (b) conduction, (c) induction, (d) thermionic ionization or 
thermionic emission (e) photoelectric effect and (f) field emission. 

 

 
 (a)  Charging by Friction : 



 

 

  When a neutral body is rubbed against other neutral body then some electrons are transferred from 
one body to other. The body which can hold electrons tightly, draws some electrons and the body 
which can not hold electrons tightly, looses some electrons. The body which draws electrons 
becomes negatively charged and the body which looses electrons becomes positively charged.  

 
  For example : Suppose a glass rod is rubbed with a silk cloth. As the silk can hold electrons more 

tightly and a glass rod can hold electrons less tightly (due to their chemical properties), some 
electrons will leave the glass rod and gets transferred to the silk. So in the glass rod their will be 
deficiency  of electrons, therefore it will become positively charged. And in the silk there will be some 
extra electrons, so it will become negatively charged  

 

 (b)   Charging by conduction (flow): There are three types of material in nature  
  (i)  Conductor : Conductors are the material in which the outer most electrons are very loosely 

bounded, so they are free to move (flow). So in a conductors, there are large number of free 
electrons. 

   Ex. Metals like Cu, Ag, Fe, Al.............  
 
  (ii)  Insulator or Dielectric or Nonconductor : Non-conductors are the materials in which outer 

most electrons are very tightly bounded, so they cannot move (flow). Hence in a non-conductor 
there is no free electrons. Ex. plastic, rubber, wood etc. 

  (iii) Semi conductor : Semiconductor are the materials which have free electrons but very less in 
number. 

 

Now lets see how the charging is done by conduction. In this method we take a charged 
conductor 'A' and an uncharged conductor 'B'. When both are connected some charge will flow 
from the charged body to the uncharged body. If both the conductors are identical & kept at large 
distance, if  connected to each other, then charge will be divided equally in both the conductors 
otherwise they will flow till their electric potential becomes same. Its detailed study will be done 
in last section of this chapter. 

     
 
 (c) Charging by Induction : To understand this, lets have introduction to induction. 

 
  We have studied that there are lot of free electrons in the conductors. When a charge particle +Q is 

brought near a neutral conductor. Due to attraction of +Q charge, many electrons (–ve charges) come 
closer and accumulate on the closer surface. 

 



 

 

  On the other hand a positive charge (deficiency of electrons) appears on the other surface. The flow 
of charge continues till there is resultant force on free electrons of the conductor becomes zero. This 
phenomena is called induction, and charges produced are called induced charges. 

  A body can be charged by induction in the following two ways : 
 

  Method Ι : 
  Step 1. Take an isolated neutral conductor..  

               

  Step 2. Bring a charged rod near to it. Due to the charged rod, charges will induce on the conductor. 

            

  Step 3. Connect  another neutral conductor with it. Due to attraction of the rod, some free electrons 
will move from the right conductor to the left conductor and due to deficiency of electrons positive 
charges will appear on right conductor and on the left conductor there will be excess of electrons due 
to transfer from right conductor.. 

 
  Step 4. Now disconnect the connecting wire and remove the rod. 

  
       The first conductor will be negatively charged and the second conductor will be positively charged. 
 
Method ΙΙ 
  Step 1. Take an isolated neutral conductor..  

 
 

  Step 2. Bring a charged rod near to it. Due to the charged rod, charges will induce on the conductor. 

 
 

  Step 3. Connect the conductor to the earth (this process is called grounding or earthling). Due to 
attraction of the rod, some free electrons will move from earth to the conductor, so in the conductor 
there will be excess of electrons due to transfer from the earth, so net charge on conductor will be 
negative. 

 
 

  Step 4. Now disconnect the connecting wire. Conductor becomes negatively charge.    



 

 

 
 

 (d) Thermionic emission : When the metal is heated at a high temperature then some electrons of 
metals are ejected and the metal becomes positively charged.          

          
 

 (e) Photoelectric effect : When light of sufficiently high frequency is incident on metal surface then 
some electrons gains energy from light and come out of the metal surface and remaining metal 
becomes positively charged.             

           
 

(f) Field emission : When electric field of large magnitude is applied near the metal surface then some 
electrons come out from the metal surface and hence the metal gets positively charged. 

       
 

 
 

Example 1. If a charged body is placed near a neutral conductor, will it attract the conductor or repel it? 
Solution.  

 
 If a charged body (+ve) is placed leftside near a neutral conductor, (–ve) charge will induce at 

left surface and (+ve)  charge will induce at right surface. Due to positively charged body –ve 
induced charge will feel attraction and the +ve induced charge will feel repulsion. But as the  
–ve induced charge is nearer, so the attractive force will be greater than the repulsive force. So 
the net force on the conductor due to positively charged body will be attractive. Similarly we can 
prove for negatively charged body also.  

 From the above example we can conclude that. "A charged body can attract a neutral body." 
 

 If there is attraction between two bodies then one of them may be neutral. But if there is 
repulsion between two bodies, both must be charged (similarly charged).  



 

 

 So "repulsion is the sure test of electrification". 
 

Example 2.  A positively charged body 'A' attracts a body 'B' then charge on body 'B' may be: 
   (A) positive   (B) negative   (C) zero    (D) can't say   
Answer.  B, C 
 

Example 3. Five styrofoam balls A, B, C, D and E are used in an experiment. Several experiments are 
performed  on the balls and the following observations are made 

   (i) Ball A repels C and attracts B. 
   (ii) Ball D attracts B and has no effect on E. 
   (iii) A negatively charged rod attracts both A and E. 
 For your information , an electrically neutral styrofoam ball  is very sensitive to charge induction, 

and gets attracted considerably, if placed nearby a charged body. What are the charges, if any, 
on each ball ? 

   A B C D E 
  (A) + – + 0 + 
  (B) + – + + 0 
  (C) + – + 0 0 
  (D) – + – 0 0 
Answer. C 
Solution. From (i), As A repels C, so both A and C must be charged similarly. Either both are +ve or both 

are –ve. As A also attract  B, so charge on B should be opposite of A or B may be uncharged 
conductor. 

 From (ii) As D has no effect on E, so both D and E should be uncharged, and as B attracts 
uncharged D, so B must be charged and D must be on uncharged conductor. 
From (iii) a –ve charged rod attract the charged ball A,  so A must be +ve, and from exp. (i) C 
must also be +ve and B must be –ve. 

 
Example 4.  Charge conservation is always valid. Is it also true for mass? 
Solution.  No, mass conservation is not always. In some nuclear reactions, some mass is lost and it is 

converted into energy. 

Example 5.  What are the differences between charging by induction and charging by conduction ? 

Solution.  Major differences between two methods of charging are as follows : 

   (i) In induction, two bodies are close to each other but do not touch each other while in 
conduction they touch each other. (or they are connected by a metallic wire) 

   (ii) In induction, total charge of a body remains unchanged while in conduction it changes. 

   (iii) In induction, induced charge is always opposite in nature to that of source charge while in 
conduction charge on two bodies finally is of same nature. 

Example 6.  If a glass rod is rubbed with silk it acquires a positive charge because : 
   (A) protons are added to it    
   (B) protons are removed from it 
   (C) electrons are added to it    
   (D) electrons are removed from it. 
Answer. D 
 

 

3. COULOMB’S LAW (INVERSE SQUARE LAW) 
 On the basis of experiments Coulomb established the following law known as Coulomb's law.  
 The magnitude of electrostatic force between two point charges is directly proportional to the product of 

charges and inversely proportional to the square of the distance between them. 

 i.e.  F ∝ q1q2 and F ∝   ⇒ F ∝    ⇒ F =  
  Important points regarding Coulomb's law :  
 (i) It is applicable only for point charges. 
 



 

 

(ii) The constant of proportionality K in SI units in vacuum is expressed as  and in any other 

medium expressed as . If charges are dipped in a medium then electrostatic force on one 

charge is . ε0 and ε are called permittivity of vacuum and absolute permittivity of the 

medium respectively. The ratio ε/ε0 = εr is called relative permittivity of the medium, which is a 
dimensionless quantity. 

 

(iii) The value of relative permittivity εr is constant for medium and can have values between 1 to ∞. 
For vacuum, by definition it is equal to 1. For air it is nearly equal to 1 and may be taken to be 
equal to 1 for calculations. For metals the value of εr is ∞ and for water is 81. The material in 

which more charge can induce εr will be higher.  

 (iv) The value of  = 9 × 109 Nm2 C–2 ⇒ ε0 = 8.855 × 10–12 C2/Nm2.  

  Dimensional formula of ε is  M–1 L–3 T4 A2  
 

(v) The force acting on one point charge due to the other point charge is always along the line joining 
these two charges. It is equal in magnitude and opposite in direction on two charges, irrespective 
of the medium, in which they lie. 

 

(vi) The force is conservative in nature i.e., work done by electrostatic force in moving a point charge 
along a close loop of any shape is zero. 

(vii) Since the force is a central force, in the absence of any other external force, angular momentum 
of one particle w.r.t. the other particle (in two particle system) is conserved,  

 

(viii) In vector form formula can be given as below. 

  =  =          (q1 & q2 are to be substituted with sign.)  

 here  is position vector of the test charge (on which force is to be calculated) with respect to 
the source charge (due to which force is to be calculated). 

 

 
 

Example 7. Find out the electrostatics force between two point charges placed in air (each of  + 1C) if they 
are separated by 1m.  

Sol.  Fe =  =  = 9×109 N  
 

 From the above result we can say that 1 C charge is too large to realize. In nature, charge is 
usually of the order of μC 

 
Example 8. Two particles having charges q1 and q2 when kept at a certain distance, exert a force F on each 

other. If the distance between the two particles is reduced to half and the charge on each particle 
is doubled then what will be the force between the particles:  

Answer. 16 F 

Solution. F =   

 If q’1 = 2q1, q’2 = 2q2 r’ = ,  

 then F’ =  =  



 

 

  F’ =  
  F’ = 16F    
  
Example 9. A particle of mass m carrying charge q1 is revolving around a fixed charge –q2 in a circular path 

of radius r. Calculate the period of revolution and its speed also. 

Solution.  = mrω2 =   

 T2 =   or T = 4πr  
 and also we can say that  

   =   ⇒ V =  
 
Example 10. A point charge qA = + 100 µc is placed at point A (1, 0, 2) m and an another point charge  

qB = +200µc is placed at point B (4, 4, 2) m. Find :  
  (i) Magnitude of Electrostatic interaction force acting between them  

  (ii) Find  (force on A due to B) and  (force on B due to A) in vector form  
Solution.  (i)   

    

   Value of F :  =  = 7.2 N  

  (ii) Force on B = =  

      = 7.2 N  

       Similarly     = 7.2 N 

  Action( )  and Reaction ( ) are equal but in opposite direction. 
 

 

 
 

4. PRINCIPLE OF SUPERPOSITION 
 The electrostatic force is a two body interaction, i.e., electrical force      

 
between two point charges is independent of presence or absence of other charges and so the principle 
of superposition is valid, i.e., force on charged particle due to number of point charges is the resultant of 



 

 

forces due to individual point charges, therefore,  force on a point test charge due to many charges is 

given by  
 

 
 

Example 11. Three equal point charges of charge +q are moving along a circle of radius R and a point charge 
–2q is also placed at the centre of circle as (shown in figure), if charges are revolving with 
constant and same speed then calculate speed  

 
Solution.         

   

  F2 – 2F1 cos 30 =      ⇒  –  cos 30 =  

⇒       
 

 
Example 12 Two equally charged identical small metallic spheres A and B repel each other with a force  

2 × 10–5N when placed in air (neglect gravitation attraction). Another identical uncharged sphere 
C is touched to B and then placed at the mid point of line joining A and B. What is the net 
electrostatic force on C? 

 
Solution. Let initially the charge on each sphere be q and separation 

between their centres be r; then according to given problem. 

 F =  = 2 × 10–5 N 
 

 When sphere C touches B, the charge of B, q will distribute equally on B and C as sphere are 
identical conductors, i.e., now charges on spheres; 

  qB = qC = (q/2) 
  So sphere C will experience a force      

   FCA =  = 2F along  due to charge on A 

 



 

 

  and FCB =   = F along  due to charge on B 
  So the net force FC on C due to charges on A and B, 

  FC = FCA – FCB = 2F – F = 2 × 10–5 N along . 
 

Example 13 Five point charges, each of value q are placed on five vertices of a regular hexagon of side L. 
What is the magnitude of the force on a point charge of value – q coulomb placed at the centre 
of the hexagon? 

Solution. Method-I : If there had been a sixth charge +q at the remaining vertex of hexagon force due to 
all the six charges on –q at O would be zero (as the forces due to individual charges will balance 

each other), i.e.      
  

 Now if  is the force due to sixth charge and  due to remaining five 
charges. 

  +  = 0 i.e.   = –     

 or |F| = |f| =  =    

   =   =  along OD 
 

 

Method : II 
         

 In the diagram we can see that force due to  
 charge A and D are opposite to each other  

     +  = 0  ....(i) 

 Similarly  +  = 0  ....(ii) 

 So    +  +  +  +  =   

 Using (i) and (ii)  =  =  along OD  
 

 

Example 14. A thin straight rod of length l carrying a uniformly distributed change q 

is located in vacuum. Find the magnitude of the electric force on a point 
charge 'Q' kept as shown in the figure. 

 

Solution. As the charge on the rod is not point charge, therefore, first we have to find force on charge Q 
due to charge over a very small part on the length of the rod. This part called element of length 
dy can be considered as point charge. 

         

 Charge on element  dq = λdy =  

 Electric force on 'Q' due to element =  =  
 All forces are along the same direction  

 ∴ F =  This sum can be calculated using integration,   

  therefore  F =  =  =  =    

Note : (1)  The total charge of the rod cannot be considered to be placed at the centre of the rod as 
we do in mechanics for mass in many problems. 



 

 

Note : (2)  If a >> l then  F =   

 behaviour of the rod is just like a point charge. 
 

 

5. ELECTROSTATIC EQUILIBRIUM 
 The point where the resultant force on a charged particle becomes zero is called equilibrium position. 
 

   5.1  Stable  Equilibrium :  A charge is initially in equilibrium position and is displaced  by a small distance. 

If the charge tries to return back to the same equilibrium position then this equilibrium is called position 
of stable equilibrium. 

