The shortest path between two truths in the real domain passes through the complex domain.Hadamard, Jacques

1. <u>The complex number system</u> :

Argand plane

Complex number is a point on Argand plane. It is represented by Z = a + i b, where $i = \sqrt{-1}$ 'a' is called as real part of z which is denoted by (Re z) and 'b' is called as imaginary part of z, which is

denoted by (Im z).

Any complex number is :

- (i) Purely real, if b = 0
- (ii) Imaginary, if $b \neq 0$
- (iii) Purely imaginary, if a = 0

Note :

- (a) The set R of real numbers is a proper subset of the Complex Numbers. Hence the complete number system is $N \subset W \subset I \subset Q \subset R \subset C$.
- (b) Zero is purely real as well as purely imaginary but not imaginary.

(c)
$$i = \sqrt{-1}$$
 is called the imaginary unit. Also $i^2 = -1$; $i_3 = -i$; $i_4 = 1$ etc.

(d)
$$\sqrt{a} \sqrt{b} = \sqrt{ab}$$
 only if atleast one of a or b is non - negative.

- (e) If z = a + ib, then a ib is called complex conjugate of z and written as $\overline{z} = a ib$
- (f) Real numbers satisfy order relations where as imaginary numbers do not satisfy order relations i.e. i > 0, 3 + i < 2 are meaningless.

Self Practice Problems :

(1)	Write the following as complex number								
	(i) √ <u>−16</u>			(ii) \sqrt{x} , (x > 0)		(iii)	–b + ^{√_4ac} , (a, c> 0)		
(2)	Write the following as complex number								
	(i)	√x (x	< 0)	(ii)	roots of	f x2 – (2 o	cosθ) x	+ 1 = 0	
Ans.	(1)	(i) 0 + 4i			(ii) √x	+ 0i	(iii) –b ·	_{+i} √4ac	
	(2)	(i)	0 + i √-	x	(ii)	cos θ +	$i \sin \theta$,	$\cos \theta - i \sin \theta$	

2. <u>Algebraic operations</u>:

Fundamental operations with complex numbers

In performing operations with complex numbers we can proceed as in the algebra of real numbers, replacing i_2 by -1 when it occurs.

(i) Addition
$$(a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d) i$$

(ii) Subtraction (a + bi) - (c + di) = a + bi - c - di = (a - c) + (b - d) i

(iii) Multiplication $(a + bi) (c + di) = ac + adi + bci + bdi_2 = (ac - bd) + (ad+ bc)i$

(iv) Division $\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac-adi+bci-bdi^2}{c^2-d^2i^2}$ ac+bd+(bc-ad)i = ac+bd = bc-adi

$$\frac{\operatorname{ac} + \operatorname{bd} + (\operatorname{bc} - \operatorname{ad})}{\operatorname{c}^{2} + \operatorname{d}^{2}} = \frac{\operatorname{ac} + \operatorname{bd}}{\operatorname{c}^{2} + \operatorname{d}^{2}} + \frac{\operatorname{bc} - \operatorname{ad}}{\operatorname{c}^{2} + \operatorname{d}^{2}} \operatorname{i}$$

Inequalities in imaginary numbers are not defined. There is no validity if we say that imaginary number is positive or negative.

e.g. z > 0, 4 + 2i < 2 + 4i are meaningless. In real numbers if $a_2 + b_2 = 0$ then a = 0 = b however in complex numbers, $z_{12} + z_{22} = 0$ does not imply $z_1 = z_2 = 0$.

၁);

Example #1: Find multiplicative inverse of 3 + 2i.

Solution : Let z be the multiplicative inverse of 3 + 2i. then

$$\Rightarrow z \cdot (3+2i) = 1 \qquad \Rightarrow \qquad z = \frac{1}{3+2i} = \frac{3-2i}{(3+2i)(3-2i)}$$
$$\Rightarrow z = \frac{3}{13} - \frac{2}{13}i \qquad \Rightarrow \qquad \left(\frac{3}{13} - \frac{2}{13}i\right)$$

Self Practice Problem :

(3) Simplify $i_{n+100} + i_{n+50} + i_{n+48} + i_{n+46}$, $n \in I$.

Ans. 0

3. Equality in complex number :

Two complex numbers $z_1 = a_1 + ib_1 \& z_2 = a_2 + ib_2$ are equal if and only if their real and imaginary parts are equal respectively

i.e.
$$z_1 = z_2 \iff \operatorname{Re}(z_1) = \operatorname{Re}(z_2) \text{ and } \operatorname{Im}(z_1) = \operatorname{Im}(z_2).$$

Example # 2: Find the value of x and y for which $(2 + 3i) x_2 - (3 - 2i) y = 2x - 3y + 5i$ where x, $y \in R$.

