1. <u>Definition</u>:

Any rectangular arrangement of numbers (real or complex) (or of real valued or complex valued expressions) is called a **matrix**. If a matrix has m rows and n columns then the **order** of matrix is written as $m \times n$ and we call it as order m by n

The general m × n matrix is

a ₁₁	\mathbf{a}_{12}	a ₁₃	 \mathbf{a}_{1j}	 a _{1n}
a ₂₁	a_{22}	$\mathbf{a}_{_{23}}$	 \mathbf{a}_{2j}	 $\mathbf{a}_{_{2n}}$
a _{i1}	a _{i2}	a _{i3}	 a	 a _{in}
		10		

where aij denote the element of ith row & jth column. The above matrix is usually denoted as [aij]mxn.

Notes :

- (i) The elements a₁₁, a₂₂, a₃₃,..... are called as **diagonal elements**. Their sum is called as **trace** of A denoted as tr(A)
- (ii) Capital letters of English alphabets are used to denote matrices.
- (iii) Order of a matrix : If a matrix has m rows and n columns, then we say that its order is "m by n", written as "m × n".

2. <u>Type of matrices</u>:

(i) Row matrix :

A matrix having only one row is called as row matrix (or row vector).General form of row matrix is A = [a11, a12, a13,, a1n]

This is a matrix of order " $1 \times n$ " (or a row matrix of order n)

(ii) Column matrix :

A matrix having only one column is called as column matrix (or column vector).

Column matrix is in the form $A = \begin{bmatrix} a_{m1} \end{bmatrix}$ This is a matrix of order "m × 1" (or a column matrix of order m)

(iii) Square matrix :

A matrix in which number of rows & columns are equal is called a square matrix. The general form of a square matrix is

a₁₁ a₁₂ a_{1n} a₂₁ a₂₂ a_{2n}

 $A = \begin{bmatrix} a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$ which we denote as $A = [a_{ij}]_{n}$

This is a matrix of order "n × n" (or a square matrix of order n)

(iv) Zero matrix :

A = $[a_{ij}]_{m \times n}$ is called a zero matrix, if $a_{ij} = 0 \forall i \& j$.

			0	0	0
∏ 0 0	0]		0	0	0
0 0	0	(ii)	0	0	0

(v) Upper triangular matrix :

e.g. : (i)

A = $[aij]m \times n$ is said to be upper triangular, if aij = 0 for all i > j (i.e., all the elements below the diagonal elements are zero).

	a	b	С	d		а	b	c
	0	х	у	z		0	х	у
e.g. : (i)	0	0	u	v	(ii)	0	0	z

(vi) Lower triangular matrix :

A = $[a_{ij}]_{m \times n}$ is said to be a lower triangular matrix, if $a_{ij} = 0$ for all i < j. (i.e., all the elements above the diagonal elements are zero.)

	a	0	0	[i	а	0	0	0
	b	с	0		b	С	0	0
e.g. : (i)	_ x	У	z	(ii)	х	У	z	0

(vii) Diagonal matrix :

A square matrix $[a_{ij}]_n$ is said to be a diagonal matrix if $a_{ij} = 0$ for all $i \neq j$. (i.e., all the elements of the square matrix other than diagonal elements are zero)

Note : Diagonal matrix of order n is denoted as Diag (a11, a22,ann).

				а	0	0	0	
a	0	0]		0	b	0	0	
0	b	0		0	0	0	0	
0	0	c]	(ii) [0	0	0	с_	

e.g. : (i) (viii) Scalar matrix :

Scalar matrix is a diagonal matrix in which all the diagonal elements are same. $A = [a_{ij}]_n$ is a scalar matrix, if (i) $a_{ij} = 0$ for all $i \neq j$ and (ii) $a_{ij} = k$ for i = j.

		[а	0	0
	「a 0]		0	а	0
e.g. : (i)	_0 a _	(ii)	0	0	a

(ix) Unit matrix (identity matrix) :

Unit matrix is a diagonal matrix in which all the diagonal elements are unity. Unit matrix of order 'n' is denoted by In (or I).

i.e. $A = [a_{ij}]_n$ is a unit matrix when $a_{ij} = 0$ for all $i \neq j \& a_{ii} = 1$

		[1	0	0	
[1	0	0)	1	0	
$I_2 = \begin{bmatrix} 0 \end{bmatrix}$	1	, I3 = [0)	0	1	

(x) Equality of matrices :

eg.

Two matrices A and B are said to be equal if they are comparable and all the corresponding elements are equal.

Let $A = [a_{ij}] m \times n$ & $B = [b_{ij}]_{p \times q}$ A = B iff (i) m = p, n = q(ii) $a_{ij} = b_{ij} \forall i \& j.$

Matrices & Determinant

 $\begin{bmatrix} \sin\theta & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \cos\theta \\ \cos\theta & \tan\theta \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \sin\theta \\ \cos\theta & \cos\theta \\ \cos\theta & -1 \end{bmatrix}$ Find θ so that A = B. Solution : By definition A & B are equal if they have the same order and all the corresponding elements are equal. Thus we have $\sin\theta = \frac{1}{\sqrt{2}}$, $\cos\theta = -\frac{1}{\sqrt{2}}$ & $\tan\theta = -1$ $\Rightarrow \theta = (2n + 1) \pi - \frac{\pi}{4}$.

3. <u>Multiplication of matrix by scalar</u>:

Let λ be a scalar (real or complex number) & A = $[a_{ij}]_{m \times n}$ be a matrix. Thus the product λA is defined as $\lambda A = [b_{ij}]_{m \times n}$ where $b_{ij} = \lambda a_{ij} \forall i \& j$.

	2	-1	3	5		6	3	-9	-15]
	0	2	1	-3		0	-6	-3	9	
e.g. :A =	0	0	-1	-2	– 3A ≡ (–3) A =	0	0	3	6	

Note : If A is a scalar matrix, then $A = \lambda I$, where λ is a diagonal entry of A

4. <u>Addition of matrices</u>:

Let A and B be two matrices of same order (i.e. comparable matrices). Then A + B is defined to be. A + B = $[a_{ij}]_{m \times n} + [b_{ij}]_{m \times n}$.

= $[Cij]m \times n$ where $Cij = Aij + bij \forall i \& j$.

Γ	1	-1		□ −1	2		0]	1	1
	2	3		-2	-3		0	0	
e.g. : A =	1	0	, B=	5	7	, A + B =	6	7	

5. <u>Subtraction of matrices</u>:

Let A & B be two matrices of same order. Then A – B is defined as A + (– B) where – B is (– 1) B.

6. <u>Properties of addition & scalar multiplication :</u>

Consider all matrices of order $m \times n$, whose elements are from a set F (F denote Q, R or C). Let $M_{m \times n}$ (F) denote the set of all such matrices.

Then

(i) $A \in M_{m \times n}(F) \& B \in M_{m \times n}(F) \Rightarrow A + B \in M_{m \times n}(F)$

(ii)
$$A + B = B + A$$

- (iii) (A + B) + C = A + (B + C)
- (iv) $O = [o]_{m \times n}$ is the additive identity.
- (v) For every $A \in M_{m \times n}(F)$, -A is the additive inverse.
- (vi) $\lambda (A + B) = \lambda A + \lambda B$
- (vii) $\lambda A = A \lambda$
- (viii) $(\lambda_1 + \lambda_2) A = \lambda_1 A + \lambda_2 A$

7. **Multiplication of matrices :**

Let A and B be two matrices such that the number of columns of A is same as number of rows of B. i.e., $A = [a_{ij}]_{m \times p} \& B = [b_{ij}]_{p \times n}$.

 $\sum_{k=1}^{p} a_{ik} b_{kj}$, which is the dot product of $i{\ensuremath{\scriptscriptstyle th}}$ row vector of A and $j{\ensuremath{\scriptscriptstyle th}}$ Then $AB = [Cij]m \times n$ where Cij =column vector of B.