 

   5.2  Unstable  Equilibrium :  If charge is displaced by a small distance from its equilibrium position and 

the charge has no tendency to return to the same equilibrium position. Instead it goes away from the 
equilibrium position. 

 

5.3  Neutral Equilibrium : If charge is displaced by a small distance and it is still in equilibrium condition 

then it is called neutral equilibrium. 
 

 
 

Example 15. Two equal positive point charges 'Q' are fixed at points B(a, 0) and A(–a, 0). Another test charge 
q0 is also placed at O(0, 0). Show that the equilibrium at 'O' is  

 (i)  stable for displacement along X-axis.  
 (ii) unstable for displacement along Y-axis. 

Solution. (i) Initially  +  = 0   ⇒  =  =  
 When charge is slightly shifted towards + x axis  
 by a small distance Δx, then. 

  <  

 

 
 Therefore the particle will move towards origin (its original position) hence the equilibrium is 

stable. 
 
 (ii) When charge is shifted along y axis      

 
 After resolving components net force will be along y axis so the particle will not return to its 

original position so it is unstable equilibrium. Finally the charge will move to infinity. 
 

Example 16. Two point charges of charge q1 and q2 (both of same sign) and each of mass m are placed such 
that gravitation attraction between them balances the electrostatic repulsion. Are they in stable 
equilibrium? If not then what is the nature of equilibrium? 



 

 

Solution. In given example :  = . We can see that irrespective of distance between them 
charges will remain in equilibrium. If now distance is increased or decreased then there is no 
effect in their equilibrium. Therefore it is a neutral equilibrium. 

 

Example 17. A particle of mass m and charge q is located midway between two fixed charged particles each 

having a charge q and a distance 2 apart. Prove that the motion of the particle will be SHM if it 

is displaced slightly along the line connecting them and released. Also find its time period. 
Solution. Let the charge q at the mid-point the displaced slightly to the 

left. The force on the displaced charge q due to charge q at 
A,  

 F1 =   
 The force on the displaced charge q due to charge at B,  

  F2 =     
 Net restoring force on the displaced charge q. 

  F = F2 – F1 or F =   –    

  or F =  =   

 Since   >> x, ∴ F =  or F =  

 We see that F ∝ x and it is opposite to the direction of displacement. Therefore, the motion is 
SHM. 

  T =  , here k =  =  
 

Example 18. Find out mass of the charge Q so, that it remains in equilibrium for the given configuration. 

 
 

Solution.  

  ⇒ 4 Fcosθ = mg    ⇒ 4 ×  h   = mg    

 

Example 19. Two identical charged spheres are suspended by strings of equal length. Each string makes an 

angle θ  with the vertical. When suspended in a liquid of density σ = 0.8 gm/cc, the angle remains 

the same. What is the dielectric constant of the liquid? (Density of the material of sphere is ρ = 

1.6 gm/cc.)  

Solution. Initially as the forces acting on each ball are tension T, weight mg and electric force F, for its 

equilibrium along vertical, 



 

 

   T cos θ = mg    .....(1) 

  and along horizontal  

   T sin θ = F    .....(2)       

  Dividing Eqn. (2) by (1), we have 

   tan θ =     .....(3) 

When the balls are suspended in a liquid of density σ and 

dielectric constant K, the electric force will become (1/K) 

times, i.e., F' = (F/K) while weight. 

mg' = mg – FB = mg – Vσg [as FB = Vσg, where σ is 

density of material of sphere] 

i.e., mg' = mg    

So for equilibrium of ball, 

tan θ' =  =  ... (4) 

 

 According to given information θ' = θ; so from equations (4) and (3), we have 

  K =  =  = 2  Ans.   
 

 
 

6. ELECTRIC FIELD  

 Electric field is the region around charged particle or charged body in which if another charge is placed, 

it experiences electrostatic force. 

 

  6.1  Electric field intensity  :  Electric field intensity at a point is equal to the electrostatic force 

experienced by a unit positive point charge both in magnitude and direction.  

 If a test charge q0 is placed at a point in an electric field and experiences a force  due to some charges 

(called source charges), the electric field intensity at that point due to source charges is given by  

; 

If the  is to be determined practically then the test charge q0 should be small otherwise it will affect the 

charge distribution on the source which is producing the electric field and hence modify the quantity which 

is measured. 
 

 
 

Example 20. A positively charged ball hangs from a long silk thread. We wish to measure E at a point P in the 
same horizontal plane as that of the hanging charge. To do so, we put a positive test charge q0 
at the point and measure F/q0. Will F/q0 be less than, equal to, or greater than E at the point in 
question? 

Solution. When we try to measure the electric field at point P then after placing 
the test charge at P it repels the source charge (suspended charge) 

and the measured value of electric field Emeasured =  will be less than 
the actual value Eact that we wanted to measure.  

 
 

  6.2 Properties of electric field intensity  : 



 

 

 (i) It is a vector quantity. Its direction is the same as the force experienced by positive charge.  
 

 (ii) Direction of electric field due to positive charge is always away from it while due to negative 
 charge always towards it. 

 

 (iii) Its S.Ι. unit is Newton/Coulomb. 
 

 (iv) Its dimensional formula is [MLT–3A–1] 
 

 (v) Electric force on a charge q placed in a region of electric field at a point where the electric field 

 intensity is  is given by .  

 Electric force on point charge is in the same direction of electric field on positive  charge and in 
 opposite direction on a negative charge. 
(vi) It obeys the superposition principle, that is, the field intensity at a point due to a system of 
 charges is vector sum of the field intensities due to individual point charges.  

  + ..... 

 (vii) It is produced by source charges. The electric field will be a fixed value at a point  unless we  
  change the distribution of source charges. 
 

 
 

Example 21. Electrostatic force experienced by –3μC charge placed at point 'P' due 

to a system 'S' of fixed point charges as shown in figure is  
µN. 

 (i) Find out electric field intensity at point P due to S.   
     (ii) If now 2μC charge is placed and –3 μC is removed at point  P then 

force experienced by it will be. 
 

Solution. (i)   ⇒  = -3µC  ⇒  = –7  – 3   
 (ii) Since the source charges are not disturbed the electric field intensity at 'P' will remain same. 

 2μC = +2( ) = 2(–7  – 3 ) = –14  – 6 µN 
 

Example 22. Calculate the electric field intensity which would be just sufficient to balance the weight of a 
particle of charge –10 μc and mass 10 mg.  (take g = 10 ms2) 

Solution. As force on a charge q in an electric field  is q = q  
 So according to given problem 

   i.e.,  |q|E = mg 

 i.e., E =  = 10 N/C., in downward direction. 
 

 
List of formula for Electric Field Intensity due to various types of charge distribution : 
 



 

 

 
 

 
Example 23. Find out electric field intensity at point A (0, 1m, 2m) due to a point charge –20μC situated at 

point B( m, 0, 1m). 



 

 

Solution. E =  =  ⇒    = P.V. of A – P.V. of B (P.V. = Position vector) 

 = (–  +  + )  | | =  = 2 

 E =  (–  +  + )  = – 22.5 × 103 (–  +  + ) N/C. 
 

Example 24. Two point charges 2μc and – 2μc are placed at point A and B as shown in figure. Find out electric 
field intensity at points C and D. [All the distances are measured in meter]. 

 
Solution. Electric field at point C  (EA, EB are magnitudes only and arrows represent directions)       

            
 Electric field due to positive charge is away from it while due  to negative charge it is towards the 

charge. It is clear that EB > EA . 
  ∴ ENet = (EB – EA) towards negative X-axis  

   =  towards negative X-axis    

   = 8000 (– ) N/C  
 Electric field at point D :     
 Since magnitude of charges are same and also AD = BD 

     
 So EA = EB 

 Vertical components of  and  cancel each other while horizontal components are in the 
same direction. 

  So, Enet = 2EA cosθ  = cos450  

         =  =  N/C. 
Example 25.  Six equal point charges are placed at the corners of a regular hexagon of side ‘a’. Calculate 

electric field intensity at the centre of hexagon? 



 

 

 
Answer.  Zero 
 

    Similarly electric field  due to a uniformly charged ring at the centre of ring  :  

          

Note : (i)  Net charge on a conductor remains only on the outer surface of a conductor. This property 
will be discussed in the article of the conductor. (article no.17) 

 (ii) On the surface of isolated spherical conductor charge is uniformly distributed. 
 

 
 

6.3 Electric field due to a uniformly charged ring and arc. 
 

 
 

Example 26. Find out electric field intensity at the centre of uniformly charged semicircular ring of radius R and 
linear charge density λ.  

Solution. λ = linear charge density.       
 The arc is the collection of large no. of point charges. 
 Consider a part of ring as an element of length Rdθ which subtends  

 an angle dθ at centre of ring and it lies between θ and θ + dθ  

     

  = dEx  + dEy   Ex =  (due to symmetry)   

 Ey =  =  =  =   
 

Example 27. Find out electric field intensity at the centre of uniformly charged quarter ring of radius R and 
linear charge density l. 

Solution. Refer to the previous quation  = dEx  + dEy  on solving Enet  =  
 

 
 



 

 

 By use of symmetry and from the formula of electric field due to half ring.   
  Above answer can be justified. 
 (ii) Derivation of electric field intensity at a point on the axis at a distance x from centre of 

 uniformly charged ring of radius R and total charge Q. 

 
 Consider an element of charge dq. Due to this element the electric field at the point on axis, 

which is at a distance x from the centre of the ring is dE. There are two component of this electric 
field  

 
The y-component of electric field due to all the elements will be cancelled out to each other.  
So net electric field intensity at the point will be only due to X-component of each element. 

 Enet =  =  =    

 Enet =    

 E will be max when  = 0, that is at x =  and Emax =  

 Case (i) :  if x>>R, E =  Hence the ring will act like a point charge 

  Case (ii) :  if x<<R, E =   
 

 
 

Example 28. Positive charge Q is distributed uniformly over a circular ring of radius R. A point particle having 
a mass m and a negative charge –q, is placed on its axis at a distance x from the centre. Find 
the force on the particle. Assuming x << R, find the time period of oscillation of the particle if it is 
released from there. (Neglect gravity) 

Solution. When the negative charge is shifted at a distance x from the centre of 
the ring along its axis then force acting on the point charge due to the 
ring : 

 FE = qE (towards centre)         

      = q   

 
 

    
 if  R >> x then  

  R2 + x2 ~ R2   



 

 

  FE =   (Towards centre)  

  Since restoring force FE ∝ x, therefore motion of charge the particle will be S.H.M.  

  Time period of SHM. 

  T = 2π  = 2π  =  

 

Example 29. Derive the expression of electric field intensity at a point 'P' which is situated at a distance x on 

the axis of uniformly charged disc of radius R and surface charge density σ. Also derive results 

for  

 (i) x >> R   (ii) x << R 

Solution. The disc can be considered to be a collection of large number of concentric rings. Consider an 

element of the shape of ring of radius r and of width dr. Electric field due to this ring at P is 

 dE =     

          
  Put  r2 + x2 = y2  

   2rdr = 2ydy 

  dE =  = 2Kσπ.x  

  Electric field at P due to all rings is along the axis.  

  ∴  ⇒ E = 2Kσπx  = 2Kρπx.  

     = 2Kσπx  = 2Kσπ  

     = , along the axis 

  Cases :  (i) If x >> R 

  E =  [ ]   =  [1 – ] 

      =  [1 – 1 +   + higher order terms] =  =  =  

  i.e. behaviour of the disc is like a point charge. 

  (ii) If x << R  

  E =  [1 – 0] =       i.e. behaviour of the disc is like infinite sheet. 
 

 
 

6.4 Electric field due to uniformly charged wire 



 

 

(i) Line charge of finite length : Derivation of expression for intensity of electric field at a point due 
to line charge of finite size of uniform linear charge density λ. The perpendicular distance of the 
point from the line charge is r and lines joining ends of line charge distribution make angle θ1 and 

θ2 with the perpendicular line. 

          
Consider a small element dx on line charge distribution at distance x from point A (see fig.). The 
charge of this element will be dq = λdx. Due to this charge (dq), the intensity of electric field at 
the point P is dE. 

  then dE =  =  
  there will be two component of this field 

 

  Ex =  
  assuming x = r tanθ ⇒ dx = r sec2θ. dθ 

  so Ex =  =  =  [sinθ1+ sinθ2]  ....(1) 
  Similarly y-component. 

  Ey =  =  [cosθ2 - cosθ1] 
  Net electric field at the point 

  Enet =  
 (ii) We can derive a result for infinitely long line charge 
  In above eq. (1) & (2) if we put θ1 = θ2 = 90º we can get required result. 

  Enet = Ex =    

       
(iii) For Semi- infinite wire   

  θ1 =  90º and θ2 = 0º so 

  Ex = , Ey =  



 

 

 
 

 
 

Example 30. A point charge q is placed at a distance r from a very long charge thread of uniform linear charge 
density λ. Find out total electric force experienced by the line charge due to the point charge. 
(Neglect gravity). 

Solution. Force on charge q due to the thread,   

 F = .q         
 By Newton's ΙΙΙ law, every action has equal and  

 opposite reaction so force on the thread =  
  (away from point charge) 

 
Example 31. Figure shows a long wire having uniform charge density λ as shown in figure. Calculate electric 

field intensity at point P.  

 
Solution.  θ1 =  90º and θ2 = 360º – 37º   so  

  Ex =  [sinθ1+ sinθ2] 

  Ey =  [cosθ2 - cosθ1]        



 

 

 
 
Example 32. Find electric field at point A, B, C, D infinitely long uniformly charged wire with linear charge 

density λ and kept along z-axis (as shown in figure).Assume that all the parameters are in S.I. 
units.  

 

Solution. EA  =  

EB  =   

  EC  =    =  

  ED  =  ⇒ ED  = EC  
 
Example 33. A point charge q is placed at a distance r from a very long charge thread of uniform linear charge 

density λ. Find out total electric force experienced by the line charge due to the point charge. 
(Neglect gravity). 

Solution. Force on charge q due to the thread, F = .q           

      
  By Newton's ΙΙΙ law, every action has equal and opposite reaction so force on the thread  

=   (away from point charge) 
 

 
 



 

 

6.5 Electric field due to uniformly charged infinite sheet   

  Enet  =  toward normal direction  
 

 ELECTRIC FIELD DUE TO AN INFINITELY LARGE, UNIFORMLY CHARGED 

SHEET 

Derivation of expression for intensity of electric field at a point which is at a perpendicular 
distance r from the thin sheet of large size having uniform surface charge density σ. 

