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1. Definition : 
 Any rectangular arrangement of numbers (real or complex) (or of real valued or complex valued 

expressions) is called a matrix. If a matrix has m rows and n columns then the order of matrix is written 

as m × n and we call it as order m by n 

 The general m × n matrix is  
 

 A =  
 

 where aij denote the element of ith row & jth column. The above matrix is usually denoted as [aij]m × n . 
 

 Notes :  
 

 (i) The elements a11, a22, a33,........ are called as diagonal elements. Their sum is called as trace 

 of A denoted as tr(A) 
 

 (ii) Capital letters of English alphabets are used to denote  matrices. 
 

 (iii) Order of a matrix : If a matrix has m rows and n columns, then we say that its order is "m by n", 

 written as  "m × n". 
 

 
2. Type of matrices : 
 

 (i) Row matrix :  

  A matrix having only one row is called as row matrix (or row vector).General form of row matrix 

 is A = [a11, a12, a13, ...., a1n] 

  This is a matrix of order "1 × n" (or a row matrix of order n) 
 

 (ii) Column matrix :  

  A matrix having only one column is called as column matrix (or column vector). 

  Column matrix is in the form A=  This is a matrix of order "m × 1"  

  (or a column matrix of  order m) 
 

 (iii) Square matrix :   

  A matrix in which number of rows & columns are equal is called a square matrix. The general 

 form of a square matrix is  

  A = which we denote as A = [aij]n 

  This is a matrix of order "n × n" (or a square matrix of order n) 

  
(iv) Zero matrix :   

  A = [aij]m × n is called a zero matrix, if aij = 0 ∀ i & j. 
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  e.g. : (i)    (ii)  

 (v) Upper triangular matrix :   

  A = [aij]m × n is said to be upper triangular, if aij = 0 for all i > j (i.e., all the elements below the  

  diagonal elements are zero). 

  e.g. : (i)     (ii)  
 

 (vi) Lower triangular matrix :   

  A = [aij]m × n is said to be a lower triangular matrix, if aij = 0 for all  i < j. (i.e., all the elements 

  above the diagonal elements are zero.) 

  e.g. : (i)   (ii)  
 

 (vii) Diagonal matrix :   

  A square matrix [aij]n is said to be a diagonal matrix if aij = 0 for all i ≠ j.  (i.e., all the elements of 

 the square matrix other than diagonal elements are zero) 

  Note : Diagonal matrix of order n is denoted as Diag (a11, a22, ......ann). 

  e.g. : (i)    (ii)  

 (viii) Scalar matrix :  

  Scalar matrix is a diagonal matrix in which all the diagonal elements are same.  A = [aij]n is a 

  scalar matrix, if (i) aij = 0 for all i ≠ j and (ii) aij = k for i = j. 

  e.g.   : (i)   (ii)  

 (ix) Unit matrix (identity matrix) :  

  Unit matrix is a diagonal matrix in which all the diagonal elements are unity. Unit matrix of 

  order 'n' is denoted by Ιn (or Ι). 
  i.e. A = [aij]n is a unit matrix when aij = 0 for all i ≠ j & aii = 1 

  eg. Ι2 =  , Ι3 =  

 (x) Equality of matrices :   

  Two matrices A and B are said to be equal if they are comparable and all the corresponding 

 elements are equal.  

  Let  A = [aij] m × n  &  B = [bij]p × q 

   A = B  iff   

   (i) m = p, n = q 

   (ii) aij = bij ∀ i & j. 
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Example # 1 :  Let A =    & B =  Find θ so that A = B.  

Solution : By definition A & B are equal if they have the same order and all the corresponding elements 

 are equal. Thus we have sin θ =  , cosθ = –   & tan θ = – 1 

  ⇒ θ = (2n + 1) π –  .  

 

3. Multiplication of matrix by scalar :   

 Let λ be a scalar (real or complex number) & A =  [aij]m × n be a matrix. Thus the product λA is defined as  

λA = [bij]m × n where bij = λaij ∀ i & j. 
 

 e.g. :A =   &   – 3A ≡ (–3) A =  
 

 Note :  If A is a scalar matrix, then A = λΙ, where λ is a diagonal entry of A 

 

4. Addition of matrices :   

 Let A and B be two matrices of same order (i.e. comparable matrices). Then A + B is defined to be. 

 A + B  = [aij]m × n + [bij]m × n. 

  = [cij]m × n where cij = aij + bij ∀ i & j. 
  

  e.g. :  A =   ,  B =  , A + B =  

 

5. Subtraction of matrices :   
 Let A & B be two matrices of same order. Then A – B is defined as  A + (– B) where – B is (– 1) B. 

 

6. Properties of addition & scalar multiplication :   

 Consider all matrices of order m × n, whose elements are from a set F (F denote Q, R or C). 

