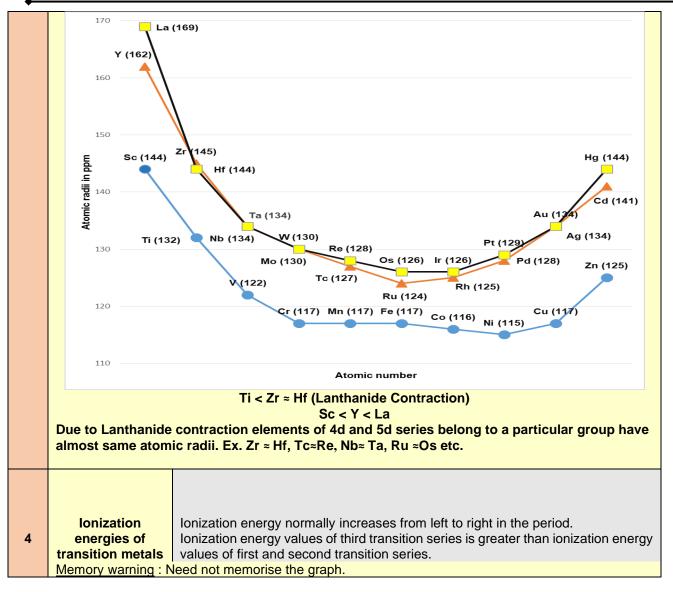
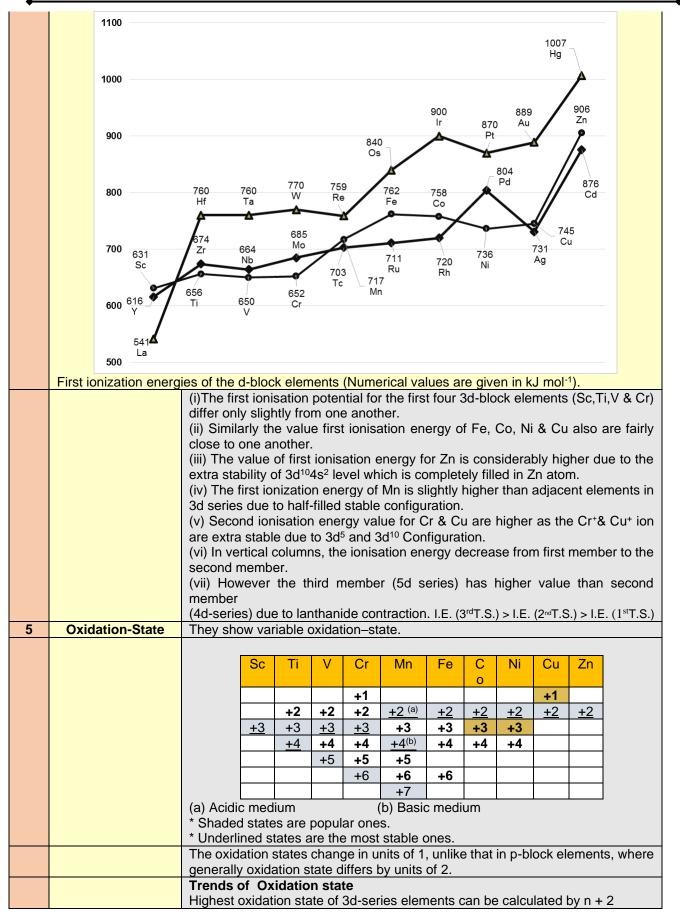
d & f-block elements & their important compounds

Section (A) : Electronic configuration, atomic and ionic size, density, melting and boiling points

