
 

 

 

WAVE ON A STRING 

🕮 __________________________________________________________________________________ 

WAVES 
 Wave motion is the phenomenon that can be observed almost everywhere around us, as well it appears 

in almost every branch of physics. Surface waves on bodies of matter are commonly observed. Sound 

waves and light waves are essential to our perception of the environment. All waves have a similar 

mathematical description, which makes the study of one kind of wave useful for the study of other kinds 

of waves. In this chapter, we will concentrate on string waves, which are type of a mechanical waves. 

Mechanical waves require a medium to travel through. Sound waves, water waves are other examples 

of mechanical waves. Light waves are not mechanical waves, these are electromagnetic waves which 

do not require medium to propagate. 
 

 Mechanical waves originate from a disturbance in the medium (such as a stone dropping in a pond) and 

the disturbance propagates through the medium. The forces between the atoms in the medium are 

responsible for the propagation of mechanical waves. Each atom exerts a force on the atoms near it, and 

through this force the motion of the atom is transmitted to the others. The atoms in the medium do not, 

however, experience any net displacement. As the wave passes, the atoms simply move back and forth. 

Again for simplicity, we concentrate on the study of harmonic waves (that is those that can be represented 

by sine and cosine functions). 
 

TYPES OF MECHANICAL WAVES 
 Mechanical waves can be classified according to the physical properties of the medium, as well as in 

other ways. 
 

 1. Direction of particle motion : 

 Waves can be classified by considering the direction of motion of the particles in the medium as wave 

passes. If the disturbance travels in the x direction but the particles move in a direction, perpendicular to 

the x axis as the wave passes it is called a transverse wave. If the motion of the particles were parallel to 

the x axis then it is called a longitudinal wave. A wave pulse in a plucked guitar string is a transverse 

wave. A sound wave is a longitudinal wave. 
 

 2. Number of dimensions :  

 Waves can propagate in one, two, or three dimensions. A wave moving along a taut string is a one 

dimensional wave. A water wave created by a stone thrown in a pond is a two dimensional wave.  

A sound wave created by a gunshot is a three-dimensional wave 
 

 3. Periodicity :  

 A stone dropped into a pond creates a wave pulse, which travels outward in two dimensions. There may 

be more than one ripple created, but there is still only one wave pulse. If similar stones are dropped in 

the same place at even time intervals, then a periodic wave is created. 
 

 4. Shape of wave fronts : The ripples created by a stone dropped into a pond are circular in shape.  

A sound wave propagating outward from a point source has spherical wavefronts. A plane wave is a three 

dimensional wave with flat wave fronts. 

 (Far away from a point source emitting spherical waves, the waves appear to be plane waves.) 
 

 A solid can sustain transverse as well as longitudinal wave. A fluid has no well-defined form or structure 

to maintain and offer far more resistance to compression than to a shearing force. Consequently, only 

longitudinal wave can propagate through a gas or within the body of an ideal (non viscous) liquid.  

 However, transverse waves can exist on the surface of a liquid. In the case of ripples on a pond, the force 

restoring the system to equilibrium is the surface tension of the water, whereas for ocean waves, it is the 

force of gravity. 

 Also, if disturbance is restricted to propagate only in one direction and there is no loss of energy during 

propagation, then shape of disturbance remains unchanged. 

DESCRIBING WAVES : 
 Two kinds of graph may be drawn - displacement-distance and displacement-time. 



 

 

 A displacement - distance graph for a transverse mechanical wave shows the displacement y of the 

vibrating particles of the transmitting medium at different distance x from the source at a certain instant 

i.e. it is like a photograph showing shape of the wave at that particular instant. 

 The maximum displacement of each particle from its undisturbed position is the amplitude of the wave. 

In the figure 1, it is OA or OB.  

 
 The wavelength λ of a wave is generally taken as the distance between two successive crests or two 

successive trough. To be more specific, it is the distance between two consecutive points on the wave 

which have same phase. 

 A displacement-time graph may also be drawn for a wave motion, showing how the displacement of one 

particle at a particular distance from the source varies with time. If this is simple harmonic variation then 

the graph is a sine curve. 
 

WAVE LENGTH, FREQUENCY, SPEED 

 If the source of a wave makes f vibrations per second, so too will the particles of the transmitting medium. 

That is, the frequency of the waves equals frequency of the source. 

 When the source makes one complete vibration , one wave is generated and the disturbance spreads 

out a distance λ from the source. If the source continues to vibrate with constant frequency f, then f waves 

will be produced per second and the wave advances a distance f λ in one second. If v is the wave speed 

then v = ƒ λ  

 This relationship holds for all wave motions. 
 

 Travelling wave  : 

 Imagine a horizontal string stretched in the x direction. Its equilibrium shape is flat and straight. Let y 

measure the displacement of any particle of the string from its equilibrium position, perpendicular to the 

string. If the string is plucked on the left end, a pulse will travel to the right. The vertical displacement y of 

the left end of the string (x = 0) is a function of time. 

  i.e. y (x = 0, t)  = f(t) 

 If there are no frictional losses, the pulse will travel undiminished, retaining its original shape. If the pulse 

travels with a speed v, the ‘position’ of the wave pulse is x = vt. Therefore, the displacement of the particle 

at point x at time t was originated at the left end at time t –  . [y, (x, t) is function of both x and t]. But the 

displacement of the left end at time t is f(t) thus at time t – , it is f(t –  ). 

