1. <u>Binomial expression</u>:

2.

Any algebraic expression which contains two dissimilar terms is called binomial expression.

For example : x + y, $x_2y + \frac{xy^2}{xy^2}$, 3 - x, $\sqrt{x^2 + 1} + \frac{1}{(x^3 + 1)^{1/3}}$ etc. Terminology used in binomial theorem : (i) Factorial notation : In or n! is pronounced as factorial n and is defined as $\left\lceil n(n-1)(n-2).....3$. 2 . 1 ; if $n\in N$ 1 ; if n=0 n! = ^l **Note:** $n! = n \cdot (n - 1)!$; $n \in \mathbb{N}$ Mathematical meaning of "Cr : The term "Cr denotes number of combinations of r things (ii) n ! choosen from n distinct things mathematically, ${}_{n}C_{r} = \overline{(n-r)! r!}$, $n \in N$, $r \in W$, $0 \le r \le n$ **Note :** Other symbols of of ${}_{n}C_{r}$ are $\binom{r}{r}$ and C(n, r). (iii) Properties related to nCr: $n\mathbf{C}r = n\mathbf{C}n - r$ (a) **Note :** If ${}_{n}C_{x} = {}_{n}C_{y} \implies$ Either x = y or x + y = nnCr + nCr - 1 = n + 1Cr(b) $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} - \frac{n-r+1}{r}$ (c) ${}_{n}C_{r} = \frac{n}{r} \sum_{n-1}C_{r-1} = \frac{n(n-1)}{r(r-1)} \sum_{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2)\dots(n-(r-1))}{r(r-1)(r-2)\dots(2-1)}$ (d) Sum of two consecutive binomial coefficients (e) $_{n}C_{r} + _{n}C_{r-1} = _{n+1}C_{r} \Rightarrow L.H.S. = _{n}C_{r} + _{n}C_{r-1} = \frac{n!}{(n-r)! r!} + \frac{n!}{(n-r+1)! (r-1)!}$ $= \frac{n!}{(n-r)!} \frac{(n+1)!}{(r-1)!} \left[\frac{1}{r} + \frac{1}{n-r+1} \right] = \frac{n!}{(n-r)!} \frac{(n+1)!}{r(n-r+1)!} \frac{(n+1)!}{r(n-r+1)!} = \frac{(n+1)!}{(n-r+1)!} = \frac{(n+1)!$ Ratio of two consecutive binomial coefficients (f) $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$ ${}_{n}C_{r} = \frac{n}{r} \sum_{n-1}C_{r-1} = \frac{n(n-1)}{r(r-1)} \sum_{n-2}C_{r-2} = \dots = \frac{n(n-1)(n-2)\dots(n-(r-1))}{r(r-1)(r-2)\dots(2-1)}$ (g) If n and r are relatively prime, then nCr is divisible by n. But converse is not necessarily (h) true.

3. <u>Statement of binomial theorem</u> :

 $(x + y)_n = {}_nC_0 x_ny_0 + {}_nC_1 x_{n-1}y_1 + {}_nC_2 x_{n-2}y_2 + ... + {}_nC_r x_{n-r} y_r + + {}_nC_n x_0 y_n$