Solution

$(2 + 3i)x_2 - (3 - 2i)y = 2x - 3y + 5i$								
\Rightarrow	$2x_2 - 3y = 2x - 3y$	\Rightarrow	$x_2 - x = 0$					
⇒	x = 0, 1	and	$3x_2 + 2y = 5$					
⇒	if x = 0, y = $\frac{5}{2}$	and	if x = 1, y = 1					
. .	$x = 0, y = \frac{1}{2}$	and	x = 1, y = 1					

MATHEMATICS

Complex Numbers

are two solutions of the given equation which can also be represented as $\left(0, \frac{5}{2}\right)$ & (1, 1)

Example #3: Find square root of 5 + 12i Let x + iv = $\sqrt{5+12i}$ Solution : $5 + 12i = (x + iy)_2$ ⇒ $5 + 12i = (x_2 - y_2) + 2ixy$ ⇒ $x_2 - y_2 = 5$ (i) and 2xy = 12....(ii) Now $(x_2 + y_2)_2 = (x_2 - y_2)_2 + 4x_2y_2$ $(x_2 + y_2)_2 = 5_2 + 12_2 = 169$ $x_2 + y_2 = 13$ (:: $x_2 + y_2 > 0$)(iii) Solving (i) & (iii), we get $x_2 = 9$ and $y_2 = 4$ $x = \pm 3$ and $y = \pm 2$ \Rightarrow from (ii), 2xy is positive, so x and y are of same sign x = 3, y = 2 or x = -3 and y = -2hence. $\sqrt{5+12i} = \pm (3+2i)$

Example #4: Solve for $z : z_2 - (3 - 2i)z = 5i - 5$

 $\frac{(3-2i)\pm\sqrt{(3-2i)^2+4(5i-5)}}{2}$ $z_2 - (3 - 2i)z = 5i - 5$ Solution : ⇒ $(3-2i) \pm \sqrt{9} - 4 - 12i + 20i - 20$ $(3-2i) \pm \sqrt{8i} - 15$ 2 2 7 = $\left\{\sqrt{\frac{1}{2}\left\{\sqrt{(-15)^2+8^2}+(-15)\right\}}_{\pm i}\left\{\sqrt{\frac{1}{2}\left\{\sqrt{(-15)^2+8^2}-(-15)\right\}}_{\pm i}\right\}_{\pm i}$ Now, $\sqrt{-15+8i} = +$ = ± (1+ 4i) $3 - 2i \pm (1 - 4i)$ 2 z = z = (2 + i) and (1 - 3i) \Rightarrow

Self Practice Problem :

Ans.

(4) Given that x, y \in R, solve : $4x^2 + 3xy + (2xy - 3x^2)i = 4y^2 - (x_2/2) + (3xy - 2y^2)i$ (4) $x = K, y = \frac{3K}{2}$ $K \in \mathbb{R}$

4. Representation of a complex number :

(i) Cartesian Form (Geometric Representation) :

Every complex number z = x + i y can be represented by a point on the Cartesian plane known as complex plane (Argand diagram) by the ordered pair (x, y).

Length OP is called modulus of the complex number which is denoted by $\Box z \Box \& \theta$ is called the argument or amplitude.

$$\Box z \Box = \sqrt{x^2 + y^2}$$
 and $\tan \theta = \left(\frac{y}{x}\right)$ (angle made by OP with positive x-axis)

 $\langle \rangle$

Note :

(a)

Argument of a complex number is a many valued function. If θ is the argument of a complex number then $2n\pi + \theta$; $n \in I$ will also be the argument of that complex

number. Any two arguments of a complex number differ by $2n\pi$.

- (b) The unique value of θ such that $-\pi < \theta \le \pi$ is called the principal value of the argument. Unless otherwise stated, amp z implies principal value of the argument.
- (c) By specifying the modulus & argument a complex number is defined completely. For the complex number 0 + 0 i the argument is not defined and this is the only complex number which is only given by its modulus.