 Therefore :  y(x, t) = y (x = 0,  t –  ) = f (t – ) 

 

 This can also be expressed as  

 ⇒       (vt – x) ⇒    –   (x – vt)   

  y (x, t) =  g(x – vt) 



 

 

 using any fixed value of t (i.e. at any instant), this shows shape of the string.  

 If the wave is travelling in – x direction, then wave equation is written as  

   y(x, t) = f(t + ) 

 The quantity x – vt is called phase of the wave function. As phase of the pulse has fixed value  

   x – vt = const. 

 Taking the derivative w.r.t. time  = v 

 where v is the phase velocity although often called wave velocity. It is the velocity at which a particular 

phase of the disturbance travels through space.  

 In order for the function to represent a wave travelling at speed v, the three quantities x, v and t must 

appear in the combination (x + vt) or (x – vt). Thus (x – vt)2 is acceptable but x2 – v2
 t2 is not. 

 

 
Example 1. A wave pulse is travelling on a string at 2 m/s. Displacement y of the particle at x = 0 at any time 

t is given by  y =  . Find : 

  (i) Expression of the function y =(x, t) i.e. displacement of a particle at position x and time t. 

  (ii) Shape of the pulse at t = 0 and t = 1s. 

Solution : (i)  By replacing t by , we can get the desired wave function i.e. 

   y =  

 (ii) We can use wave function at a particular instant, say t = 0, to find shape of the wave pulse 

using different values of x. 

 

at  t = 0  y =   

at x = 0   y = 2 

 x = 2  y = 1 

 x = – 2  y = 1 

 x = 4  y = 0.4  

 x = –4  y = 0.4 

Using these value, shape is drawn.  

 

 Similarly for t = 1s, shape can be drawn. What do you conclude about direction of motion of the 

wave from the graphs? Also check how much the pulse has moved in 1s time interval. This is 

equal to wave speed. Here is the procedure : 

   y =     

  at  t = 1s  

  at x = 2   y = 2  (maximum value) 

  at  x = 0  y = 1  

  at  x = 4  y = 1  



 

 

    
  The pulse has moved to the right by 2  units in 1s interval. 

  Also as t –  = constt. 
  Differentiating w.r.t. time 

  1 –  .  = 0  ⇒  = 2. 

🕮 
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TRAVELLING SINE WAVE IN ONE DIMENSION (WAVE ON STRING) : 

 The wave equation  is quite general. If holds for arbitrary wave shapes, and for transverse 

as well as for longitudinal waves. 

 A complete description of the wave requires specification of f(x). The most important case, by far, in 

physics and engineering is when f(x) is sinusoidal, that is, when the wave has the shape of a sine or 

cosine function. This is possible when the source, that is moving the left end of the string, vibrates the 

left end x = 0 in a simple harmonic motion. For this, the source has to continuously do work on the string 

and energy is continuously supplied to the string. 

 The equation of motion of the left end may be written as  

   f (t) = A sin ωt  

 where A is amplitude of the wave, that is maximum displacement of a particle in the medium from its 

equilibrium position ω is angular frequency, that is 2πf where f is frequency of SHM of the source. 

 The displacement of the particle at x at time t will be  

    or  y = A sin ω  y = A sin (ωt – kx) 

 where  k =  is called wave number. T =  =  is period of the wave, that is the time it takes to 
travel the distance between two adjacent crests or through (it is wavelength λ). 

 The wave equation y = A sin (ωt – kx) says that at x = 0 and t = 0, y = 0. This is not necessarily the case, 

of source. For the same condition, y may not equal to zero. Therefore, the most general expression would 

involve a phase constant φ, which allows for other possibilities, 

  y = A sin (ωt – kx + φ) 

 A suitable choice of φ allows any initial condition to be met. The term kx – wt + φ is called the phase of 

the wave. Two waves with the same phase (on phase differing by a multiple of 2π) are said to be  

“in phase”. They execute the same motion at the same time. 

 The velocity of the particle at position x and at time t is given by 

    cos (ωt – kx + φ) 
 The wave equation has been partially differentiated keeping x as constant, to specify the particle. Note 

that wave velocity  is different from particle velocity while waves velocity is constant for a medium 



 

 

and it along the direction of string, whereas particle velocity is perpendicular to wave velocity and is 

dependent upon x and t. 

 
Example 2. A sinusoidal wave travelling in the positive x direction has an amplitude of 15 cm, wavelength 40 

cm and frequency 8 Hz. The vertical displacement of the medium at t = 0 and x = 0 is also 15 

cm, as shown. 

          
 (a) Find the angular wave number, time period, angular frequency and speed of the wave. 
 

 (b) Determine the phase constant φ, and write a general expression for the wave function. 

Solution : (a) k =  =  =  rad/cm 

   T =   =  s   ω = 2πf = 16 s–1  

   v = fλ = 320 cm/s 

  (b) It is given that A = 15 cm 

   and also  y = 15 cm at x = 0 and t = 0  

   then using  y = A sin (ωt – kx + φ) 

     15 = 15 sin φ  ⇒ sin φ = 1  

   or  φ =  rad. 