0 1 1 1 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix}, AB = \begin{bmatrix} 3 & 4 & 9 & 1 \\ 1 & 3 & 7 & 2 \end{bmatrix}$ e.q. A =

Note: (i) The product AB is defined iff the number of columns of A is equal to the number of rows of B. A is called as premultiplier & B is called as post multiplier. AB is defined \Rightarrow BA is defined.

- In general AB \neq BA, even when both the products are defined. (ii)
- (ii) A(BC) = (AB) C, whenever it is defined.

8. **Properties of matrix multiplication :**

Consider all square matrices of order 'n'. Let Mn (F) denote the set of all square matrices of order n. (where F is Q, R or C). Then

- A, $B \in M_n(F) \Rightarrow AB \in M_n(F)$ (i)
- (ii) In general AB ≠ BA
- (AB) C = A(BC)(iii)
- (iv) In, the identity matrix of order n, is the multiplicative identity.

2a+1

2b+1

- $AIn = A = In A \quad \forall A \in Mn (F)$
- (v) For every non singular matrix A (i.e., $|A| \neq 0$) of M_n (F) there exist a unique (particular) matrix $B \in M_n$ (F) so that $AB = I_n = BA$. In this case we say that A & B are multiplicative inverse of one another. In notations, we write $B = A_{-1}$ or $A = B_{-1}$.
- If λ is a scalar (λ A) B = λ (AB) = A(λ B). (vi)
- \forall A, B, C \in Mn (F) (vii) A(B + C) = AB + AC
- (viii) (A + B) C = AC + BC $\forall A, B, C \in M_n$ (F).
- Let A = $[a_{ij}]_{M \times n}$. Then AI_n = A & I_m A = A, where I_n & I_m are identity matrices of order Note: (a) n & m respectively.
 - For a square matrix A, A₂ denotes AA, A₃ denotes AAA etc. (b)
- Example # 2 : f(x) is a quadratic expression such that a 1 [f(0)]

f(1) c^2 c 1 | f(-1) 2c + 1

for three unequal numbers a, b, c. Find
$$f(x)$$

Solution :

 a^2

 b^2

b 1

The given matrix equation implies

 $a^{2}f(0) + af(1) + f(-1)$ $\begin{bmatrix} 2a+1 \end{bmatrix}$ $b^{2}f(0) + bf(1) + f(-1)$ 2b+1 = 2c + 1 $c^{2}f(0) + cf(1) + f(-1)$ $x_2 f(0) + xf(1) + f(-1) = 2x + 1$ for three unequal numbers a, b, c(i) ⇒ (i) is an identity ⇒ f(0) = 0, f(1) = 2 & f(-1) = 1⇒ f(x) = x (ax + b)*.*.. 2 = a + b & - 1 = -a + b.1 3 b = 2 and a = 2⇒

$$f(x) = \frac{3}{2} \frac{1}{x_2 + \frac{1}{2}}$$

Self practice problems :

 $\cos\theta - \sin\theta$

(1) If $A(\theta) = \begin{bmatrix} \sin \theta & \cos \theta \end{bmatrix}$ verify that $A(\alpha) A(\beta) = A(\alpha + \beta)$. Hence show that in this case $A(\alpha)$. $A(\beta) = A(\beta) \cdot A(\alpha)$. $\begin{bmatrix} 4 & 6 & -1 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix}$$

х.

- (2) Let $A = \begin{bmatrix} 1 & -2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 \end{bmatrix}$ and $C = [3 \ 1 \ 2]$. Then which of the products ABC, ACB, BAC, BCA, CAB, CBA are defined. Calculate the product whichever is defined.
- **Ans.** (2) Only CAB is defined. CAB = [25 100]

9. <u>Transpose of a matrix</u>:

Let A = $[a_{ij}]_{m \times n}$. Then the transpose of A is denoted by A'(or AT) and is defined as

 $A' = [b_{ij}]_{n \times m}$ where $b_{ij} = a_{ji} \forall i \& j$.

i.e. A' is obtained by rewriting all the rows of A as columns (or by rewriting all the columns of A as rows).

						1	а	Х	
	⁻ 1	2	3	4		2	b	у	
	а	b	С	d		3	с	z	
e.g. : A =	x	у	z	w	[]] , A' =	4	d	w	

Results :

(i) For any matrix $A = [a_{ij}]_{m \times n}$, (A')' = A

- (ii) Let λ be a scalar & A be a matrix. Then $(\lambda A)' = \lambda A'$
- (iii) (A + B)' = A' + B' & (A B)' = A' B' for two comparable matrices A and B.
- (iv) $(A_1 \pm A_2 \pm \dots \pm A_n)' = A_1' \pm A_2' \pm \dots \pm A_n'$, where A_i are comparable.
- (v) Let $A = [aij]_{m \times p} \& B = [bij]_{p \times n}$, then (AB)' = B'A'
- (vi) $(A_1 A_2 \dots A_n)' = A_n' A_{n-1}' \dots A_2' A_1'$, provided the product is defined.

10. Symmetric & skew-symmetric matrix :

A square matrix A is said to be symmetric if A' = Ai.e. Let $A = [a_{ij}]_n$. A is symmetric iff $a_{ij} = a_{ji} \forall i \& j$. A square matrix A is said to be skew-symmetric if A' = -Ai.e. Let $A = [a_{ij}]_n$. A is skew-symmetric iff $a_{ij} = -a_{ji} \forall i \& j$. $\begin{bmatrix} a & h & g \end{bmatrix}$

h b f

e.g. $A = \begin{bmatrix} g & f & c \end{bmatrix}$ is a symmetric matrix.

$$\begin{vmatrix} 0 & x & y \\ -x & 0 & z \end{vmatrix}$$

 $B = \begin{bmatrix} -y & -z & 0 \end{bmatrix}$ is a skew-symmetric matrix.

Notes : (i) In a skew-symmetric matrix all the diagonal elements are zero.

- (ii) For any square matrix A, A + A' is symmetric & A A' is skew-symmetric.
- (iii) Every square matrix can be uniquely expressed as a sum of two square matrices of which one is symmetric and the other is skew-symmetric.

MATHEMATICS

A = B + C, where B =
$$\frac{1}{2}$$
 (A + A') & C = $\frac{1}{2}$ (A - A').

Example #3: Show that BAB' is symmetric or skew-symmetric according as A is symmetric or skew-symmetric (where B is any square matrix whose order is same as that of A).

Solution :Case - IA is symmetric \Rightarrow A' = A(BAB')' = (B')'A'B' = BAB' \Rightarrow BAB' is symmetric.Case - IIA is skew-symmetric \Rightarrow A' = - A(BAB')' = (B')'A'B' = B(-A) B' = -(BAB') \Rightarrow BAB' is skew-symmetric

Self practice problems :

- (3) For any square matrix A, show that A'A & AA' are symmetric matrices.
- (4) If A & B are symmetric matrices of same order, then show that AB + BA is symmetric and AB BA is skew-symmetric.