where $n \in N$ $\sum_{r=0}^{n} {}^{n}C_{r} \quad x^{n-r}y^{r}$ $(x + y)_{n} =$ or from the above expansion, we can find the following expansions $(1 + x)_n = {}_nC_0 + {}_nC_1 x + {}_nC_2 x_2 + ... + {}_nC_r x_r + ... + {}_nC_n x_n$ $(1 + x)_n = \sum_{r=0}^n {}^n C_r x^r$ or Notes: (i) The number of terms in the binomial expansion $(a + b)_n$ is n + 1. (ii) The sum of the indices of a and b in each term is n. The binomial coefficients ($_nC_0$, $_nC_1$, $_nC_n$) of the terms equidistant from the beginning and (iii) the end are equal, i.e. ${}_{n}C_{0} = {}_{n}C_{n}$, ${}_{n}C_{1} = {}_{n}C_{n-1}$ etc. $\{:: nC_r = nC_{n-r}\}$ (iv) General term in the expansion of $(x + y)_n$ can be considered as $T_{r+1} = {}_nC_r x_{n-r} y_r$ The r_{th} term from the end is equal to the $(n - r + 2)_{th}$ term from the begining, (v) i.e. $nC_{n-r+1} X_{r-1} Y_{n-r+1}$ Middle term(s) in the expansion of $(x + y)^n$ can be calculated as below : (vi) If n is even, there is only one middle term, which is $\left(\frac{n+2}{2}\right)^{tn}$ term. (a) If n is odd, there are two middle terms, which are $\left(\frac{n+1}{2}\right)^{th}$ and $\left(\frac{n+1}{2}+1\right)^{th}$ (b) Example #1: Expand the following binomials : (ii) $\left(1 - \frac{3x^2}{2}\right)^4$ $(x-3)_5$ (ii) $(-2)_7$ $(x-3)_5 = {}_5C_0x_5 + {}_5C_1x_4 (-3)_1 + {}_5C_2 x_3 (-3)_2 + {}_5C_3 x_2 (-3)_3$ (i) Solution : (i) $+ {}_{5}C_{4} \times (-3)_{4} + {}_{5}C_{5} (-3)_{5}$ $= x_5 - 15x_4 + 90x_3 - 270x_2 + 405x - 243$ $\left(1 - \frac{3x^2}{2}\right)^4 = \frac{3x^2}{2} + \frac{3x^2$ (ii) $= 1 - 6x_2 + \frac{27}{2}x_4 - \frac{27}{2}x_6 + \frac{81}{16}x_8$ **Example # 2 :** Expand the binomial $\left(\frac{2x}{3} + \frac{3y}{2}\right)^{20}$ up to four terms $\left(\frac{2x}{3} + \frac{3y}{2}\right)^{20} = {}_{20}C_0 \left(\frac{2x}{3}\right)^{20} + {}_{20}C_1 \left(\frac{2x}{3}\right)^{19} \left(\frac{3y}{2}\right) + {}_{20}C_2 \left(\frac{2x}{3}\right)^{18} \left(\frac{3y}{2}\right)^2 + {}_{20}C_3 \left(\frac{2x}{3}\right)^{17} \left(\frac{3y}{2}\right)^3 + \dots$ Solution : $= \left(\frac{2x}{3}\right)^{20} + 20 \cdot \left(\frac{2}{3}\right)^{18} x_{19}y + 190 \cdot \left(\frac{2}{3}\right)^{16} x_{18}y_2 + 1140 \cdot \left(\frac{2}{3}\right)^{14} x_{17}y_3 + \dots$ **Example #3:** The number of dissimilar terms in the expansion of $(1 - 3x + 3x_2 - x_3)_{20}$ is

Binomial Theorem MATHEMATICS

(A) 21 (B) 31 (C) 41 (D) 61
Solution:
$$(1-3x+3x_{2}-x_{3})_{23} = [(1-x)]_{23} = (1-x)_{23}$$
Therefore number of dissimilar terms in the expansion of $(1-3x+3x_{2}-x_{3})_{23}$ is 61.
Example #4: Find
(i) 26* term of $(3x+2y)_{23}$ (ii) 7* term of $\left(\frac{4x}{5}-\frac{5}{2x}\right)^{3}$
Solution: (i) Ts= = $aC_{23}(3x)_{5}(2y)_{23} = \frac{30!}{3!\cdot5!}(3x)_{5}.(2y)_{25}$
(ii) 7th term of $\left(\frac{4x}{5}-\frac{5}{2x}\right)^{3}$
 $T_{6-1} = {}_{3}C_{6}\left(\frac{4x}{5}\right)^{6}\left(-\frac{5}{2x}\right)^{6} = \frac{9}{3\cdot1\cdot6!}\left(\frac{4x}{5}\right)^{3}\left(\frac{5}{2x}\right)^{6} = \frac{10500}{x^{2}}$
Example # 5: Find the number of rational terms in the expansion of $(9^{14} + 8^{16})^{1000}$ is
 $T_{1-1} = {}_{3}C_{6}\left(\frac{4x}{5}\right)^{16}\left(\frac{8^{12}}{2}\right)^{2} = {}_{4}\cos C_{2} \sin \frac{302}{2}\frac{2}{2}^{2}$
The above term will be rational terms in the expansion of $(9^{14} + 8^{16})^{1000}$ is
 $T_{1-1} = {}_{4}\cos C_{1}\left(\frac{9^{12}}{9^{12}}\right)^{1000-4}\left(\frac{8^{12}}{9}\right)^{2} = {}_{4}\cos C_{2} \sin \frac{302}{2}\frac{2}{2}^{2}$
The above term will be rational if exponent of 3 and 2 are integers
The possible set of values of ris $(0, 2, 4, \dots, 1000)$
Hence, number of rational terms is 501
Example # 6: Find the middle term (s) in the expansion of
(i) $\left(1-\frac{x^{2}}{2}\right)^{4}$ (ii) $\left(3a-\frac{a^{3}}{6}\right)^{6}$
(iii) $\left(1-\frac{x^{2}}{2}\right)^{4}$
Here, n is even, therefore middle term is $\left(\frac{14+2}{2}\right)_{a}$ term.
It means The is is middle term
 $T_{10} = {}_{10}C_{1}\left(-\frac{(-x^{2})^{2}}{2}\right)^{2} = -\frac{16}{16}x_{14}$.
(ii) $T_{1} = {}_{10}C_{1}\left(-\frac{(-x^{2})^{2}}{2}\right)^{2} = -\frac{16}{16}x_{14}$.
(iii) $T_{2} = {}_{10}C_{1}\left(-\frac{(-x^{2})^{2}}{2}\right)^{2} = -\frac{16}{16}x_{14}$.