   Therefore, the wave function is  

     y = A sin (ωt – kx + ) 

       = (15 cm) sin  
 

Example 3. A sinusoidal wave is travelling along a rope. The oscillator that generates the wave completes 

60 vibrations in 30 s. Also, a given maximum travels 425 cm along the rope in 10.0 s. What is 

the wavelength? 

Solution : v =  = 42.5 cm/s.  f =  = 2 Hz  λ =  = 21.25 cm. 

🕮 
____________________________________________
_______________________ 

THE LINEAR WAVE EQUATION : 
 By using wave function y = A sin (ωt – kx + φ), we can describe the motion of any point on the string. Any 

point on the string moves only vertically, and so its x coordinate remains constant. The transverse velocity 

vy of the point and its transverse acceleration ay are therefore  

   vy =  ⇒  = ωA cos (ωt – kx + φ)   ....(1) 



 

 

   ay =  ⇒  = –ω2 A sin (ωt – kx + φ) ....(2) 

 and hence vy, max = ωA  

   ay, max = ω2A 

 The transverse velocity and transverse acceleration of any point on the string do not reach their maximum 

value simultaneously. Infact, the transverse velocity reaches its maximum value (ωA) when the 

displacement y = 0, whereas the transverse acceleration reaches its maximum magnitude (ω2A) when y 

= ± A 

 further    ⇒  = –kA cos (ωt – kx + φ)    ....(3) 

       =  = – k2 A sin (ωt – kx + φ)   ....(4) 

 From (1) and (3)   = –    

    ⇒ vP = – vw × slope 

 i.e. if the slope at any point is negative, particle velocity is positive and vice-versa, for a wave moving 

along positive x axis i.e. vw is positive.  

 For example, consider two points A and B on the y-x curve for a wave, as shown. The wave is moving 

along positive x-axis. 
        

 Slope at A is positive therefore at the given moment, its velocity is negative. That means it is coming 

downward. Reverse is the situation for particle at point B. 

 Now using equation (2) and (4) 

    

    ⇒  

 This is known as the linear wave equation or differential equation representation of the travelling wave 

model. We have developed the linear wave equation from a sinusoidal mechanical wave travelling 

through a medium, but it is much more general. The linear wave equation successfully describes waves 

on strings, sound waves and also electromagnetic waves. 

 
Example 4. Verify that wave function  

   y =   

  is a solution to the linear wave equation. x and y are in cm.  

 

 

 

 

 



 

 

Solution : By taking partial derivatives of this function w.r.t. x and to t 

   , and 

    

  or  

  Comparing with linear wave equation, we see that the wave function is a solution to the 

linear wave equation if the speed at which the pulse moves is 3 cm/s. It is apparent from wave 

function therefore it is a solution to the linear wave equation. 

🕮 
____________________________________________
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THE SPEED OF TRANSVERSE WAVES ON STRINGS  
 The speed of a wave on a string is given by  

       
 where T is tension in the string (in Newtons) and μ is mass per unit length of the string (kg/m). 

 It should be noted that v is speed of the wave w.r.t. the medium (string).  

 In case the tension is not uniform in the string or string has nonuniform linear mass density then v is 

speed at a given point and T and μ are corresponding values at that point. 

 
Example 5. 

 

 

 

Solution : 

Find speed of the wave generated in the string as in the situation 

shown.  Assume that the tension is not affected by the mass of the 

cord. 

 

T = 20 × 10 = 200 N  

 

 
 

Example 6.  A uniform rope of mass m and length L hangs from a ceilling. (a) Show that the speed of a 

transverse wave on the rope is a funciton of y, the distance from the lower end, and is given by 

v = . (b) Show that the time a transverse wave takes to travel the length of the rope is given 

by t = 2 . 

Solution : (a) As mas per unit length    

 µ =    

 ∴   V =       ∴    Tension at P =  μyg  

 ∴   V =  =  

 

  (b) Now  =    

    =   t = 2  



 

 

 

Example 7. A taut string having tension 100 N and linear mass density 0.25 

kg/m is used inside a cart to generate a wave pulse starting at 

the left end, as shown. What should be the velocity of the cart 

so that pulse remains stationary w.r.t. ground. 

 

 

Solution : Velocity of pulse =  

  Now   

   0 = 20 i +   

    = – 20i m/s 

🕮 
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POWER TRANSMITTED ALONG THE STRING BY A SINE WAVE  
 When a travelling wave is established on a string, energy is transmitted along the direction of propagation 

of the wave, in form of potential energy and kinetic energy 

 Average Power  = 2π2 f2 A2 μ v 

 Derivation of average power : 

 suppose equation of the wave is :  

y = A sin (ω (t – )) 

Power  = Fy Vy  

P = (F sin θ)   = F sin θ   

 Here F is tension in the string F = μv2 and  

 For small angle sin θ ≈ tan θ =  

 and as  y = A sin (ω (t – )) so  

  = –  cos  (ω (t – ))  and  

 = Aω cos  (ω (t –  ))   

 putting the values P =  μv2    

  = v  so P = μv3  

 P =  μv3   or P =  

 ∴ Average value of    =  so   

 Average power    =   

 As ω = 2 πf  



 

 

 so Average Power   = 2π2 f2 A2 μ v 

 Energy Transferred =  

 Energy transfered in one time period = Pav T 

 This is also equal to the energy stored in one wavelength. 