Element		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn		
Atomic number		21	22	23	24	25	26	27	28	29	30		
				Electror	nic config	uration							
	М	3d ¹ 4s 2	3d ² 4s	3d ³ 4s 2	3d ⁵ 4s	3d ⁵ 4s 2	3d ⁶ 4s 2	3d ⁷ 4s ²	3d ⁸ 4s 2	3d ¹⁰ 4s	3d ¹⁰ 4s 2		
	M+	3d ² 4s	3d ³ 4s 0	3d ⁴ 4s 0	3d ⁵	3d ⁶ 4s 0	3d ⁷ 4s	3d ⁸ 4s ⁰	3d ⁹ 4s 0	3d ¹⁰	3d ¹⁰ 4s		
	M ²⁺	3d ¹	3d ²	3d ³	3d ⁴	3d⁵	3d ⁶	3d ⁷	3d ⁸	3d ⁹	3d ¹⁰		
	M ³⁺	[Ar]	3d ¹	3d ²	3d ³	3d ⁴	3d⁵	3d ⁶	3d ⁷	_	_		
Enthalpy of atomisation, $\Delta_a H^{\oplus} / kJ \text{ mol}^{-1}$													
		326	473	515	397	281	416	425	430	339	126		
			lonis	sation ent	halpy / Δ _i	H⁻ / kJ m	ol ⁻¹						
∆ _i H⊕	I	631	656	650	653	717	762	758	736	745	906		
∆ _i H⊕	II	1235	1309	1414	1592	1509	1561	1644	1752	1958	1734		
∆ _i H⊕		2393	2657	2833	2990	3260	2962	3243	3402	3556	3829		
Metallic/ionic	М	164	147	135	129	137	126	125	125	128	137		
radii/pm	M ²⁺	-	-	79	82	82	77	74	70	73	75		
	M ³⁺	73	67	64	62	65	65	61	60	-	-		
Standard electrode		Ι	-1.63	-1.18	-0.90	-1.18	-0.44	-0.28	-0.25	+0.34	-0.76		
Potential E^{\oplus} / V	M ³⁺ /M ² +	-	-0.37	-0.26	-0.41	+1.57	+0.77	+1.97	_	_	_		


d-block Elements


Last	electron enters in (r	n – 1)d subshell. d-block elements lie in middle of periodic table.
		General Introduction
1.	Occurrence	Three of transition metals are very abundant in the earth's crust.
		$Fe \rightarrow 4^{th}$ most abundant elements in earth's crust by weight. Ti $\rightarrow 5^{th}$ most abundant elements in earth's crust by weight. Mn $\rightarrow 12^{th}$ most abundant elements in earth's crust by weight.
	First row	Element with even atomic no. are in general more abundant than their neighbours with odd atomic no. except for Mn (Z = 25) but still 12^{th} most abundant element by weight.
	2nd and 3rd row	Less abundant than 1 st d- series elements. Tc \rightarrow does not occur in nature. Last six members of 2 nd and 3 rd row occur less than 0.16 ppm in earth's crust.
	Coinage metals	Cu, Ag and Au are called coinage metals.
	Noble metals	Cu, Ag, Au, Hg and Pt.
2.	No. of elements	Total d-block elements – (40) Total transition elements – (36). If 112 elements are included in periodic table. (Except Zn, Cd, Hg and Uub)
3.	Groups	IIIB to VIIB, VIII, IB, IIB or group 3 to 12 (IUPAC).