 Let Mm × n (F) denote the set of all such matrices. 

 Then  

 (i) A ∈ Mm × n (F) & B ∈ Mm × n (F)  ⇒ A + B ∈ Mm × n(F) 

 (ii) A + B = B + A 

 (iii) (A + B) + C = A + (B + C) 

 (iv) O = [o]m × n is the additive identity. 

 (v) For every A ∈ Mm × n(F), – A is the additive inverse. 

 (vi) λ (A + B) = λA + λB 

 (vii) λA = Aλ 

 (viii) (λ1 + λ2) A = λ1A + λ2A 
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7. Multiplication of matrices :  
 

 Let A and B be two matrices such that the number of columns of  A is same as number of rows 
 of B. i.e., A = [aij]m × p   &    B = [bij]p × n. 

 Then AB = [cij]m × n where cij =   , which is the dot product of ith row vector of A and jth  
column vector of B.  

 e.g.  A =   ,  B = ,   AB =  
 

Note : (i) The product AB is defined iff the number of columns of A is equal to the number of rows of B. A  
  is called as premultiplier & B is called as post multiplier. AB is defined ⇒ BA is defined. 
 

 (ii) In general AB ≠ BA, even when both the products are defined. 

 (ii) A (BC) = (AB) C, whenever it is defined. 
 

 

8. Properties of matrix multiplication :      

 Consider all square matrices of order 'n'. Let Mn (F) denote the set of all square matrices of order n. 
(where F is Q, R or C). Then 

 (i) A, B ∈ Mn (F) ⇒ AB ∈ Mn (F) 

 (ii) In general AB ≠ BA 

 (iii) (AB) C = A(BC) 

 (iv) Ιn, the identity matrix of order n, is the multiplicative identity. 

  AΙn = A = Ιn A  ∀ A ∈ Mn (F) 

 (v) For every non singular matrix A (i.e., |A| ≠ 0) of Mn (F) there exist a unique (particular) matrix  

  B ∈ Mn (F) so that AB = Ιn = BA. In this case we say that A & B are multiplicative inverse of one 

 another. In notations, we write B = A–1 or A = B–1. 
 

 (vi) If λ is a scalar (λA) B = λ(AB) = A(λB). 

 (vii) A(B + C) = AB + AC  ∀ A, B, C ∈ Mn (F) 

 (viii) (A + B) C = AC + BC  ∀ A, B, C ∈ Mn (F). 

 Note : (a) Let A = [aij]m × n. Then AΙn = A & Ιm A = A, where Ιn & Ιm are identity matrices of order  

  n & m respectively. 
  (b) For a square matrix A,  A2 denotes AA,  A3 denotes AAA  etc. 
 

Example # 2 :  f(x) is a quadratic expression such that 

    =  for three unequal numbers a, b, c. Find f(x). 
 

Solution : The given matrix equation implies 

   =  
  ⇒ x2 f(0) + xf(1) + f(–1) = 2x + 1 for three unequal numbers a, b, c .....(i) 

  ⇒ (i) is an identity 

  ⇒ f(0) = 0, f(1) = 2 & f(– 1) = 1 
  ∴ f(x) = x (ax + b) 
   2 = a + b & – 1 = – a + b. 

  ⇒ b = anda a =    
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  ⇒ f(x) =  x2 +  x. 
Self practice problems :  

  (1) If A(θ) =  verify that A(α) A(β) = A(α + β). Hence show that in this case  

  A(α).  A(β) = A(β) . A(α). 

 (2) Let A =   ,   B =   and C = [3  1  2]. 
  Then which of the products ABC, ACB, BAC, BCA, CAB, CBA are defined. Calculate the 

 product whichever is defined. 
Ans. (2) Only CAB is defined. CAB = [25  100] 
 

9. Transpose of a matrix :  
 

 Let A =[aij]m × n. Then the transpose of A is denoted by A′( or AT) and is defined as 
 

 A′ = [bij]n × m where bij = aji   ∀ i & j. 

 i.e. A′ is obtained by rewriting all the rows of A as columns (or by rewriting all the columns of A as rows). 

 e.g.  : A =  ,  A′ =  
 

Results : (i) For any matrix A = [aij]m × n, (A′)′ = A 
 

  (ii) Let λ be a scalar & A be a matrix. Then (λA)′ = λA′ 
 

  (iii) (A + B)′ = A′ + B′ & (A – B)′ = A′ – B′ for two comparable matrices A and B. 
 

  (iv) (A1 ± A2 ± ..... ± An)′ = A1′ ± A2′ ± ..... ±  An′, where Ai are comparable. 
 