 

 Intensity : Energy transferred per second per unit cross sectional area is called intensity of the wave. 

   Ι =  ⇒ Ι =  ρω2 A2v 

 This is average intensity of the wave. 

 Energy density of a wave is energy per unit volume. 

   =  

 
Example 8. A string with linear mass density m = 5.00 × 10–2 kg/m is under a tension of 80.0 N. How much 

power must be supplied to the string to generate sinusoidal waves at a frequency of 60.0 Hz and 

an amplitude of 6.00 cm? 

Solution : The wave speed on the string is  

   v =   = = 40.0 m/s 

  Because φ = 60 Hz, the angular frequency ω of the sinusoidal waves on the string has the value 

   ω = 2πf = 2π(60.0 Hz) = 377 s–1  

  Using these values in following Equation for the power, with A = 6.00 × 10–2 m,. gives 

   p =  μω2A2 v 

   =  (5.00 × 10–2 kg/m) (377s–1)2 × (6.00 × 10–2 m)2 (40.0 m/s) 

   = 512 W. 
 

Example 9. Two waves in the same medium are represented by y-t curves in the figure. Find ratio of their 

average intensities? 

         

Solution :  =  .=   =  
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THE PRINCIPLE OF SUPERPOSITION 

 When two or more waves simultaneously pass through a point, the disturbance at the point is given by 

the sum of the disturbances each wave would produce in absence of the other wave(s). 

 In general, the principle of superposition is valid for small disturbances only. If the string is stretched too 

far, the individual displacements do not add to give the resultant displacement. Such waves are called 

nonlinear waves. In this course, we shall only be talking about linear waves which obey the superposition 

principle. 

 To put this rule in a mathematical form, let y1(x, t) and y2(x, t) be the displacements that any element of 

the string would experience if each wave travelled alone. The displacement y(x, t) of an element of the 

string when the waves overlap is then given by  

    y(x, t) = y1(x, t) + y2(x, t) 

 The principal of superposition can also be expressed by stating that overlapping waves algebraically add 

to produce a resultant wave. The principle implies that the overlapping waves do not in any way alter the 

travel of each other. 

 If we have two or more waves moving in the medium the resultant waveform is the sum of wave functions 

of individual waves. 
 

 Fig: A sequence of pictures showing two pulses travelling in opposite directions along a stretched string. 

When the two disturbances overlap they give a complicated pattern as shown in (b). In (c), they have 

passed each other and proceed unchanged. 

          

An Illustrative examples of this principle is phenomena of interference and reflection of waves.  

  

 
 

Example 10. Two waves passing through a region are represented by     

   y = (1.0 m) sin [(3.14 cm–1) x – (157 s–1) t] 

  and y = (1.5 cm) sin [(1.57 cm–1)x – (314 s–1) t]. 

  Find the displacement of the particle at x = 4.5 cm at time t = 5.0 ms. 

Solution : According to the principle of superposition, each wave produces its disturbance independent of 

the other and the resultant disturbance is equal to the vector sum of the individual disturbance. 

The displacements of the particle at x = 4.5 cm at time t = 5.0 ms due to the two waves are, 

   y1 = (1.0 cm) sin [(3.14 cm–1) (4.5 cm)– (157 s–1) (5.0 × 10–3 s)] 

       = (1.0 cm) sin    = (1.0 cm) sin   =   

  and y2 = (1.5 cm) sin [(1.57 cm–1)(4.5 cm) – (314 s–1) (5.0 × 10–3 s)]  



 

 

       = (1.5 cm) sin  = (1.5 cm ) sin   

       = (1.5 cm) sin  = –   

  The net displacement is : y = y1 + y2 =  = – 0.35 cm. 

🕮 
____________________________________________
_______________________ 

 

INTERFERENCE OF WAVES GOING IN SAME DIRECTION 

 Suppose two identical sources send sinusoidal waves of same angular frequency ω in positive  

x-direction. Also, the wave velocity and hence, the wave number k is same for the two waves. One source 

may be situated at different points. The two waves arriving at a point then differ in phase. Let the 

amplitudes of the two waves be A1 and A2 and the two waves differ in phase by an angle φ. Their 

equations may be written as 

    y1 = A1 sin (kx – ωt) 

 and    y2 = A2 sin (kx – ωt + φ). 

 According to the principle of superposition, the resultant wave is represented by 

  y = y1 + y2 = A1 sin (kx – ωt) + A2 sin (kx – ωt + φ). 

 we get y = A sin (kx – ωt + α) 

 where,     A =     (A is amplitude of the resultant wave)   

 Also,       tan α =     (α is phase difference of the resultant wave with the first wave) 

 Constructive and Destructive Interference 

 Constructive Interference : 

 When resultant amplitude A is maximum  

  A = A1 + A2  

 when  cos φ = + 1 or φ = 2nπ  

 where n is an integer. 