٠

MATHEMATICS Bin

Binomial Theorem

					$\int \mathbf{x}^4$	$(-\frac{1}{2})^{15}$					
Example # 7 :											
Solution :		Let $(r + 1)_{th}$ term contains x_m									
				$\left(\underline{-1}\right)^{r}$							
		T r + 1	= 15Cr (X4)15-r	$\left(\mathbf{x}^{3} \right)$	= 15 Cr X ₆₀ -	7r (- 1) r					
		(i)	for x_{32} , $60 - 7$	r = 32	\Rightarrow	7r = 28		\Rightarrow	r = 4	l, so 5th term.	
			$T_5 = {}_{15}C_4 X_{32} (-$	- 1)4							
			Hence, coeffi	cient of x	(32 is 1365						
		(ii)	for x_{-17} , 60 – 7		\Rightarrow	r = 11 , :	SO 12th	term.			
			T ₁₂ = 15C11 X-17	. ,							
			Hence, coeffi	cient of y	(_{–17} is – 13)	65					
Note :		In any binomial expansion, the middle term(s) has greatest binomial coefficient.									
		In the expansion of (a + b) ⁿ n No. of greatest binomial coefficient							Greatest binomial coefficient		
	lf	n Even	NO. C	-	st binomi	al coetti	cient	C	nCn/2		fficient
		Even Odd		1 2						- 1)/2 and nC(n + 1)/2	
		Ouu		2			(Value)	s of hot		e coefficients are	equal)
.							(value)	5 01 501	11 1100		, oquui)
Self p	ractice p	roblem	5:				0				
						2	$-\frac{y}{3}\Big)^{6}$				
	(1)		he first three te		•	on of ζ	3)				
			($\begin{bmatrix} x^2 & 3 \end{bmatrix}^{4}$	5						
	(2)	Expand	d the binomial	$\overline{3}^{+}\overline{x}$							
	(_)	Expand			•	3) ₉					
	$\langle 0 \rangle$	Tio al Ala		dont of	$\int x^2 - \frac{1}{2}$	$\left(\frac{3}{x}\right)$					
	(3) (4)	Find the term independent of x in (x) The sum of all rational terms in the expansion of $(3_{1/5} + 2_{1/3})_{15}$ is									
	(4)	(A) 60		(B) 59	-		(C) 95	21/3) 15 13	1	(D) 105	
		(71) 00		(2) 00			(C) 00			(2) 100	
		— : 1.4	<i>.</i>	,	.	$\left(1+\frac{1}{x}\right)^{2}$					
	(5) (6)	Find the coefficient of x_{-1} in $(1 + 3x_2 + x_4)$ Find the middle term(s) in the expansion of $(1 + 3x + 3x_2 + x_3)_{2n}$									
	(6)	rina in		s) in the					405	0.40	
_	($\frac{80}{3}$ y ₂		$\frac{x^{10}}{243}$ +	$\frac{5}{27}$	$\frac{10}{3}$		$\frac{135}{v^2}$	$\frac{243}{x^5}$	
Ans.	(1)		y + ³ y ₂	(2)					. X ⁻	+ X [*] .	
	(3)	28.37		(4)	В		(5)	232			
	(6)	6n C 3n . X	(3n								
4.	<u>Divisi</u>	Divisibility and remainder calculation :									
	Lets co	nsider a	number (7) ¹³	which c	an be writt	ten as (8	-1) ¹³				
	$\overset{13}{\boxtimes} \bigcirc (8)^{13} - \overset{13}{\boxtimes} \bigcirc (8)^{12} + \overset{13}{\boxtimes} \bigcirc (8)^{12} + \overset{13}{\boxtimes} \bigcirc (8)^{11} - \overset{13}{\boxtimes} \bigcirc (8)^{10} + \overset{13}{\boxtimes} \bigcirc (8)^{9} - \overset{13}{\boxtimes} \cdots & \overset{1}{\boxtimes} \overset{13}{\boxtimes} \bigcirc (8)^{9} - \overset{13}{\boxtimes} \cdots & \overset{1}{\boxtimes} \overset{13}{\boxtimes} \bigcirc (8)^{9} - \overset{13}{\boxtimes} \cdots & \overset{1}{\boxtimes} $								$\frac{13}{12}$		
	Now (8	DW (8-1) ¹³ =									
	∴ (8–1	$(3-1)^{13} = 8I - 1$									
		= 8(I-1) + 7									
	Hence	``	ing (7) ¹³ by 8, v	we get re	mainder 7						
•			5 () -) - , .								