  (v) Let A = [aij]m × p & B = [bij]p × n , then (AB)′ = B′A′ 
 

  (vi) (A1 A2 .......An)′ = An′. An – 1′ ...........A2′ . A1′, provided the product is defined. 

 

10. Symmetric & skew-symmetric matrix :   

 A square matrix A is said to be symmetric if A′ = A  

 i.e. Let A = [aij]n.  A is symmetric iff aij = aji ∀ i & j. 

 A square matrix A is said to be skew-symmetric if A′ = – A 

 i.e. Let A = [aij]n. A is skew-symmetric iff aij = – aji ∀ i & j. 

 e.g. A =  is a symmetric matrix. 

  B =  is a skew-symmetric matrix. 
 Notes : (i) In a skew-symmetric matrix all the diagonal elements are zero. 
 

  (ii) For any square matrix A, A + A′ is symmetric & A – A′ is skew-symmetric.  
 

  (iii) Every square matrix can be uniquely expressed as a sum of two square matrices of 
  which one is symmetric and the other is skew-symmetric. 
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   A = B + C, where B =    (A + A′) & C =  (A – A′). 
 

Example # 3 :  Show that BAB′ is symmetric or skew-symmetric according as A is symmetric or  

 skew-symmetric (where B is any square matrix whose order is same as that of A). 

Solution : Case - Ι A is symmetric    ⇒ A′ = A 

    (BAB′)′  = (B′)′A′B′ = BAB′ ⇒ BAB′ is symmetric. 

  Case - ΙΙ A is skew-symmetric  ⇒ A′ = – A 

    (BAB′)′  = (B′)′A′B′ = B ( – A) B′ = – (BAB′) 

    ⇒ BAB′ is skew-symmetric 

Self practice problems : 
 

 (3) For any square matrix A, show that A′A & AA′ are symmetric matrices. 
 

 (4) If A & B are symmetric matrices of same order, then show that AB + BA is symmetric and  AB – 

 BA is skew-symmetric. 
 

11. Submatrix :  
 Let A be a given matrix. The matrix obtained by deleting some rows or columns of  A is called  as 

submatrix of A. 

 eg. A =   then , ,  are all submatrices of 'A' 
 

12. Determinant of a square matrix :   
 Let A = [a]1×1 be a 1×1 matrix. Determinant A is defined as  |A| = a. 

 e.g. A = [– 3]1×1 |A| = – 3 

 Let A =  , then |A| is defined as ad – bc. 

 e.g.  A =  , |A| = 23 

13. Minors & Cofactors :  

 Let Δ be a determinant. Then minor of element aij, denoted by Mij, is defined as the determinant of the 

submatrix obtained by deleting ith row & jth column of Δ. Cofactor of element  aij, denoted by Cij, is defined 

as Cij = (– 1)i + j Mij. 
 

 e.g. 1 A =  

  M11 = d = C11 

  M12 = c, C12 = – c 

  M21 = b, C21 = – b 

  M22 = a = C22 
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 e.g. 2 Δ =   M11 = = qz – yr = C11. 

  M23 =  = ay – bx, C23 = – (ay – bx) = bx – ay  etc. 

14. Determinant of any order :   
 Let A = [aij]n be a square matrix (n > 1). Determinant of A is defined as the sum of products of  elements 

of any one row (or any one column) with corresponding cofactors. 

 e.g.1 A =  

  |A| = a11C11 + a12 C12 + a13C13 (using first row). 

  = a11   – a12  + a13   

  |A| = a12 C12 + a22 C22 + a32C32 (using second column) 

  = – a12  + a22   – a32  . 
 

15. Transpose of a determinant :  
 The transpose of a determinant is the determinant of transpose of the   corresponding matrix. 

   D =   
 

16. Properties of determinant : 
  (i) |A| = |A′| for any square matrix A. 

  i.e. the value of a determinant remains unaltered, if the rows & columns are inter changed, 

  i.e.  D =   = D′ 
  (ii) If any two rows (or columns) of a determinant be interchanged, the value of determinant  is 

 changed in sign only.   

  e.g. Let  D1 =  & D2 =   then D2 = –D1 
 

 (iii) Let λ be a scalar. Than λ |A| is obtained by multiplying any one row (or any one column) of |A| 

 by λ 

  D =   and  E =   E = KD 
●  

 (iv) |λA| = λn |A|, when A = [aij]n. 

 (v) A skew-symmetric matrix of odd order has deteminant value zero. 
 

 (vi)  If a determinant has all the elements zero in any row or column, then its value is zero,  
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  i.e.   D =    = 0.  

 (vii) If a determinant has any two rows (or columns) identical (or proportional), then its value  

 is zero,  

  i.e.   D =   = 0. 