    
 Assume a thin strip of width dx at distance x from line AB (see figure). Which can be considered as a 

infinite line charge of charge density λ = σdx  

 Due to this line charge the electric field  intensity at point P will be  dE =   

 Take another element similar to the first element on the other side of AB. Due to symmetry Y-component 
of all such elements will be cancelled out.  

 So net electric field will be given by Enet =  =  =  × cosθ 

 assume x = r tanθ ⇒ dx = r sec2θ. dθ 

 Enet = 2Kσ  away from sheet    

Note:   (1) The direction of electric field is always perpendicular to the sheet. 

 (2) The magnitude of electric field is independent of distance from sheet. 
 

 
 

Example 34. An infinitely large plate of surface charge density +σ is lying in horizontal xy plane. A particle 
having charge –qo  and mass m is projected from the plate with velocity u making an angle θ with 
sheet. Find :  

 
 

  (i) The time taken by the particle to return on the plate.. 
  (ii) Maximum height achieved by the particle.  
  (iii) At what distance will it strike the plate (Neglect gravitational force on the particle) 



 

 

Solution.   

  
 

 Electric force acting on the particle Fe = qoE : Fe = (qo)  downward 

 So acceleration of the particle :  a =  =  = uniform 
 this acceleration will act like  ‘g’ (acceleration due to gravity) 
 So the particle will perform projectile motion.  

 (i)  T =  =   (ii)  H =  =  

 (iii) R =  =  
 
Example 35. A block having mass m and charge –q is resting on a frictionless plane at a distance L from fixed 

large non-conducting infinite sheet of uniform charge density σ as shown in Figure. Discuss the 
motion of the block assuming that collision of the block with the sheet is perfectly elastic. Is it 
SHM? 

Solution.  The situation is shown in Figure. Electric force  produced by sheet will accelerate the block 
towards the sheet producing an acceleration. Acceleration will be uniform because electric field 
E due to the sheet is uniform.  

 , where E = σ/2ε0      
 As initially the block is at rest and acceleration is constant, 

from second equation of motion, time taken by the block to 
reach the wall  

 L =  at2 i.e., t =  =  =  
 As collision with the wall is perfectly elastic, the block will 

rebound with same speed and as now its motion is opposite 
to the acceleration, it will come to rest after travelling same 
distance L in same time t. After stopping it will be again 
accelerated towards the wall and so the block will execute 
oscillatory motion with 'span' L and time period. 

 

   T = 2t = 2  = 2  
 However, as the restoring force F = qE is constant and not proportional to displacement x, the 

motion is not simple harmonic. 
 

Example 36. If an isolated infinite sheet contains charge Q1  on its one surface and charge Q2 on its other 

surface then prove that electric field intensity at a point in front of sheet will be ,  
where  Q = Q1 + Q2 

Solution. Electric field at point P :  =      

     =  +  =  =   



 

 

 
 [This shows that the resultant field due to a sheet depends only on the total charge of the sheet 

and not on the distribution of charge on individual surfaces]. 
 

Example 37. Three large conducting parallel sheets are placed at a finite distance from each other as shown 
in figure. Find out electric field intensity at point A, B, C & D. 

         
               

Solution. For point A   

      

 net = Q + 3Q + –2Q = –  –  +  =  
 For point B   

 

 net = 3Q + –2Q + Q = –  +  +  = 0 
 For point C   

       

  net = Q + 3Q + –2Q = +  –  –  = –  
 for point D   

       

  net = Q + 3Q + –2Q = +  +  –  =  
 

 



 

 

 

6.6 Electric field due to uniformly charged spherical shell 
 

 E =  r ≥ R  ⇒ For the out side points & point on the surface the uniformly  

     charged spherical shell behaves as a point charge placed at  
    the centre 

 E = 0    r < R    

    
 Electric field due to spherical shell out side it is always along the radial direction. 
 

 
 

Example 38. Figure shows a uniformly charged sphere of radius R and total charge 
Q. A point charge q is situated outside the sphere at a distance r from 
centre of sphere. Find out the following :  

 (i)   Force acting on the point charge q due to the sphere. 
 (ii)  Force acting on the sphere due to the point charge. 

 

Solution. (i)  Electric field at the position of point charge   

      so,    
 (ii) Since we know that every action has equal and opposite reaction so 

  sphere =  | sphere| =  
 

Example 39. Figure shows a uniformly charged thin sphere of total charge Q and 
radius R. A point charge q is also situated at the centre of the sphere.  

 Find out the following : 
 (i)   Force on charge q   
 (ii)  Electric field intensity at A.   
 (iii) Electric field intensity at B. 

 

Solution. (i)  Electric field at the centre of the uniformly charged hollow sphere = 0 
      So force on charge q = 0 
 (ii)  Electric field at A 

        =  = 0 +   ;  r = CA 
        E due to sphere = 0 , because point lies inside the charged hollow sphere. 

 (iii)  Electric field  at point B =  =  =  ;  r = CB 
 Note : Here we can also assume that the total charge of sphere is concentrated at the centre, for 

calculation of electric field at B. 
 

Example 40. Two concentric uniformly charged spherical shells of radius R1 and R2 
(R2 > R1) have total charges Q1 and Q2 respectively. Derive an 
expression of electric field as a function of r for following positions. 

 (i)  r < R1  (ii)  R1 ≤ r < R2  (iii)  r ≥ R2 

 
Solution. (i)  For  r < R1,  
      therefore point lies inside both the spheres  
  Enet = EInner + Eouter = 0 + 0 
 (ii) For  R1 ≤ r < R2,  
      therefore point lies outside inner sphere but inside outer sphere: 



 

 

  Enet = Einner + Eouter   

  =  + 0 =  
 (iii) For  r ≥ R2  
       point lies outside inner as well as outer sphere therefore. 

  ENet = Einner + Eouter    =  +  =  
 

Example 41. A spherical shell having charge +Q (uniformly distributed) and a point charge + q0 are placed as 
shown. Find the force between shell and the point charge(r>>R). 

 

 (i) Force on the point charge + q0 due to the shell = q0 shell  = (q0)   =   

 where  is unit vector along OP. 
  From action - reaction principle, force on the shell due to the point charge will also be  

 Fshell =  

 Conclusion - To find the force on a hollow sphere due to outside charges , we can replace the 
sphere by a point charge kept at centre. 

 

Example 42. Find force acting between two shells of radius R1 and R2 which 
have uniformly distributed charges Q1 and Q2 respectively and 
distance between their centre is r. 

 
Solution. The shells can be replaced by point charges kept at centre so force between them  

  F =    

 
 

 
 

6.7 Electric field due to uniformly charged solid sphere 

 Derive an expression for electric field due to solid sphere of radius R and total charge Q which is 
uniformly distributed in the volume,  

 at a point which is at a distance r from centre for given two cases.      
 (i) r ≥ R (ii) r ≤ R       
 Assume an elementry concentric shell of charge dq. Due to this shell  
 the electric field at the point (r > R) will be  

  dE =    [from above result of hollow sphere] 



 

 

  Enet =  =  
 For r < R, there will be no electric field due to shell of radius greater than r, so electric field at the point 

will be present only due to shells having radius less than r. 

  E´net =  

 here  Q' =  =       

  E´net =   away from the centre.   

         
Note : The electric field inside and outside the sphere is always in radial direction. 
 

 
 

Example 43. A solid non conducting sphere of radius R and uniform volume charge density ρ has its centre at 
origin. Find out electric field intensity in vector form at following positions : 

 (i) (R/2, 0, 0) (ii)   (iii) (R, R, 0)   

Solution.  (i)  at (R/2, 0, 0) : Distance of point from centre =  = R/2 < R, so point lies 
inside the sphere so 

    =  =  [  ] 

 (ii) At ; distance of point from centre =  = R = R, so point 
lies at the surface of sphere, therefore  

   =  =   =  
 (iii) The point is outside the sphere  

  So  =  =  =  
 

Example 44. A Uniformly charged solid nonconducting sphere of uniform volume 
charge density ρ and radius R is having a concentric spherical cavity of 
radius r. Find out electric field intensity at following points, as shown in 
the figure : 

 (i) Point A    (ii) Point B  
 (iii) Point C     (iv) Centre of the sphere 

 
Solution. Method I : 
 (i) For point A : We can consider the solid part of sphere to be made of large number of spherical 

shells which have uniformly distributed charge on its surface. Now since point A lies inside 
all spherical shells so electric field intensity due to all shells will be zero. 

   = 0 
 (ii) For point B : All the spherical shells for which point B lies inside will make electric field zero 

at point B. So electric field will be due to charge present from radius r to OB. 



 

 

  So,  =  =   
 (iii) For point C, similarly we can say that for all the shells point C lies outside the shell 

    =  =      
 Method : II 
 We can consider that the spherical cavity is filled with charge density ρ and also –ρ, thereby 

making net charge density zero after combining. We can consider two concentric solid spheres 
one of radius R and charge density ρ and other of radius r and charge density –ρ. Applying 
superposition principle. 

  +   →  

 (i)  =  +  =  +  = 0 

 (ii)  =  +   =  +  

  =  =  

 (iii)  =  +  =  +  

  =   

 (iv)  =  +  = 0 + 0 = 0 
 

Example 45. In above question if cavity is not concentric and centered at point P then repeat all the steps. 
Solution. Again assume ρ and –ρ in the cavity, similar to the previous example.         

  (i)   =  +  =  +       

             =  [  – ] =      
 Note : Here we can see that the electric field intensity at point P is independent of position of 

point P inside the cavity. Also the electric field is along the line joining the centres of the sphere 

and the spherical cavity. 

  (ii)  =  +  =  +   

  (iii)  =  +  =   +   

  (iv)  =  +  = 0  +     
 



 

 

Example 46. A nonconducting solid sphere has volume charge density that varies as ρ = ρ0 r, where ρ0 is a 

constant and r is distance from centre. Find out electric field intensities at following positions. 

 (i) r < R  (ii) r ≥ R 

Solution. Method I : 

 (i) for  r < R    

  The sphere can be considered to be made of large number of spherical shells. Each shell 

has uniform charge density on its surface. So the previous results of the spherical shell can 

be used. Consider a shell of radius x and thickness dx as an element. Charge on shell dq = 

(4πx2dx)ρ0x 

  Electric field intensity at point P due to shell dE =     

  Since all the shell will have electric field in same direction   

   =  +  

  Due to shells which lie between region r < x ≤ R, electric field at point P will be zero. 

    =  =  =  

 (ii) r ≥ R     E =  =  =   

 Method II : 

 (i)  The sphere can be considered to be made of large number of spherical shells. Each shell 

has uniform charge density on its surface. So the previous results of the spherical shell can 

be used. we can say that all the shells for which point lies inside will make electric field zero 

at that point,  

  so  =  =  

 (ii) similarly for r ≥ R, all the shells will contribute in electric field, therefore  

    =  =  
 

 
 

7. ELECTRIC POTENTIAL  
 In electrostatic field the electric potential (due to some source charges) at a point P is defined as the work 

done by external agent in taking a point unit positive charge from a reference point (generally taken at 
infinity) to that point P without changing its kinetic energy.. 

 

  7.1 Mathematical representation : 

 If (W ∞ → P)ext is the work required in moving a point charge q from infinity to a point P, the electric potential 

of the point P is 

     



 

 

 Note : (i)  (W∝ → P)ext can also be called as the work done by external agent against the electric 

 force on a unit positive charge due to the source charge. 

       (ii) Write both W and q with proper sign. 

  7.2 Properties : 

 (i) Potential is a scalar quantity, its value may be positive, negative or zero. 

 (ii) S.Ι. Unit of potential is volt =  and its dimensional formula is [M1L2T–3Ι–1]. 

 (iii) Electric potential at a point is also equal to the negative of the work done by the electric 
 field in taking the point charge from reference point (i.e. infinity) to that point. 

 (iv) Electric potential due to a positive charge is always positive and due to negative charge 
 it is always negative except at infinite. (taking V∞ = 0). 

 (v) Potential decreases in the direction of electric field. 

  (vi) V = V1 + V2 + V3 + ....... 

7.3 Use of potential : 

 If we know the potential  at some point ( in terms of numerical value or in terms of formula) then we can 
find out the work done by electric force when charge moves from point 'P' to ∞ by the formula 

   Wel )p ∞  = qVp 
 

 
 

Example 47 A charge 2μC is taken from infinity to a point in an electric field, without changing its velocity. If 

work done against electrostatic forces is –40μJ then find the potential at that point. 

Solution. V =  =  = –20 V 

Example 48 When charge 10 μC is shifted from infinity to a point in an electric field, it is found that work done 

by electrostatic forces is –10 μJ. If the charge is doubled and taken again from infinity to the same 
point without accelerating it, then find the amount of work done by electric field and against 
electric field. 

Solution. Wext)∞ p = –wel)∞ p = wel)p ∞ = 10 μJ 

  because ΔKE = 0  ⇒ Vp =  =  = 1V 

  So if now the charge is doubled and taken from infinity then 

  1 =  ⇒ Wext)∞ P = 20 μJ  ⇒ Wel ) ∞ P = –20 μJ 

Example 49 A charge 3μC is released at rest from a point P where electric potential is 20 V then its kinetic 
energy when it reaches to infinite is : 

Solution. Wel = ΔK = Kf – 0   

 Wel)P → ∞ = qVP = 60 μJ  So, Kf = 60 μJ 

Electric Potential due to various charge distributions are given in table. 
 



 

 

 
 

 
7.4 Potential due to a point charge : 
 Derivation of expression for potential due to point charge Q, at a point which is 

at a distance r from the point charge.  

 from definition potential 



 

 

  V =  =  ⇒ V = –  =  

 
 

Example 50 Four point charges are placed at the corners of a square of side  

calculate potential at the centre of square. 
Solution. V  = 0 at 'C'. 

 
 

Example 51 Two point charges 2μC and – 4μC are situated at points (–2m, 0m) 
and (2 m, 0 m) respectively. Find out potential at point C. (4 m, 0 m) 

and. D (0 m, m). 

 
Solution. Potential at point C 

 VC = =   +  =  –  = –15000 V. 

  Similarly,  VD =  =  +  =  +  = – 6000 V. 

 
Finding potential due to continuous charges 

 
 If formula of E is tought, then we take    If formula of E is easy then we use 

  a small element and integrate     V =    

 V =       (i.e. for sphere, plate infinite wire etc.) 