d & f-block Elements

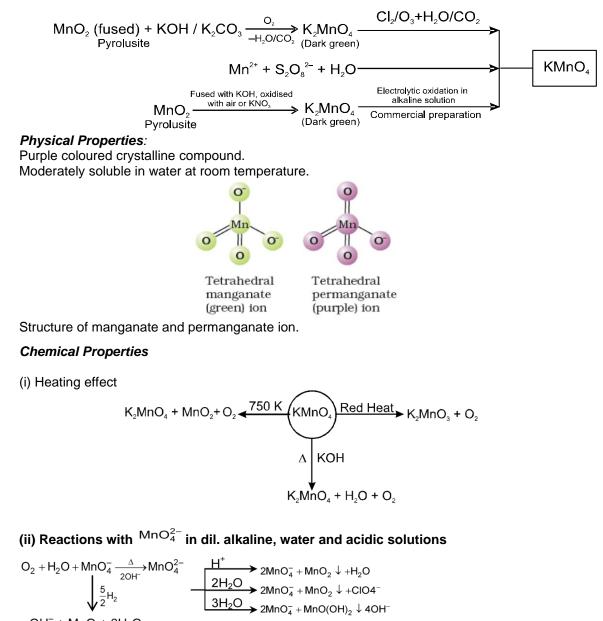
			4 th to 7	th								
					4 _{th} pe	riod	3d- s	eries (S	sc - Zn)			
4.	Perio	Ч			5 _{th} pe	riod	4d- s	eries (Y	′- Cd)			
		u			6 _{th} pe	riod	5d- s	eries (L	a - Hg)			
					7 _{th} pe	riod	6d- se	eries (Ad	c - Uub)		
Sect	ion (B) : I	onizati	ion entl	halpy,	oxidati	on stat	e, Elec	trode p	ootentia	al and	chemic	al
	reactivit											
			Perio	dic trer	nds and	l chem	ical pro	operties	6			
S.N	Propert	ties				[DISCRIP	ΓΙΟΝ				
						nts are	metals,	therefore	e they a	ire show	ving all t	he
				propertie	es. of heat a	and elect	ricity					
1	Metall charac				trong and		•					
	CildidC						Mn all th	ne transit	ion meta	ls have o	one or mo	ore
					structure. etals are		d have lo	w volatilit	v (excep	t Zn. Cd	and Hg).	
	Electro	nic							, (11.00p			
2	configura		(n – 1)d	1 ^{– 10} ns ¹	or 2							
		3	4	5	6	7	8	9	10	1 44	40	
		з IIIB	4 IVB	5 VB	VIB	, VIIB	°	VIII	10	11 IB	12 IIB	
		21	22	23	24	25	26	27	28	29	30	
	3d Series	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
		3d ¹ 4s ²	3d ² 4s ²	3d ³ 4s ²	3d⁵4s¹	3d⁵4s²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁸ 4s ²	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²	
		39	40	41	42	43	44	45	46	47	48	
	4d Series	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	
		4d ¹ 5s ²	4d ² 5s ²	4d ⁴ 5s ¹	4d ⁵ 5s ¹	4d ⁵ 5s ²	4d ⁷ 5s ¹	4d ⁸ 5s ¹	4d ¹⁰	4d ¹⁰ 4s ¹	4d ¹⁰ 4s ²	
		57	72	73	74	75	76	77	78	79	80	
	5d Series	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	
		5d ¹ 6s ²	4f ¹⁴ 5d ² 6s ²	5d ³ 6s ²	5d ⁴ 6s ²	5d ⁵ 6s ²	5d ⁶ 6s ²	5d ⁷ 6s ²	5d ⁹ 6s ¹	5d ¹⁰ 6s ¹	5d ¹⁰ 6s ²	
		89	104	105	106	107	108	109	110	111	112	
	6d Series	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	
		6d ¹ 7s ¹										
					eing filled with exce						onfigurati	ion
					extra sta						onfigurati	ion
				<u> </u>		· ·			<u> </u>		attern of t	the
				, e.g. Gr								
						Ni Pd	3d ⁸ 4					
						Pd Pt	5d ⁹ 6					

		d-orbitals are complete at Cu, Pd, Ag, Au. $\begin{array}{c c c c c c c c c c c c c c c c c c c $									
	Transition elements	A transition element is defined as the one which has incompletely filled <i>d</i> orbitals n its ground state or in any one of its oxidation states. Zinc, Cadmium and Mercury of group 12 have full d^{10} configuration in their ground state as well as in their common oxidation states and hence, they are some times not regarded as transition metals. All transition elements are d-block elements but all d-block elements are not transition elements. (as per NCERT)									
3	Size of atoms and ions	In the transition series (e.g. in the first transition series), the covalent radii of the elements decrease from left to right across a row until near the end when the size increases slightly.									
	d-orbital contraction	Increases slightly.On moving from left to right, extra protons are placed in the nucleus and the extra electron are added. The orbital electron shield the nuclear charge incompletely. Thus the nuclear charge attracts all the electrons more strongly, hence a contraction in size occurs. The radii of the elements from Cr to Cu, are very close to one another because the extra electron being added increases the repulsion between the electrons and counter balances the increased nuclear charge on the outer electrons (4s). As a result of this, the size of the atom does not change much in moving from Cr to Cu and for zinc this repulsion even dominates the nuclear charge so size slightly increases.ElementScTiVCrMnFeCoNiCuZnAtomic144132122117117116115117125									
	Lanthanide Contraction	As we move along the lanthanide series, the nuclear charge increases by one unit at each successive element. The new electron is added into the same subshell (4f). As a result, the attraction on the electrons by the nucleus increases and this tends to decrease the size. Further, as the new electron is added into the f-subshell, there is imperfect shielding of one electron by another in this subshell due to the shapes of these f-orbitals. This imperfect shielding in unable to counter balance the effect of the increased nuclear charge. Hence, the net result is a contraction in the size though the decrease is very small. Thus covalent and ionic radii of Nb (5 th period) and Ta (6 th period) are almost same due to poor shielding of f-orbitals electrons.									