 

 Destructive interference : 

 When resultant amplitude A is minimum  

 or A = |A1 – A2| 

 When  cos φ = – 1   or φ = (2n + 1)π 

 where n is an integer. 

 
 

Example 11. Two sinusoidal waves of the same frequency travel in the same direction along a string.  

If A1 = 3.0 cm, A2 = 4.0 cm, φ1 = 0, and φ2 = π/2 rad, what is the amplitude of the resultant wave? 
 

Solution : Resultant amplitude =  = 5 cm. 

 
 



 

 

 
 
🕮 
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REFLECTION AND TRANSMISSION OF WAVES 

 A travelling wave, at a rigid or denser boundry, is reflected with a phse reversal but the reflection at an 

open boundary (rarer medium) takes place without any phase change. The transmitted wave is never 

inverted, but propagation constant k is changed. 

          
  

 Amplitude of reflected and transmitted waves : 

 v1 and v2 are speeds of the wave in incidenting and reflecting mediums respectively then 

  Ar =    At =   

 Ar is positive if v2 > v1, i.e., wave is reflected from a rarer medium. 
 

 
Example 12. A harmonic wave is travelling on string 1. At a junction with string 2 it is partly reflected and partly 

transmitted. The linear mass density of the second string is four times that of the first string, and 

that the boundary between the two strings is at x = 0. If the expression for the incident wave is,  

yi = Ai cos (k1 x – ω1t) 

  What are the expressions for the transmitted and the reflected waves in terms of Ai, k1 and ω1? 

Solution : Since v =  ,    T2 = T1   and μ2 = 4μ1  

  we have,  v2 =       ... (i)  
  The frequency does not change, that is, 

     ω1 = ω2      ....(ii) 

 Also, because k = ω/v, the wave numbers of the harmonic waves in the two strings are related 
by, 

     k2 =  =  = 2  = 2k1    ....(iii) 
  The amplitudes are, 

     At =  Au =  Ai =  Ai ....(iv) 

  and   Ar =  Au =  Ai =   ....(v) 
  Now with equation (ii), (iii) and (iv), the transmitted wave can be written as, 



 

 

     yt =  Ai cos (2k1 x – ω1t)  Ans. 

  Similarly the reflected wave can be expressed as, 

    =  cos (k1x + ω1t + π)   Ans.  



 

 

🕮 
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STANDING WAVES : 
 Suppose two sine waves of equal amplitude and frequency propagate on a long string in opposite 

directions. The equations of the two waves are given by 

   y1 = A sin (ωt – kx) and y2 = A sin (ωt + kx + φ). 

 These waves interfere to produce what we call standing waves. To understand these waves, let us 

discuss the special case when φ = 0. 

 The resultant displacements of the particles of the string are given by the principle of superposition as  

   y = y1 + y2  

      = A [sin (ωt – kx) + sin(ωt + kx)] 

      = 2A sin ωt cos kx 

 or,  y = (2A cos kx) sin ωt.  .... 

 

 This is the required result and from this it is clear that : 

 1.  As this equation satisfies the wave equation, 

    

 it represents a wave. However, as it is not of the form f(ax ± bt), the wave is not travelling and so 

is called standing or stationary wave. 

 

 2. The amplitude of the wave 

   As = 2A cos kx  

  is not constant but varies periodically with position (and not with time as in beats). 
 

 3. The points for which amplitude is minimum are called nodes and for these  

   cos kx = 0,   i.e., kx =  

  i.e., x = , ....    

  i.e., in a stationary wave, nodes are equally spaced.  
 

4. The points for which amplitude is maximum are called antinodes and for these, 

  cos kx = ± 1, i.e.,  kx = 0, π, 2π, 3π, ...... 

 i.e., x = 0, , , ,....    

 i.e., like nodes, antinodes are also equally spaced with spacing (λ/2) and Amax = ± 2A. 

Furthermore, nodes and antinodes are alternate with spacing (λ/4). 

  

 

 

 

 

 

 



 

 

5. The nodes divide the medium into segments (or loops). All the particles in a segment vibrate in 

same phase, but in opposite phase with the particles in the adjacent segment. Twice in one 

period all the particles pass through their mean position simultaneously with maximum velocity 

(Asω), the direction of motion being reversed after each half cycle.  

 
 

6.  Standing waves can be transverse or longitudinal, e.g., in strings (under tension) if reflected wave 

exists, the waves are transverse-stationary, while in organ pipes waves are  

longitudinal-stationary. 

7. As in stationary waves nodes are permanently at rest, so no energy can be transmitted across 

them, i.e., energy of one region (segment) is confined in that region. However, this energy 

oscillates between elastic potential energy and kinetic energy of the particles of the medium. 

When all the particles are at their extreme positions KE is minimum while elastic PE is maximum 

(as shown in figure A), and when all the particles (simultaneously) pass through their mean 

position KE will be maximum while elastic PE minimum (Figure B). The total energy confined in 

a segment (elastic PE + KE), always remains the same. 

   
 

 

 

 
Example 13. Two waves travelling in opposite directions produce a standing wave. The individual wave 

functions are  

   y1 = (4.0 cm) sin(3.0x – 2.0t) 



 

 

   y2 = (4.0 cm) sin (3.0x + 2.0t) 

  where x and y are in centimeter.  