 
 

Example 52 A rod of length  is uniformly charged with charge q calculate 

potential at point P.  
 

Solution. Take a small element of length dx, at a distance x from 
left end. Potential due to this small element 

 dV =  total potential  V =  

  dq = dx     ⇒ V =  =  

 
 

 

 
 

7.5 Potential due to a ring : 



 

 

 (i) Potential at the centre of uniformly charged ring :  
   Potential due to the small element dq 

   dV =         

   Net potential V =  

   V =  =  
 

 

 (ii) For non-uniformly charged ring potential at the center is    

  V =      

       
 (iii) Potential due to half ring at center is : 

          

       
 (iv)  Potential at the axis of a ring: 
   Calculation of potential at a point on the axis which is a  

  distance x from centre of uniformly charged (total charge Q) 
  ring of radius R. 

   Consider an element of charge dq on the ring.  
   Potential at point p due to charge dq will be 

   dv =  
 

   
  Net potential at point P due to all such element will be  

  V =          
 

 
 

Example 53 Figure shows two rings having charges Q and – Q.  Find Potential 
difference between A and B (VA – VB). 

Solution. VA =  +  VB =  +  
 From above we can easily find VA – VB. 

 
 

Example 54 A point charge q0 is placed at the centre of uniformly charged ring of total charge Q and radius 
R. If the point charge is slightly displaced with negligible force along axis of the ring then find out 
its speed when it reaches to a large distance. 

Solution. Only electric force is acting on q0  



 

 

 ∴  Wel = ΔK     = mv2  – 0  

 ⇒ Now Wel)c→∞ = q0 Vc = q0 .  

 ∴  = mv2    ⇒ v =  
 

 
 

7.6 Potential due to uniformly charged disc :  

 , where σ is the charged density and x is the distance of the point on the axis from 
the center of the disc, R is the radius  of disc. 

 

  Finding potential due to a uniformly charged disc: 
 A disc of radius 'R' has surface charge density (charge/area) = σ. We have to find potential at its axis,  at 

point 'P' which is at a distance x from the centre.  
 For this We can divide the disc into thin rings and lets considered a thin ring of radius r and thickness dr. 

Suppose charge on the small ring element = dq. Potential due to this ring at point 'P' is 

          =    

 dV =       

 So, net potential :   Vnet =  

 Here, σ = charge/area =  

 So, dq = σ × d (area) =     
 (here d (area) = area of the small ring element =(length of ring) × (width of the ring) = (2πr) . (dr) 

 So, Vnet =  
 to integrate it let r2 + x2 = y2  
  2r dr = 2y dy, substituting we will get : 

    ⇒   

     ⇒   
 If a test charge q0 is placed at point P, then potential energy of this charge q0 due to the disc = U = q0V 

   ⇒ U =  

 Graph of V v/s x :    V =   at  x = 0 V =  
 to check whether V will increase with x or decrease, lets multiply and divide by conjugate. 



 

 

   V =  ×  ⇒ V =  

 Now we can say that as x ↑ ⇒ V↓ so curve will be like this  

     
 

7.7 Potential Due To Uniformly Charged Spherical shell :  
 Derivation of expression for potential due to uniformly charged hollow sphere of radius R and 

total charge Q, at a point which is at a distance r from centre for the following situation 
 (i) r > R (ii) r < R 

 As the  formula of E is easy , we use V =  
 (i)  At outside point (r > R): 

  Vout =  ⇒ Vout =   
  For outside point, the hollow sphere act like a point charge. 
 

 (ii)  Potential at the centre of the sphere (r=0) : 

   As all the charges Are at a distance R from the centre ,   

   So Vcentre =  

 
 (iii) Potential at inside point ( r<R ) :  
 Suppose we want to find potential at point P , inside the sphere. 
 Potential difference between Point P and O :  

 VP - VO  =  Where Ein = 0  

 So VP  - VO  = 0  ⇒  VP  = VO  =   

  ⇒    VIN =  
 

   

 7.8 Potential Due To Uniformly Charged Solid Sphere :  
 Derivation of expression for potential due to uniformly charged solid sphere of radius R and total charge 

Q (distributed in volume), at a point which is at a distance r from centre for the following situations. 
 (i) r ≥ R  (ii) r ≤ R 
 Consider an elementary shell of radius x and width dx  
 (i)  for  r  ≥ R    

    =  



 

 

  (ii) for  r ≤ R        

    

   =  (3R2 – r2)  ⇒ ρ =  
 

 From definition of potential 

 (i)  r  ≥ R  

  V =   

 (ii)  r  ≤ R 

  V = –  –  

  V =  –  [r2 – R2]    =  [2R2 – r2 + R2]  =  (3R2 – r2) 
 

 
 

Example 55 Two concentric spherical shells of radius R1 and R2 (R2 > R1) are having 

uniformly distributed charges Q1 and Q2 respectively. Find out potential 

 (i) at point A 

 (ii) at surface of smaller shell (i.e. at point B)    

 (iii) at surface of larger shell (i.e. at point C)    

 (iv) at r ≤ R1   (v) at R1 ≤ r ≤ R2   (vi) at r ≥ R2 
 

Solution. Using the results of hollow sphere as given in the table 7.4.  

 (i) VA =  +    (ii) VB =  +   

 (iii) VC =  +    (iv) for r ≤ R1   ⇒ V =   +   

 (v) for R1 ≤ r ≤ R2  V =   +   

  (vi) for r ≥ R2  V =  +  

 

Example 56 Two hollow concentric nonconducting spheres of radius a and b (a > b) contains charges Qa and 

Qb respectively. Prove that potential difference between two spheres is independent of charge 

on outer sphere. If outer sphere is given an extra charge, is there any change in potential 

difference? 

Solution. Vinner sphere =  +   

 Vouter sphere =  +      

 Vinner sphere – Vouter sphere  =  –  ⇒ ΔV = KQb  

 

Which is independent of charge on outer sphere. If outer sphere in given any extra charge then 

there will be no change in potential difference. 
 



 

 

 
 

8. POTENTIAL DIFFERENCE  

 The potential difference between two points A and B is work done by external agent against electric field 
in taking a unit positive charge from A to B without acceleration (or keeping Kinetic Energy constant or  
Ki = Kf)) 

   (a) Mathematical representation : 

 If (WA → B)ext = work done by external agent against electric field in taking the unit charge from A 

to B.  

  VB – VA =  =  =  =  =  

  Note : Take W and q both with sign 

 (b) Properties : 

 (i) The difference of potential between two points is called potential  difference. It is also 
 called voltage. 

  (ii) Potential difference is a scalar quantity. Its S.I. unit is also volt. 

 (iii) If VA and VB be the potential of two points A and B, then work done by an 
 external agent in taking the charge q from A to B is 

   (Wext)AB= q (VB – VA) or (Wel) AB = q (VA – VB) . 

  (iv) Potential difference between two points is independent of reference point. 

  8.1 Potential difference in a uniform electric field : 

  VB – VA = –  

  ⇒ VB – VA = – |E| |AB| cos θ       

     = – |E| d = – Ed 

 

 d = effective distance between A and B along electric field. 

 or we can also say that E =  

 Special Cases  : 

 Case 1.  Line AB is parallel to electric field.    
    ∴ VA – VB = Ed      

 

 Case 2.  Line AB is perpendicular to electric field.   

    ∴ VA – VB = 0 ⇒ VA = VD     

       

Note : In the direction of electric field potential always decreases. 
 



 

 

 
 

Example 57. 1μC charge is shifted from A to B and it is found that work done by an external force is 40μJ in 
doing so against electrostatic forces then, find potential difference VA – VB   

Solution. (WAB)ext = q(VB – VA) ⇒ 40 μJ = 1μC (VB – VA) ⇒ VA – VB = – 40 
 

Example 58. A uniform  electric field is present in the positive x-direction. Ιf the intensity of the field is 5N/C 
then find the potential difference (VB –VA) between two points A (0m, 2 m) and B (5 m ,3 m)  

Solution. VB – VA = –  .    = – (5 ) . (5 + )   = –25V. 

 The electric field intensity in uniform electric field, E =  
 Where   ΔV = potential difference between two points. 

 Δd = effective distance between the two points. 
 (projection of the displacement along the direction of electric field.) 
 

Example 59. Find out following 
 (i)  VA – VB   (ii) VB – VC   
 (iii) VC – VA   (iv) VD – VC   
 (v)  VA – VD   
 (vi) Arrange the order of potential for points A, B, 

C and D. 
 

Solution. (i)  = 20 × 2 × 10–2 = 0.4 
  so, VA – VB = 0.4 V 
  because In the direction of electric field potential always decreases.  

 (ii)  = 20 × 2 × 10–2 = 0.4 so,  VB – VC = 0.4 V 

 (iii)  = 20 × 4 × 10–2 = 0.8 so,  VC – VA = – 0.8 V 
  because In the direction of electric field potential always decreases.  

 (iv)  = 20 × 0 = 0  so,  VD – VC = 0  
  because the effective distance between D and C is zero. 

 (v)   = 20 × 4 × 10–2 = 0.8 so,  VA – VD =  0.8 V 
  because In the direction of electric field potential always decreases.  
 (vi) The order of potential  
        VA > VB > VC = VD . 
 

 
8.2 Potential difference due to infinitely long wire :   
 Derivation of expression for potential difference between two points, which have 

perpendicular distance rA and rB from infinitely long line charge of uniform linear 
charge density λ.. 

 From definition of potential difference                 

  VAB = VB – VA  =    

 VAB = –2Kλ n    
 



 

 

8.3 Potential difference due to infinitely long thin sheet:   

 Derivation of expression for potential difference between two points, having 
separation d in the direction perpendicularly to a very large uniformly charged 
thin sheet of uniform surface charge density σ. 

 Let the points A and B have perpendicular distance rA and rB respectively then 
from definition of potential difference. 

 VAB = VB – VA  =   ⇒  VAB = –  (rB – rA)  = –  
 

 

9. EQUIPOTENTIAL SURFACE : 
 

   9.1 Definition : If potential of a surface (imaginary or physically existing) is same throughout then such 

surface is known as a equipotential surface. 
 

   9.2  Properties of equipotential surfaces : 

 (i)  When a charge is shifted from one point to another point on an equipotential surface then work 
 done against electrostatic forces is zero. 

 

 (ii)  Electric field is always perpendicular to equipotential surfaces. 
 

 (iii)  Two equipotential surfaces do not cross each other. 
 

   9.3  Examples of equipotential surfaces : 
 (i) Point charge : 
 Equipotential surfaces are concentric and spherical as shown in  figure. In figure we can see 

that sphere of radius R1 has potential V1 throughout its surface and similarly for other concentric 
sphere potential is same.        

       

 (ii) Line charge : 
  Equipotential surfaces have curved surfaces as that of coaxial cylinders of different radii. 

       
(iii)  Uniformly charged large conducting / non conducting sheets 

  Equipotential surfaces are parallel planes.     

          

  Note :  In uniform electric field equipotential surfaces are always parallel planes. 
 

 
 



 

 

Example 60 Some equipotential surfaces are shown in figure. 

What can you say about the magnitude and the 

direction of the electric field ? 

 
Solution. Here we can say that the electric will be perpendicular to equipotential surfaces. 

 Also   =    
 where  ΔV = potential difference between two equipotential surfaces. 

  Δd = perpendicular distance between two equipotential surfaces. 

 So   =  = 200 V/m 
 Now there are two perpendicular directions either direction 1 or direction 2 as shown in figure, 

but since we know that in the direction of electric field electric potential decreases so the correct 
direction is direction 2.  

 Hence  E = 200 V/m, making an angle 120° with the x-axis 
 

Example 61 Figure shows some equipotential surface produce by some charges. At 

which point  the value of electric field is greatest? 

Solution. E is larger where equipotential surfaces are closer. ELOF are ⊥ to 

equipotential surfaces. In the figure we can see that for point B they are 

closer so E at point B is maximum 

 
 

 
 

10. ELECTROSTATIC POTENTIAL ENERGY 

 10.1 Electrostatic potential energy of a point charge due to many charges : 
 The electrostatic potential energy of a point charge at a point in electric field is the work done in taking 

the charge from reference point (generally at infinity) to that point without acceleration (or keeping KE 
const. or  Ki = Kf)).  

 Its Mathematical formula is      

       

 U = W∝P)ext]acc = 0 = qV = – WP∝)el 
 

 Here q is the charge whose potential energy is being calculated and V is the potential at its position due 
to the source charges.   

 Note : Always put q and V with sign. 
 

 10.2 Properties : 

 (i) Electric potential energy is a scalar quantity but may be positive, negative or zero. 
 

 (ii) Its unit is same as unit of work or energy that is joule (in S.Ι. system). 
  Some times energy is also given in electron-volts.  
   1eV = 1.6 × 10–19 J 
 

 (iii) Electric potential energy depends on reference point. (Generally Potential Energy at r= ∞ is 
  taken zero) 
 

 
 



 

 

Example 62 The four identical charges q each are placed at the corners of a square 
of side a. Find the potential energy of one of the charges due to the 
remaining charges. 

 
Solution. The electric potential of point A due to the charges placed at B, C and D is 

 V =   +   +   =    

 ∴ Potential energy of the charge at A is = qV =   . 
 

Example 63 A particle of mass 40 mg and carrying a charge 5 × 10–9 C is moving directly towards a fixed 
positive point charge of magnitude 10–8 C. When it is at a distance of 10 cm from the fixed point 
charge it has speed of 50 cm/s. At what distance from the fixed point charge will the particle come 
momentarily to rest? Is the acceleration constant during the motion? 

Solution. If the particle comes to rest momentarily at a distance r form the fixed charge, then from 
conservation of energy' we have 

  +  =   
 Substituting the given data, we get  

  × 40 × 10–6 ×  ×  = 9 × 109 × 5 × 10–8 ×10–9  

 or –10 =   ⇒  =  ⇒ r = m or   i.e., r = 4.7 × 10–2 m 

 As here, F =   so acc. =  ∝  
 i.e., acceleration is not constant during the motion. 
 

Example 64 A proton moves from a large distance with a speed u m/s directly towards a free proton originally 
at rest. Find the distance of closet approach for the two protons in terms of mass of proton m and 
its charge e.  