  (viii) If each element of any row (or column) can be expressed as a sum of two terms then the 
 determinant can be expressed as the sum of two determinants, i.e. 

   
 

 (ix) The value of a determinant is not altered by adding to the elements of any row (or column) a 
 constant multiple of the corresponding elements of any other row (or column),  

   i.e.    D1 =      and   D2 = . Then D2 = D1 
  

 (x) Let  A = [aij]n. The sum of the products of elements of any row with corresponding 
 cofactors of any other row is zero. (Similarly the sum of the products of elements of 
 any column with corresponding cofactors of any other column is zero). 

 
 

Example # 4 : Solve this  

Solution : Let    C1 → C1 – C2 &      C2 → C2  – C3 

   ⇒   
  Taking (a + b + c) common from C1 and C2 

  D = (a +b +c)2    

  Now R3 → R1 + R2 + R3 

  D = (a +b +c)2    D = (a +b +c)2   (a +b +c)  = (a +b +c)3 
 

Example # 5 : Simplify   

Solution : Given detereminant is equal to   =    =   

  Apply  C1 → C1 – C2, C2 → C2 – C3 
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  =   

  = (a – b) (b – c)  
  = (a – b) (b – c) [ab2 + abc + ac2 + b3 + b2c + bc2 – a2b – a2c – ab2 – abc – b3 – b2c] 
  = (a – b) (b – c) [c(ab + bc + ca) – a(ab + bc + ca)] = (a – b) (b – c) (c – a) (ab + bc + ca) 
 

17. Factor Theorem : 
 

 Use of factor theorem to find the value of determinant. If by putting x = a the value of a determinant 

  vanishes then (x − a) is a factor of the determinant. 
 

Example # 6 : Prove that   = (a – b) (b – c) (c – a) (ab + bc + ca) by using factor theorem. 

Solution : Let a = b ⇒ D =   = 0 

  Hence (a – b) is a factor of determinant 

 

  Similarly,  let  b = c, D = 0 c = a, D = 0 

  Hence, (a – b) (b – c) (c – a) is factor of determinant. But the given determinant is of fifthorder 

 so 

   = (a – b) (b – c) (c – a) {λ (a2 + b2 + c2) + µ (ab + bc + ca)} 

  Since this is an identity so in order to find the values of λ and µ. Let 

  a = 0, b = 1, c = – 1 – 2 = (2)  (2λ – µ) 

  (2λ – µ) = – 1.       ........(i) 

  Let a = 1, b = 2, c = 0  

   = (–1) 2 (– 1) (5λ + 2µ) ⇒ 5λ + 2µ = 2   .......(ii) 

  from (i) and (ii) λ = 0 and µ = 1 

  Hence  = (a – b) (b – c) (c – a) (ab + bc + ca). 
 

Self practice problems : 

 (5)  Find the value of Δ =   
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 (6)  Simplify    

 

 (7)  Prove that   = (a + b + c)3. 
 

 (8)   Show that   = (a – b) (b – c) (c – a) by using factor theorem . 

 Ans. (5) 0 (6) 0  

18. Multiplication of two determinants :   
 

 If A and B are two square matrices of same order, then |AB| = |A| |B|. 

   
 

   × =  
 

 Note : As |A| = |A′|, we have  |A| |B| = |AB′| (row - row method) 

     |A| |B| = |A′B| (column - column method) 

     |A| |B| = |A′B′| (column - row method) 

 

Example # 7 : Find the value of   ×  and prove that it is equal to  

Solution :  ×   =   =   = 60 

 

Example # 8 : Prove that  = 0 

Solution : Given determinant can be splitted into product of two determinants 

  i.e.  =  ×   = 0  

 

Example # 9 : Prove that   

  = 2(a1 – a2) (a2 – a3) (a3 – a1) (b1 – b2) (b2 – b3) (b3 – b1). 
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Solution :  =  

  =  ×     

  = 2  ×  = 2(a1 – a2) (a2 – a3) (a3 – a1) (b1 – b2) (b2 – b3) (b3 – b1) 
 

Note :  The above problem can also be solved using factor theorem method. 

 

Self practice problems : 

 (9) Find the value of Δ  

 

 (10) If A, B, C are real numbers then find the value of Δ =   

 

 Ans. (9) (3abc – a3 – b3 – c3)2 (10) 0 

 

19. Summation of determinants :   

 

 Let Δ(r) = where a1, a2, a3, b1, b2, b3 are constants indepedent of r, then 

 

  =  

 

 Here the functions of r can be the elements of only one row or column. None of the elements other than 

that row or column should be dependent on r. If more than one column or row have elements dependent 

on r then first expand the determinant and then find the summation. 
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Example # 10 : Evaluate    

 

Solution :  =   

  = = 0  

 

Example # 11 : Dr =  evaluate    
 

Solution :   =   

  =  

  =  

   C1 → C1 – 2 × C2  

  =   = (–1)   = 2n – 1 – n – 3  
 

Example # 12 : If Δr = , find  
 

Solution : On expansion of determinant, we get 

  Dr = (r –1) (3 – r) + 7 + r2 + 4r = 8r + 4 ⇒  = 4n (n + 2) 
 

Self Practice Problem 
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 (11)  Evaluate  where Dr =    

 Ans.  (11) 0  

 

 

 

 

20. Differentiation of determinant :   

 Let Δ(x) =   

 then Δ′(x) =    +   +  
 

Note :  We can differentiate a determinant columnwise also. 