Example #8: Prove that for each $n \in N$, $2_{3n} - 1$ is divisible by 7 Solution : $2_{3n} - 1 = (2_3)_n - 1 = (1 + 7)_n - 1$ $= [1 + {}_{n}C_{1}(7) + {}_{n}C_{2}(7)_{2} \dots + {}_{n}C_{n}(7)_{n}] - 1$ $= 7[nC_1 + nC_2 7 + \dots nC_n 7_{n-1}]$ $2_{3n} - 1$ is divisible by 7 for all $n \in N$ ⇒ Example #9: Find the remainder when 599 is divide by 8 Solution : $5_{99} = 5(5_2)_{49} = 5(24 + 1)_{49} = 5(4_9C_024_{49} + 4_9C_124_{49} \dots 4_9C_{48}24 + 1)$ hence remainder when 599 is divided by 8 is 5 Example # 10 : Find the last two digits of the number (17)₁₀. $(17)_{10} = (289)_5 = (290 - 1)_5$ Solution : $= {}_{5}C_{0} (290)_{5} - {}_{5}C_{1} (290)_{4} + \dots + {}_{5}C_{4} (290)_{1} - {}_{5}C_{5} (290)_{0}$ $= {}_{5}C_{0} (290)_{5} - {}_{5}C_{1} . (290)_{4} +_{5}C_{3} (290)_{2} + 5 \times 290 - 1$ = A multiple of 1000 + 1449 Hence, last two digits are 49 **Note :** We can also conclude that last three digits are 449. Example # 11 : Which number is larger (1.01)100000 or 10,000 ? Solution : By Binomial Theorem (1.01)1000000 $= (1 + 0.01)_{1000000}$ $= 1 + 1000000C_1 (0.01) + other positive terms$ $= 1 + 1000000 \times 0.01 + other positive terms$ = 1 + 10000 + other positive termsHence $(1.01)_{100000} > 10,000$ Self practice problems : (7) If n is a positive integer, then show that $3_{2n+1} + 2_{n+2}$ is divisible by 7. (8) What is the remainder when 7103 is divided by 25. Find the last digit, last two digits and last three digits of the number (81)25. (9) (10)Which number is larger (1.2)₄₀₀₀ or 800 (8) 18 (9) 1,01,001 (10) (1.2)4000. Ans. 5. Some standard expansions : (i) Consider the expansion $(x + y)_n = \sum_{r=0}^n {}^nC_r x_{n-r} y_r = {}_nC_0 x_n y_0 + {}_nC_1 x_{n-1} y_1 + \dots + {}_nC_r x_{n-r} y_r + \dots + {}_nC_n x_0 y_n \dots (i)$ Now replace $y \rightarrow -y$ we get (ii) $(x - y)_n = \sum_{r=0}^{m} C_r (-1)_r x_{n-r} y_r$ $= {}_{n}C_{0} x_{n} y_{0} - {}_{n}C_{1} x_{n-1} y_{1} + ... + {}_{n}C_{r} (-1)_{r} x_{n-r} y_{r} + ... + {}_{n}C_{n} (-1)_{n} x_{0} y_{n} \qquad(ii)$ (iii) Adding (i) & (ii), we get $(x + y)_n + (x - y)_n = 2[nC_0 x_n y_0 + nC_2 x_{n-2} y_2 + \dots]$ Subtracting (ii) from (i), we get (iv) $(x + y)_n - (x - y)_n = 2[nC_1 x_{n-1} y_1 + nC_3 x_{n-3} y_3 + \dots]$