(ii) Trignometric/Polar Representation :

 $z = r (\cos \theta + i \sin \theta)$ where $\Box z \Box = r$; arg $z = \theta$; $\overline{z} = r (\cos \theta - i \sin \theta)$

Note : $\cos \theta$ + i sin θ is also written as CiS θ

(iii) Euler's Formula :

 $z = re_{i\theta}, |z| = r, arg z = \theta \implies \overline{z} = re^{-i\theta}$

Proof of this formula is beyond scope of present discussion. A heuristic proof serving as motivation for this formula is by considering expansion.

$$e_{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$
put $x = i \theta \Rightarrow e_{i\theta} = \begin{pmatrix} 1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \dots \end{pmatrix}_{+i} \begin{pmatrix} \theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \dots \end{pmatrix}_{= \cos \theta + i \sin \theta}$

$$e_{i\theta} = \frac{e^{i\theta} + e^{-i\theta}}{2} \Rightarrow \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

(iv) Vectorial Representation :

Every complex number can be considered as the position vector of a point. If the point P

represents the complex number z then, $\overrightarrow{OP} = z \& \square \overrightarrow{OP} \square = \square z \square$.

5. <u>Agrument of a complex number :</u>

Argument of a non-zero complex number P(z) is denoted and defined by arg(z) = angle which OP makes with the positive direction of real axis.

If OP = |z| = r and $arg(z) = \theta$, then obviously $z = r(\cos\theta + i\sin\theta)$, called the polar form of z. 'Argument of z' would mean principal argument of z(i.e. argument lying in $(-\pi, \pi]$ unless the context requires otherwise. Thus argument of a complex number $z = a + ib = r(\cos\theta + i\sin\theta)$ is the value of θ satisfying $r\cos\theta = a$ and $r\sin\theta = b$.

Let $\theta = \tan_{-1} \left| \frac{b}{a} \right|$

Solution :

$$|z| = \sqrt{(-1)^2 + (\sqrt{2})^2} = \sqrt{1+2} = \sqrt{3},$$

Arg $z = \pi - \tan_{-1} \left(\frac{\sqrt{2}}{1}\right) = \pi - \tan_{-1} (\sqrt{2}) = \theta$ (say)
 $\therefore z = \sqrt{3}$ (cos θ + i sin θ) where $\theta = \pi - \tan_{-1} \sqrt{2}$

Self Practice Problems :

- Find the principal argument and |z|. If z = 2-i(5)
- Find the |z| and principal argument of the complex number $z = 6(\cos 310^\circ i \sin 310^\circ)$ (6)

82 17 $-\tan_{-1}\frac{11}{11}$, $\sqrt{\frac{5}{5}}$ (5) (6) 6, 50° Ans.

6. Geometrical representation of fundamental operations :

Geometrical representation of addition : (i)

If two points P and Q represent complex numbers z_1 and z_2 respectively in the Argand plane, then the sum $z_1 + z_2$ is represented by the extremity R of the diagonal OR of parallelogram OPRQ having OP and OQ as two adjacent sides.

(ii) Geometric representation of substraction :

(iii) Modulus and argument of multiplication of two complex numbers :

For any two complex numbers z_1 , z_2 we have $|z_1 z_2| = |z_1| |z_2|$ and arg $(z_1z_2) = arg (z_1) + arg (z_2)$.

Proof :

⇒

Theorem :

- $z_1 = r_1 e^{i\theta_1}, z_2 = r_2 e^{i\theta_2} \implies z_1 z_2 = r_2 r_2 e^{i(\theta_1 + \theta_2)}$ $|z_1 z_2| = |z_1| |z_2| \implies arg(z_1 z_2) = arg(z_1) + arg(z_2)$
- i.e. to multiply two complex numbers, we multiply their absolute values and add their arguments.
- **Note :** (a) P.V. arg $(z_1z_2) \neq$ P.V. arg $(z_1) +$ P.V. arg (z_2)
 - (b) $|z_1 z_2 ... z_n| = |z_1| |z_2| |z_n|$
 - (c) $\arg(z_1z_2...,z_n) = \arg z_1 + \arg z_2 + + \arg z_n$

(iv) Geometrical representation of multiplication of complex numbers :

Let P, Q be represented by $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$ repectively. To find point R representing complex number z_1z_2 , we take a point L on real axis such that OL = 1 and draw triangle OQR similar to triangle OLP. Therefore

OR OQ

 $\overline{OP} = \overline{OL} \Rightarrow OR = OP.OQ \quad i.e. \quad OR = r_1r_2 \quad and \quad Q\hat{OR} = \theta_1$ $L\hat{OR} = L\hat{OP} + P\hat{OQ} + Q\hat{OR} = \theta_1 + \theta_2 - \theta_1 + \theta_1 = \theta_1 + \theta_2$

Hence, R is represented by $z_1z_2 = r_1r_2 e^{i(\theta_1 + \theta_2)}$

(v) Modulus and argument of division of two complex numbers :