		(where n = number of unpaired electrons) It is not applied for Cr and Cu. The transition metal ions having stable configuration like d ⁰ , d ⁵ or d ¹⁰ are more stable. Ex. Sc ⁺³ , Ti ⁺⁴ , V ⁺⁵ Fe ⁺³ , Mn ⁺² , Zn ⁺² etc. Most common oxidation state among the transition elements is +2. Highest oxidation state shown by transition elements of '4d' and '5d' series is +8 by Ru (44) and Os (76). The highest oxidation states (+4, +5, +6, +7, +8) are found in compounds of oxide and oxyfluoride because fluorine and oxygen are most electronegative elements and good oxidants. e.g. $h^{77}O_4^{-6}$, $Cr_2O_7^{2-}$, CrO_4^{2-} , MnO_2 , MnO_4^{2-} , CrO_2F_2 Lower oxidation states even negative (-2, -1, 0, +1) is stabilised by π -bonding ligands such as carbon monoxide and dipyridine due to phenomena of synergic bonding Ni(CO) ₄ and Fe(CO) ₅ , oxidation states and covalent compounds in Higher oxidation state.																
	_	OXIDAT									als	•						
		NUMB		S	Sc	Ti	V	Cr		Mn		Fe		Co	D	Ni	Cu	Zn
	_	<u>+7</u> +6						CrO	2	Mn ₂ O)7							
		+5					V ₂ O ₅		3									
		+4				TiO ₂	V ₂ O ₄		2	MnO	2							
		+3		Sc	2 0 3	Ti ₂ O ₃	V ₂ O ₃	Cr ₂ C 3		Mn₂O		Fe ₂ C	-					
	_					TiO	vo	(CrO		Mn₃O MnO		Fe₃O Fe0		Co₃ Co		NiO	CuO	ZnO
	-	+2				110	vo		"	WINO	,	ret	,	0.0	0	NIU	CuO Cu ₂ O	
6		Colo	our		They an u lowe excit MnC	npaired r energ tation lie	ifferen l electr gy d-o es in vi loured	t colour on that rbital is sible ra inspite	red cor ex ange of o	compound cited to e, com d ⁰ cor	our nd i o a nplii nfig	nds. Tl may b high menta uratio	he co er co iry co n of	ompo loure nerg olour Mn.	ound ed. W y d-c is ob It is r	s in wł /hen a orbital, oserve	nich me in elect if the id.	ed. etal ion has tron from a energy of d transition
	N	lemory w	arning): M														
		Oxidation State	Sc	;	Ti		V	Cr	I	Mn		Fe	С	0	N	i	Cu	Zn
		(I)															olurless	
		(II)	~ -					Blue		Pink		reen		nk	Gre	en	Blue	Colurless
		(III) (IV)	Colur					Green	Vi	ïolet	Ye	ellow	BI	ue				
7		lectrode			Coluri	CSS BI	ue											
	р	otential			T I .			lan (h:a .	11		1 4 4 1	a lana a la
		$E^{0}_{M^{2+}}$	/ M		varia		ionis	ation e	enth	nalpies	s (e irregular s and the