  (a) Find the maximum displacement of a particle of the medium at x = 2.3 cm.  

  (b) Find the position of the nodes and antinodes. 

Solution : (a) When the two waves are summed, the rasult is a standing wave whose mathematical 

representaion is given by Equation, with A = 4.0 cm and k = 3.0 rad/cm; 

    y = (2A sin kx) cos ωt = [(8.0 cm) sin 3.0 x] cos 2.0 t 

  Thus, the maximum displacement of a particle at the position x = 2.3 cm is  

   ymax = [(8.0 cm) sin 3.0x]x = 2.3 cm  

         = (8.0 m) sin (6.9 rad) = 4.6 cm 

  (b) Because k = 2π/λ = 3.0 rad/cm, we see that λ = 2π/3cm. Therefore, the antinodes are 

located at  

   x = n  cm   (n = 1, 3, 5, .....)  

  and the nodes are located at  

   x = n   cm   (n = 1, 2, 3, .....)   
 

Example 14. Two travelling waves of equal amplitudes and equal frequencies move in opposite direction along 

a string. They interfere to produce a standing wave having the equation. 

   y = A cos kx sin ωt 

 in which A = 1.0 mm, k = 1.57 cm–1 and ω = 78.5 s–1. (a) Find the velocity and amplitude of the 

component travelling waves. (b) Find the node closest to the origin in the region x > 0. (c) Find 

the antinode closest to the origin in the region x > 0. (d) Find the amplitude of the particle at  

x = 2.33 cm. 

Solution : (a) The standing wave is formed by the superposition of the waves 

   y1 =  sin (ωt – kx) and y2 =  sin (ωt + kx). 

   The wave velocity (magnitude) of either of the waves is  

   v =  =  = 50 cm/s; Amplitude = 0.5 mm. 

  (b) For a node, cos kx = 0. 

   The smallest positive x satisfying this relation is given by  

   kx = π/2 or, x =  =   = 1 cm 

  (c) For an antinode, |cos kx| = 1. 

   The smallest positive x satisfying this relation is given by  

   kx = π  or, x =  = 2 cm 
  (d) The amplitude of vibration of the particle at x is given by | A cos kx |. For the given point, 

   kx = (1.57 cm–1) (2.33 cm) = π = π + . 

   Thus, the amplitude will be  

   (1.0 mm) | cos (π + π/6) | =  mm = 0.86 mm. 

🕮 
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VIBRATION OF STRING : 
 (a) Fixed at both ends : 



 

 

 Suppose a string of length L is kept fixed at the ends x = 0 and x = L. In such a system suppose we send 

a continuous sinusoidal wave of a certain frequency, say, toward the right. When the wave reaches the 

right end. It gets reflected and begins to travel back. The left-going wave then overlaps the wave, which 

is still travelling to the right. When the left-going wave reaches the left end, it gets reflected again and the 

newly reflected wave begins to travel to the right. overlapping the left-going wave. This process will 

continue and, therefore, very soon we have many overlapping waves, which interfere with one another. 

In such a system, at any point x and at any time t, there are always two waves, one moving to the left 

and another to the right. We, therefore, have 

  y1(x, t) = ym sin (kx – ωt)  (wave travelling in the positive direction of x-axis)  

 and  y2(x, t) = ym sin (kx + ωt)  (wave travelling in the negative direction of x-axis). 

 The principle of superposition gives, for the combined wave 

  y’(x, t) = y1(x, t) + y2(x, t) 

  = ym sin (kx – wt) + ym sin (kx + ωt) 

  = (2ym sin kx) cos ωt   

 It is seen that the points of maximum or minimum amplitude stay at one position. 
 

Nodes :   

The amplitude is zero for values of kx that give sin kx = 0 i.e. for, 

   kx = nπ, for n = 0, 1, 2, 3,..... 

 Substituting k = 2π/λ in this equation, we get  

   x = n  ,  for n = 0, 1, 2, 3,..... 

 The positions of zero amplitude are called the nodes. Note that a distance of  or half a wavelength 

separates two consecutive nodes.  
 

Antinodes :  

 The amplitude has a maximum value of 2ym, which occurs for the values of kx that give |sin kx| = 1. Those 

values are 

   kx = (n + 1/2)π for n = 0, 1, 2, 3,.... 

 Substituting k = 2π/λ in this equation, we get. 

   x = (n + 1/2)   for n = 0, 1, 2, 3,.... 

 as the positions of maximum amplitude. These are called the antinodes. The antinodes are separated 

by  
λ/2 and are located half way between pairs of nodes. 

 For a stretched string of length L, fixed at both ends, the two ends of the ends is chosen as position x = 

0, then the other end is x = L. In order that this end is a node; the length L must satisfy the condition 

   L = n , for n = 1, 2, 3,.... 

 This condition shows that standing waves on a string of length L have restricted wavelength given by 

   λ = , for n = 1, 2, 3,..... 

 The frequencies corresponding to these wavelengths follow from Eq. as 

   f = n , for n = 1, 2, 3,..... 