Theorem : If z_1 and $z_2 \neq 0$ are two complex numbers, then $\left| \frac{z_1}{z_2} \right|_{=} \frac{|z_1|}{|z_2|}$ and arg $\left(\frac{z_1}{z_2} \right)_{=}$ arg (z_1) -arg (z_2)

Note: P.V. arg $\left(\frac{z_1}{z_2}\right) \neq$ P.V. arg $(z_1) -$ P.V. arg (z_2) Geometrical representation of the division of complex numbers. (vi) Let P, Q be represented by $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$ respectively. To find point R representing Z_1 complex number Z_2 , we take a point L on real axis such that OL = 1 and draw a triangle OPR OP OR r_1 \Rightarrow OR = $\frac{r_2}{r_2}$ and $L\hat{OR} = L\hat{OP} - R\hat{OP} = \theta_1 - \theta_2$ similar to OQL. Therefore $\overline{OQ} = \overline{OL}$ $\begin{array}{c} & R \left(z_{1}/z_{2} \right) \\ & Q \\ & Q_{1} \\ & Q_{2} \\ & Q_{1} \\ & Q_{2} \end{array}$ Hence, R is represented by $\frac{Z_1}{Z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$

7. Conjugate of a complex number :

Conjugate of a complex number z = a + ib is denoted and defined by $\overline{z} = a - ib$.

In a complex number if we replace i by -i, we get conjugate of the complex number. \overline{z} is the mirror image of z about real axis on Argand's Plane.

Т

Geometrical representation of conjugate of complex number.

$$|z| = \overline{z}$$

arg $\overline{z} = - \arg(z)$
General value of arg $\overline{z} = 2n\pi - P.V. \arg(z)$
Properties :
(i) If $z = x + iy$, then $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$
(ii) $z = \overline{z} \iff z$ is purely real
(iii) $z + \overline{z} = 0 \iff z$ is purely imaginary
(iv) Relation between modulus and conjugate. $|z|_2 = z \overline{z}$
(v) $\overline{z} = z$
(v) $\overline{z} = z$
(vi) $(\overline{z_1 \pm z_2})_{=} \overline{z_1}_{\pm} \overline{z_2}$
(vii) $(\overline{z_1 z_2})_{=} \overline{z_1}_{\pm} \overline{z_2}$
(viii) $(\overline{z_1}_{2})_{=} (\overline{z_1})_{(\overline{z_2})} (z_2 \neq 0)$

(i)

Notes :

(a) Theorem : Imaginary roots of polynomial equations with real coefficients occur in conjugate pairs

Proof : If z_0 is a root of $a_0z_n + a_1z_{n-1} + \dots + a_{n-1}z + a_n = 0$,

ao, a1, an $\in \mathbb{R}$, then $a_0 z_0^n + a_1 z_0^{n-1} + \dots + a_{n-1} z_0 + a_n = 0$ By using property (vi) and (vii) we have $a_0 \overline{z}_0^n + a_1 \overline{z}_0^{n-1} + \dots + a_{n-1} \overline{z}_0 + a_n = 0$ $\Rightarrow \qquad \overline{z}_0$ is also a root. (If w = f(z), then $\overline{W} = f(\overline{z})$)

(b) Theorem :
$$|z_1 \pm z_2|_2 = |z_1|_2 + |z_2|_2 \pm (z_1 \overline{z}_2 + z_2 \overline{z}_1)$$

= $|z_1|_2 + |z_2|_2 \pm 2 \operatorname{Re}(z_1 \overline{z}_2) = |z_1|_2 + |z_2|_2 \pm 2 |z_1| |z_2| \cos(\theta_1 - \theta_2)$

Example #6: If $\overline{z+1}$ is purely imaginary, then prove that |z| = 1

Solution :	Re	$\left(\frac{z-1}{z+1}\right) = 0$	⇒	$\frac{z-1}{z+1} + \left(\frac{\overline{z-1}}{z+1}\right) = 0$					
	⇒	$\frac{z-1}{z+1} + \frac{\overline{z}-1}{\overline{z}+1} = 0$	⇒	z z – z + z – 1 + z	$\overline{z} - z + \overline{z} - 1 = 0$				
	\Rightarrow	$z\overline{z} = 1$	\Rightarrow	z 2 = 1	⇒ z = 1				

Self Practice Problems :

(7) Solve for z :
$$\overline{z} = i z_2$$

(8) If $\frac{z_1 - 2z_2}{2 - z_1 \overline{z}_2}$ is unimodulus and z_2 is not unimodulus then find $|z_1|$.