d & f-block Elements

			Need not mem	orize the table but remember the comments.								
		Element E ⁰ _{M³}	$E_{M^{2+}/M^{2+}}^{0}$ $E_{M^{2+}/M}^{0}$	Comments								
		Ti –C).37 –1.63	+3 Oxidation states is more stable								
		V -0).26 –1.18	+3 Oxidation states is more stable								
		Cr –C).41 –0.9	+3 Oxidation states is more stable								
		Mn 1	.57 –1.18	+2 Oxidation states is more stable								
		Fe 0.	.77 –0.44	+2 Oxidation states is more stable								
		Co 1.	.97 –0.28	+2 Oxidation states is more stable								
		Ni	0.25	+3 Oxidation states does not exist for Ni								
		Cu	- 0.34	+3 Oxidation states does not exist for Cu. 0 Oxidation states is more stable								
		Zn	- 0.76	+3 Oxidation states does not exist for Zn								
	Comparative graph of $E^0_{M^{2+}/M}$ and $E^0_{M^{3+}/M^{2+}}$	The stability of the configuration in Zri to the highest neg It may be noted the	e half-filled <i>d</i> sub n ²⁺ are related to pative hydration hat the electrode	b-shell in Mn ²⁺ and the completely filled d ¹⁰ to their E^{\odot} values, whereas E^{\odot} for Ni is related energy.								
			up 2 elements. T thalpies are larg									
8	Density	Osmium ((Os) = 22.51 g/c	m ³ , Iridium (Ir) = 22.61 g/cm ³								
9	Melting and Boiling point	from (n–1)d in ad highest for d ⁵ , exc m.p. and b.p. are	High melting points are attributed to involvement of greater number of electrons from (n–1)d in addition to the ns electrons in inter atomic metallic bonding thus highest for d ⁵ , except for anamolous value for Mn and Tc fall regularly. m.p. and b.p. are generally very high exceptions \rightarrow Zn (420°C) \rightarrow Cd (321°C) \rightarrow Hg liquid at room temperature.									
				have a typically because the d-shell is complete in metallic bonding.								


d & f-block Elements

		T I. I. I. I. I.									
		interaction. Metals of 2 nd ar transition series has melting pt. bonding well as enthalp atomization, corresponding eleme the 1 st series this is	ch are of each at one bital is le for atomic M_0 M_0 M_0 M_0 M_0 M_0 M_0 M_0 M_0 M_0 M_0 M_0 M_0 R_0 R_0 Ir R_0 Ir R_0 Ir R_0 R_0								
Sect	ion (C) : Magnet										
10	Magnetic character										
Sect	Ferromagnetism ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro	ials may be regarded as special case of paramagnetism in of individual domains becomes aligned and all points in the omagnetic materials \Rightarrow Fe, Co, Ni. formation of interstitial compounds, alloy								
		Ferromagnetic mater which the moments of same direction. Ferro	of individual domains becomes aligned and all points in the								
	ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals	of individual domains becomes aligned and all points in the omagnetic materials \Rightarrow Fe, Co, Ni.								
	ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity.								
	ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability t	of individual domains becomes aligned and all points in the omagnetic materials \Rightarrow Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes.								
	ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability t Catalyst	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used								
	ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability the Catalyst Fe	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ .								
	ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability the Catalyst Fe V2O5	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ . Contact process for H ₂ SO ₄ manufacture.								
form	ion (D) : Cata	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability the Catalyst Fe V ₂ O ₅ Pt	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ . Contact process for H ₂ SO ₄ manufacture. Ostwald's process of nitric acid.								
form	ion (D) : Catanation.	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability the Catalyst Fe V2O5 Pt Ni	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ . Contact process for H ₂ SO ₄ manufacture. Ostwald's process of nitric acid. Hydrogenation of oils.								
form	ion (D) : Catanation.	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability the Catalyst Fe V2O5 Pt Ni FeSO4& H2O2	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. o adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ . Contact process for H ₂ SO ₄ manufacture. Ostwald's process of nitric acid. Hydrogenation of oils. Fenton's reagent for oxidising alcohol to aldehyde.								
form	ion (D) : Catanation.	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability the Catalyst Fe V_2O_5 Pt Ni FeSO ₄ & H ₂ O ₂ Cu Al ₂ (C ₂ H ₅) ₆ +	of individual domains becomes aligned and all points in the bragnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ . Contact process for H ₂ SO ₄ manufacture. Ostwald's process of nitric acid. Hydrogenation of oils. Fenton's reagent for oxidising alcohol to aldehyde. Dehydrogenation of alcohols								
form	ion (D) : Catanation.	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability to Catalyst Fe V2O5 Pt Ni FeSO4& H2O2 Cu Al2(C2H5)6 + TiCl4 FeCl3 Pt/PtO	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ . Contact process for H ₂ SO ₄ manufacture. Ostwald's process of nitric acid. Hydrogenation of oils. Fenton's reagent for oxidising alcohol to aldehyde. Dehydrogenation of alcohols Ziegler-Natta catalyst in the production of Polyethene. For making CCl₄ from CS ₂ and Cl ₂ . Adams catalyst, used for reduction.								
form	ion (D) : Catanation.	Ferromagnetic mater which the moments of same direction. Ferro lytic properties, The transition metals This is due to ability to Catalyst Fe V2O5 Pt Ni FeSO4& H2O2 Cu Al2(C2H5)6 + TiCl4 FeCl3 Pt/PtO Interstitial compound	of individual domains becomes aligned and all points in the omagnetic materials ⇒ Fe, Co, Ni. formation of interstitial compounds, alloy and their compounds are known for their catalytic activity. to adopt multiple oxidation states and to form complexes. Used Haber's process for manufacture of NH ₃ . Contact process for H ₂ SO ₄ manufacture. Ostwald's process of nitric acid. Hydrogenation of oils. Fenton's reagent for oxidising alcohol to aldehyde. Dehydrogenation of alcohols Ziegler-Natta catalyst in the production of Polyethene. For making CCl₄ from CS ₂ and Cl ₂ .								