Solution. As here the particle at rest is free to move, when one particle approaches the other, due to 
electrostatic repulsion other will also start moving and so the velocity of first particle will decrease 
while of other will increase and at closest approach both will move with same velocity. So if v is 
the common velocity of each particle at closest approach, then by 'conservation of momentum' 
of the two protons system. 

  mu = mv + mv  i.e.,  v =  u 
 And by conservation of energy' 

   mu2 = mv2 + mv2 +  ⇒ mu2 – m =  [as v =  ]  

  ⇒ mu2 =   ⇒ r =  

 
 

11. ELECTROSTATIC POTENTIAL ENERGY OF A SYSTEM OF 

CHARGES 
 

 (This concept is usefull when more than one charges move.) 
 It is the work done by an external agent against the internal electric field required to make a system of 

charges in a particular configuration from infinite separation without accelerating it.  
 

  11.1 Types of system of charge 
 (i) Point charge system  (ii) Continuous charge system. 
 



 

 

  11.2 Derivation for a system of point charges: 
 (i) Keep all the charges at infinity. Now bring the charges one by one to its corresponding 

 position and find work required. PE of the system is algebric sum of all the works. 
  Let  W1 = work done in bringing first charge  
   W2 = work done in bringing second charge against force due to 1st charge. 
   W3 = work done in bringing third charge against force due to 1st and 2nd charge. 

   PE = W1 + W2 + W3 + ...... . (This will contain  = nC2 terms)  
 (ii) Method of calculation (to be used in problems)  
  U = sum of the interaction energies of the charges. 
     = (U12 + U13 + ........ + U1n) + (U23 + U24 + ........ + U2n) + (U34 + U35 + ........ + U3n) .... . 
 (iii) Method of calculation useful for symmetrical point charge systems. 
   Find PE of each charge due to rest of the charges. 
   If  U1 = PE of first charge due to all other charges.  
   = (U12 + U13 + ........ + U1n) 
   U2 = PE of second charge due to all other charges.  

   = (U21 + U23 + ........ + U2n) then U = PE of the system =  

 
 

Example 65. Find out potential energy of the two point charge system having q1 and q2 charges separated by 
distance r. 

Solution. Let both the charges be placed at a very large separation initially. 
    Let  W1 = work done in bringing charge q1 in absence of q2 = q(Vf – Vi) = 0 
     W2 = work done in bringing charge q2 in presence of q1 = q(Vf – Vi) = q1(Kq2/r – 0) 
   PE = W1 + W2  = 0 + Kq1q2 / r =  Kq1q2 / r 
 
Example 66. Figure shows an arrangement of three point charges. The total 

potential energy of this arrangement is zero. Calculate the ratio . 
 

Solution. Usys =  = 0  ⇒ –Q +  – Q = 0  or  2Q =  or  = . 
 
Example 67 Two point charges each of mass m and charge q are released when 

they are at a distance r from each other. What is the speed of each 

charge particle when they are at a distance 2r? 
 

 

Solution. According to momentum conservation both the charge particles will  
move with same speed now applying energy conservation. 

 0 + 0 +  = 2 mv2 +  ⇒ v =  
 

 

Example 68 Two charged particles each having equal charges 2 × 10–5 C are brought from infinity to within a 
separation of 10 cm. Calculate the increase in potential energy during the process and the work 
required for this purpose. 

Solution. ΔU = Uf – Ui  = Uf – 0 = Uf  
   We have to simply calculate the electrostatic potential energy of the given system of charges  

  ΔU = Uf =   = J = 36 J  
  work required = 36 J. 
 



 

 

Example 69 Three equal charges q are placed at the corners of an equilateral 
triangle of side a.  

 (i) Find out potential energy of charge system.    
 (ii) Calculate work required to decrease the side of triangle to a/2. 
 (iii) If the charges are released from the shown position and each of 

them has same mass m then find the speed of each particle when they 
lie on triangle of side 2a.  

Solution. (i)  Method I (Derivation) 
 Assume all the charges are at infinity initially.      
 work done in putting charge q at corner A  
 W1 = q (vf – vi) = q (0 – 0)  
 Since potential at A is zero in absence of charges, work done in putting 

q at corner B in presence of charge at A : 

 W2 =  =   
 Similarly work done in putting charge q at corner C in presence of charge at A and B. 

 W3 = q(vf  – vi) = q  
 So net potential energy PE = W1 + W2 + W3  

     = 0 +  +  =  
 Method II (using direct formula) 

 U = U12 + U13 + U23     =  +  +  =  

 (ii) Work required to decrease the sides W = Uf – Ui =  –  =  
 (iii)  Work done by electrostatic forces = change is kinetic energy of particles. 

 Ui – Uf = Kf – Ki   ⇒  –  = 3( mv2) – 0  ⇒ v =  
 

Example 70 Four identical point charges q are placed at four corners of a square of 
side a. Find out potential energy of the charge system 

Solution. Method 1 (using direct formula) : U = U12 + U13 + U14 + U23 + U24 + 
U34  

 =  +  +  +  +  +  

 =  =  

  

 Method 2 [using U =  (U1 + U2 + ......)] : 
 U1 = total P.E. of charge at corner 1 due to all other charges 
 U2 = total P.E. of charge at corner 2 due to all other charges 
 U3 = total P.E. of charge at corner 3 due to all other charges 
 U4 = total P.E. of charge at corner 4 due to all other charges 
 Since due to symmetry U1 = U2 = U3 = U4  

 UNet =  = 2U1 = 2  =  
  

Example 71 Six equal point charges q are placed at six corners of a hexagon of side 

a. Find out potential energy of charge system 

 



 

 

      

Solution. UNet =   

  Due to symmetry U1 = U2 = U3 = U4 = U5 = U6  so Unet  = 3U1 =    
 

 
 

11.3 Derivation of electric potential energy for continues charge system : 
 This energy is also known as self energy. 
 (i) Finding P.E. (Self Energy) of a uniformly Charged 

spherical shell :- 

 For this, lets use method 1. Take an uncharged shell Now 

bring charges one by one from  infinite to the surface fo the 

shell. The work required in this process will be stored as 

potential  Energy. 
 

 

 Suppose we have given q charge to the sphere and now 
we are giving extra dq charge to it. 

 Work required to bring dq charge from infinite to them shell 
is 

 dw = (dq) (Vf - Vi)  

 ⇒ dW = (dq) (  - 0) = dq 
 

 ⇒  total work required to give Q charge is W = dq  =  
  This work will stored as a form of P.E. (self energy)  

  So P.E. of a charged spherical shall U =  
 

 (ii)  Self energy of uniformly charged solid sphere :  
 In this case we have to assemble a solid charged sphere. So as we bring the charges one-by-

one from infinite to the sphere, the size of me sphere will increase. Suppose we have given q 
charge to the sphere, and its radius becomes ‘x’ .Now we are giving extra dq charge to it, which 
will increase its radius by ‘dx’ work required to bring dq charge from infinite to the sphere   

      

 = dq (Vf - Vi)  = (dq)  =  

  total work required to give Q charge : W =   q = ρ   

  dq = ρ (4 πx2 dx) ⇒ W =  

  solving well get  W =  = Uself for a solid sphere   
 



 

 

 
Example 72 A spherical shell of radius R with uniform charge q is expanded to a radius 2R. Find the work 

performed by the electric forces  and external agent against electric forces in this process (slow 
process). 

Solution. Wext = Uf – Ui =  –  = –   

 Welec = Ui – Uf =  –  =  
 

Example 73 Two nonconducting hollow uniformly charged spheres of radii R1 
and R2 with charge Q1 and Q2 respectively are placed at a 
distance r. Find out total energy of the system. 

 

Solution. Utotal = Uself + UInteraction  =  +  +   
 

Example 74 Two concentric spherical shells of radius R1 and R2 (R2 > R1) are having 
uniformly distributed charges Q1 and Q2 respectively. Find out total 
energy of the system. 

 

Solution. Utotal = Uself 1 + Uself 2 + UInteraction  =  +  +  

 
11.4 Energy density : 
 Def: Energy density is defined as energy stored in unit volume in any electric field. Its mathematical 

formula is given as following : Energy density = εE2  
 where  E = electric field intensity at that point  ; ε = ε0εr electric permittivity of medium 
 

 
 

Example 75 Find out energy stored in an imaginary cubical volume of side a in front of a infinitely large 
nonconducting sheet of uniform charge density σ. 

Solution. Energy stored  U =  where dV is small volume 

 .=    E is constant =  . a3 =  
 

Example 76. Find out energy stored in the electric field of uniformly charged thin spherical shell of total charge 
Q and radius R.  

Solution. We know that electric field inside the shell is zero so the energy is 
stored only outside the shell. Which can be calculated by using energy 
density formula.  

 Uself =  
 

 Consider an elementry shell of thickness dx and radius x (x > R).    
 Volume of the shell = (4πx2dx) 

  U = . 4πx2 dx  =  dx  

  =  .  =  =  



 

 

Example 77. Find out energy stored inside a solid nonconducting sphere of total charge Q and radius R. 
[Assume charge is uniformly distributed in its volume.] 

Solution. We can consider solid sphere to be made of large number of concentric 
spherical. Also electric field intensity at the location of any particular 
shell in constant. 

 Uinside =  
 

 Consider an elementry shell of thickness dx and radius x.     
 Volume of the shell = (4πx2dx) 

  Uinside =  . 4πx2 dx =   

   =  .  =  =  
 

 

12. RELATION BETWEEN ELECTRIC FIELD INTENSITY AND ELECTRIC 

POTENTIAL 

  12.1 For uniform electric field : 
 (i) Potential difference between two points A and B  

   VB  – VA  = – .  
 

 

  12.2 Non uniform electric field 

 (i) Ex = – , Ey = – ,  Ez = –  ⇒  = Ex  + Ey   + Ez  

  = –   = –   = – ∇V = –grad V 

  Where  = derivative of V with respect to x (keeping y and z constant)  

    = derivative of V with respect to y (keeping z and x constant)  

    = derivative of V with respect to z (keeping x and y constant)  
 

  12.3 If electric potential and electric field depends only on one coordinate, say r :  

 (i)  = –    where  is a unit vector along increasing r.  

 (ii)  = –  ⇒  VB – VA  = –     

   is along the increasing direction of r.  

 (iii) The potential of a point V = –  

 
 

Example 78 A uniform electric field is along x – axis . The potential difference VA– VB = 10 V between two 
points A (2m , 3m) and B (4m, 8m). Find the electric field intensity.  

Solution. E =  =  = 5 V / m.  It is along + ve x-axis.  



 

 

Example 79 V = x2 + y , Find . 

Solution.  = 2x,   and   

  = –  = –(2x  + )  Electric field is nonuniform. 
 

Example 80 For given  =  find the potential at (x, y) if V at origin is 5 volts. 

Solution.  = –   –  ⇒ V – 5 = –    ⇒ V = –  + 5 

 

13. ELECTRIC DIPOLE 

  13.1 Electric Dipole 

 If two point charges equal in magnitude q and opposite in sign separated by a distance a such that the 
distance of field point r>>a, the system is called a dipole. The electric dipole moment is defined as a 
vector quantity having magnitude p = (q × a) and direction from negative charge to positive charge. 

 

 Note:  [In chemistry, the direction of dipole moment is assumed to be from positive to negative charge.] 
The C.G.S unit of electric dipole moment is debye which is defined as the dipole moment of two equal 
and opposite point charges each having charge 10–10 frankline and separation of 1 Å, i.e., 

  1 debye (D) = 10–10 × 10–8 = 10–18 Fr × cm 

  1 D = 10–18 ×  × 10–2 m = 3.3 × 10–30 C × m.  
  S.I. Unit is coulomb × metre = C . m 
 

 
 

Example 81 A system has two charges qA = 2.5 × 10–7 C and qB = – 2.5 × 10–7 C located at points  
A : (0, 0, – 0.15 m) and B ; (0, 0, + 0.15 m) respectively. What is the net charge and electric dipole 
moment of the system ?   

Solution. Net charge = 2.5 × 10–7 – 2.5 × 10–7 = 0 
 Electric dipole moment, 
 P  = (Magnitude of charge) × (Separation between charges) 
      = 2.5 × 10–7

 [0.15 + 0.15] C m  = 7.5 × 10–8 C m 
  The direction of dipole moment is from B to A. 
 

 
 

13.2 Electric Field Intensity Due to Dipole : 
 (i)  At the axial point : 

      

  =      

  If   r >> a then  =  = ,  

  As the direction of electric field at axial position is along the dipole moment ( )                                 

  so  =  



 

 

 (ii)   Electric field at perpendicular Bisector (Equitorial Position)        

   Enet = 2 E cos θ (along – ) 

    = 2   = 2    
   If r >> a then  

    =  
 

  As the direction of  at equitorial position is opposite of  so we can write in vector form: 

   = –   
 

 (iii)  Electric field at general point (r, θ) : 

       
  For this, Lets resolve the dipole moment  into components. 

 
 One component is along radial line (=P cosθ) and other component is ⊥r to the radial line (=Psinθ) 

 From the given figure Enet =   =    

 tan φ =  =   

 Enet =     ;       tan φ =  
 

 
 

Example 82 The electric field due to a short dipole at a distance r, on the axial line, from its mid point is the 
same as that of electric field at a distance r', on the equatorial line, from its mid-point. Determine 

the ratio . 



 

 

Solution.  =   or    =    or   = 2  or   = 21/3  
 

Example 83 Two charges, each of 5 μC but opposite in sign, are placed 4 cm apart. Calculate the electric 
field intensity of a point that is at a distance 4 cm from the mid point on the axial line of the dipole. 

Solution. We can not use formula of short dipole here because distance of 
the point is comparable to the distance between the two point 
charges. 

 q = 5 × 10–6 C, a = 4 ×10–2 m, r = 4 × 10–2 m 
 

 Eres = E+ + E–  =  –  =  NC–1 = 108 N C–1  
 

Example 84 Two charges ± 10 μC are placed 5 × 10–3 m apart. Determine the 
electric field at a point Q which is 0.15 m away from O, on the equatorial 
line. 

Solution. In the given problem, r >> a    

 ∴ E =  =      

 or E = 9 × 109  NC–1 = 1.33 ×105 NC–1 
 

 

 
 

13.3 Electric Potential due to a small dipole : 
 (i)  Potential at axial position : 

  V =      
   

  V =   If r >> a than 

  V =  where qa = p  ⇒ Vaxial =  
 (ii)  Potential at equitorial position : 

  V =  = 0 ⇒ Veqt = 0 

       



 

 

(iii) Potential at general point (r,θ) : 

 Lets resolve the dipole moment  into components Pcosθ 
component along radial line and  Psinθ component ⊥r to the radial 
line.                 

