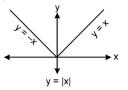
He is unworthy of the name of man who is ignorant of the fact that the diagonal of square is incommensurable with its sidePlato

1. Absolute value function / modulus function :

The symbol of modulus function is $f(x) = \Box x \Box$ and is defined as: $y = \Box x \Box = \begin{bmatrix} -x & \text{if } x < 0 \end{bmatrix}$.



x if $x \ge 0$

2. <u>Properties of modulus :</u>

For any $a, b \in R$

(i)	a ≥ 0	(ii)	a = –a
(iii)	a ≥ a, a ≥ –a	(iv)	ab = a b

(v)
$$\left| \frac{a}{b} \right|_{=} \frac{|a|}{|b|}$$

- (vi) $|a + b| \le |a| + |b|$; Equality holds when $ab \ge 0$
- (vii) $|a b| \ge ||a| |b||$; Equality holds when $ab \ge 0$

```
Example #1: Solve the following linear equations
```

```
|x-3| + 2|x+1| = 4
                  (i)
                           x |x| = 4
                                                       (ii)
Solution :
                  (i)
                           x|x| = 4
                  If x > 0
                  :.
                           x_2 = 4 \Rightarrow
                                             x = \pm 2
                           x = 2 \quad (\because x \ge 0)
                  :.
                                             -x_2 = 4
                  lf
                           x < 0 \Rightarrow
                           x_2 = -4 which is not possible
                  ⇒
                  (ii)
                           |x - 3| + 2|x + 1| = 4
                  case I : If x \le -1
                           -(x-3) - 2(x + 1) = 4
                  :.
                                    -x + 3 - 2x - 2 = 4
                                                                        -3x + 1 = 4
                           ⇒
                                                            \Rightarrow
                                    -3x = 3
                           \Rightarrow
                                                    \Rightarrow
                                                               x = - 1
                  case II : If -1 < x \le 3
                           -(x-3) + 2(x + 1) = 4
                  ...
                           -x + 3 + 2x + 2 = 4
                  ⇒
                           x = -1 which is not possible
                  ⇒
                  case III : If x > 3
                  x - 3 + 2(x + 1) = 4
                  3x - 1 = 4
                           x = 5/3
                                             which is not possible
                  ⇒
```

x = - 1 *.*.. Ans. Irrational Equations and Inequations : 3. The equation $\sqrt{f(x)} = g(x)$, is equivalent to the following system (i) $f(x) = g_2(x) \quad \& \quad g(x) \ge 0$ The inequation $\sqrt{f(x)} < g(x)$, is equivalent to the following system (ii) $f(x) < g_2(x)$ & $f(x) \ge 0$ & $g(x) \ge 0$ The inequation $\sqrt{f(x)} > g(x)$, is equivalent to the following system (iii) $g(x) \le 0$ & $f(x) \ge 0$ or $g(x) \ge 0$ & $f(x) > g_2(x)$ **Example # 2 :** Solve : $x + 2 > 2 \sqrt{1 - x^2}$ Solution : $4(1 - x_2) < (x + 2)_2$ and $x + 2 \ge 0$ $1 - x_2 ≥ 0$ $x \in \left(-\infty, \frac{-4}{5}\right) \cup (0, \infty)$...(1) x∈ [–2, ∞) ...(2) x∈[–1, 1] ...(3) (1) ∩ (2) ∩ (3) -1, -<u>4</u>) U (0, 1]

Self Practice Problem :

(1)
$$\sqrt{2x^2 + x - 6} < x$$

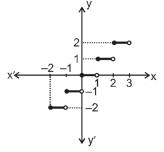
(2) $\sqrt{5 - x} > x + 1$
(3) $x + 3 + \sqrt{x^2 + 4x - 5} > 0$
(4) $\sqrt{x} - \sqrt{4 - x} \ge 1$
Ans. (1) $\left[\frac{3}{2}, 2\right]$
(2) $(-\infty, 1)$
(3) $(-\infty, -1] \cup [5, \infty)$
(4) $\left[\frac{4 + \sqrt{7}}{2}, 4\right]$

4. <u>Greatest integer function or step up function</u> :

The function y = f(x) = [x] is called the greatest integer function where [x] equals to the greatest integer less than or equal to x. For example :

[3.2] = 3; [-3.2] = -4for $-1 \le x < 0$; [x] = -1; for $0 \le x < 1$; [x] = 0for $1 \le x < 2$; [x] = 1; for $2 \le x < 3$; [x] = 2 and so on.

5. <u>Graph of greatest integer function</u> :



6. <u>Properties of greatest integer function</u>:

- (i) $x-1 < [x] \le x$
- (ii) $[x \pm m] = [x] \pm m$ iff m is an integer.

(iii)
$$[x] + [y] \le [x + y] \le [x] + [y] + 1$$

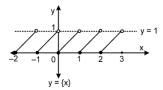
$$[x] + [-x] = \begin{bmatrix} 0; & \text{if } x & \text{is an integer} \\ -1 & \text{otherwise} \end{bmatrix}$$

Note : [mx] ≠ m[x]

(iv)

7. <u>Fractional part function</u> :

It is defined as $y = \{x\} = x - [x]$. It is always non-negative and varies from [0, 1). The period of this function is 1 and graph of this function is as shown.