Page | 8

-													
	OF INTERSTITIAL COMPOUNDS	Fe₃H, VH to any r composit	H _{0.56} and TiH _{1.7} , etc. ⁻ normal oxidation sta tion, these compoun	typically ionic nor covalent, for example, TiC, Mn ₄ N, The formulas quoted do not, of course, correspond te of the metal. Because of the nature of their ds are referred to as interstitial compounds. The									
		follows:	physical and chem	ical characteristics of these compounds are as									
			ave high melting poir	nts, higher than those of pure metals.									
				porides approach diamond in hardness.									
			retain metallic condu	ctivity.									
			are chemically inert.	novimum tandanov to form allova									
				naximum tendency to form alloys.									
	FORMATION OF			metal atom in the lattice can be easily replaced by									
13	ALLOYS		ther transition metal atom and hence they have maximum tendency to for										
		alloys.	allove ratio of comr	oonent metals is fixed.									
				and have high melting point.									
			ote- Memorize the * marked alloys										
		*(a	Bronze	Cu (75 - 90 %) +Sn (10 - 25 %)									
)											
		*(b)	Brass	Cu (60 - 80 %) +Zn (20 - 40 %)									
		(C)	Gun metal	(Cu + Zn + Sn) (87 : 3 : 10)									
		(d)	German Silver	Cu + Zn + Ni (2 : 1 : 1)									
		(e)	Bell metal	Cu (80 %) + Sn(20 %)									
		(f)	Nichrome	(Ni + Cr + Fe)									
		(g)	Alnico	(Al, Ni,Co)									
		(h)	Type Metal	Pb + Sn + Sb									
		(i)	Alloys of steel										
			 Vanadium steel 	V (0.2 - 1 %)									
			 Chromium steel 	Cr (2 - 4 %)									
			 Nickel steel 	Ni (3 -5 %)									
	SOME		• Manganese steel	Mn (10 -18 %)									
	IMPORTANT ALLOY		 Stainless steel 	Cr (12 - 14 %)& Ni (2 - 4 %)									
			 Tunguston steel 	W (10 - 20 %)									
		(j)	14 Carat Gold	54 % Au + Ag (14 to 30 %) + Cu (12 - 28 %)									
		(k)	24 Carat Gold	100 %Au									
		*(I)	Solder	Pb + Sn									
		(m)	Magnellium	Mg (10%) + AI (90%)									
		(n)	Duralumin	(Al + Mn + Cu)									
		*(o)	Artificial Gold	Cu (90 %) + Al (10%)									
		(p)	Constantan	Cu(60%) + Ni (40%)									
			% of Ca	rbon in different type of Iron									
			Name	% of C									
		(a)	Wrought Iron	0.1 to 0.25									
		(b)	Steel	0.25 to 2.0									
		(C)	Cast Iron/Pig Iron	2.6 to 4.3									

Section (E) : Important d-block metal compounds Preparations and properties of important d-Block metal compounds 1. <u>Potassium Permanganatic (KMnO4)</u> <u>PREPARATION</u>