 For the Pcosθ component, the point A is an axial point, so, potential 

at A due to Pcosθ component =  and for Psinθ 
component, the point A is an equatorial point,  

 so potential at A due to Psinθ component = 0   

  Vnet =   ⇒ V =  
 

 13.4 Dipole in uniform electric field  
 (i) Dipole is placed along electric field : 

  
  In this case Fnet = 0, τnet = 0 so it is an equilibrium state. And it is a stable equilibrium position. 

 (ii) If the dipole is placed at θ angle from  : -  

 
  In this case Fnet = 0  but   
  Net torque τ = (qEsinθ)  (a)     

  Here qa = P    ⇒  τ = PE sinθ  

  in vector form     
 

 
 

Example 85 A dipole is formed by two point charge –q and +q, each of mass m, and both the point charges 

are connected by a rod of length  and mass m1. This dipole is placed in uniform electric field 

. If the dipole is disturbed by a small angle θ from stable equilibrium position, prove that its motion 
will be almost SHM. Also find its time period.  

 

Solution. If the dipole is disturbed by θ angle,  

 τnet = –PE sinθ   (here – ve sign indicates that direction  
 of torque is opposite of θ)   

 If θ is very small, sinθ = θ    ⇒  τnet = –(PE)θ   

 τnet ∝ (–θ) so motion will be almost SHM.  T = 2π   
 

 

 
 



 

 

(iii) Potential energy of a dipole placed in uniform 
electric field :  

 UB – UA = – .  Here  UB – UA = –  
 In the case of dipole, at θ = 90° , P.E. is assumed to be 

zero.     

 

    Uθ – U90° = –  
  (As the direction of torque is opposite of θ) 

   Uθ – 0 = – PE cos θ  ⇒ θ = 90°  is chosen as reference,  
  so that the lower limit comes out to be zero.         

    Uθ = –  
  From the potential energy curve, we can conclude :  
  (i)  at θ = 0, there is minimum of P.E.  so it is a stable equilibrium position.  
  (ii)  at θ = 180° , there is maxima of P.E. so it is a position of unstable equilibrium. 
 

 
13.5 Dipole in nonuniform electric field :  

 (If the dipole is placed in the along )  
         

 Net force on the dipole Fnet = q E(x + dx) – q E(x) 

 Fnet = q  (dx) here q (dx) = P 

 Fnet = P  

 

 
 

Example 86 A short dipole is placed on the axis of uniformly 
charged ring (total charge –Q, radius R) at a distance 

  from centre of ring as shown in figure. Find the 
Force on the dipole due to the ring. 

 

Solution. F = P   ⇒ F = P        at x =  
  Solving we get   F = 0 

 
 

13.6 Force between a dipole and a point charge : 

 
 

Example 87 A short dipole of dipole moment P is placed near a point charge as shown in figure. Find force 
on the dipole due to the point charge 

 



 

 

Solution.  Force on the point charge due to the dipole   
F = (Q) Edipole 

 F = (Q)  (right) 
 From action reaction concept, force on the 

dipole due to point charge will also be  

F =  (left) 

 

 

Example 88 A short dipole of dipole moment P is placed near a point charge as shown in figure. Find force 
on the dipole due to the point charge. 

 
Solution. Force on the point charge due to dipole F = (Q) (Edipole)   

   

 F = (Q)   
 So force on the dipole due to the point charge will also be  

 F =   but in opposite direction. 
 

Example 89 Find force on short dipole P2  due to short dipole P1 if they are placed at a distance r as shown 
in figure. 

  
Solution.  

  
Force P2 due to P1 

 F2 = (P2)       

 F2 = (P2)   

 F2 = –   
  here – sign indicates that this force will be attractive (opposite) to r) 
 

 
 



 

 

14. ELECTRIC LINES OF FORCE (ELOF)  
 The line of force in an electric field is an imaginary line, the tangent to which at any point on it represents 

the direction of electric field at the given point. 
 

  14.1 Properties : 
(i) Line of force originates out from a positive charge and terminates on a negative charge. If there 

is  only one positive charge then lines start from positive charge and  terminate at ∞. If there is 
only one negative charge then lines start  from ∞ and terminates at negative charge. 

      

     
 

(ii)  Two lines of force never intersect each other because there cannot be two directions of  at a 
single Point 

 
 

 (iii)  Electric lines of force produced by static charges do not form close loop.  
 If lines of force make a closed loop, than work done to move a +q charge along the loop will be 

non-zero. So it will not be conservative field. So these type of lines of force are not possible in 
electrostatics. 

     
 

 (iv) The Number of lines per unit area (line density) represents the magnitude of electric field. 
  If lines are dense, ⇒ E will be more 

  If Lines are rare, ⇒ E will be less 
  and if E = O, no line of force will be found there           

      

 (v) Number of lines originating (terminating) is proportional to the charge. 
      

 
 

Example 90. If number of electric lines of force from charge q are 10 then find out number of electric lines of 
force from 2q charge. 



 

 

Solution. No. of ELOF ∝ charge 
   10 ∝ q     ⇒ 20 ∝ 2q 
  So number of ELOF will be 20. 
 

 
 

 (vi) Electric lines of force end or start perpendicularly on the surface of a conductor. 
 (vii) Electric lines of force never enter into conductors. 
 

 
 

Example 91 Some electric lines of force are shown in figure, for point A and B  

 
  (A) EA > EB  (B) EB > EA  (C) VA > VB  (D) VB > BA 
 

Solution. lines are more dense at B so EA > EB In the direction of Electric field, potential decreases  
 so VA > VB 

  

Example 92. If a charge is released in electric field, will it follow lines of force? 
Solution. Case I : If lines of force are parallel (in uniform electric field) : 

               

 In this type of field, if a charge is released, force on it will be qoE and its direction will be along 
.So the charge will move in a straight line, along the lines of force. 

 Case II :  If lines of force are curved (in non-uniform electric field) : 

     
  The charge will not follow lines of force. 
 

 
 

15. ELECTRIC FLUX  

 Consider some surface in an electric field . Let us select a small area element 

 on this surface. The electric flux of the field over the area element is given 

by dφE =  

 
 

 Direction of  is normal to the surface. It is along  
 or dφE = EdS cos θ  or dφE = (E cos θ) dS or dφE = En dS 

 where En is the component of electric field in the direction of . 

 The electric flux over the whole area is given by φE =  =  

 If the electric field is uniform over that area then φE =  



 

 

 

 Special Cases : 
 Case I: If the electric field in normal to the surface,  

  then angle of electric field  with normal will be zero 
  So φ = ES cos 0  

  φ = ES              

      

 Case II : If electric field is parallel of the surface (glazing), then angle made by  with normal = 90º 

     
  So φ = ES cos 90º = 0   
 

  15.1 Physical Meaning : 
  

 The electric flux through a surface inside an electric field represents the total number of electric lines of 
force crossing the surface. It is a property of electric field  

 

  15.2 Unit 
 (i) The SI unit of electric flux is Nm2 C–1 (gauss) or J m C–1. 
 (ii) Electric flux is a scalar quantity. (It can be positive, negative or zero) 
 

 
 

Example 93. The electric field in a region is given by  with E0 = 2.0 × 103 N/C. Find the flux 
of this field through a rectangular surface of area 0.2m2 parallel to the Y–Z plane.  

Solution. φE =  = .  =  
Example 94. A point charge Q is placed at the corner of a square of side a,then find 

the flux through the square. 

 
Solution. The electric field due to Q at any point of the square will be along the plane of square and the 

electric field line are perpendicular to square ;  so φ = 0.  
  In other words we can say that no line is crossing the square so flux = 0. 
Example 95 Find the electric flux due to point charge 'Q' through the circular region of radius R if the charge 

is placed on the axis of ring at a distance x.  

                
Solution. We can divide the circular region into small rings.  



 

 

 Lets take a ring of radius r and width dr. 
 flux through this small element 
 dφ = E ds cos θ                   

 φnet = E ds cos θ =  (2π r dr)    

  =  

   
 

 
 

 Case-III  : Curved surface in uniform electric field. 
     Suppose a circular surface of radius R is placed in a uniform electric field as shown. 

   
  Flux passing through the surface φ = E (πR2) 
 

 (ii) Now suppose, a hemispherical surface is placed in the electric field flux through 
hemispherical surface         

         φ = ∫ Eds cos θ   

  φ = E ∫ ds cos θ     

  where  ∫ ds cos θ is  
  projection of the spherical surface Area on base. 

  ds cosθ = πR2 
  so φ = E(πR2) = same  Ans. as in previous case 
  so we can conclude that 
 

 If the number of electric field lines passing through two surfaces are same, then flux passing 

through these surfaces will also be same, irrespective of the shape of surface 

 
    φ1  =  φ2  =         φ3 = E(πR2) 

 Case IV : Flux through a closed surface   

  Suppose there is a spherical surface and a charge 'q' is placed at centre.  

  flux through the spherical surface          



 

 

  φ =  .  = E ds  as  is along  (normal) 

  φ =  ds  where ds = 4πR2    

  φ =   ⇒ φ =  

      
 Now if the charge Q is enclosed by any other closed surface, still same lines of force will pass through 

the surface.  

So here also flux will be φ = , that's what Gauss Theorem is. 

       

   φ =       φ =  

 

16. GAUSS'S LAW IN ELECTROSTATICS OR GAUSS'S THEOREM 

 This law was stated by a mathematician Karl F Gauss. This law gives the relation between the electric 

field at a point on a closed surface and the net charge enclosed by that surface. This surface is called 

Gaussian surface. It is a closed hypothetical surface. Its validity is shown by experiments. It is used to 

determine the electric field due to some symmetric charge distributions. 
 

  16.1 Statement and Details : 
 Gauss's law is stated as given below. 
 The surface integral of the electric field intensity over any closed hypothetical surface (called Gaussian 

surface) in free space is equal to  times the total charge enclosed within the surface. Here, ε0 is the 
permittivity of free space. 

 If S is the Gaussian surface and  is the total charge enclosed by the Gaussian surface, then 
according to Gauss's law, 

    φE =  =  



 

 

 The circle on the sign of integration indicates that the integration is to be carried out over the closed 
surface. 

 Note :  
 (i) Flux through gaussian surface is independent of its shape. 
 (ii) Flux through gaussian surface depends only on total charge present inside gaussian surface. 
 (iii) Flux through gaussian surface is independent of position of charges inside gaussian surface. 

 (iv) Electric field intensity at the gaussian surface is due to all the charges present inside as well as 
 outside the gaussian surface. 

 (v) In a close surface incoming flux is taken negative while outgoing flux is taken positive, because  

  is taken positive in outward direction. 
 (vi) In a gaussian surface φ = 0 does not imply E = 0 at every point of the surface but E = 0 at every 

 point  implies φ = 0. 

 
Example 96 Find out flux through the given gaussian surface. 

 

Solution. φ =  =  =  Nm2/C 
 

Example 97. If a point charge q is placed at the centre of a cube then find out flux through any one surface of 
cube. 

Solution. Flux through 6 surfaces = .   Since all the surfaces are symmetrical  

  so, flux through one surfaces =   

 
16.2 Flux through open surfaces using Gauss’s Theorem : 

 
Example 98 A point charge +q is placed at the centre of curvature of a hemisphere. Find flux through the 

hemispherical surface.     

             
Solution. Lets put an upper half hemisphere.  

 Now flux passing through the entire sphere =                       
 As the charge q is symmetrical to the upper half and lower half hemispheres , so half-half flux will 

emit from both the surfaces. 

 



 

 

       
 
Example 99 A charge Q is placed at a distance a/2 above the centre of a horizontal, square surface of edge 

a as shown in figure. Find the flux of the electric field through the square surface.       

            
Solution. We can consider imaginary faces of cube such that the charge lies at the centre of the cube. Due 

to symmetry we can say that flux through the given area (which is one face of cube)  

φ =       

 
 
Example 100 Find flux through the hemispherical surface  

 

Solution. (i)  Flux through the hemispherical surface due to +q =  (we have seen in previous 
 examples)   

 (ii)  Flux through the hemispherical surface due to +q0 charge = 0, because due to +q0 
 charge field lines entering the surface = field lines coming out of the surface.   

 
 

 
 

16.3 Finding qin from flux : 
 

 
 

Example 101  



 

 

 
 Flux (in S.I.units) coming out and entering a closed surface is shown in the figure . Find charge 

enclosed by the closed surface. 
Solution. Net flux through the closed surface = + 20 + 30 + 10 -15 = 45 N.m2/c from Gauss`s theorem 

  φnet =  

   45 =    ⇒  qin = (45)ε0 
 

 
 

16.4 Finding electric field from Gauss`s Theorem : 
 From gauss`s theorem, we can say 

   =  φnet =  

 16.4.1 Finding E due to a spherical shell :   

  Electric field outside the Sphere : 
  Since, electric field due to a shell will be radially outwards.  
  So lets choose a spherical Gaussian surface  Applying  
  Gauss`s theorem for this spherical Gauss`s surface, 

      

 = φnet =  =  

      ↓ 

    (because the  is normal to the surface) 
       ↓ 

  E  (because value of E is constant at the surface) 

  E (4πr2) (  total area of the spherical surface = 4 πr2) 



 

 

  ⇒  E (4πr2) =  ⇒ Eout =  
  

  Electric field inside a spherical shell : 
  Lets choose a spherical gaussian surface inside the shell.  
  Applying Gauss`s theorem for this surface  

        

    = φnet =  = 0 

      ↓ 

    
       ↓ 

    E  

      ↓ 
   E  (4πr2) ⇒ E (4πr2) = 0 ⇒ Ein = 0 
 

 16.4.2 Electric field due to solid sphere (having uniformly distributed charge Q and radius R) :  
 

  Electric field outside the sphere :  
  Direction of electric field is radially outwards, so we will choose  
  a spherical gaussian surface Applying Gauss`s theorem 

   

    = φnet
 =  =  

      ↓ 

    
       ↓  

    
     ↓ 

   E (4πr2)  ⇒ E (4πr2) =  ⇒ Eout =  
  Electric field inside a solid sphere :                         
  For this choose a spherical gaussian surface inside the solid sphere Applying gauss`s theorem 

 for this surface 



 

 

      

   = φnet =  =  =  

     ↓ 

   
      ↓ 

  E (4πr2)  ⇒ E(4πr2) =  

  E =  ⇒  Ein =  r 
 

 16.4.3 Electric field due to infinite line charge (having uniformly distributed charged of charge 
 density λ ) : 

           
 Electric field due to infinite wire is radial so we will choose cylindrical Gaussian surface as shown 

is figure. 