For example

e $\{2.1\} = 2.1 - [2.1] = 2.1 - 2 = 0.1$ $\{-3.7\} = -3.7 - [-3.7] = -3.7 + 4 = 0.3$

8. <u>Properties of fractional part function</u>:

(i)
$$\{x \pm m\} = \{x\}$$
 iff m is an integer
(ii) $\{x\} + \{-x\} = \begin{cases} 0 & , & \text{if } x \text{ is an integer} \\ 1 & , & & \text{otherwise} \end{cases}$
Note: $\{mx\} \neq m \{x\}$

9. <u>Signum function</u>:

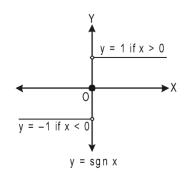
A function f(x) = sgn(x) is defined as follows :

$$f(x) = \text{sgn}(x) = \begin{cases} 1 & \text{for } x > 0\\ 0 & \text{for } x = 0\\ -1 & \text{for } x < 0 \end{cases}$$

It is also written as sgn (x) =
$$\begin{cases} \frac{|x|}{x}; & x \neq 0\\ 0; & x = 0 \end{cases}$$

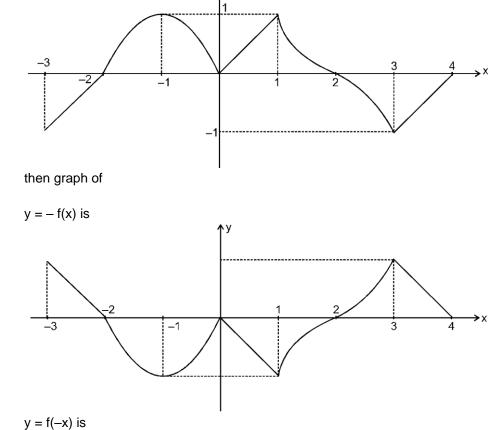
	sgn (f(x)) =	$\begin{cases} \frac{ f(x) }{f(x)}; \end{cases}$	$f(x) \neq 0$
Note : 🖙	sgn (f(x)) =	0;	f(x) = 0

Example #3: Find x if $2 \le [x] \le 8$

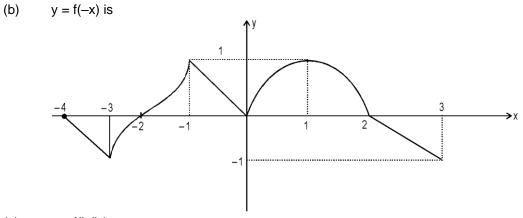


Solution : x∈ [2, 9) 10. **Graphical transformation :** (i) Graphical transformations related to modulus : If graph of y = f(x) is

(a)

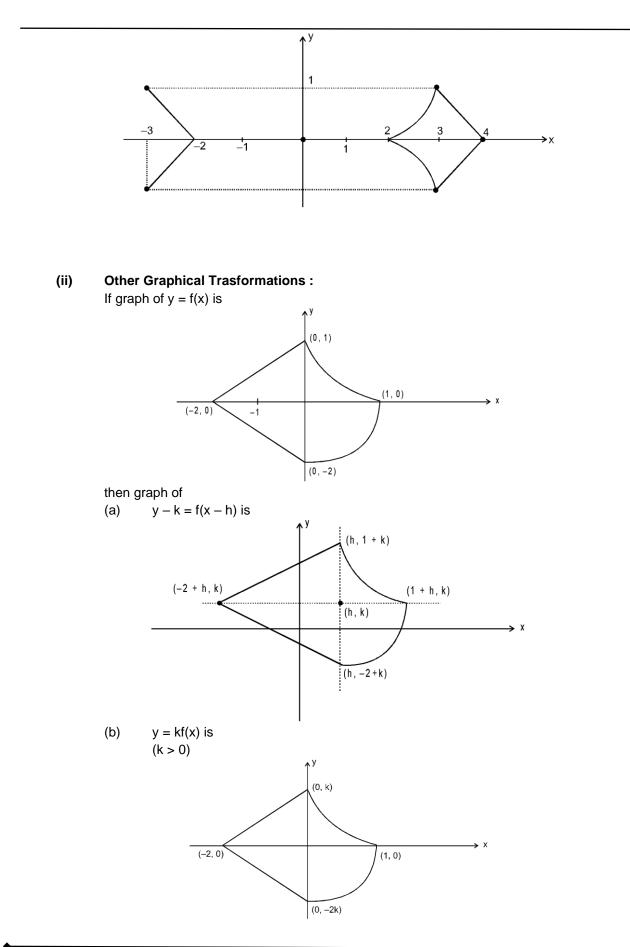


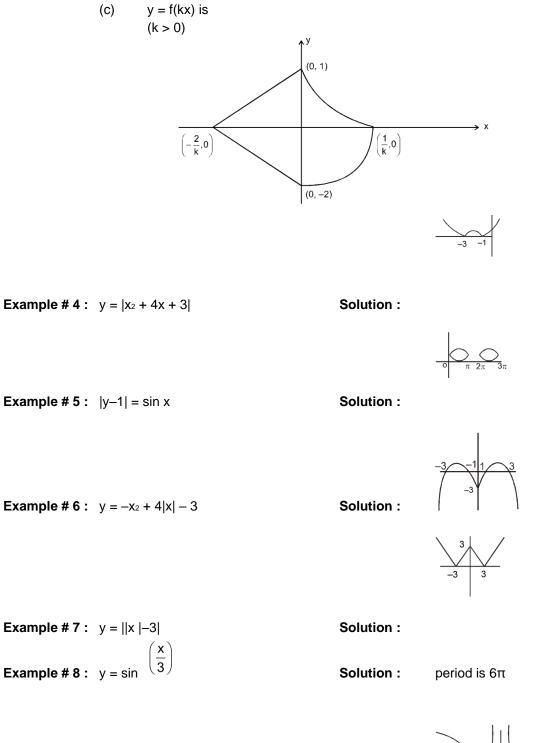
ΛУ



(C) y = f(|x|) is

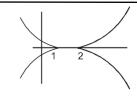






Solution :

Example # 9 : $y = |-\ell n |-x||$



Example # 10 : $|y| = x_2 - 3x + 2$

Solution :