6.	<u>Prope</u>	erties o	of binomial coefficients :						
	. ,	$n = C_0 + 0$ Cr denot	C1x + C2x2 + + Cr xr + + Cnxn tes nCr	(1)					
	(i)	The sum of the binomial coefficients in the expansion of $(1 + x)_n$ is 2_n Putting x = 1 in (1)							
		-	$C_1 + nC_2 + \dots + nC_n = 2_n$	(2)					
			$\sum_{n=1}^{n} {}^{n}C_{r} = 2^{n}$						
		or	r=0						
	(ii)	Again	putting $x = -1$ in (1), we get						
		$nC_0 - n^2$	$C_1 + nC_2 - nC_3 + \dots + (-1)n nC_n = 0$	(3)					
		or	$\sum_{r=0}^{n} (-1)^{r-n} C_{r} = 0$						
	(iii)	The sum of the binomial coefficients at odd position is equal to the sum of the binomial coefficients at even position and each is equal to 2_{n-1} . from (2) and (3)							
		n C 0 + n	$C_2 + nC_4 + \dots = nC_1 + nC_3 + nC_5 + \dots = 2_{n-1}$						
Examp	ole # 12	: If (1 + : (i)	$(x)_n = C_0 + C_1 x + C_2 x_2 + \dots + C_n x_n$, then show that $C_0 + 3C_1 + 3_2C_2 + \dots + 3_n C_n = 4_n$.						
		(ii)	$C_0 + 2C_1 + 3$. $C_2 + \dots + (n + 1) C_n = 2_{n-1} (n + 2)$.						
Caluti		(iii) (i)	$\frac{C_1}{C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + (-1)_n \frac{C_n}{n+1} = \frac{1}{n+1}.$						
Solutio	on :	(i)	$(1 + x)_n = C_0 + C_1 x + C_2 x_2 + \dots + C_n x_n$ put x = 3						
			$C_0 + 3 \cdot C_1 + 3_2 \cdot C_2 + \dots + 3_n \cdot C_n = 4_n$						
		(ii)	I Method : By Summation						
			L. H.S. = ${}_{n}C_{0} + 2$. ${}_{n}C_{1} + 3$. ${}_{n}C_{2} + \dots + (n + 1)$. ${}_{n}C_{n}$.						
			$\sum_{r=0}^{n} (r+1) \sum_{n=1}^{n} r \cdot C_{r} = \sum_{r=0}^{n} r \cdot C_{r} + \sum_{r=0}^{n} C_{r}$						
			$= n^{\sum_{r=0}^{n} n-1} C_{r-1} + \sum_{r=0}^{n} C_{r} = n \cdot 2_{n-1} + 2_{n} = 2_{n-1} (n+2).$	RHS					
			II Method : By Differentiation						
			$(1 + x)_n = C_0 + C_1 x + C_2 x_2 + \dots + C_n x_n$						
			Multiplying both sides by x ,						
			$x(1 + x)_n = C_0x + C_1x_2 + C_2x_3 + \dots + C_n x_{n+1}$.						
			Differentiating both sides $(1 + x)_n + x n (1 + x)_{n-1} = C_0 + 2. C_1 x + 3 . C_2 x_2 + +$	$(n \pm 1)C_n x_n$					
			putting $x = 1$, we get						
			$C_0 + 2.C_1 + 3$. $C_2 + + (n + 1) C_n = 2_n + n \cdot 2_{n-1}$						
			$C_0 + 2.C_1 + 3 \cdot C_2 + \dots + (n + 1) C_n = 2_{n-1} (n + 2)$	Proved					

(iii) <u>I Method : By Summation</u>

$$L.H.S. = C_{0} - \frac{C_{1}}{2} + \frac{C_{2}}{3} - \frac{C_{3}}{4} + \dots + (-1)_{n} \cdot \frac{C_{n}}{n+1}$$

$$= \sum_{r=0}^{n} (-1)^{r} \cdot \frac{{}^{n}C_{r}}{r+1}$$

$$= \frac{1}{n+1} \cdot \sum_{r=0}^{n} (-1)^{r} \cdot \frac{n+1}{n+1} \cdot \frac{n}{r+1} \cdot C_{r} = \sum_{r=0}^{n+1} C_{r+1}$$

$$= \frac{1}{n+1} \left[\sum_{r=0}^{n} (-1)^{r} + \sum_{r=0}^{n+1} C_{r+1} + \sum_{r=0}^{n} (-1)^{r} +$$