   =  =  

  φ3 =  =  =  = E (2πr) 

  E (2πr) =  ⇒ E =  =  

 16.4.4 Electric field due to infinity long charged tube (having uniform surface charge density 
 σ and radius R)): 



 

 

 
  (i)  E out side the tube :- lets choose a cylindrical gaussian surface   

   φnet =  =  ⇒ Eout × 2πr =  ⇒ E =  

  (ii)  E inside the tube : 
   lets choose a cylindrical gaussian surface in side the tube. 

   φnet =  = 0    
   So Ein = 0     

      
 

 16.4.5 E due to infinitely long solid cylinder of radius R (having uniformly distributed charge in 
 volume(charge density ρ)) : 

  

 (i)  E at outside point :-                     
  Lets choose a cylindrical gaussian surface.   
  Applying gauss`s theorem 

  E × 2πr =  =     

  Eout =  

      
 (ii)  E at inside point :      
  lets choose a cylindrical gaussian surface inside the  solid cylinder.  



 

 

  Applying gauss`s theorem  E × 2πr =  =                            

  Ein =  

       
   

17. CONDUCTOR AND IT'S PROPERTIES [FOR ELECTROSTATIC 

 CONDITION] 
 (i)  Conductors are materials which contains large number of free electrons which  can move freely 

inside the conductor.   
 (ii)   Ιn electrostatics conductors are always equipotential surfaces. 
 (iii)   Charge always resides on outer surface of conductor. 
 (iv)   Ιf  there is a cavity inside the conductor having no charge then charge will always reside only on 

outer surface of conductor.  
 (v)   Electric field is always perpendicular to conducting surface.  
 (vi)   Electric lines of force never enter into conductors.  
 (vii)   Electric field intensity near the conducting surface is given by formula  

       =  

       ;  and     
 (viii)   When a conductor is grounded its potential becomes zero. 

               
 (ix)  When an isolated conductor is grounded then its charge becomes zero.  
 (x)  When two conductors are connected there will be charge flow  till their potential becomes equal.  
 (xi)  Electric pressure : Electric pressure at the surface of a conductor is givey by formula  

    P =   where σ is the local surface charge density. 
 (xii)  Inside conductor net electric field is zero. 
 

 FINDING FIELD DUE TO A CONDUCTOR       

 Suppose we have a conductor, and at any 'A', local surface charge density = σ. We have to find electric 

field just outside the conductor surface. 

           



 

 

 For this lets consider a small cylindrical gaussian surface, which is partly inside and partly outside the 
conductor surface, as shown in figure. It has a small cross section area ds and negligeable height. 

                 
 Applying gauss's theorem for this surface 

        

 So,  Eds =   ⇒  E =  
 Electric field just outside the surface of conductor  

   E =  direction will be normal to the surface 

 in vector form   (here  = unit vector normal to the conductor surface) 
      

 Electric field due to a conducting and nonconducting uniformaly charge infinite 
sheets  

      

 
 

Example 102 A charge + Q is fixed at a distance of d in front of an infinite metal plate. Draw the lines of force 

indicating the directions clearly.      
 



 

 

Solution. There will be induced charge on two surfaces of conducting plate, so 

ELOF will start from +Q charge and terminate at conductor and then 

will again start from other surface of conductor. 

 
            

Example 103 Prove  that if an isolated (isolated means no charges are near the sheet) large conducting sheet 

is given a charge then the charge distributes equally on its two surfaces. 

Solution.     

     
 Let there is x charge on left side of sheet and Q–x charge on right side of sheet.   

 Since point P lies inside the conductor so  EP = O 

  –  = 0   ⇒  =  ⇒ x =   Q – x =  

 So charge in equally distributed on both sides 
5 

 

Example 104 If an isolated infinite sheet contains charge Q1  on its one surface and charge Q2 on its other 

surface then prove that electric field intensity at a point in front of sheet will be , where   

Q = Q1 + Q2 

Solution. Electric field at point P : 

  =        

 =  +  =  =  

 

 

 [This shows that the resultant field due to a sheet depends only on the total charge of the sheet 

and not on the distribution of charge on individual surfaces]. 
 

Example 105 Three large conducting sheets placed parallel to each other at finite 

distance contains charges  Q, –2Q and 3Q respectively. Find electric 

field at points A, B , C, and D. 

Solution.  EA =  EQ + E–2Q + E3Q. 

 Here EQ means electric field due to ‘Q’. 

 EA =  =  = , towards left 

 

 (ii) EB =  = 0  

 (iii) EC =  =  = , towards right  ⇒  towards left 

 (iv) ED =  =  = , towards right  
 

Example 106 Two conducting plates A and B are placed parallel to each other. A is given a charge Q1 and B 
a charge Q2. Prove that the charges on the inner facing surfaces are of equal magnitude and 
opposite sign. 

Solution. Consider a Gaussian surface as shown in figure. Two faces of this closed surface lie completely 
inside the conductor where the electric field is zero. The flux through these faces is, therefore, 
zero. The other parts of the closed surface which are outside the conductor are parallel to the 



 

 

electric field and hence the flux on these parts is also zero. The total flux of the electric field 
through the closed surface is, therefore zero. From Gauss’s law, the total charge inside this 
closed surface should be zero. The charge on the inner surface of A should be equal and opposite 
to that on the inner surface of B. 

       
  The distribution should be like the one shown in figure. To find the value of q, consider the field 

at a point P inside the plate A. Suppose, the surface area of the plate (one side) is A. Using the 

equation E = σ / (2ε0), the electric field at P due to the charge Q1 – q =  (downward)  

  due to the charge + q =  (upward), 

  due to the charge – q =  (downward), 

  and due to the charge Q2 + q =  (upward). 
  The net electric field at P due to all the four charged surfaces is (in the downward direction) 

   Ep =   
  As the point P is inside the conductor, this field should be zero. Hence, 

   Q1 – q – q  + q  – Q2 – q  =  0  or  
  This result is a special case of the following result. When charged conducting plates are placed 

parallel to each other, the two outermost, surfaces get equal charges and the facing surfaces get 
equal and opposite charges. 

 

Example 107 Two large parallel conducting sheets (placed at finite distance ) are given charges Q and 2Q 
respectively. Find out charges appearing on all the surfaces. 

        
Solution. Let there is x amount of charge on left side of first plate, so on its right side charge will be Q–x, 

similarly for second plate there is y charge on left side and 2Q – y charge is on right side of 
second plate  

          
 Ep = 0  ( By property of conductor)   

 ⇒  –  = 0  



 

 

     

 we can also say that charge on left side of P = charge on right side of  P 
 x = Q – x + y + 2Q – y 

  ⇒ x =  , Q – x =            
 Similarly for point Q : 
 x + Q – x + y = 2Q – y  
 ⇒ y = Q/2 , 2Q – y = 3Q/2 
 So final charge distribution of plates is : -     
 

Example 108 Figure shows three large metallic plates with charges – Q, 3Q and Q respectively. Determine the 
final charges on all the surfaces. 

 
Solution. We assume that charge on surface 2 is x. Following conservation of charge, we see that surfaces 

1 has charge (– Q – x). The electric field inside the metal plate is zero so fields at P is zero. 

          
 Resultant field at P - 
 EP = 0 

 ⇒  =    ⇒ –Q – x = x + 4Q        ⇒ x =  
 Note :  We see that charges on the facing surfaces of the plates are of equal magnitude and 

opposite sign. This can be in general proved by gauss theorem also. Remember this it is 
important result. Thus the final charge distribution on all the surfaces is as shown in figure : 

             
 

Example 109 An isolated conducting sheet of area A and  carrying a charge Q is placed  in  a  uniform electric 
field E, such that electric field is perpendicular to sheet and covers all the sheet. Find out charges 
appearing on its two surfaces.  



 

 

                 
Solution. Let there is x charge on left side of plate and Q – x charge on right side of plate  
 

 EP = 0  

  + E =      

 ⇒   =  – E    

 ⇒   x  =  – EAε0  and  Q – x =  

 So charge on one side is  – EAεo and other side  + EAεo 

     

Note : Solve this question for Q = 0 without using the above answer and match that answers with 
the answers that you will get by putting Q = 0 in the above answer. 

 

 
 

17.1 Some other important results for a closed conductor.  
 

 (i) Ιf a charge q is kept in the cavity then  –q will be induced on the inner surface and +q will be 
 induced on the outer surface of the conductor  (it can be proved using gauss theorem)  

 
(ii) If a charge q is kept inside the cavity of a conductor and conductor is given a charge Q then –q 

charge will be induced on inner surface and total charge on the outer surface will be q + Q. (it 
can be proved using gauss theorem) 

       



 

 

(iii) Resultant field, due to q (which is inside the cavity) and induced charge on S1, at any point outside 
S1 (like B,C) is zero. Resultant field due to q + Q on S2 and any other charge outside S2 , at 
any point inside of surface S2 (like A, B) is zero 

            
(iv) Resultant field in a charge free cavity in a closed conductor is zero. There can be charges outside 

the conductor and on the surface also. Then also this result is true. No charge will be induced on 
the inner most surface of the conductor. 

            
 (v) Charge distribution for different types of cavities in conductors  

 (A)   (B)  

 (C)   (D)  

 (E)   (F)  

 (G)    (H)  

 Using the result that  in the conducting material should be zero and using result (iii) We can show 
that 



 

 

 
Note :  In all cases charge on inner surface S1 = –q and on outer surface S2 = q. The distribution of charge on 
 ‘S1’ will not  change even if some charges are kept outside the conductor (i.e. outside the surface S2). 
 But the charge distribution on ‘S2’ may change if some charges(s) is/are kept outside the conductor. 
 

 
 

Example 110 An uncharged conductor of inner radius R1 and outer radius R2 contains  
a point charge q at the centre as shown in figure 

 (i) Find  and V at points A,B and C      
 (ii) If a point charge Q is kept out side the sphere at a distance ‘r’ (>>R2) 

from centre then find out resultant force on charge Q and charge q. 

 
 

Solution. At point A :      

  VA =  +  +  ,  =  
Note :  Electric field due at ‘A’ due to –q of S1 and +q of S2 is zero individually  

because they are uniformly distributed 

 At point B : VB =  +  +  = , EB = 0 

 

 At point C : VC = ,  =   
 (ii) Force on point charge Q : 
  (Note : Here force on ‘Q’ will be only due to ‘q’ of S2 see result (iii)   

   =  (r = distance of ‘Q’ from centre ‘O’)  
  Force on point charge q:   

   = 0  (using result (iii) & charge on S1 uniform) 
 

Example 111 An uncharged conductor of inner radius R1 and outer radius R2 contains a point charge q placed 
at point P (not at the centre) as shown in figure ? Find out the following : 

 (i)  VC  (ii)  VA  (iii)  VB  (iv)  EA  (v)  EB 
 (vi) force on charge Q if it is placed at B                     

Solution. (i) VC =  +  +  

 

 Note :  – q on S1 is nonuniformly distributed still it produces potential  at ‘C’ because ‘C’ 
is at distance ‘R1’ from each points of ‘S1’. 



 

 

  (ii)   VA =   (iii)   VB =   (iv)  EA = O (point is  inside metallic conductor)

  (v)  EB =  (vi)   FQ =  
 

 
 

 (vi)  Sharing of charges :   
   Two conducting hollow spherical shells of radii R1 and R2 having charges Q1 and Q2 respectively 

and seperated by large distance, are joined by a conducting wire  

        
   Let final charges on spheres are q1 and q2  respectively.   
   Potential on both spherical shell become equal after joining, therefore  

     =  ⇒  =    ......(i)  
   and, q1 + q2 = Q1 + Q2     ......(ii)  

   from (i) and (ii)   q1 =  q2 =  

   ratio of charges   =    ⇒   =  

   ratio of surface charge densities   =   

   Ratio of final charges    =   

  Ratio of final surface charge densities.  =  
 

 
 

Example 112 The two conducting spherical shells are joined by a conducting wire 
and cut after some time when charge stops flowing.Find out the charge 
on each sphere after that. 

 
Solution.  After cutting the wire, the potential of both the shells is equal  

   Thus, potential of inner shell Vin =  +  =  

   and potential of outer shell Vout =  +  =    

   As Vout   = Vin    ⇒  =  ⇒  –2Q = x – 2Q  ⇒  x = 0  
   So charge on inner spherical shell = 0 and outer spherical shell = – 2Q. 
 

Example 113 Find charge on each spherical shell after joining the inner most shell and outer most shell by a 
conducting wire. Also find charges on each surface. 

            



 

 

Solution.  Let the charge on the innermost sphere be x.    
 Finally potential of shell 1 = Potential of shell 3 

    +  +  =    

 3x –3Q +  6Q – x = 4Q ; 2x = Q ; x =    

 Charge on innermost shell =   

 charge on outermost shell =  middle shell = –2Q  
 Final charge distribution is as shown in figure.  

 
 

Example 114 Two conducting hollow spherical shells of radii R and 2R carry charges – Q and 3Q respectively. 
How much charge will flow into the earth if inner shell is grounded ? 

          
Solution. When inner shell is grounded to the Earth then the potential of inner shell will become zero  

because potential of the Earth is taken to be zero. 

  +  = 0  

 x = ,   the charge that has increased       

=  –  (–Q)  = hence charge flows into the Earth =  

 
 

Example 115. An isolated conducting sphere of charge Q and radius R is connected to a similar uncharged 
sphere (kept at a large distance) by using a high resistance wire. After a long time what is the 
amount of heat loss ? 

Solution. When two conducting spheres of equal radius are connected charge is equally distributed on 
them (Result VI). So we can say that heat loss of system  

 ΔH = Ui – Uf  

 –  =  
 



 

 

 

18. VAN DE GRAAFF GENERATOR (HIGH VOLTAGE GENERATOR)  
 (i) Designed by R.J. Van de Graaff in 1931. 
  (ii) It is an  electrostatic generator capable of generating very high potential of the order of 

 5 × 106 V. 
 (iii) This high potential is used in accelerating the charged particles.  
 