11. Submatrix :

Let A be a given matrix. The matrix obtained by deleting some rows or columns of A is called as submatrix of A.

eg. $A = \begin{bmatrix} a & b & c & d \\ x & y & z & w \\ p & q & r & s \end{bmatrix}$ then $\begin{bmatrix} a & c \\ x & z \\ p & r \end{bmatrix}$, $\begin{bmatrix} a & b & d \\ p & q & s \end{bmatrix}$, $\begin{bmatrix} a & b & c \\ x & y & z \\ p & q & r \end{bmatrix}$ are all submatrices of 'A'

12. Determinant of a square matrix :

Let $A = [a]_{1\times 1}$ be a 1×1 matrix. Determinant A is defined as |A| = a. e.g. $A = [-3]_{1\times 1}$ |A| = -3Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then |A| is defined as ad - bc. e.g. $A = \begin{bmatrix} 5 & 3 \\ -1 & 4 \end{bmatrix}$, |A| = 23

13. Minors & Cofactors :

Let Δ be a determinant. Then minor of element a_{ij} , denoted by M_{ij} , is defined as the determinant of the submatrix obtained by deleting ith row & jth column of Δ . Cofactor of element a_{ij} , denoted by C_{ij} , is defined as $C_{ij} = (-1)_{i+j} M_{ij}$.

e.g. 1
$$A = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

 $M_{11} = d = C_{11}$
 $M_{12} = c, C_{12} = -c$
 $M_{21} = b, C_{21} = -b$
 $M_{22} = a = C_{22}$

e.g. 2
$$\Delta = \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$

 $M_{11} = \begin{vmatrix} q & r \\ y & z \end{vmatrix} = qz - yr = C_{11}.$
 $M_{23} = \begin{vmatrix} a & b \\ x & y \end{vmatrix} = ay - bx, C_{23} = -(ay - bx) = bx - ay$ etc

14. <u>Determinant of any order</u>:

Let $A = [a_{ij}]_n$ be a square matrix (n > 1). Determinant of A is defined as the sum of products of elements of any one row (or any one column) with corresponding cofactors.

e.g.1 $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \text{ (using first row).}$ $\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$ $|A| = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32} \text{ (using second column)}$ $= -a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - a_{32} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$

15. <u>Transpose of a determinant</u>:

The transpose of a determinant is the determinant of transpose of the corresponding matrix.

	a ₁	b_1	C ₁			a₁	a_2	a_{3}
	a ₂	b_2	C ₂	\Rightarrow	$D^{T} =$	b ₁	b_2	b_3
D =	a_{3}	b_3	C ₃			C ₁	C_2	C ₃

16. <u>Properties of determinant</u>:

i.e.

(i) |A| = |A'| for any square matrix A.

D

i.e. the value of a determinant remains unaltered, if the rows & columns are inter changed,

D'

	a ₁	b_1	C ₁		a₁	a_2	a ₃	
	a_2	b_2	c ₂	=	b ₁	b_2	b ₃	
_	a_3	b_3	C3		$ \mathbf{c}_1 $	C_2	C ₃	_

(ii) If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only.

(iii) Let λ be a scalar. Than λ |A| is obtained by multiplying any one row (or any one column) of |A| by λ

	a₁	\mathbf{b}_1	C ₁	Ka	₁ Kb	1 Kc1	
	a_2	b_2	c ₂	a ₂	b ₂	C ₂	
D =	a_3	b_3	C3	and $E = a_3 $	b ₃	C_3	E = KD

- (iv) $|\lambda A| = \lambda_n |A|$, when $A = [a_{ij}]_n$.
- (v) A skew-symmetric matrix of odd order has deteminant value zero.
- (vi) If a determinant has all the elements zero in any row or column, then its value is zero,

i.e.
$$D = \begin{vmatrix} 0 & 0 & 0 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$$

- (vii) If a determinant has any two rows (or columns) identical (or proportional), then its value is zero,
 - i.e. $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$
- (viii) If each element of any row (or column) can be expressed as a sum of two terms then the determinant can be expressed as the sum of two determinants, i.e.

$\mathbf{a}_1 + \mathbf{x}$	$\mathbf{b}_1 + \mathbf{y}$	C ₁ + Z		a ₁	b_1	C ₁		X	У	z	
a ₂	b ₂	C ₂	=	a_2	b_2	C ₂	+	a ₂	b_2	C_2	
a_{3}	b_3	C_3		a_{3}	b_3	C ₃		a_3	b_3	C_3	

(ix) The value of a determinant is not altered by adding to the elements of any row (or column) a constant multiple of the corresponding elements of any other row (or column),

i.e.
$$D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $D_2 = \begin{vmatrix} a_1 + ma_2 & b_1 + mb_2 & c_1 + mc_2 \\ a_2 & b_2 & c_2 \\ a_3 + na_1 & b_3 + nb_1 & c_3 + nc_1 \end{vmatrix}$. Then $D_2 = D_1$

(x) Let A = [aij]n. The sum of the products of elements of any row with corresponding cofactors of any other row is zero. (Similarly the sum of the products of elements of any column with corresponding cofactors of any other column is zero).

Example # 4 : Solve this

$$\begin{vmatrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b
\end{vmatrix}$$
Solution :
Let $C_1 \rightarrow C_1 - C_2 & C_2 \rightarrow C_2 - C_3$

$$\begin{vmatrix}
-(a+b+c) & 0 & 2a \\
(a+b+c) & -(a+b+c) & 2b \\
0 & a+b+c & c-a-b
\end{vmatrix}$$
Taking $(a+b+c)$ common from C1 and C2

$$\begin{vmatrix}
-1 & 0 & 2a \\
1 & -1 & 2b \\
0 & 1 & c-a-b
\end{vmatrix}$$
Now $R_3 \rightarrow R_1 + R_2 + R_3$

$$\begin{vmatrix}
-1 & 0 & 2a \\
1 & -1 & 2b \\
0 & 0 & a+b+c
\end{vmatrix}$$
D = $(a+b+c)_2 = \begin{vmatrix}
-1 & 0 & 2a \\
1 & -1 & 2b \\
0 & 0 & a+b+c
\end{vmatrix}$
D = $(a+b+c)_2 = (a+b+c)_3$
Example # 5 : Simplify
Solution :
Given detereminant is equal to $= \frac{1}{abc} \begin{vmatrix}
a^2 & b^2 & c^2 \\
a^3 & b^3 & c^3 \\
abc & abc & abc
\end{vmatrix}$

$$= \frac{abc}{abc} \begin{vmatrix}
a^2 & b^2 & c^2 \\
a^3 & b^3 & c^3 \\
1 & 1 & 1
\end{vmatrix}$$

 $= \begin{vmatrix} a^{2} - b^{2} & b^{2} - c^{2} & c^{2} \\ a^{3} - b^{3} & b^{3} - c^{3} & c^{3} \\ 0 & 0 & 1 \end{vmatrix}$ $= \begin{vmatrix} a + b & b + c & c^{2} \\ a^{2} + ab + b^{2} & b^{2} + bc + c^{2} & c^{3} \\ a^{2} + ab + b^{2} & b^{2} + bc + c^{2} & c^{3} \\ 0 & 0 & 1 \end{vmatrix}$ $= (a - b) (b - c) [ab_{2} + abc + ac_{2} + b_{3} + b_{2}c + bc_{2} - a_{2}b - a_{2}c - ab_{2} - abc - b_{3} - b_{2}c]$ = (a - b) (b - c) [c(ab + bc + ca) - a(ab + bc + ca)] = (a - b) (b - c) (c - a) (ab + bc + ca)

17. Factor Theorem :

Use of factor theorem to find the value of determinant. If by putting x = a the value of a determinant vanishes then (x - a) is a factor of the determinant.

b С a^2 b^2 c^2 bc ca ab Example #6: Prove that = (a - b) (b - c) (c - a) (ab + bc + ca) by using factor theorem.а b c a^2 b^2 c^2 bc ac ab = 0Solution : Let a = bD = ⇒ Hence (a - b) is a factor of determinant Similarly, let b = c, D = 0c = a, D = 0 Hence, (a - b)(b - c)(c - a) is factor of determinant. But the given determinant is of fifthorder so а b С a^2 b^2 c^2 bc ca ab = $(a - b) (b - c) (c - a) \{\lambda (a_2 + b_2 + c_2) + \mu (ab + bc + ca)\}$ Since this is an identity so in order to find the values of λ and μ . Let $a = 0, b = 1, c = -1 - 2 = (2) (2\lambda - \mu)$ $(2\lambda - \mu) = -1.$(i) Let a = 1, b = 2, c = 01 2 0 1 4 0 0 0 2 $= (-1) 2 (-1) (5\lambda + 2\mu) \Rightarrow 5\lambda + 2\mu = 2$(ii) from (i) and (ii) $\lambda = 0$ and $\mu = 1$ a b С a^2 b^2 c^2 bc ca ab | = (a - b) (b - c) (c - a) (ab + bc + ca).Hence Self practice problems : 0 b−a c−a a-b 0 c-b