 

Example # 13 : If f(x) =   , then find the value of f′′(a). 

Solution : f′(x) =  

  f′′(x) =   ⇒ f′′(a) = 12   = 0. 
 

Example # 14 : Let α be a repeated root of quadratic equation f(x) = 0 and A(x), B(x) and C(x) be polynomial 

 of degree 3, 4 and 5 respectively, then show that  , divisible by f(x). 
 

Solution : Let g(x) =   

  ⇒ g′(x) =  

  Since g(α) = g′(α) = 0 

  ⇒ g(x) = (x – α)2 h(x) i.e. α is the repeated root of g(x) and h(x) is any polynomial  

  expression of degree 3. Also f(x) = 0 have repeated root α. So g(x) is divisible by f(x). 
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Example # 15 : Prove that F depends only on x1, x2 and x3 

  F =  
 

  and simplify F. 

Solution :   =    

  +   +  = 0 

  Hence F is independent of a1 

  Similarly   =  = 0.   

  Hence F is independent of b1 and b2 also.   

  So F is dependent only on x1, x2, x3  Put a1 = 0, b1 = 0, b2 = 0 

 ⇒ F =  = (x1 – x2) (x2 – x3) (x3 – x1). 

 

Example # 16 : If  f(x) =  , then find value of   (f(x))x=0 (n∈Ζ ) 
 

Solution :  (f(x))   =  =  ,   (n ∈ Ζ ) 

     (f(x)) x = 0 =  = 0 

Self practice problem : 

 (12) If   = ax3 + bx2 + cx + d. Find   

   (i)  d  (ii) a + b + c + d  (iii) b   
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 Ans. (12) (i)  – 1  (ii) – 5   (iii) – 4 
 

21. Cramer's Rule: System of linear equations : 
 

 (i) Two variables  
  Let  a1x + b1y + c1 = 0   &   a2x + b2y + c2 = 0   then: 

    
  ⇒ Given equations are inconsistent &   

    Given equations are consistent 

 

 (ii) Three variables  

  consider the system a1x + b1y + c1z = d1  

     a2x + b2y + c2z = d2   

     a3x + b3y + c3z = d3 

   

  Then,  D.x = D1,  D.y = D2, D.z = D3 
   

  Where   D =  ; D1 = ;  D2 =   & D3 =  

 
22. Consistency of a system of equations :  
 (i) If D ≠ 0 and alteast one of D1, D2, D3 ≠ 0, then the given system of equations are consistent and 

 have unique non trivial solution. 
 

 (ii) If D ≠ 0 & D1 = D2 = D3 = 0, then the given system of equations are consistent and have trivial 
 solution only. 

 

 (iii) If D = D1 = D2 = D3 = 0, then the given system of equations have either infinite solutions or no 
 solution. (For 2 × 2 system,  D = 0 = D1 = D2 ⇔  system has infinitely many solutions). 

 

 (iv) If D = 0  but atleast one of D1, D2, D3 is not zero then the equations are inconsistent and have no 
 solution.  

 
 
 

23. Homogeneous system :  
 a1x + b1y + c1z = 0  
 a2x + b2y + c2z = 0   
 a3x + b3y + c3z = 0 
 (x, y, z) = (0, 0, 0) is always a solution of this system. This solution is called as the trivial solution  

(or zero solution) of this system. 
 D ≠ 0 ⇒ this system has only the trivial solution. 
 D = 0  ⇒ this system has nontrivial solutions (infinitely many solutions). 
 

24. Three equation in two variables :  
 If  x and y are  not  zero, then condition for a1x + b1y + c1 = 0 ;  a2x + b2y + c2 = 0  &  
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 a3x + b3y + c3 = 0  to be consistent  in x and y is  = 0. 
 