(9) If
$$z = x + iy$$
 and $f(z) = x_2 - y_2 - 2y + i(2x - 2xy)$, then show that $f(z) = \overline{z}^2 + 2iz$

(10) If
$$x + iy = \sqrt{\frac{a + ib}{c + id}}$$
 prove that $(x_2 + y_2)_2 = \frac{a^2 + b^2}{c^2 + d^2}$
Ans. (7) $\pm \frac{\sqrt{3}}{2} - \frac{1}{2}i$, 0, i
(8) $|z_1| = 2$

8. <u>Distance, triangular inequality</u> :

If $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$, then distance between points z_1 , z_2 in argand plane is

$$\begin{split} |z_1 - z_2| &= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \\ \text{In triangle OAC} \\ \text{OC} &\leq \text{OA} + \text{AC} \\ \text{OA} &\leq \text{AC} + \text{OC} \\ \text{AC} &\leq \text{OA} + \text{OC} \\ \text{using these in equalities we have } ||z_1| - |z_2|| \leq |z_1 + z_2| \leq |z_1| + |z_2| \end{split}$$

Similarly from triangle OAB we have $||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2|$ Note :

MATHEMATICS Complex Numbers

(i) (ii)	$ z_1 - z_2 = z_1 + z_2 $, $ z_1 - z_2 = z_1 + z_2 $ iff origin, z_1 and z_2 are collinear and origin lies between z_1 and z_2 .									
(")	on the same side of origin. $21 - 221 = 121 - 221 = 121 - 221 = 1000 \text{ same side of origin.}$									
Example # 7 :	If $ z_1 - 1 \le 1$, $ z_2 - 2 \le 2$, $ z_3 - 3 \le 3$, then find the greatest value of $ z_1 + z_2 + z_3 $									
Solution :	$ z_1 + z_2 + z_3 = (z_1 - 1) + (z_2 - 2) + (z_3 - 3) + 6 $									
	$\leq z_1 - 1 + z_2 - 2 + z_3 - 3 + 6$									
	$\leq 1 + 2 + 3 + 6 = 12$									
	hence greatest value is 12									
Example # 8 :	Find the minimum value of $ 1 + z + 1 - z $. Im									
Solution :	$ 1 + z + 1 - z \ge 1 + z + 1 - z $ (triangle inequality)									
	$\Rightarrow 1+z + 1-z \ge 2$									
	∴minimum value of $(1 + z + 1 - z) = 2$ -1 1 Re									
	Geometrically $ z + 1 + 1 - z = z + 1 + z - 1 $									
	which represents sum of distances of z from 1 and -1									
	it can be seen easily that minimum $(PA + PB) = AB = 2$									
Example # 9 :	Find the greatest and least value of $ z_1 + z_2 $, if $z_1 = 24 + 7i$ and $ z_2 = 6$									
Solution :	$ z_1 + z_2 \le z_1 + z_2 = 24 + 7i + 6 = 25 + 6 = 31$									
	also, $ z_1 + z_2 = z_1 - (-z_2) \le z_1 - z_2 $									
	$ z_1 + z_2 \ge (25 - 6) = 19$									
	hence the least value of $ z_1 + z_2 $ is 19 and greatest value is 31.									

Self Practice Problems :

(11) |z - 3| < 1 and |z - 4i| > M then find the positive real value of M for which these exist at least one complex number z satisfy both the equation.

(12) If z lies on circle |z| = 2, then show that $\left| \frac{1}{z^4 - 4z^2 + 3} \right|_{\leq} \frac{1}{3}$ Ans. (11) $M \in (0, 6)$

9. <u>Rotation</u>:

(i) Important results :

(a) arg $z = \theta$ represents points (non-zero) on ray eminating from origin making an angle θ with positive direction of real axis

(b) arg $(z - z_1) = \theta$ represents points $(\neq z_1)$ on ray eminating from z_1 making an angle θ with positive direction of real axis

(ii) If P(z_1), Q(z_2) and R(z_3) are three complex numbers and $\angle PQR = \theta$, then $\lfloor z_1 - z_2 \rfloor$

$$= \left| \frac{\frac{z_3 - z_2}{z_1 - z_2}}{e_{i\theta}} \right|_{e_{i\theta}}$$

(iii) If P(z_1), Q(z_2), R(z_3) and S(z_4) are four complex numbers and \angle STQ = θ , then $z_1 - z_2$

Example #12: If arg $\left(\frac{z-1}{z+1}\right)_{=} \frac{\pi}{3}$ then interpret the locus.