0

(5) Find the value of $\Delta = \begin{vmatrix} a - c & b - c \end{vmatrix}$

 $b^2 - ab \quad b - c \quad bc - ac$ Simplify $\begin{vmatrix} ab-a^2 & a-b & b^2-ab \\ bc-ac & c-a & ab-a^2 \end{vmatrix}$ (6) Prove that $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)_3.$ (7) 1 a bc | Show that $\begin{vmatrix} 1 & b & ca \\ 1 & c & ab \end{vmatrix} = (a - b) (b - c) (c - a)$ by using factor theorem . (8) (6) 0 Ans. (5) 0 18. Multiplication of two determinants : If A and B are two square matrices of same order, then |AB| = |A| |B|. $\begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix} \times \begin{vmatrix} \ell_{1} & m_{1} \\ \ell_{2} & m_{2} \end{vmatrix} = \begin{vmatrix} a_{1}\ell_{1} + b_{1}\ell_{2} & a_{1}m_{1} + b_{1}m_{2} \\ a_{2}\ell_{1} + b_{2}\ell_{2} & a_{2}m_{1} + b_{2}m_{2} \end{vmatrix}$ $\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} \times \begin{vmatrix} \ell_{1} & m_{1} & n_{1} \\ \ell_{2} & m_{2} & n_{2} \\ \ell_{3} & m_{3} & n_{3} \end{vmatrix} = \begin{vmatrix} a_{1}\ell_{1} + b_{1}\ell_{2} + c_{1}\ell_{3} & a_{1}m_{1} + b_{1}m_{2} + c_{1}m_{3} & a_{1}n_{1} + b_{1}n_{2} + c_{1}n_{3} \\ a_{2}\ell_{1} + b_{2}\ell_{2} + c_{2}\ell_{3} & a_{2}m_{1} + b_{2}m_{2} + c_{2}m_{3} & a_{2}n_{1} + b_{2}n_{2} + c_{2}n_{3} \\ a_{3}\ell_{1} + b_{3}\ell_{2} + c_{3}\ell_{3} & a_{3}m_{1} + b_{3}m_{2} + c_{3}m_{3} & a_{3}n_{1} + b_{3}n_{2} + c_{3}n_{3} \end{vmatrix}$ **Note :** As |A| = |A'|, we have |A| |B| = |AB'| (row - row method) |A| |B| = |A'B| (column - column method) |A| |B| = |A'B'| (column - row method) **Example # 7**: Find the value of $\begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} \times \begin{vmatrix} 3 & 0 \\ -1 & 4 \end{vmatrix}$ and prove that it is equal to $\begin{vmatrix} 1 & 8 \\ -6 & 12 \end{vmatrix}$ $\begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix} \times \begin{vmatrix} 3 & 0 \\ -1 & 4 \end{vmatrix} = \begin{vmatrix} 1 \times 3 - 2 \times 1 & 1 \times 0 + 2 \times 4 \\ -1 \times 3 + 3 \times (-1) & -1 \times 0 + 3 \times 4 \end{vmatrix} = \begin{vmatrix} 1 & 8 \\ -6 & 12 \end{vmatrix} = 60$ Solution : Example #8: Prove that $\begin{vmatrix} a_1x_1 + b_1y_1 & a_1x_2 + b_1y_2 & a_1x_3 + b_1y_3 \\ a_2x_1 + b_2y_1 & a_2x_2 + b_2y_2 & a_2x_3 + b_2y_3 \\ a_3x_1 + b_3y_1 & a_3x_2 + b_3y_2 & a_3x_3 + b_3y_3 \end{vmatrix} = 0$ Given determinant can be splitted into product of two determinants Solution : i.e. $\begin{vmatrix} a_1x_1 + b_1y_1 & a_1x_2 + b_1y_2 & a_1x_3 + b_1y_3 \\ a_2x_1 + b_2y_1 & a_2x_2 + b_2y_2 & a_2x_3 + b_2y_3 \\ a_3x_1 + b_3y_1 & a_3x_2 + b_3y_2 & a_3x_3 + b_3y_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \times \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 0 & 0 & 0 \end{vmatrix} = 0$ Example # 9 : Prove that $\begin{vmatrix} (a_1 - b_1)^2 & (a_1 - b_2)^2 & (a_1 - b_3)^2 \\ (a_2 - b_1)^2 & (a_2 - b_2)^2 & (a_2 - b_3)^2 \\ (a_3 - b_1)^2 & (a_3 - b_2)^2 & (a_3 - b_3)^2 \end{vmatrix}$ $= 2(a_1 - a_2) (a_2 - a_3) (a_3 - a_1) (b_1 - b_2) (b_2 - b_3) (b_3 - b_1).$

Solution :

$$\begin{vmatrix} (a_{1} - b_{1})^{2} & (a_{1} - b_{2})^{2} & (a_{1} - b_{3})^{2} \\ (a_{2} - b_{1})^{2} & (a_{2} - b_{2})^{2} & (a_{2} - b_{3})^{2} \\ (a_{3} - b_{1})^{2} & (a_{3} - b_{2})^{2} & (a_{3} - b_{3})^{2} \end{vmatrix} = \begin{vmatrix} a_{1}^{2} + b_{1}^{2} - 2a_{1}b_{1} & a_{1}^{2} + b_{2}^{2} - 2a_{1}b_{2} & a_{1}^{2} + b_{3}^{2} - 2a_{1}b_{3} \\ a_{2}^{2} + b_{1}^{2} - 2a_{2}b_{1} & a_{2}^{2} + b_{2}^{2} - 2a_{2}b_{2} & a_{2}^{2} + b_{3}^{2} - 2a_{2}b_{3} \\ a_{3}^{2} + b_{1}^{2} - 2a_{3}b_{1} & a_{3}^{2} + b_{2}^{2} - 2a_{3}b_{2} & a_{3}^{2} + b_{3}^{2} - 2a_{3}b_{3} \end{vmatrix} \\ = \begin{vmatrix} a_{1}^{2} & 1 & -2a_{1} \\ a_{2}^{2} & 1 & -2a_{2} \\ a_{3}^{2} & 1 & -2a_{3} \\ a_{3}^{2} & 1 & -2a_{3} \end{vmatrix} | \begin{vmatrix} 1 & 1 & 1 \\ b_{1}^{2} & b_{2}^{2} & b_{3}^{2} \\ b_{1} & b_{2} & b_{3} \end{vmatrix} \\ = \begin{vmatrix} 1 & a_{1}^{2} & a_{1} \\ 1 & a_{2}^{2} & a_{2} \\ 1 & a_{3}^{2} & a_{3} \end{vmatrix} | \begin{vmatrix} 1 & b_{1}^{2} & b_{1} \\ 1 & b_{2}^{2} & b_{2} \\ 1 & b_{3}^{2} & b_{3} \end{vmatrix} = 2(a_{1} - a_{2})(a_{2} - a_{3})(a_{3} - a_{1})(b_{1} - b_{2})(b_{2} - b_{3})(b_{3} - b_{1}) \end{vmatrix}$$

Note : The above problem can also be solved using factor theorem method.