OH[−] + MnO + 2H₂O

(iii) with conc. H₂SO₄,

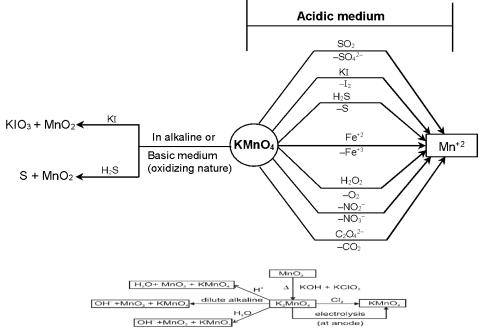
$$3H_2SO_4 \xrightarrow{2KMnO_4} 2KHSO_4 + (MnO_3)_2SO_4 + 2H_2O$$

$$KMnO_4 \xrightarrow{K^+} + MnO_3^+ + 3HSO_4^- + H_3O^+$$

(iv) KMnO₄ is a powerful O.A.

Potassium permanganate acts as an oxidising agent in alkaline, neutral or acidic solutions. A mixture of sulphur, charcoal and KMnO₄ forms an explosive powder. A mixture of oxalic acid and KMnO₄ catches fire spontaneous after a few seconds. The same thing happens when glycerine is poured over powdered KMnO₄

In alkaline & neutral medium :


In strongly alkaline medium KMnO₄ is reduced to manganate. $2KMnO_4 + 2KOH (conc.) \rightarrow 2K_2 MnO_4 + H_2O + [O]$ or e⁻ + MnO₄⁻--> MnO₄²⁻ However if solution is dilute then K₂MnO₄ is converted in to MnO₂ which appears as a brownish precipitate. $2K_2MnO_4 + 2H_2O \rightarrow 2MnO_2 + 4KOH + 2[O]$ or 2e⁻ + 2H₂O + MnO₄²⁻--> MnO₂ + 4OH⁻ This type of behaviour is shown by KMnO₄ itself in neutral medium. $3e^- + 2H_2O + MnO_4^{-}--> MnO_2 + 4OH^ 3e^- + 2H_2O + MnO_4^{-}--> MnO_2 + 4OH^-$

Note- $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$

This medium is used in quantitative (Volumetric) Estimations. The eq. mass of KMnO₄ in acidic medium Molecular Mass

Reactions of KMnO₄:

5

Uses : It is used

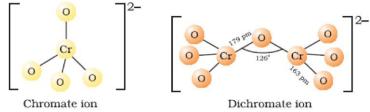
- (i) KMnO₄ is used as an oxidising agent in laboratory and industry.
- (ii) Alkaline potassium permanganate is called Bayer's reagent. This reagent is used in organic chemistry for the test of unsaturation. KMnO₄ is used in the manufacture of saccharin, benzoic acid, acetaldehyde etc.

(iii) KMnO₄ is used in qualitative analysis for detecting halides, sulphites, oxalates, etc.

14. POTASSIUM DICHROMATE (K₂Cr₂O₇) :

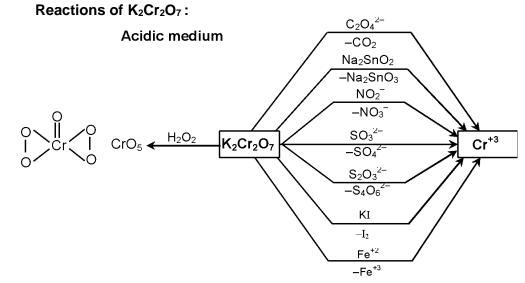
Preparation :

The chromite ore is roasted with sodium carbonate in presence of air in a reverberatory furnace. $4FeO.Cr_2O_3 + 8Na_2CO_3 \xrightarrow[+7O_2]{Roasting in air} + 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$


(yellow)

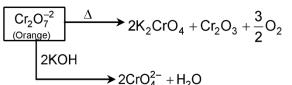
$$4H_2SO_4$$

 $4Na_2CrO_7 + 4Na_2SO_4 + 4H_2O$
(orange) (Crystalise)
 8 KCl
 $K_2Cr_2O_7$ + 8NaCl


Properties (a) Physical :

It is orange-red coloured crystalline compound. It is moderately soluble in cold water but freely soluble in hot water. It melts at 398°C.