 $\left. \frac{z_3 - z_4}{z_1 - z_2} \right|_{e_{i\theta}}$

Solution :

$$\Rightarrow \arg\left(\frac{1-z}{-1-z}\right) = \frac{\pi}{3}$$
$$= \left(\frac{1-z}{-1-z}\right)$$

arg $\left(\frac{z-1}{z+1}\right)_{=}\frac{\pi}{3}$

 $z_{3} - z_{4}$

Here arg (-1-z) represents the angle between lines joining -1 and z, and 1 and z. As this angle is constant, the locus of z will be a larger segment of circle. (angle in a segment is constant).

Example #13: If A(2 + 3i) and B(3 + 4i) are two vertices of a square ABCD (taken in anticlock wise order) then find C and D.

Solution : Let affix of C and D are z_3 and z_4 respectively. Considering $\angle DAB = 90^\circ$ and AD = AB

we get
$$\frac{Z_4 - (2+3i)}{(3+4i) - (2+3i)} = \frac{AD}{AB}e^{\frac{i\pi}{2}}$$

 $\Rightarrow \qquad Z_4 - (2+3i) = (1+i)i$
 $\Rightarrow \qquad Z_4 = 2+3i+i-1 = 1+4i$
and $\frac{Z_3 - (3+4i)}{(2+3i) - (3+4i)} = \frac{CB}{AB}e^{-\frac{i\pi}{2}} \Rightarrow$

Self Practice Problems :

- (15) z_1, z_2, z_3, z_4 are the vertices of a square taken in anticlockwise order then prove that $2z_2 = (1 + i) z_1 + (1 i) z_3$
- (16) Check that z_1z_2 and z_3z_4 are parallel or not, where $z_1 = 1 + i$ $z_3 = 4 + 2i$ $z_2 = 2 - i$ $z_4 = 1 - i$
- (17) P is a point on the argand diagram on the circle with OP as diameter, two point Q and R are taken such that $\angle POQ = \angle QOR = \theta$. If O is the origin and P, Q, R are represented by complex z1, z2, z3 respectively then show that z22 cos $2\theta = z_1 z_3 cos_2 \theta$

(18) If a, b, c; u, v, w are complex numbers representing the vertices of two triangles such that c = (1 - r) a + rb, w = (1 - r) u + rv where r is a complex number show that the two triangles are similiar.

Ans. (16) z₁z₂ and z₃z₄ are not parallel.

11. <u>Demoivre's theorem</u>:

Case I

Statement : If n is any integer then

- (i) $(\cos \theta + i \sin \theta)_n = \cos n\theta + i \sin n\theta$
- (ii) $(\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2) (\cos \theta_3 + i \sin \theta_3) (\cos \theta_4 + i \sin \theta_4) \dots (\cos \theta_n + i \sin \theta_n) = \cos (\theta_1 + \theta_2 + \theta_3 + \dots + \theta_n) + i \sin (\theta_1 + \theta_2 + \theta_3 + \dots + \theta_n)$

Case II

Statement : If p, q \in Z and q \neq 0 then (cos θ + i sin θ)_{p/q}

 $\left(\frac{2k\pi + p\theta}{q}\right)$ $\left(\frac{2k\pi + p\theta}{q}\right)$

$$= \cos \left(\begin{array}{c} q \end{array} \right) + i \sin \left(\begin{array}{c} q \end{array} \right)$$
 where k = 0, 1, 2, 3,, q - 1

Note : Continued product of the roots of a complex quantity should be determined using theory of equations.

Self Practice Problems :

- (19) Prove the identities :
 (a) cos 5θ = 16 cos5θ 20 cos3θ + 5 cos θ;
 (b) (sin 5θ) / (sin θ) = 16 cos4θ 12 cos2θ + 1, if θ ≠ 0, ±π, ± 2π
 (20) Prove the identities
 - (a) $\sin_3\theta = \frac{3}{4} \sin \theta \frac{1}{4} \sin 3\theta$ (b) $\cos_4\theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$

12. <u>Cube roots of unity</u>:

$$\frac{-1+i\sqrt{3}}{2}$$
, $\frac{-1-i\sqrt{3}}{2}$

- (i) The cube roots of unity are 1, 2,
- (ii) If ω is one of the imaginary cube roots of unity then $1 + \omega + \omega^2 = 0$. In general $1 + \omega_r + \omega_{2r} = 0$; where $r \in I$ but is not the multiple of 3.
- (iii) In polar form the cube roots of unity are :

 $\cos 0 + i \sin 0;$

$$\frac{2\pi}{\cos^{3}} + i \sin^{2}{\frac{2\pi}{3}}, \cos^{\frac{4\pi}{3}} + i \sin^{\frac{4\pi}{3}}$$