Self practice problems :

(9)

Find the value of
$$\Delta$$
 $\begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ca - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix}$

(10) If A, B, C are real numbers then find the value of $\Delta = \begin{pmatrix} 1 & \cos(B-A) & \cos(C-A) \\ \cos(A-B) & 1 & \cos(C-B) \\ \cos(A-C) & \cos(B-C) & 1 \end{pmatrix}$

Ans. (9) $(3abc - a_3 - b_3 - c_3)_2$ (10) 0

19. <u>Summation of determinants</u>:

Let $\Delta(\mathbf{r}) = \begin{vmatrix} f(\mathbf{r}) & g(\mathbf{r}) & h(\mathbf{r}) \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ where $a_1, a_2, a_3, b_1, b_2, b_3$ are constants indepedent of r, then

$$\sum_{r=1}^{n} \Delta(r) = \begin{vmatrix} \sum_{r=1}^{n} f(r) & \sum_{r=1}^{n} g(r) & \sum_{r=1}^{n} h(r) \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \end{vmatrix}$$

Here the functions of r can be the elements of only one row or column. None of the elements other than that row or column should be dependent on r. If more than one column or row have elements dependent on r then first expand the determinant and then find the summation.

Example # 10 : Evaluate
$$\sum_{n=1}^{n} \left| \frac{2^{n}-1}{n} \prod_{r=1}^{n} \frac{2^{n}}{2^{n}} \sum_{r=1}^{n} \frac{2^{n}-1}{2^{n}} \sum_{r=1}^{n} \frac{2^{n}-1}{2^{n}} \sum_{r=1}^{n} \frac{2^{n}-1}{2^{n}} \sum_{r=1}^{n} \frac{2^{n}-1}{2^{n}} \sum_{r=1}^{n-2} \sum_{r=1}^{n} \sum_{r=1}^{n} \frac{2^{n}-1}{2^{n}} \sum_{r=1}^{n-2} \sum_{r=1}^{n-2} \sum_{r=1}^{n-2} \sum_{r=1}^{n-2} \sum_{r=1}^{n-2} \sum_{r=1}^{n-2} \sum_{r=1}^{n-2} \sum_{r=1}^{n-2} \sum_{r=1}^{n} \sum_{r=1}^{n-2} \sum_{$$

$$D_{r} = (r-1) (3-r) + 7 + r_{2} + 4r = 8r + 4 \Rightarrow \sum_{r=1}^{2} \frac{\Delta_{r}}{r} = 4n (n+2)$$

Self Practice Problem

(11) Evaluate
$$\sum_{r=1}^{n} D_{r}$$
 where $D_{r} = \begin{vmatrix} r-1 & x & 6 \\ (r-1)^{2} & y & 4n-2 \\ (r-1)^{3} & z & 3n^{2}-3n \end{vmatrix}$
Ans. (11) 0

20. Differentiation of determinant :

$$Let \Delta(x) = \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix}$$
$$= \begin{vmatrix} f_{1}'(x) & f_{2}'(x) & f_{3}'(x) \\ g_{1}(x) & g_{2}(x) & g_{3}(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix} + \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}'(x) & g_{2}'(x) & g_{3}'(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix}$$
$$+ \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ g_{1}'(x) & g_{2}'(x) & g_{3}'(x) \\ h_{1}(x) & h_{2}(x) & h_{3}(x) \end{vmatrix}$$

Note : We can differentiate a determinant columnwise also.

Example # 13 : If f(x) =
$$\begin{vmatrix} 3 & 2 & 1 \\ 6x^2 & 2x^3 & x^4 \\ 1 & a & a^2 \end{vmatrix}$$
, then find the value of f''(a).
Solution :
$$f'(x) = \begin{vmatrix} 3 & 2 & 1 \\ 12x & 6x^2 & 4x^3 \\ 1 & a & a^2 \end{vmatrix}$$
$$= \begin{vmatrix} 3 & 2 & 1 \\ 12x & 12x^2 \\ 1 & a & a^2 \end{vmatrix}$$
$$\Rightarrow f''(a) = 12 \begin{vmatrix} 3 & 2 & 1 \\ 1 & a & a^2 \\ 1 & a & a^2 \end{vmatrix} = 0.$$

 $\begin{array}{ccc} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \end{array}$

Example # 14 : Let α be a repeated root of quadratic equation f(x) = 0 and A(x), B(x) and C(x) be polynomial

w that
$$\begin{vmatrix} A(x) & B(x) & C(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix}$$
, div

of degree 3, 4 and 5 respectively, then show that $|A(\alpha) - B(\alpha) - C(\alpha)|$, divisible by f(x).

Solution :

Let $g(x) = \begin{vmatrix} A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix}$ $\begin{vmatrix} A'(x) & B'(x) & C'(x) \\ A(\alpha) & B(\alpha) & C(\alpha) \\ A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix}$ $\Rightarrow g'(x) = \begin{vmatrix} A'(\alpha) & B'(\alpha) & C'(\alpha) \end{vmatrix}$ Since $g(\alpha) = g'(\alpha) = 0$ $\Rightarrow g(x) = (x - \alpha)_2 h(x) i.e. \alpha$ is the repeated root of g(x) and h(x) is any polynomial expression of degree 3. Also f(x) = 0 have repeated root α . So g(x) is divisible by f(x).

Example # 15 :	Prove that F depends only on x_1 , x_2 and x_3
	1 1 1
	$x_1 + a_1$ $x_2 + a_1$ $x_3 + a_1$
	$F = \begin{vmatrix} x_1^2 + b_1 x_1 + b_2 & x_2^2 + b_1 x_2 + b_2 & x_3^2 + b_1 x_3 + b_2 \end{vmatrix}$
	and simplify F.
	0 0 0
	<u>dF</u> $X_1 + a_1$ $X_2 + a_1$ $X_3 + a_1$
Solution :	$da_{1} = \begin{vmatrix} x_{1}^{2} + b_{1}x_{1} + b_{2} & x_{2}^{2} + b_{1}x_{2} + b_{2} & x_{3}^{2} + b_{1}x_{3} + b_{2} \end{vmatrix}$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$+ \begin{vmatrix} x_1^2 + b_1 x_1 + b_2 & x_2^2 + b_1 x_2 + b_2 & x_3^2 + b_1 x_3 + b_2 \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 \end{vmatrix} = 0$
	Hence F is independent of a ₁
	<u>dF</u> <u>dF</u>
	Similarly $db_1 = db_2 = 0.$
	Hence \vec{F} is independent of b_1 and b_2 also.
	So F is dependent only on x_1 , x_2 , x_3 Put $a_1 = 0$, $b_1 = 0$, $b_2 = 0$
	$\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \mathbf{X}_3 \end{bmatrix}$
\Rightarrow	$F = \begin{vmatrix} x_1^2 & x_2^2 & x_3^2 \end{vmatrix} = (x_1 - x_2) (x_2 - x_3) (x_3 - x_1).$
	X" n! 2
	$\left \cos x \cos \frac{n\pi}{2} \right $
	$n\pi$ d^n
Example # 16 ·	If $f(x) = \begin{vmatrix} \sin x & \sin \frac{\pi x}{2} \\ \sin x & \sin \frac{\pi x}{2} \end{vmatrix}$ then find value of $\frac{dx}{dx^n} (f(x)) = (n \in \mathbb{Z})$
Example # 10.	$II I(x) = 1$, then find value of $x = (I(x))_{x=0}$ (IEZ)
	$\frac{d^n}{d}(x^n)$ n! 2
	dx^{n}
	$\begin{vmatrix} d^n \\ -d^n \\$
	$dx^{n} = \frac{1}{2} \left[\cos(x + \frac{1}{2}) + \cos$
	d^n $\frac{d^n}{d^n}(\sin x) \sin \frac{n\pi}{n}$ 8 $\sin (\alpha n\pi) \sin \frac{n\pi}{n}$ 9
Solution :	$\frac{dx^{n}}{dx^{n}}(f(x)) = \left \frac{dx^{n}}{dx^{n}} \frac{dx^{n}}{dx^{n}} + \frac{dx^{n}}{dx^{n}} \frac{dx^{n}}{dx^{n}} + \frac{dx^{n}}{dx^{n}} + \frac{dx^{n}}{dx^{n}} \frac{dx^{n}}{dx^{n}} + \frac$
	n! n! 2
	$\cos \frac{n\pi}{n}$ $\cos \frac{n\pi}{n}$ 4
	$\frac{d^n}{dn}$ $\sin \frac{n\pi}{2}$ $\sin \frac{n\pi}{2}$ 8
	$dx'' (f(x))_{x=0} = 2 2 = 0$
Self practice p	
	$\mathbf{X} \mathbf{X} - 1 \mathbf{X}$
	$\begin{vmatrix} -2x & x+1 & 1 \\ y & z & z \end{vmatrix}$
(12)	If $ x+1, x = ax_3 + bx_2 + cx + d$. Find
	(i) d (ii) $a+b+c+d$ (iii) b