II Method : By Integration

 $(1 + x)_n = C_0 + C_1 x + C_2 x_2 + \dots + C_n x_n.$ Integrating both sides, within the limits -1 to 0. $\left[\frac{(1+x)^{n+1}}{n+1}\right]_{-1}^{0} - \left[C_{0}x + C_{1}\frac{x^{2}}{2} + C_{2}\frac{x^{3}}{3} + \dots + C_{n}\frac{x^{n+1}}{n+1}\right]_{-1}^{0}$ $\frac{1}{n+1} - 0 = 0 - \left[-C_0 + \frac{C_1}{2} - \frac{C_2}{3} + \dots + (-1)^{n+1} \frac{C_n}{n+1} \right]$ $C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots + (-1)_n \frac{C_n}{n+1} = \frac{1}{n+1}$ Proved **Example # 13 :** If $(1 + x)_n = C_0 + C_1x + C_2x_2 + \dots + C_nx_n$, then prove that (i) $C_{02} + C_{12} + C_{22} + \dots + C_{n2} = 2nC_n$ $C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_{n-2}C_n = 2nC_{n-2}Or_{2n}C_{n+2}$ (ii) 1. C_{02} + 3. C_{12} + 5. C_{22} + + (2n + 1). C_{n2} . = 2n. $2n - 1C_n$ + $2nC_n$. (iii) Solution : $(1 + x)_n = C_0 + C_1 x + C_2 x_2 + \dots + C_n x_n$(i) (i) $(x + 1)_n = C_0 x_n + C_1 x_{n-1} + C_2 x_{n-2} + \dots + C_n x_0$(ii) Multiplying (i) and (ii) $(C_0 + C_1 x + C_2 x_2 + \dots + C_n x_n) (C_0 x_n + C_1 x_{n-1} + \dots + C_n x_0) = (1 + x)_{2n}$ Comparing coefficient of xn, $C_{02} + C_{12} + C_{22} + \dots + C_{n2} = 2nC_n$ From the product of (i) and (ii) comparing coefficients of x_{n-2} or x_{n+2} both sides, (ii) $C_0C_2 + C_1C_3 + C_2C_4 + \dots + C_{n-2}C_n = 2nC_{n-2}Or 2nC_{n+2}.$ **I Method : By Summation** (iii) L.H.S. = 1. C_{02} + 3. C_{12} + 5. C_{22} + + (2n + 1) C_{n2} . $\sum_{r=0}^{n} (2r+1) \sum_{nC_{r2}}^{n} 2.r \sum_{r=0}^{n} 2.r \sum_{(nC_{r})_{2}}^{n} ({}^{n}C_{r})^{2}$ $= 2^{r-1} \cdot n_{r-1}C_{r-1} \cdot nC_{r} + 2nC_{n}$

 $(1 + x)_n = {}_nC_0 + {}_nC_1 x + {}_nC_2 x_2 + \dots {}_nC_n x_n$(i) $(x + 1)_{n-1} = {}_{n-1}C_0 X_{n-1} + {}_{n-1}C_1 X_{n-2} + \dots + {}_{n-1}C_{n-1}X_0$(ii) Multiplying (i) and (ii) and comparing coeffcients of xn. $n-1C_0 \cdot nC_1 + n-1C_1 \cdot nC_2 + \dots + n-1C_{n-1} \cdot nC_n = 2n-1C_n$ $\sum_{r=0}^{n} {}^{n-1}C_{r-1} \\ . \ {}_{n}C_{r} = {}_{2n-1}C_{n}$ Hence, required summation is $2n_{n-1}C_n + 2nC_n = R.H.S.$ Hence, required summation is $2n_{2n-1}C_n + 2nC_n = R.H.S.$ **II Method : By Differentiation** $(1 + x_2)_n = C_0 + C_1x_2 + C_2x_4 + C_3x_6 + \dots + C_n x_{2n}$ Multiplying both sides by x $x(1 + x_2)_n = C_0x + C_1x_3 + C_2x_5 + \dots + C_nx_{2n+1}$ Differentiating both sides x . n $(1 + x_2)_{n-1}$. 2x + $(1 + x_2)_n = C_0 + 3$. C₁x₂ + 5. C₂ x₄ ++ (2n + 1) C_n x_{2n}.....(i) $(x_2 + 1)_n = C_0 x_{2n} + C_1 x_{2n-2} + C_2 x_{2n-4} + \dots + C_n$(ii) Multiplying (i) & (ii) $(C_0 + 3C_1x_2 + 5C_2x_4 + \dots + (2n + 1) C_n x_{2n}) (C_0 x_{2n} + C_1x_{2n-2} + \dots + C_n)$ $= 2n x_2 (1 + x_2)_{2n-1} + (1 + x_2)_{2n}$ comparing coefficient of x_{2n}, $C_{02} + 3C_{12} + 5C_{22} + \dots + (2n + 1) C_{n2} = 2n \cdot 2n - 1C_{n-1} + 2nC_n$ $C_{02} + 3C_{12} + 5C_{22} + \dots + (2n + 1) C_{n2} = 2n \cdot 2n - 1C_n + 2nC_n$. Proved