 

 where v is the speed of travelling waves on the string. The set of frequencies given by equation are called 

the natural frequencies or modes of oscillation of the system. This equation tells us that the natural 

frequencies of a string are integral multiples of the lowest frequency f = , which corresponds to n = 1. 

The oscillation mode with that lowest frequency is called the fundamental mode or the first harmonic. The 

second harmonic or first overtone is the oscillation mode with n = 2. The third harmonic and second 

overtone corresponds to n = 3 and so on. The frequencies associated with these modes are often labeled 



 

 

as ν1, ν2, ν3 and so on. The collection of all possible modes is called the harmonic series and n is called 

the harmonic number. 
 

 Some of the harmonic of a stretched string fixed at both the ends are shown in figure. 

 
 

 
Example 15. A middle C string on a piano has a fundamental freuquency of 262 Hz, and the A note has 

fndametal frquency of 440 Hz. (a) Calculate the frequencies of the next two harmonics of the C 

string. (b) If the strings for the A and C notes are assumed to have the same mass per unit length 

and the same length, determine the ratio of tensions in the two strings. 

Solution :. (a)  Because f1 = 262 Hz for the C string, we can use Equation to find the frequencies f2 and 

f3; 

    f2 = 2f1 = 524 Hz 

    f3 = 3f1 = 786 Hz 

   Using Equation for the two strings vibrating at their fundamental frequencies gives 

    f1A =   ⇒ f1C =   

  ∴   =  ⇒  =  =   = 2.82. Ans. 
 

 

 

 

 

Example 16. A wire having a linear mass density 5.0 × 10–3 kg/m is stretched between two rigid supports with 

a tension of 450 N. The wire resonates at a frequency of 420 Hz. The next higher frequency at 

which the same wire resonates is 490 Hz. Find the length of the wire.   

Solution : Suppose the wire vibrates at 420 Hz in its nth harmonic and at 490 Hz in its (n + 1)th harmonic. 

    420 s–1 =    ....(i) 

  and  490 s–1 =     ....(ii) 



 

 

  This gives   =  or, n = 6. 

  Putting the value in (i), 

    420 s–1 =  =  m/s  

  or,  L =   m = 2.1 m 
 

🕮 
____________________________________________
______________________ 

 (b) Fixed at one end : 

 Standing waves can be produced on a string which is fixed at one end and whose other end is free to 

move in a transverse direction. Such a free end can be nearly achieved by connecting the string to a very 

light thread. 

 If the vibrations are produced by a source of “correct” frequency, standing waves are produced. If the end  

x = 0 is fixed and x = L is free, the equation is again given by 

    y = 2A sin kx cos ωt 

 with the boundary condition that x = L is an antinode. The boundary condition that x = 0 is a node is 

automatically satisfied by the above equation. For x = L to be an antinode, 

    sin kL = ± 1 

 or,  kL = π    or,  =  

 or,   = n +    or,  f =   =   ..... 

 These are the normal frequencies of vibration. The fundamental frequency is obtained when n = 0, i.e., 

   f0 = v/4L    

 The overtone frequencies are    

   f1 =  = 3f0      

 

   f2 =  = 5f0      

 

 We see that all the harmonic of the fundamental are not the allowed frequencies for the standing waves. 

Only the odd harmonics are the overtones. Figure shows shapes of the string for some of the normal 

modes. 

🕮 
____________________________________________
_______________________ 

SONOMETER : 
 Sonometer consists of a hollow rectangular box of light wood.  One end of the experimetnal wire is 

fastened to one end of the box.  The wire passes over a frictionaless pulley at the other end of the box.  

The wire is stretched by a tension T. 



 

 

 
 The box serves the purpose of increasing the loudness of the sound produced by the vibrating wire.  If 

the length the wire between the two bridges is , then the frequency of vibration is  

    f  =    

 To test the tension of a tuning fork and string, a small paper rider is placed on the string.  When a vibrating 

tuning fork is placed on the box, and if the length between the bridges is properly adjusted, then when 

the two frequencies are exactly equal, the string quickly picks up the vibrations of the fork and the rider 

is thrown off the wire. 

 Comment : 

    m  =     =   

         =   πr2d  

 where r is the radius of the wire and d is the density of the material of the wire.  Thus the frequency of 

vibration of a given string under tension is 

    f  ∝     

  Thus   f  ∝    (for same material wires) 

  and  f  ∝    (for different material wires of same radius). 
 

 MELDE'S EXPERIMENT : 

 In Melde's experiment, one end of a flexible piece of thread is tied to the end of a tuning fork.  The other 

end passed over a smooth pulley carries a pan which can be suitable loaded. 

     
 Case 1.  In a vibrating string of fixed length, the product of number of loops in a vibrating string and 

square root of tension is a constant or  

    n  = constant. 

 

 Case 2. When the tuning fork is set vibrating as shown in fig. then the prong vibrates at right angles to 

the thread.  As a result the thread is set into motion.  The frequency of vibration of the thread (string) is 

equal to the frequency of the tuning fork.  If length and tension are properly adjusted then, standing waves 

are formed in the string.  (This happens when frequnecy of one of the normal modes of the string matched 

with the frequency of the tuning fork).  Then, if n loops are formed in the thread, then the frequency of the 

tuning fork is given by  

    f  =     



 

 

 Case 3.  If the tuning fork is turned through a right angle, so that the prong vibrates along the length of 

the thread, then the string performs only a half oscillation for each complete vibrations of the prong.  This 

is because the thread sags only when the prong moves towards the pulley i.e. only once in a vibration. 