Example # 17 : Find the nature of solution for the given system of equations. 
  x + 2y + 3z = 1, 2x + 3y + 4z = 3, 3x + 4y + 5z = 0  

Solution : Let D =    
   apply C1 → C1 – C2 , C2 → C2 – C3 

  D =   = 0 D = 0 

  Now,  D1 =  
  C3 → C3 – C2  

  D1 =  
  R1 → R1 – R2 , R2 → R2 – R3  

  D1 =  = 5  D = 0 But D1 ≠ 0 Hence no solution 
 
 

Example # 18 :  Solve the following system of equations   

  x + y + z = 5 , 2x + 2y + 2z = 7, 3x + 3y + 3z = 6 
 

Solution : ∴ D =  = 0 

  D1 = 0, D2 = 0, D3 = 0 

   Let z = t  x + y = 5 – t  from equation (i)  

   2x + 2y = 7 – 2t    from equation (ii) 

  Since both the lines are parallel hence no value of x and y Hence there is no solution of the 

 given equation. 

 

Example # 19 :  Solve the following system of equations 

  x + y + z = 2 ,  2x + 2y + 2z = 4 ,  3x + 3y + 3z = 6 

Solution :  ∴ D =   = 0 

  D1 = 0, D2 = 0, D3 = 0 

  All the cofactors of D, D1, D2 and D3 are all zeros, hence the system will have infinite solutions. 

  Let  z = t1, y = t2 ⇒ x = 2 – t1 – t2  

  where t1, t2 ∈ R. 
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Example # 20 : Consider the following system of equations 

  x + y + z = 6,  x + 2y + 3z = 10,  x + 2y + λz = μ  

  Find values of λ and μ if such that sets of equation have 

  (i) unique solution  (ii) infinite solution  (iii) no solution  
 

Solution : x + y + z = 6 

  x + 2y + 3z = 10 

  x + 2y + λz = μ  

  D =  

  Here for λ = 3 second and third rows are identical hence D = 0 for λ = 3. 

   

  D1 =   D2 =  D3 =  

 

  If λ = 3 then D1 = D2 = D3 = 0   for  µ = 10 

 

  (i) For unique solution D ≠ 0  i.e. λ ≠ 3 

 

  (ii) For infinite solutions 

   D = 0   ⇒ λ = 3  D1 = D2 = D3 = 0  ⇒ µ = 10. 

  (iii) For no solution    D = 0   ⇒ λ = 3 

   Atleast one of D1, D2 or D3 is non zero    ⇒ µ ≠ 10. 

 

Self practice problems :  
 

 (13) Solve the following system of equations  

  x + 2y + 3z = 1 

  2x + 3y + 4z = 2 

  3x + 4y + 5z = 3 
 

 (14) Solve the following system of equations 

  x + 2y + 3z = 0 

  2x + 3y + 4z = 0 

  x – y – z = 0 
 

 (15) Solve: (b + c) (y + z) − ax = b − c, (c + a) (z + x) − by = c − a, (a + b) (x + y) − cz = a − b  

  where  a + b + c ≠ 0.  
 

 (16) Let 2x + 3y + 4 = 0 ; 3x + 5y + 6 = 0, 2x2 + 6xy + 5y2 + 8x + 12y + 1 + t = 0, if the system of 

 equations in x and y are consistent then find the value of t. 
 

 Ans.  (13) x = 1 + t  y = –2t   z = t  where t ∈ R 

  (14)  x = 0, y = 0, z = 0  

  (15) x = , y = , z =  

  (16) t = 7 
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25. Application of determinants :  Following examples of short hand writing large expressions are: 
 

 (i) Area of a triangle whose vertices are (xr, yr); r = 1, 2, 3 is: 

  D =  If D = 0 then the three points are collinear. 

 (ii) Equation of a straight line passing through (x1, y1) & (x2, y2) is   = 0 gksxkA 

 (iii) The lines:  a1x + b1y + c1 = 0........ (1) 

     a2x + b2y + c2 = 0........ (2) 

     a3x + b3y + c3 = 0........ (3) 

 

  are concurrent if,  = 0.   

  Condition for the consistency of three simultaneous linear equations in 2 variables. 
 

 (iv) ax² + 2 hxy + by² + 2 gx + 2 fy + c = 0  represents a pair of straight lines if: 

  abc + 2 fgh − af² − bg² − ch² = 0 =  
 

26. Singular & non singular matrix :  A square matrix A is said to be singular or non-singular  

according as |A| is zero or non-zero respectively. 
 

 
27. Cofactor matrix & adjoint matrix :   

 Let  A = [aij]n be a square matrix. The matrix obtained by  replacing each element of A by corresponding 
cofactor is called as cofactor matrix of A, denoted as cofactor A. The transpose of cofactor matrix of A is 
called as adjoint of A, denoted as adj A. 

 i.e. if A = [aij]n then cofactor A = [cij]n when cij is the cofactor of aij ∀ i & j. 

  Adj A = [dij]n where dij = cji ∀ i & j. 
 