Example # 14 : Find the summation of the following series -

Solution :

(ii) $nC_3 + 2 \cdot n_{+1}C_3 + 3 \cdot n_{+2}C_3 + \dots + n \cdot 2n_{-1}C_3$ (i) I Method : Using property, $nC_r + nC_{r-1} = n_{+1}C_r$ $mC_m + m_{+1}C_m + m_{+2}C_m + \dots + nC_m$ $= m_{+1}C_m + m_{+1}C_m + m_{+2}C_m + \dots + nC_m$ {:: $mC_m = m_{+1}C_{m+1}$ } $= m_{+2}C_m + m_{+1}^{m+2}C_m + \dots + nC_m$ $= m_{+3}C_{m+1} + \dots + nC_m = nC_{m+1} + nC_m = n_{+1}C_{m+1}$

 ${}_{m}C_{m} + {}_{m+1}C_{m} + {}_{m+2}C_{m} + \dots + {}_{n}C_{m}$

II Method

(i)

 $\label{eq:mcm} {}^{m}C_{m} + {}^{m+1}C_{m} + {}^{m+2}C_{m} + \dots + {}^{n}C_{m}$ The above series can be obtained by writing the coefficient of x_m in $(1 + x)_m + (1 + x)_{m+1} + \dots + (1 + x)_n$ Let S = $(1 + x)_m + (1 + x)_{m+1} + \dots + (1 + x)_n$ = = = = $\frac{(1 + x)^{n+1}}{x} - \frac{(1 + x)^m}{x} = {}^{n+1}C_{m+1} + 0 = {}^{n+1}C_{m+1}$

(ii) $nC_3 + 2 \cdot n+1C_3 + 3 \cdot n+2C_3 + \dots + n \cdot 2n-1C_3$ The above series can be obatined by writing the coefficient of x₃ in $(1 + x)_n + 2 \cdot (1 + x)_{n+1} + 3 \cdot (1 + x)_{n+2} + \dots + n \cdot (1 + x)_{2n-1}$ Let $S = (1 + x)_n + 2 \cdot (1 + x)_{n+1} + 3 \cdot (1 + x)_{n+2} + \dots + n \cdot (1 + x)_{2n-1}$(i) $(1 + x)S = (1 + x)_{n+1} + 2 (1 + x)_{n+2} + \dots + (n - 1) (1 + x)_{2n-1} + n(1 + x)_{2n}$(ii) Subtracting (ii) from (i) $-xS = (1 + x)_n + (1 + x)_{n+1} + (1 + x)_{n+2} + \dots + (1 + x)_{2n-1} - n(1 + x)_{2n}$ $\frac{(1+x)^n \Big[(1+x)^n - 1 \Big]}{x} - n \; (1+x)_{2n}$ $\frac{-(1+x)^{2n}+(1+x)^n}{x^2} + \frac{n(1+x)^{2n}}{x}$ S = x_3 : S (coefficient of x_3 in S) $\frac{-(1+x)^{2n}+(1+x)^n}{x^2} + \frac{n(1+x)^{2n}}{x}$ **X**3 · Hence, required summation of the series is $-2nC_5 + nC_5 + n \cdot 2nC_4$

Self practice problem :

(11)

Prove the following (i) $C_0 + 3C_1 + 5C_2 + \dots + (2n + 1) C_n = 2_n (n + 1)$ (ii) $\frac{4^2}{2} \cdot C_1 + \frac{4^3}{3} \cdot C_2 + \dots + \frac{4^{n+1}}{n+1} \cdot C_n = \frac{5^{n+1} - 1}{n+1}$ (iii) $nC_0 \cdot n+1C_n + nC_1 \cdot nC_{n-1} + nC_2 \cdot n-1C_{n-2} + \dots + nC_n \cdot 1C_0 = 2_{n-1} (n + 2)$ (iv) $2C_2 + 3C_2 + \dots + nC_2 = n+1C_3$

7. Binomial theorem for negative and fractional indices :

If $n \in R$, then $(1 + x)_n = 1 + nx + \frac{\frac{n(n-1)}{2!}}{x_2!} \frac{n(n-1)(n-2)}{3!} x_3 + \dots + \frac{\frac{n(n-1)(n-2)}{r!}}{r!} x_r + \dots \infty$.