- (iv) The three cube roots of unity when plotted on the argand plane constitute the vertices of an equilateral triangle.
- (v) The following factorisation should be remembered :

(a, b, c \in R & ω is the cube root of unity)

 $a_3 - b_3 = (a - b) (a - \omega b) (a - \omega^2 b);$

 $x_2 + x + 1 = (x - \omega) (x - \omega_2)$ $a_3 + b_3 = (a + b) (a + \omega b) (a + \omega_2 b);$

 $a_2 + ab + b_2 = (a - b\omega) (a - b\omega_2)$

$$a_3 + b_3 + c_3 - 3abc = (a + b + c) (a + \omega b + \omega^2 c) (a + \omega^2 b + \omega c)$$

- (iv) The three cube roots of unity when plotted on the argand plane constitute the vertices of an equilateral triangle.
- (v) The following factorisation should be remembered :

(a, b, c \in R & ω is the cube root of unity)

 $a_3 - b_3 = (a - b) (a - \omega b) (a - \omega^2 b)$ $x_2 + x + 1 = (x - \omega) (x - \omega_2)$ $a_3 + b_3 = (a + b) (a + \omega b) (a + \omega_2 b);$ $a_2 + ab + b_2 = (a - b\omega) (a - b\omega_2)$ $a_3 + b_3 + c_3 - 3abc = (a + b + c) (a + \omega b + \omega^2 c) (a + \omega^2 b + \omega c)$ **Example #14**: Find the value of $\omega_{192} + \omega_{194}$ Solution : $\omega_{192} + \omega_{194} = 1 + \omega_2 = -\omega$ **Example #15**: If 1, ω , ω_2 are cube roots of unity, then prove that $(1 - \omega + \omega_2) (1 + \omega - \omega_2) = 4$ (i) $(1 - \omega + \omega_2)_5 + (1 + \omega - \omega_2)_5 = 32$ (ii) $(1 - \omega) (1 - \omega_2) (1 - \omega_4) (1 - \omega_8) = 9$ (iii) $(1 - \omega + \omega_2) (1 - \omega_2 + \omega_4) (1 - \omega_4 + \omega_8)$ to 2n factors = 2_{2n} (iv) Solution : $(1 - \omega + \omega_2) (1 + \omega - \omega_2) = (-2\omega) (-2\omega_2) = 4$ (i) $(1 - \omega + \omega_2)_5 + (1 + \omega - \omega_2)_5 = (-2\omega)_5 + (-2\omega_2)_5 = -32(\omega_2 + \omega) = 32$ (ii) $(1 - \omega) (1 - \omega_2) (1 - \omega_4) (1 - \omega_8) = (1 - \omega) (1 - \omega_2) (1 - \omega) (1 - \omega_2)$ (iii) $= ((1 - \omega) (1 - \omega_2))_2$ $=(1 + 1 + 1)_2 = 9$ (iv) $(1 - \omega + \omega_2) (1 - \omega_2 + \omega_4) (1 - \omega_4 + \omega_8)$ to 2n factors $=(-2\omega)(-2\omega_2)(-2\omega)(-2\omega_2)...$ to 2n factors = (4)(4)..... to n factors = 4n = 22n

Self Practice Problems :

$$\sum_{r=0}^{10} (1 + \omega^r + \omega^{2r})$$

- (21) Find $\overline{r=0}$
- (22) It is given that n is an odd integer greater than three, but n is not a multiple of 3. Prove that $x_3 + x_2 + x$ is a factor of $(x + 1)_n x_n 1$
- (23) If x = a + b, $y = a\alpha + b\beta$, $z = a\beta + b\alpha$ where α , β are imaginary cube roots of unity show that $xyz = a_3 + b_3$

(24) If
$$x_2 - x + 1 = 0$$
, then find the value of $\sum_{n=1}^{5} \left(x^n + \frac{1}{x^n}\right)^2$
Ans. (21) 12 (24) 8

13. <u>nth roots of unity :</u>

If 1, α_1 , α_2 , α_3 α_n – 1 are the n, nth root of unity then :

(i) They are in G.P. with common ratio $e_{i(2\pi/n)}$

(ii)
$$1_p + \alpha^{p+1} + \alpha^{p+2} + \dots + \alpha^{n-1} = 0$$
 if p is not an integral multiple of n
= n if p is an integral multiple of n

(iii)
$$(1 - \alpha_1) (1 - \alpha_2) \dots (1 - \alpha_{n-1}) = n$$
 &
 $(1 + \alpha_1) (1 + \alpha_2) \dots (1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd.

(iv) 1. α_1 . α_2 . α_3 $\alpha_{n-1} = 1$ or -1 according as n is odd or even.