28. Properties of cofactor A and adj A :   

 (i) A . adj A = |A| Ιn = (adj A) A  where A = [aij]n. 
 

 (ii) |adj A| = |A|n – 1, where n is order of A. 
  In particular, for 3 × 3 matrix, |adj A| = |A|2 
 

 (iii) If A is a symmetric matrix, then adj A are also symmetric matrices. 
 

 (iv) If A is singular, then adj A is also singular. 
 
Example # 21 : For a  3×3 skew-symmetric matrix A, show that adj A is a symmetric matrix. 

Solution : A =  cof A =  
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  adj A = (cof A)′ =   which is symmetric. 
 
 

29. Inverse of a matrix (reciprocal matrix) :   

 Let A be a non-singular matrix. Then the matrix adj A is the multiplicative inverse of A (we call it 
 inverse of A) and is denoted by A–1. 

 We have  We have A(adjA) = |A|Ιn = (adjA) A 

 A  = Ιn =    A, for A is non-singular ⇒ A–1 =  adj A. 
 
 

 Remarks :  
 

 (i) The necessary and sufficient condition for existence of inverse of A is that A is non-singular. 
 

 (ii) A–1 is always non-singular. 
 

 (iii) If A = dia (a11, a22, ....., ann) where aii ≠ 0 ∀ i, then A–1 = diag (a11– 1, a22–1, ...., ann–1). 
 

 (iv) (A–1)′ = (A′)–1 for any non-singular matrix A. Also adj (A′) = (adj A)′. 
 

 (v) (A–1)–1 = A   if A is non-singular. 

 (vi) Let k be a non-zero scalar & A be a non-singular matrix. Then (kA)–1 =   A–1. 

 (vii) |A–1| =  for |A| ≠ 0. 
 

 (viii) Let A be a non-singular matrix. Then AB = AC ⇒ B = C   &    BA = CA ⇒ B= C. 
 

 (ix) A is non-singular and symmetric ⇒ A–1 is symmetric. 
 

 (x) (AB)–1 = B–1 A–1 if A and B are non- singular. 
 

 (xi) In general AB = 0 does not imply A = 0 or B = 0. But if A is non-singular and AB = 0, then B = 0. 
 Similarly B is non-singular and AB = 0 ⇒ A = 0. Therefore, AB = 0 ⇒ either both are singular or 
 one of them is 0. 

 
 

Example # 22 : For two non-singular matrices A & B, show that adj (AB) = (adj B) (adj A)  

Solution : We have (AB) (adj (AB)) = |AB| Ιn = |A| |B| Ιn 

   A–1 (AB)(adj (AB)) = |A| |B| A–1 

  ⇒ B adj (AB) = |B| adj A   ( A–1 =  adj A) 

  ⇒ B–1 B adj (AB) = |B| B–1 adj A ⇒ adj (AB) = (adjB) (adj A) 
 

30. Elementary row transformation of matrix :    

 The following operations on a matrix are called as elementary row transformations. 
 (i) Interchanging two rows. 
 (ii) Multiplications of all the elements of row by a nonzero scalar. 
 (iii) Addition of constant multiple of a row to another row. 
 

 Note : Similar to above we have elementary column transformations also. 
 

 Remarks :  
 Two matrices A & B are said to be equivalent if one is obtained from other using elementary 

transformations. We write A ≈ B. 
 

 Finding inverse using Elementry operations 
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 (a) Using row transformations : 
  If A is a matrix such that A–1 exists, then to find A–1 using elementary row operations, 
  Step I : Write A = IA and 
  Step II : Apply a sequence of row operation on A = IA till we get, I = BA. 
  The matrix B will be inverse of A. 
  Note : In order to apply a sequence of elementary row operations on the matrix equation  
  X = AB, we will apply these row operations simultaneously on X and on the first matrix A of the 

 product AB on RHS. 
 
 

 (b) Using column transformations : 
  If A is a matrix such that A–1 exists, then to find A–1 using elementary column operations, 
  Step I : Write A = AI and 
  Step II : Apply a sequence of column operations on A = AI till we get, I = AB. 
  The matrix B will be inverse of A. 
  Note : In order to apply a sequence of elementary column operations on the matrix equation  
  X = AB, we will apply these row operation simultaneously on X and on the second matrix B of 

 the product AB on RHS. 
 

Example # 23 : Obtain the inverse of the matrix A =  using elementary operations.  

Solution : Write A = IA, i.e.,  =  A 

  or   =   A (applying R1 ↔ R2) 

  or  =  A  (applying R3 → R3 – 3R1) 

  or  =  A (applying R1 → R1 – 2R2) 

  or   =  A (applying R3 → R3 +  5R2) 

  or  =  A  (applying R3 →  R3) 

  or  =  A (Applying R1 → R1 + R3) 
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  or  =   A (Applying R2 → R2 – 2R3) 

  Hence  A–1 =  
 

Self practice problems : 
 

 (17) If A is non-singular, show that adj (adj A) = |A|n – 2 A. 
  