      
 The thread performs sustained oscillations when the natural frequency of the given length of the thread 

under tension is half that of the fork.  Thus if n loops are formed in the thread, then the frequency of the 

tuning fork is  

    f  =     
 

 

Problem 1. A wave pulse moving along the x axis is represented by the wave function 

   y(x, t) =  

  where x and y are measured in cm and t is in seconds. 

  (i)  In which direction is the wave moving? 

  (ii)  Find speed of the wave. 

  (iii)  Plot the waveform at t = 0, t = 2s. 

Solution : y  =  

  (i)  As wave is moving in +ve x direction because  

   y = (x, t) = f(t – x/v) = f/v(vt – x)  
 

  (ii)   Now x – v t is compared with x – 3t   

   ∴ v = 3 cm/sec.   

   Ans. (i) Positive x axis (ii) 3 cm/s.   

 

 Problem 2. At t = 0, a transvalues wave pulse in a wire is described by the function y =  where  

x and y are in metres write the function y(x, t) that describes this wave if it is travelling in the 

positive x direction with a speed of 4.5 m/s. 

Solution : y =  = f(x)   

  As y(x, t) = f(x – vt)   =  

  Ans.  
 

Problem 3. The wave function for a travelling wave on a string is given as 

  y (x, t) = (0.350 m) sin (10π t – 3πx + ) 

  (a) What are the speed and direction of travel of the wave? 

  (b) What is the vertical displacement of the string at t = 0, x = 0.1 m? 

  (c) What are wavelength and frequency of the wave? 

Solution : Y (x, t) = (0.350m) sin (10π t – 3 π x +  ) 

  comparing with equation ; 



 

 

  Y = A sin (wt – kx + φ)  w = 10 π , k = 3π,  f =  

  (a) speed =  =  = 3.33 m/sec  and along  +ve x axis 

  (b) y (0.1, 0)  =  0.35 sin (10 π x O – 3 π (0.1) + ) 

   = 0.35 sin  = – 5.48 cm 

  (c) k =   = 3 π =)   cm = 0.67 cm 

   and  ¦ =  =  = 5 Hz. 

 

Problem 4. Show that the wave function y = eb(x – vt) is a solution of the linear wave equation. 

Solution :  Y = eb(x–v t) = beb(x–v t)  and   = (bv)eb(xv– v t) 

   = b2 eb(x–v t)    and   = (bv)2 eb(x – v t)   

  obviously ;  =   

  which is a Linear wave equation. 

 

Problem 5. A transverse wave of amplitude 0.50 mm and frequency 100 Hz is produced on a wire stretched 

to a tension of 100 N. If the wave speed is 100 m/s, what average power is the source transmitting 

to the wire?  

Solution :  Average Power; 

  < P >  = 2 π2 ƒ2 A2µV   

  = 2π2 (100)2 (0.5 × 10–3)3     

  = 49 mW Ans 49 mW 

 

Problem 6. Two sinusoidal waves of the same frequency are to be sent in the same direction along a taut 

string. One wave has an amplitude of 5.0 mm, the other 8.0 mm. (a) What phase difference φ1 

between the two waves results in the smallest amplitude of the resultant wave? (b) What is that 

smallest amplitude? (c) What phase difference φ2 results in the largest amplitude of the resultant 

wave? (d) What is that largest amplitude? (e) What is the resultant amplitude if the phase angle 

is (φ1 – φ2)/2? 
 

 

 

Solution :  (a) For smallest amplitude ;  

   AR = | A1 – A2 |  and  that is possible when  φ1 = π  between A1 and A2 
 

  (b) AR = | A1 – A2 | = 3 mm 
 

  (c) for largest amplitude ; 
 

   AR = | A1 + A2 |  and that is possible when φ 2 = 0 between  A1 and A2     
 

  (d) AR  = | A1 + A2 | = 13 mm 
 

  (e) when φ =  =  =    



 

 

  ∴ AR = [A1
2 + A2

2 + 2A1 A2 cos  ]1/2   

   = 9.4 mm 

  Ans. (a) π rad; (b) 3.0 mm; (c) 0 rad; (d) 13 mm; (e) 9.4 mm  

 

Problem 7. A string fixed at both ens is 8.40 m long and has a mass of 0.120 kg. It is subgjected to a tension 

of 96.0 N and set oscillating. (a) What is the speed of the waves on the string? (b) What is the 

lognest possible wavelength for a standing wave? (c) Give the frequency of the wave. 

Solution : (a) V =  =  =  82 m/sec. 

  (b) for longent possible  warelength ;  

      

   λ = 2 = 2 × 8.4 = 16.8 m  

  (c) V = ƒ λ = ) ¦ =  =   = 4.88 HZ. 

  Ans. (a) 82.0 m/s, (b) 16.8 m, (c) 4.88 Hz.    

    
 

 