Ans. (12) (i) -1 (ii) -5 (iii) -4

21. Cramer's Rule: System of linear equations :

(i) Two variables

Let $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ then:

$$\begin{array}{rcl} \displaystyle \frac{a_1}{a_2} & = & \displaystyle \frac{b_1}{b_2} & \neq & \displaystyle \frac{c_1}{c_2} \\ \\ \displaystyle \Rightarrow & & \mbox{Given equations are inconsistent \&} \\ & & \displaystyle \frac{a_1}{a_2} & = & \displaystyle \frac{b_1}{b_2} & = & \displaystyle \frac{c_1}{c_2} \\ \\ & & \mbox{Given equations are consistent} \end{array}$$

(ii) Three variables

consider the system $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$

Then, $D.x = D_1$, $D.y = D_2$, $D.z = D_3$

	a ₁	b_1	C ₁ 0	d ₁ b	1 C ₁		a_1	d_1	C ₁	a ₁	b_1	d_1
	a_2	b_2	c ₂ c	$d_2 b_2$	₂ C ₂		a_2	d_2	c ₂	a ₂	b_2	d ₂
Where	$D = a_3 $	b_3	$ c_3 $; D ₁ = c	d ₃ b ₃	₃ C ₃	; D ₂ =	a_3	d_3	$ c_3 \& D_3 =$	a_3	b_3	d ₃

22. Consistency of a system of equations :

- (i) If $D \neq 0$ and alteast one of D_1 , D_2 , $D_3 \neq 0$, then the given system of equations are consistent and have unique non trivial solution.
- (ii) If $D \neq 0 \& D_1 = D_2 = D_3 = 0$, then the given system of equations are consistent and have trivial solution only.
- (iii) If $D = D_1 = D_2 = D_3 = 0$, then the given system of equations have either infinite solutions or no solution. (For 2 × 2 system, $D = 0 = D_1 = D_2 \iff$ system has infinitely many solutions).
- (iv) If D = 0 but at least one of D_1 , D_2 , D_3 is not zero then the equations are inconsistent and have no solution.

23. <u>Homogeneous system</u>:

$$a_1x + b_1y + c_1z = 0$$

$$a_2x + b_2y + c_2z = 0$$

 $a_3x + b_3y + c_3z = 0$

(x, y, z) = (0, 0, 0) is always a solution of this system. This solution is called as the trivial solution (or zero solution) of this system.

 $D \neq 0 \Rightarrow$ this system has only the trivial solution.

 $D = 0 \Rightarrow$ this system has nontrivial solutions (infinitely many solutions).

24. <u>Three equation in two variables :</u>

If x and y are not zero, then condition for $a_1x + b_1y + c_1 = 0$; $a_2x + b_2y + c_2 = 0$ &

 $b_1 c_1$ a₁ a_2 $b_2 c_2$ $|a_3|$ $b_3 c_3$ $a_3x + b_3y + c_3 = 0$ to be consistent in x and y is = 0. **Example #17:** Find the nature of solution for the given system of equations. x + 2y + 3z = 1, 2x + 3y + 4z = 3, 3x + 4y + 5z = 01 2 3 2 3 4 Let D = $\begin{vmatrix} 3 & 4 & 5 \end{vmatrix}$ Solution : apply $C_1 \rightarrow C_1 - C_2$, $C_2 \rightarrow C_2 - C_3$ -1 -1 3 -1 -1 4 -1 -1 5 D = $= 0 \quad D = 0$ 1 2 3 3 3 4 0 4 5 Now, $D_1 = |$ $C_3 \rightarrow C_3 - C_2$ 1 2 1 3 3 1 $D_1 = \begin{vmatrix} 0 & 4 & 1 \end{vmatrix}$ $R_1 \rightarrow R_1 - R_2$, $R_2 \rightarrow R_2 - R_3$ -2 -1 0 3 -1 0 4 1 | 0 $D_1 =$ = 5 D = 0 But $D_1 \neq 0$ Hence no solution Example #18: Solve the following system of equations x + y + z = 5, 2x + 2y + 2z = 7, 3x + 3y + 3z = 61 1 1 2 2 2 $\mathsf{D} = \begin{vmatrix} 3 & 3 & 3 \end{vmatrix}$ = 0Solution : *:*.. $D_1 = 0, D_2 = 0, D_3 = 0$ ÷ Let z = tx + y = 5 - tfrom equation (i) 2x + 2y = 7 - 2tfrom equation (ii) Since both the lines are parallel hence no value of x and y Hence there is no solution of the given equation. Example # 19 : Solve the following system of equations x + y + z = 2, 2x + 2y + 2z = 4, 3x + 3y + 3z = 61 1 1 2 2 2 3 3 3 = 0Solution : D = • $D_1 = 0$, $D_2 = 0$, $D_3 = 0$ All the cofactors of D, D_1 , D_2 and D_3 are all zeros, hence the system will have infinite solutions. Let $z = t_1, y = t_2 \Rightarrow$ $x = 2 - t_1 - t_2$ where $t_1, t_2 \in R$.

Example # 20 : Consider the following system of equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$									
	Find values of λ and μ if such that sets of equation have (i) unique solution (ii) infinite solution (iii) no solution								
Solution :	$\begin{aligned} x + y + z &= 6\\ x + 2y + 3z &= 10\\ x + 2y + \lambda z &= \mu\\ & \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{vmatrix}\\ D &= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda \end{vmatrix}\\ Here \text{ for } \lambda = 3 \text{ second and third rows are identical hence } D = 0 \text{ for } \lambda = 3. \end{aligned}$								
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	If $\lambda = 3$ then $D_1 = D_2 = D_3 = 0$ for $\mu = 10$								
	(i) For unique solution $D \neq 0$ i.e. $\lambda \neq 3$								
	(ii) For infinite solutions $D = 0 \implies \lambda = 3$ $D_1 = D_2 = D_3 = 0 \implies \mu = 10.$								
	(iii) For no solution $D = 0$ \Rightarrow $\lambda = 3$ At least one of D ₁ , D ₂ or D ₃ is non zero \Rightarrow $\mu \neq 10$.								
Self practice p	problems :								
(13)	Solve the following system of equations x + 2y + 3z = 1 2x + 3y + 4z = 2 3x + 4y + 5z = 3								
(14)	Solve the following system of equations x + 2y + 3z = 0 2x + 3y + 4z = 0 x - y - z = 0								
(15)	Solve: $(b + c) (y + z) - ax = b - c$, $(c + a) (z + x) - by = c - a$, $(a + b) (x + y) - cz = a - b$ where $a + b + c \neq 0$.								
(16)	Let $2x + 3y + 4 = 0$; $3x + 5y + 6 = 0$, $2x_2 + 6xy + 5y_2 + 8x + 12y + 1 + t = 0$, if the system of equations in x and y are consistent then find the value of t.								
Ans.	(13) $x = 1 + t$ $y = -2t$ $z = t$ where $t \in \mathbb{R}$ (14) $x = 0, y = 0, z = 0$ (15) $x = \frac{c-b}{a+b+c}, y = \frac{a-c}{a+b+c}, z = \frac{b-a}{a+b+c}$								
	(16) t = 7								

 $|x_1 | y_1 | 1$

25. <u>Application of determinants</u>: Following examples of short hand writing large expressions are:

(i) Area of a triangle whose vertices are (x_r, y_r) ; r = 1, 2, 3 is:

 $D = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ If D = 0 then the three points are collinear.