 (18) Prove that adj (A–1) = (adj A)–1. 
  

 (19) For any square matrix A, show that |adj (adj A) | =  . 
  

 (20) If A and B are non-singular matrices, show that (AB)–1 = B–1 A–1. 
 

31. System of linear equations & matrices :  Consider the system 

  a11 x1 + a12x2 + .......... + a1nxn = b1 

  a21x1 + a22 x2 + ..........+ a2n xn = b2 

  ................................................. 

  am1x1 + am2x2 + ..........+ amnxn = bn. 

 Let A =  , X =  & B =  . 

 Then the above system can be expressed in the matrix form as AX = B. 

 The system is said to be consistent if it has atleast one solution. 
 

32. System of linear equations and matrix inverse :   

 If the above system consist of n equations in n unknowns, then we have AX = B where A is a  square  

 matrix.  
 

 Results :  
 

 (i) If A is non-singular, solution is given by X = A–1B.  
 

 (ii) If A is singular, (adj A) B = 0 and all the columns of A are not proportional, then the  

   system has infinitely many solutions. 

 (iii) If A is singular and (adj A) B ≠ 0, then the system has no solution  

   (we say it is inconsistent). 
 

33. Homogeneous system and matrix inverse :  
 If the above system is homogeneous, n equations in n unknowns, then in the matrix form it is  AX = O. 

 ( in this case b1 = b2 = ....... bn = 0), where A is a square matrix. 
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 Results :  

  (i) If A is non-singular, the system has only the trivial solution (zero solution) X = 0 
 

  (ii) If A is singular, then the system has infinitely many solutions (including the trivial  

   solution) and hence it has non-trivial solutions. 

 

Example # 24 :  Solve the system   using matrix inverse. 
 

Solution : Let A = , X =   & B = .  

  Then the system is AX = B. 

  |A| = 6. Hence A is non singular. 

  Cofactor A =   

   adj A =  

   A–1 =   adj A =  =  

   X = A–1 B =    i.e.  =    

   ⇒ x = 1, y = 2, z = 3. 
 

Example # 25 : Test the consistency of the system . Also find the solution, if any. 

Solution : A =   X =  , B =  
  

  [AB] =    ≈   
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    ≈         ≈  

  This is in Echelon form. 

  ρ(AB) = 2 = ρ(A) < number of unknowns 

  Hence there are infinitely many solutions n – ρ = 1.  

  Hence we can take one of the variables any value and the rest in terms of it. 
  Let z = r, where r is any number. 
  Then  x – y = 1 – 2r 

   x + y = 3 – r ⇒ x =  & y =   

  ∴ Solutions are (x, y, z) = . 
 

Self practice problems:  
 

 (21) A = . Find the inverse of A using |A| and adj A.  
 

 (22) Find real values of λ and µ so that the following systems has  

  (i) unique solution  (ii) infinitely many solutions  
  (iii) No solution. 
   x + y + z = 6 
   x + 2y + 3z = 1 

   x + 2y + λz = µ 
   

 

 (23) Find λ so that the following homogeneous system have a non zero solution 

   x + 2y + 3z = λx 

   3x + y + 2z = λy 

   2x + 3y + z = λz 
 

 Ans.  (21)  (22) (i) λ ≠ 3, µ ∈ R (ii) λ = 3, µ = 1 (iii) λ = 3, µ ≠ 1 (23) λ = 6 

 

34. Characteristic polynomial & characteristic equation :   
 

 Let A be a square matrix. Then the polynomial | A – xΙ | is called as characteristic polynomial of A & the 

equation | A – xΙ | = 0 is called as characteristic equation of A. 

 

35. Cayley - Hamilton theorem :   

 Every square matrix A satisfies its characteristic equation  

 i.e.  a0 xn + a1 xn – 1 + ........ + an – 1x + an = 0 is the characteristic equation of A, then 

  a0An + a1An – 1 + ......... + an – 1 A + an Ι = 0 
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Example # 26 :  If A =  , show that 5A–1 = A2 + A – 5Ι. 
 

Solution : We have the characteristic equation of A. 

  | A – xΙ | = 0 

  i.e.  = 0 

  i.e. x3 + x2 – 5x – 5 = 0. 

  Using Cayley - Hamilton theorem. 

   A3 + A2 – 5A – 5Ι = 0  ⇒ 5Ι = A3 + A2 – 5A 

  Multiplying by A–1, we get 

   5A–1 = A2 + A – 5Ι 

 
 
 
 