Remarks

- (i) The above expansion is valid for any rational number other than a whole number if |x| < 1.
- (ii) When the index is a negative integer or a fraction then number of terms in the expansion of $(1 + x)_n$ is infinite, and the symbol ${}_nC_r$ cannot be used to denote the coefficient of the general term.
- (iii) The first term must be unity in the expansion, when index 'n' is a negative integer or fraction

$$\begin{vmatrix} x^{n} \left(1+\frac{y}{x}\right)^{n} = x^{n} \left\{1+n \ . \ \frac{y}{x} + \frac{n \ (n-1)}{2 \ !} \left(\frac{y}{x}\right)^{2} + \dots \right\} & \text{if } \left| \frac{y}{x} \right| < 1 \\ y^{n} \left(1+\frac{x}{y}\right)^{n} = y^{n} \left\{1+n \ . \ \frac{x}{y} + \frac{n \ (n-1)}{2 \ !} \left(\frac{x}{y}\right)^{2} + \dots \right\} & \text{if } \left| \frac{x}{y} \right| < 1 \\ (x+y)_{n} = \begin{bmatrix} \frac{n(n-1)(n-2)\dots(n-r+1)}{2} \\ \frac{n(n-1)(n-2)\dots(n-r+1)}{2} \end{bmatrix} \\ \end{cases}$$

- (iv) The general term in the expansion of $(1 + x)_n$ is $T_{r+1} =$
- (v) When 'n' is any rational number other than whole number then approximate value of $(1 + x)_n$ is 1 + nx (x₂ and higher powers of x can be neglected)

Xr

(vi) Expansions to be remembered (|x| < 1)

(a) $(1 + x)_{-1} = 1 - x + x_2 - x_3 + \dots + (-1)_r x_r + \dots \infty$

(b)
$$(1 - x)_{-1} = 1 + x + x_2 + x_3 + \dots + x_r + \dots \infty$$

Example # 15: Prove that the coefficient of x_r in $(1 - x)_{-n}$ is $_{n+r-1}C_r$

Solution: $(r + 1)_{th}$ term in the expansion of $(1 - x)_{-n}$ can be written as

$$T_{r+1} = \frac{\frac{-n(-n-1)(-n-2).....(-n-r+1)}{r!}}{(-x)_r} (-x)_r$$

$$= (-1)_r \frac{\frac{n(n+1)(n+2).....(n+r-1)}{r!}}{(n-1)! r!} (-x)_r = \frac{\frac{n(n+1)(n+2).....(n+r-1)}{r!}}{r!} x_r$$

$$= \frac{(n-1)! n(n+1).....(n+r-1)}{(n-1)! r!} x_r$$
Hence, coefficient of x_r is $\frac{(n+r-1)!}{(n-1)! r!} = \frac{n+r-1}{r} C_r$ Proved

Example # 16 : If x is so small such that its square and higher powers may be neglected, then find the value of

$$\frac{(1-3x)^{1/2} + (1-x)^{5/3}}{(4+x)^{1/2}} = \frac{\frac{1-\frac{3}{2}x+1-\frac{5x}{3}}{2}}{2\left(1+\frac{x}{4}\right)^{1/2}} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2}}{\frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2}} = \frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1+\frac{x}{4}\right)^{-1/2}}{\frac{1}{2}\left(2-\frac{19}{6}x\right)\left(1-\frac{x}{8}\right)} = \frac{1}{2}\left(2-\frac{x}{4}-\frac{19}{6}x\right) = 1-\frac{x}{8}-\frac{19}{12}x = 1-\frac{41}{24}x$$

Solution :

Self practice problems :

(12) Find the possible set of values of x for which expansion of $(3 - 2x)_{1/2}$ is valid in ascending powers of x.

(13) If
$$y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$$
, then find the value of $y_2 + 2y$
(14) The coefficient of x_{100} in $\frac{3-5x}{(1-x)^2}$ is
(1) 100 (2) -57 (3) -197 (4) 53
(12) $x \in \left(-\frac{3}{2}, \frac{3}{2}\right)$ (13) 4 (14) (3)

Ans.