 Principle : It is based on the following two electrostatic phenomena :  
 (1). The electric discharge takes place in air or gases readily at pointed conductors. 
 (2)  (i) If a hollow conductor is in contact with an other conductor, which lies inside the 

 hollow conductor. Then as charge is supplied to inner conductor. The charge 
 immediately shifts to outer surface of the hollow conductor. 

  Consider a large spherical conducting shell A having radius R and charge +Q, potential 
 inside the shell is constant and it is equal to that at its surface.  

  Therefore, potential inside the charged conducting shell A,  V1 =  
  Suppose that a small conducting sphere B having radius r and charge +q is placed at 

 the centre of the shell A.  

   Then, potential due to the sphere B at the surface of shell A,  V2 =  

   and potential due to the sphere B at its surface,  V3 =  
   Thus, total potential at the surface of shell A due to the charges Q and q, 

    VA =  V1 + V2 =  or VA =   
   and the total potential at the surface of sphere B due to the charges Q and q, 

    VB = V1 + V3 =  or VB =  
   It follows that VB > VA. Hence, potential difference between the sphere and the shell, 

    V = VB – VA =  –  V =   
It follows that potential difference between the sphere and the shell is independent  of 
the charge Q on the shell. Therefore, if the sphere is connected to the shell by a wire, 
the charge supplied to the sphere will immediately flow to the shell.  
It is because, the potential of the sphere is higher than that of the shell and the charge 
always flows from higher to lower potential. 

   It forms the basic principle of Van de Graaff generator. 

 Construction : 

 
Working :   



 

 

(i)  An endless belt of an insulating material is made to run on two pulleys P1 and P2  with 
the help of an electric motor.  

(ii)  The metal comb C1, called spray comb is held potential with the help of E.H.T. source  
( ≈ 104 V), it produces ions in its vicinity.  The positive ions get sprayed on the belt due 
to the repulsive action of comb C1.  

(iii) These positive ions are carried upward by the moving  belt. A comb C2, called collecting 
comb is positioned near the upper end of the belt, such that the pointed ends touch the 
belt and the other end is in contact with the inner surface of the metallic sphere S. The 
comb C2 collects the positive ions and transfers them to the metallic sphere.  

(iv)  The charge transferred by the comb C2 immediately moves on to the outer surface of the 
hollow sphere. As the belt goes on moving, the accumulation of positive charge on the 
sphere also keeps on taking place continuously and its potential rises considerably.  

(v) With the increase of charge on the sphere, its leakage due to ionisation of surrounding 
air also becomes faster.  

(vi) The maximum potential  to which the sphere can be raised is reached, when the rate of 
loss of charge due to leakage becomes equal to the rate at which the charge is 
transferred to the sphere.  

(vii) To prevent the leakage of charge from the sphere, the generator is completely enclosed 
inside an earth-connected steel tank, which is filled with air under pressure. 

(viii) If the charged particles, such as protons, deutrons, etc. are now generated in the 
discharge tube D with lower end earthed and upper end inside the hollow sphere, they 
get accelerated in downward direction along the length of the tube. At the other end, they 
come to hit the target with large kinetic energy.  

(ix) Van de Graaff generator of this type was installed at the Carnegie institute in Washington 
in 1937. One such generator was installed at Indian Institute of Technology, kanpur in 
1970 and it accelerates particles to 2 MeV energy. 

 

 
 

Problem 1.  Two equal positive point charges 'Q' are fixed at points B(a, 0) and A(–a, 0). Another negative 
point charge q0 is also placed at O(0, 0) then prove that the equilibrium at 'O' is  

 (i)  stable for displacement in Y-direction. 
 (ii) unstable for displacement in X-direction. 
Solution. (i) When charge is shifted along y-axis  
 Let x-y direction as :-    

   
 After resolving into components, net force will be along negative y-axis so the particle will return 

to its original position. So it is stable equilibrium  
 (ii) When negative charge q0 is shifted along x-axis.          

    

 Initially   ⇒  

 When charge q0 is slightly shifted towards + x axis by small distance Δx than 

     
 Also these forces are attractive forces (due to negative charge) 
 Therefore the particle will move towards positive x-axis and will not return to its original position 

so it is unstable equilibrium for negative charge.  
 

Problem 2. A particle of mass m and charge –q is located midway between two fixed charged particles each 

having a charge q and a distance 2 apart. Prove that the motion of the particle will be SHM if it 

is displaced slightly along perpendicular bisector and released. Also find its time period.  
Solution.  Let x-y direction as :-    



 

 

       
 When particle is shift along y-axis with a small displacement 
 After resolving component of forces between q and –q charges  
 by figure Fnet in x-axis = 0 [Fnet = net force on –q charge] 
 Net force on – q charge in y direction = –2F cosθ  

 = –2. .   

  =  

 ⇒ ma =  (for x << )     (a = acceleration of – q charge)    

 ⇒ a = – . x    

 This is equation of S.H.M. (a = – ω2x)  

 so time period of this charge (–q) :-   T =   Ans.  
 
Problem 3. Two charges of Q each are placed at two opposite corners of a square. A charge q is placed at 

each of the other two corners.  
 (a)  Ιf the resultant force on Q is zero, how are Q and q related ?  
 (b) Could q be chosen to make the resultant force on each charge zero ?  
Solution. (a)  Let at a square ABCD charges are placed as shown  

  

 Now forces on charge Q (at point A) due to other charge are ,  and FQq   respectively 
shown in figure.  

 Fnet on Q =      (at point A) 
 But Fnet = 0  
 So, ΣFx = 0  

 ΣFx = – FQQ cos45° – FQq      

 ⇒   = 0   ⇒ q = –    Ans.  
(b) For resultant force on each charge to be zero : 

 From previous data, force on charge Q is zero when q = –  if for this value of charge q, force 
on q is zero then and only then the value of q exists for which the resultant force on each charge 
is zero. 

 Force on q :-  



 

 

 Forces on charge q (at point D) due to other three charges are ,  and  respectively 
shown in figure.  

         
   

 Net force on charge q :-   

  But   = 0   
 So, ΣFx = 0  

 ΣFx =  –  .  –  ⇒ q = – Q   

 But from previous condition, q = –     
  So, no value of q makes the resultant force on each charge zero.   
 
Problem 4. Figure shows a uniformly charged thin non-conducting sphere of total charge Q and radius R. If 

point charge q  is situated at point ‘A’ which is at a distance r < R from the centre of the sphere 
then find out following  

       
 (i)   Force acting on charge q.               
 (ii)  Electric field at centre of sphere. 
 (iii) Electric field at point B.   
Solution. (i)  Electric field inside a hollow sphere = 0 
  ∴  Force on charge q. 
  F = qE = q × 0 = 0 
 (ii) Net electric field at centre of sphere   

  Enet =  +   
  E1 = field due to sphere = 0      

  E2 = field due to this charge =  

  Enet =  

      

 (iii) Electric field at B  due to charge on sphere,  =    

  and due to charge q at A, =    



 

 

  So,  =  +  =  +   where r1 = CB  and r2 = AB   
Problem 5. Figure shows two concentric sphere of radius R1 and R2 (R2 > R1) which 

contains uniformly distributed charges Q and –Q respectively. Find out 

electric field intensities at the following positions : 

 (i) r < R1  (ii) R1 ≤ r < R2   (iii) r ≥ R2 
 

 

Solution. Net electric field = E1 + E2  
 E1 = field due to sphere of radius R1  
 E2 = field due of sphere of radius R2 

 (i) E1 = 0, E2 = 0   
         Enet = 0   

 

 (ii) E1 = , E2 = 0    ⇒  

 (iii)  =   =  (– ) ⇒  =  +  = 0   
 

Problem 6. A solid non conducting sphere of radius R and uniform volume charge density ρ has centre at 
origin. Find out electric field intensity in vector form at following positions. 

 (i) (R, 0, 0)  (ii) (0, 0, R/2)  (iii) (R, R, R) 
Solution. For uniformly charged non-conducting sphere. Electric field inside the sphere :-  

  = k  =  for r < R  and electric field outside the sphere  

 = .  = .   =  .     for r ≥ R 

 (i) (R , 0 , 0 )  means it is at the surface   = R  and  =   

   =  ( ) = .    

 (ii) (0, 0, )   
  means point is inside the sphere  

   =   ⇒  =   
 (iii) For position (R, R , R)  

   = R (  +  + )  ⇒  =  , r = R  
  means point (R,R,R) is outside the sphere  

   = .  =    Ans.   
 
 

Problem 7. Three identical spheres each having a charge q (uniformly distributed) and radius R, are kept in 
such a way that each touches the other two. Find the magnitude of the electric force on any 
sphere due to other two.  

 
Solution. Given three identical spheres each having a charge q and radius R are kept as shown :-   



 

 

       
 For any external point ; sphere behaves like a point charge. So it becomes a triangle having point 

charges on its corner.   

  =      

                    

 So net force (F) = 2.  .  cos  = 2.  = .   Ans.  
 
Problem 8. A  uniform electric field of 10 N/C exists in the vertically downward direction. Find the increase  

in the electric potential as one goes up through a height of 50cm.  

Solution.  E = –   ⇒   dv = – .    
 for  = constant   ⇒ Δv  = – .   ;  Δv  =  – 10 (– ). (50 × 10–2)  = 5 volts. 
 

Problem 9. An electric field of 20 N/C exists along the  x-axis in space. Calculate the potential difference  
VB – VA where the point A and B are given by – 

 (a) A = (0,0) ; B = (4m , 2m)   (b) A = (4m,2m) ; B = (6m , 5m)   
 (c) A = (0,0) ; B = (6m , 5m)  

Solution. Electric field in x - axis mean  = 20  

         

 (a)  =  = 20  . 4  = 80 V   ⇒  VB – VA = – 80V  

 (b)  =  = 20  . 2  = 40 volt   ⇒ VC – VB = – 40V  

 (c)  =  = 20  . 6  = 120 volt    ⇒ VC – VA =  – 120 V   
 

Problem 10. Some equipotential surfaces are shown in figure. What can you say about the magnitude and 
the direction of the electric field ?   

 



 

 

Solution.  We know, that the electric field is always perpendicular to equipotential 
surface. So, making electric field lines perpendicular to the surface, 
we find that these lines are originating from the centre. So, the field is 
similar to that due to a point charge placed at the centre. So, 
comparing the given potentials with that due to point charge, we have, 

 V =  ⇒  KQ = VA rA = VBrB = VCrC  =  6 V-m     
 Hence electric field at distance at radius r can be given by  

 E =  =  V/m   
 As the electric field lines are directed towards the decreasing potential. So, electric field is along 

radially outward direction.  
 

Problem 11. A point charge of charge –q and mass m is released with 

negligible speed from a distance  on the axis  of fixed 

uniformly charged ring of charge Q and radius R. Find out  its 

velocity when it reaches at the centre of the ring.  

 
                                  

Solution :  As potential due to uniform charged ring at its axis (at x 
distance)  

 V =  ;   So potential at point A due to ring   

 V1 =  =   

 So potential energy of charge  –q at point A    

 P.E.1 =  and potential at point B     V2 =   
 So potential energy of charge  –q at point B 

 P.E.2 =    
 Now by energy conservation  
 P.E.1 + K.E.1 = P.E2 + K.E2    

  + 0 =  + mv2    ⇒ v2 =    

  So velocity of charge – q at point B  v =    Ans.    
 

Problem 12. Four small point charges each of equal magnitude q are placed at four corners of a regular 
tetrahedron of side a. Find out potential energy of charge system 

 
Solution. Potential energy  of system :  
 U = U12 + U13 + U14 + U23 + U24 + U34 

 U =  +  +  +  +  +    

Total potential energy of this charge system  U =  



 

 

 
 

Problem 13. If V = x2y + y2z then find  at (x, y, z)   

Solution.  Given V = x2y + y2z     and  = –   

  = –    ⇒  = – [2xy  + (x2+2yz) + y2 ] 
 

Problem 14. Magnitude of electric field depends only on the x – coordinate given  =   V/m . Find  
 (i) the potential difference between two point A (5m, 0) and B (10m, 0).  
 (ii) potential at x = 5 if V at ∞ is 10 volt. 
 (iii)  in part (i) does the potential difference between A and B depend on whether the 

 potential at ∞ is 10 volt or something else. 

Solution.  Given  =   V/m   

 we know that    

  

 Potential difference   ΔV =     ⇒ V2 – V1 =  

 (i) Potential difference between point A and B (ΔV for  A to B) VB – VA = = – 2 volt  
 (ii) ΔV  for x = ∞ to x = 5 

  V5 – V∞ =  –  
  V5 = 10 + 4 = 14 volt 

(iii) Potential difference between two points does not depend on reference value of potential  
so the potential difference between A and B does not depend on whether the potential 
at ∞ is 10 volt or something else.  

 
Problem 15. If E = 2r2 then find V(r)     
Solution.  Given  E = 2r2     

 we know that  = –  = –  dr  

 ⇒ V(r) =  + c    Ans.    
 

Problem 16. A charge Q is uniformly distributed over a rod of length . Consider a hypothetical cube of edge 

 with the centre of the cube at one end of the rod. Find the minimum possible flux of the electric 

field through the entire surface of the cube.      
 



 

 

Solution.  According to Gauss law : flux depend upon charge inside the closed hypothetical surface  
 so for minimum possible flux through the entire surface of the cube = charge inside should be 

minimum.  

 Linear charge density of rod =  

 and minimum length of rod inside the cube =     

 

 So charge inside the cube  = .  =    

 so flux through the entire surface of the cube  =  =    
 

Problem 17. A charge Q is placed at a corner of a cube. Find the flux of the electric field through the six 
surfaces of the cube.  

Solution.     

 By Gauss law,  φ =   

 Here, since Q is kept at the corner so only  charge is inside the cube. (since complete charge 
can be enclosed by 8 such cubes)  

 ∴  qin =   

 So,  φ =  =   Ans.    
 

Problem 18. An isolated conducting sphere of charge Q and radius R is grounded by using a high resistance 
wire. What is the amount of heat loss ?   

Solution.  

  
 When sphere is grounded it's potential become zero which means all charge goes to earth (due 

to sphere is conducting and isolated)  
 so all energy in sphere is converted into heat    

  so, total heat loss =    
 