Example #16: Find the roots of the equation $z_6 + 64 = 0$ where real part is positive. **Solution :** $z_6 = -64$

$$z_{6} = 2_{6} \cdot e_{i(2n+1)\pi} \qquad n = 0, 1, 2, 3, 4, 5 \qquad \Rightarrow \qquad z = 2^{e^{i\frac{\pi}{6}}}, 2^{e^{i\frac{\pi}{2}}}, 2^{e^{i\frac{5\pi}{6}}}, 2^{e^{i\frac{7\pi}{6}}}, 2^{e^{i\frac{3\pi}{2}}}, 2^{e^{i\frac{11\pi}{6}}}$$

$$\therefore \qquad \text{roots with +ve real part are} = 2^{e^{i\frac{\pi}{6}}}, 2^{e^{i\frac{11\pi}{6}}}$$

14. <u>Geometrical properties</u> :

(i) Section formula

If z_1 and z_2 are affixes of the two points P and Q respectively and point C divides the line segment joining P and Q internally in the ratio m : n then affix z of C is given by

$$mz_2 + nz_1$$

z = m + n where m, n > 0

$$mz_2 - nz_1$$

If C divides PQ in the ratio m : n externally then $z = \frac{m-n}{2}$

Notes :

(a) If the vertices A, B, C of a Δ are represented by complex numbers z₁, z₂, z₃ respectively and a, b, c are the length of sides then,

$$z_1 + z_2 + z_3$$

- Centroid of the \triangle ABC = 3
- Incentre of \triangle ABC = (az₁ + bz₂ + cz₃) / (a + b + c)
- (b) $amp(z) = \theta$ is a ray eminating from the origin inclined at an angle θ to the positive x-axis.

(c) $\Box z - a\Box = \Box z - b\Box$ is the perpendicular bisector of the line joining a to b.

- (d) The equation of a line joining $z_1 \& z_2$ is given by, $z = z_1 + t (z_1 z_2)$ where t is a real parameter.
- (e) The equation of circle having centre z_0 & radius ρ is : $\Box z z_0 \Box = \rho$
- (f) The equation of the circle described on the line segment joining $z_1 \& z_2$ as diameter is arg
- $\frac{z-z_2}{z-z_1} = +\frac{\pi}{2}$
- $2^{-21} = \pm$

	(g)	$\operatorname{Arg}^{\left(\frac{z-z_1}{z-z_2}\right)} =$	θ repres	ent (i) a	line segi	ment if 6) = π (ii)	Pair of	ray if θ =	= 0 (iii) a	part o	of ci	rcle,
	(h)	If $ z - z_1 + z - z_2 = K > z_1 - z_2 $ then locus of z is an ellipse whose focii are $z_1 \& z_2$											
	(i)	$\left \frac{z - z_1}{z - z_2} \right = k \neq 1, 0, \text{ then locus of } z \text{ is a circle.}$											
	(i) (i)	If $\Box \Box z - z_1 \Box - \Box z - z_2 \Box \Box = K < \Box z_1 - z_2 \Box$ then locus of z is a hyperbola, whose focii are z_1											
Self Pra	actice P	$\mathbf{Problem}:$											
25.	Match	the following c	olumns :	1									
		Column - I						Colum	n - II				
	(i)	lf z – 3+2i – then locus of z	z + i = represen	0, ts			(i)	Circle					
	(ii)	$\int_{z=1}^{z-1} \left(\frac{z-1}{z+1}\right)_{z=1}$	$\frac{\pi}{4}$, represen	ts			(ii)	Straight	t line				
	(iii)	if z – 8 – 2i + then locus of z	·∣z – 5 – represen	6i = 5 ts			(iii)	Ellipse					
	(iv)	If arg $\left(\frac{z-3+4i}{z+2-5i}\right)$ then locus of z	$\left(\frac{1}{2}\right) = \frac{5\pi}{6}$, ts			(iv)	Hyperb	ola				
	(v)	If $ z - 1 + z + i = 10$ then locus of z represents z - 3 + i - z + 2 - i = 1 then locus of z represents					(v)	Major Arc					
	(vi)						(vi)	Minor arc					
	(vii) segmer	z – 3i = 25 nt					(vii)	Perpen	dicular	bisector	of	а	line
		then locus of z	represen	ts									
	(viii)	arg $\left(\frac{z-3+5i}{z+i}\right) = \pi$ then locus of z represents					(viii) Line segment						
	Ans.	Column I	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)			
	Colum	nII (vii)	(v)	(viii)	(vi)	(iii)	(iv)	(i)	(viii)				