(ii) Equation of a straight line passing through $(x_1, y_1) \& (x_2, y_2)$ is $\begin{vmatrix} x_2 & y_2 & 1 \end{vmatrix} = 0$ gksxkA

- (iii) The lines: $a_1x + b_1y + c_1 = 0$(1)
 - $a_2x + b_2y + c_2 = 0$ (2) $a_3x + b_3y + c_3 = 0$ (3)

$$\begin{vmatrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0.$$

Condition for the consistency of three simultaneous linear equations in 2 variables.

(iv) $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines if:

$$a + g$$

abc + 2 fgh - af² - bg² - ch² = 0 = $g + g$

26. <u>Singular & non singular matrix</u>: A square matrix A is said to be singular or non-singular according as |A| is zero or non-zero respectively.

27. Cofactor matrix & adjoint matrix :

are concurrent if.

Let $A = [a_{ij}]_n$ be a square matrix. The matrix obtained by replacing each element of A by corresponding cofactor is called as cofactor matrix of A, denoted as cofactor A. The transpose of cofactor matrix of A is called as adjoint of A, denoted as adj A.

i.e. if $A = [a_{ij}]_n$ then cofactor $A = [c_{ij}]_n$ when c_{ij} is the cofactor of $a_{ij} \forall i \& j$. Adj $A = [d_{ij}]_n$ where $d_{ij} = c_{ji} \forall i \& j$.

28. Properties of cofactor A and adj A :

- (i) A . adj A = |A| In = (adj A) A where A = [aij]n.
- (ii) $|adj A| = |A|_{n-1}$, where n is order of A. In particular, for 3 x 3 matrix, $|adj A| = |A|_2$
- (iii) If A is a symmetric matrix, then adj A are also symmetric matrices.
- (iv) If A is singular, then adj A is also singular.

Example # 21 : For a 3x3 skew-symmetric matrix A, show that adj A is a symmetric matrix.

Solution : $A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$ $cof A = \begin{bmatrix} c^2 & -bc & ca \\ -bc & b^2 & -ab \\ ca & -ab & a^2 \end{bmatrix}$

18 |

adj A = (cof A)' = $\begin{bmatrix} c^2 & -bc & ca \\ -bc & b^2 & -ab \\ ca & -ab & a^2 \end{bmatrix}$ which is symmetric.

29. Inverse of a matrix (reciprocal matrix) :

Let A be a non-singular matrix. Then the matrix |A| adj A is the multiplicative inverse of A (we call it inverse of A) and is denoted by A₋₁.

1

We have We have $A(adjA) = |A|I_n = (adjA) A$

$$A^{\left(\frac{1}{|A|}adjA\right)} = I_{n} = \left(\frac{1}{|A|}adjA\right) A, \text{ for } A \text{ is non-singular} \Rightarrow A_{-1} = \frac{1}{|A|} adj A.$$

Remarks :

- (i) The necessary and sufficient condition for existence of inverse of A is that A is non-singular.
- (ii) A₋₁ is always non-singular.
- (iii) If A = dia (a11, a22,, ann) where $a_{ii} \neq 0 \forall i$, then A-1 = diag (a11-1, a22-1,, ann-1).
- (iv) $(A_{-1})' = (A')_{-1}$ for any non-singular matrix A. Also adj (A') = (adj A)'.
- (v) $(A_{-1})_{-1} = A$ if A is non-singular.
- (vi) Let k be a non-zero scalar & A be a non-singular matrix. Then $(kA)_{-1} = k A_{-1}$. 1
- (vii) $|A_{-1}| = |A|$ for $|A| \neq 0$.
- (viii) Let A be a non-singular matrix. Then $AB = AC \Rightarrow B = C$ & $BA = CA \Rightarrow B = C$.
- (ix) A is non-singular and symmetric \Rightarrow A₋₁ is symmetric.
- (x) $(AB)_{-1} = B_{-1} A_{-1}$ if A and B are non-singular.
- (xi) In general AB = 0 does not imply A = 0 or B = 0. But if A is non-singular and AB = 0, then B = 0. Similarly B is non-singular and $AB = 0 \Rightarrow A = 0$. Therefore, $AB = 0 \Rightarrow$ either both are singular or one of them is 0.

1

Example # 22 : For two non-singular matrices A & B, show that adj (AB) = (adj B) (adj A)

We have (AB) (adj (AB)) = |AB| In = |A| |B| In

$$(AB)(adj (AB)) = |A| |B| A_{-1}$$

⇒	B adj (AB) = B adj A	(::	$A_{-1} = A $ adj A)
⇒	B–1 B adj (AB) = B B–1 adj A	\Rightarrow	adj (AB) = (adjB) (adj A)

30. <u>Elementary row transformation of matrix</u>:

The following operations on a matrix are called as elementary row transformations.

(i) Interchanging two rows.

A–1

- (ii) Multiplications of all the elements of row by a nonzero scalar.
- (iii) Addition of constant multiple of a row to another row.

Note : Similar to above we have elementary column transformations also.

Remarks:

Two matrices A & B are said to be equivalent if one is obtained from other using elementary transformations. We write A \approx B.

Finding inverse using Elementry operations

Solution :

(a)	Using row transformations : If A is a matrix such that A ₋₁ exists, then to find A ₋₁ using elementary row operations, Step I : Write A = IA and Step II : Apply a sequence of row operation on A = IA till we get, I = BA. The matrix B will be inverse of A. Note : In order to apply a sequence of elementary row operations on the matrix equation X = AB, we will apply these row operations simultaneously on X and on the first matrix A of the product AB on RHS.									
(b)	Using column transformations : If A is a matrix such that A ₋₁ exists, then to find A ₋₁ using elementary column operations, Step I : Write A = AI and Step II : Apply a sequence of column operations on A = AI till we get, I = AB. The matrix B will be inverse of A. Note : In order to apply a sequence of elementary column operations on the matrix equation X = AB, we will apply these row operation simultaneously on X and on the second matrix B of the product AB on RHS.									
Example # 23 :	Obtain the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & 1 \end{bmatrix}$ using elementary operations.									
Solution :	Write A = IA, i.e., $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{A}$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$									
	or $\begin{bmatrix} 0 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A (applying R_1 \leftrightarrow R_2)$ $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$									
	or $\begin{bmatrix} 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix}_{A} \text{ (applying } R_3 \rightarrow R_3 - 3R_1\text{)}$ $\begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 0 \end{bmatrix}$									
	or $\begin{bmatrix} 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A \text{ (applying } \mathbb{R}_1 \to \mathbb{R}_1 - 2\mathbb{R}_2\text{)}$ $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & -0 \end{bmatrix}$									
	or $\begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 5 & -3 & 1 \end{bmatrix}$ A (applying $R_3 \rightarrow R_3 + 5R_2$)									
	or $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \end{bmatrix}_{A} \text{ (applying } \mathbb{R}_3 \to \frac{1}{2} \mathbb{R}_3\text{)}$ $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$									
•	or $\begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}_{A \text{ (Applying } R_1 \rightarrow R_1 + R_3)}$									

or

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \end{bmatrix}$$

$$A \text{ (Applying } \mathbb{R}_2 \to \mathbb{R}_2 - 2\mathbb{R}_3\text{)}$$

$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
Hence $A_{-1} = \begin{bmatrix} \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$

Self practice problems :

- (17) If A is non-singular, show that $adj (adj A) = |A|_{n-2} A$.
- (18) Prove that $adj (A_{-1}) = (adj A)_{-1}$.
- (19) For any square matrix A, show that $|adj (adj A)| = |A|^{(n-1)^2}$
- (20) If A and B are non-singular matrices, show that $(AB)_{-1} = B_{-1} A_{-1}$.

31. System of linear equations & matrices : Consider the system

$a_{11} X_1 + a_{12}X_2 + \dots + a_{1n}X_n = b_1$ $a_{21}X_1 + a_{22} X_2 + \dots + a_{2n} X_n = b_2$										
am1	X1 + 8	am2 X 2	+	+ a mn	$x_n = b_n$					
								$\begin{bmatrix} b_1 \end{bmatrix}$		
	a ₁₁	a ₁₂		a _{ın} –		$\begin{bmatrix} \mathbf{X}_1 \end{bmatrix}$		b ₂		
	a ₂₁	a ₂₂		$\mathbf{a}_{_{2n}}$		X ₂				
A =	a _{m1}	\mathbf{a}_{m2}		a _{mn} _	, X =	$[\mathbf{x}_n]$	& B =	[b _n]	.	

Then the above system can be expressed in the matrix form as AX = B. The system is said to be consistent if it has atleast one solution.

32. System of linear equations and matrix inverse :

If the above system consist of n equations in n unknowns, then we have AX = B where A is a square matrix.

Results :

Let

- (i) If A is non-singular, solution is given by $X = A_{-1}B$.
- (ii) If A is singular, (adj A) B = 0 and all the columns of A are not proportional, then the system has infinitely many solutions.
- (iii) If A is singular and (adj A) B ≠ 0, then the system has no solution (we say it is inconsistent).

33. <u>Homogeneous system and matrix inverse</u>:

If the above system is homogeneous, n equations in n unknowns, then in the matrix form it is AX = O.

(:: in this case $b_1 = b_2 = \dots = b_n = 0$), where A is a square matrix.

Results:

- (i) If A is non-singular, the system has only the trivial solution (zero solution) X = 0
- (ii) If A is singular, then the system has infinitely many solutions (including the trivial solution) and hence it has non-trivial solutions.

$$x + y + z = 6$$
$$x - y + z = 2$$

Example # 24 : Solve the system 2x + y - z = 1 using matrix inverse.

Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} & B = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$. Solution : Then the system is AX = B. |A| = 6. Hence A is non singular. Cofactor A = $\begin{bmatrix} 2 & -3 & 1 \\ 2 & 0 & -2 \end{bmatrix}$ adj A = $\begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$ $A_{-1} = \frac{1}{|A|} \underbrace{\frac{1}{A|A|}}_{\text{adj }A} = \frac{1}{6} \begin{bmatrix} 0 & 2 & 2\\ 3 & -3 & 0\\ 3 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1/3 & 1/3\\ 1/2 & -1/2 & 0\\ 1/2 & 1/6 & -1/3 \end{bmatrix}$ $X = A - 1 B = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/6 & -1/3 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} \qquad i.e. \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ \Rightarrow x = 1, y = 2, z = 3. x - y + 2z = 1x + y + z = 3x - 3y + 3z = -1**Example # 25 :** Test the consistency of the system 2x + 4y + z = 8. Also find the solution, if any. $\begin{bmatrix} 1 & -1 & 2 \\ 1 & 1 & 1 \\ 1 & -3 & 3 \\ 2 & 4 & 1 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B =$ [1] 3 |-1 Solution : $[AB] = \begin{bmatrix} 1 & -1 & 2 & 1 \\ 1 & 1 & 1 & 3 \\ 1 & -3 & 3 & -1 \\ 2 & 4 & 1 & 8 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 6 & -3 & 6 \end{bmatrix} \begin{array}{c} R_2 \rightarrow R_2 - R_1 \\ R_3 \rightarrow R_3 - R_1 \\ R_4 \rightarrow R_4 - 2R_4 \end{array}$

$$\begin{array}{c} \mathsf{R}_2 \to \frac{1}{2}\mathsf{R}_2 \\ \left[\begin{matrix} 1 & -1 & 2 & 1 \\ 0 & 1 & -1/2 & 1 \\ 0 & 1 & -1/2 & 1 \\ 0 & 1 & -1/2 & 1 \end{matrix} \right] \quad \begin{array}{c} \mathsf{R}_3 \to -\frac{1}{2}\mathsf{R}_3 \\ \mathsf{R}_4 \to \frac{1}{6} \mathsf{R}_4 \\ \approx \end{matrix} \begin{bmatrix} 1 & 0 & 3/2 & 2 \\ 0 & 1 & -1/2 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{array}{c} \mathsf{R}_1 \to \mathsf{R}_1 + \mathsf{R}_2 \\ \mathsf{R}_3 \to \mathsf{R}_3 - \mathsf{R}_2 \\ \mathsf{R}_4 \to \mathsf{R}_4 - \mathsf{R}_2 \end{array}$$

This is in Echelon form.

 $\rho(AB) = 2 = \rho(A) < \text{number of unknowns}$

Hence there are infinitely many solutions $n - \rho = 1$.

Hence we can take one of the variables any value and the rest in terms of it. Let z = r, where r is any number.

Then x - y = 1 - 2r

$$x + y = 3 - r \implies x = \frac{4 - 3r}{2} & y = \frac{2 + r}{2}$$

Solutions are $(x, y, z) = \left(\frac{4 - 3r}{2}, \frac{2 + r}{2}, r\right)$.

Self practice problems:

....

(21) $A = \begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$. Find the inverse of A using |A| and adj A.

(22) Find real values of λ and μ so that the following systems has

- (i) unique solution (ii) infinitely many solutions
 - (iii) No solution.
 - x + y + z = 6
 - x + 2y + 3z = 1
 - $x+2y+\lambda z=\mu$
- (23) Find λ so that the following homogeneous system have a non zero solution

$$x + 2y + 3z = \lambda x$$

$$3x + y + 2z = \lambda y$$

$$2x + 3y + z = \lambda z$$

Ans. (21) $\begin{vmatrix} \frac{1}{2} & -4 & \frac{5}{2} \\ -\frac{1}{2} & 3 & -\frac{3}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{vmatrix}$ (22) (i) $\lambda \neq 3, \mu \in \mathbb{R}$ (ii) $\lambda = 3, \mu = 1$ (iii) $\lambda = 3, \mu \neq 1$ (23) $\lambda = 6$

34. <u>Characteristic polynomial & characteristic equation</u>:

Let A be a square matrix. Then the polynomial |A - xI| is called as characteristic polynomial of A & the equation |A - xI| = 0 is called as characteristic equation of A.

35. <u>Cayley - Hamilton theorem :</u>

Every square matrix A satisfies its characteristic equation

i.e. $a_0 x_n + a_1 x_{n-1} + \dots + a_{n-1}x + a_n = 0$ is the characteristic equation of A, then $a_0A_n + a_1A_{n-1} + \dots + a_{n-1}A + a_n I = 0$ Example # 26 : If $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, show that $5A_{-1} = A_2 + A - 5I$. Solution : We have the characteristic equation of A. |A - xI| = 0 $\begin{bmatrix} 1 - x & 2 & 0 \\ 2 & -1 - x & 0 \\ 0 & 0 & -1 - x \end{bmatrix}_{=0}$ i.e. $x_3 + x_2 - 5x - 5 = 0$. Using Cayley - Hamilton theorem. $A_3 + A_2 - 5A - 5I = 0 \implies 5I = A_3 + A_2 - 5A$ Multiplying by A-1, we get $5A_{-1} = A_2 + A - 5I$