Structure of Chromate and Dichromate ion



(b) Chemical : Chemical Properties \rightarrow

Note- $K_2Cr_2O_7$ is preferred over Na₂Cr₂O₇ as a primary standard in volumetric estimation because Na₂Cr₂O₇ is hygroscopic in nature but $K_2Cr_2O_7$ is not.

(i) Effect of heating : On heating strongly, it decomposes liberating oxygen.

 $2CrO_4^{2-} + 2H^+ \Longrightarrow 2HCrO_4^- \Longrightarrow Cr_2O_7^{2-} + H_2O$

 CrO_4^{2-} and $Cr_2O_7^{2-}$ exist in equilibrium and are interconvertable by altering the pH of solution.

In alkaline solution, chromate ions are present while in acidic solution, dichromate ions are present.

Reaction of potassium dichromate with Ag⁺ :

$$2BaCrO_{4}\downarrow + 2H^{+} \xleftarrow{Ba^{2^{+}} + H_{2}O}_{Partial \ precipitation}} \underbrace{Cr_{2}O_{7}^{2^{-}}}_{(conc.)} \underbrace{2Ag^{+}}_{(reddish \ brown)} Ag_{2}Cr_{2}O_{7}\downarrow}_{(reddish \ brown)}$$

 $Cr_2O_7^{2-} + Ba^{2+} + H_2O = 2BaCrO_4 \downarrow + 2H^+$

As strong acid is produced, the precipitation is only partial. But if NaOH or CH₃COONa is added, precipitate becomes quantitative.

- Uses: It is used :
- (i) as a volumetric reagent in the estimation of reducing agents such as oxalic acid, ferrous ions, iodide ions, etc. It is used as a primary standard.
- (ii) for the preparation of several chromium compounds such as chrome alum, chrome yellow, chrome red, zinc yellow, etc.
- (iii) in dyeing, chrome tanning, calico printing, photography etc.
- (iv) as a cleansing agent for glass ware in the form of chromic acid.
- (iv) in leather industry and as an oxidant for preparation of azo compounds

Photography :

(i) A photographic film consists of a light sensitive emulsion of fine particles (grains) of silver salts in gelatine spread on a clear celluloid strip or a glass plate. AgBr is mainly used as the light sensitive material.

(ii) The film is placed in a camera. When the photograph is exposed, light from the subject enters the camera and is focussed by the lens to give a sharp image on the film. The light starts a photochemical reaction by exciting a halide ion, which loses an electron. The electron moves in a conduction band to the surface of the grain, where it reduces a Ag⁺ ion to metallic silver.

 $2AgBr(s) \xrightarrow{light} 2Ag + Br_2$

(iii) In modern photography only a short exposure of perhaps 1/100th of a second is used. In this short time, only a few atoms of silver (perhaps 10–50) are produced in each grain exposed to light. Parts of the film which have been exposed to the bright parts of the subject contain a lot of grains with some silver.

(iv) Next the film is placed a developer solution. This is a mild reducing agent, usually containing quinol. Its purpose is to reduce more silver halide to Ag metal. Ag is deposited mainly where there are already some Ag atoms. Thus the developing process intensifies the latent image on the film so it becomes visible.

$$2AgBr(s) + 2OH^{-}(aq) + HO \xrightarrow{\frown}OH(aq) \rightarrow 2Ag(s) + 2H_2O(\ell) + O \xrightarrow{\frown}O + 2Br^{-}(aq)$$

hydroquinol hydroquinone

(v) If the film was brought out into daylight at this stage, the unexposed parts of the emulsion would turn black and thus destroy the picture. To prevent this happening any unchanged silver halides are removed by placing the film in a fixer solution. A solution of sodium thiosulphate is used as fixer. It forms a soluble complex with silver halides.

AgBr +
$$2Na_2S_2O_3$$
 → $Na_3[Ag(S_2O_3)_2]$ + $NaBr$

After fixing, the film can safely be brought out into daylight. This is called "negative".

Light is passed through the negative onto a piece of paper coated with AgBr emulsion. This is then developed and fixed in the same way as before.

Section (F) : Lanthanoids and actinoids

NCERT f -	block eleme	nts (JEE-Mains o	only)							
		enters in (n – 2)f sub e Bottom portion of		e.						
S.No.	Properties		D	ISCRIPTION						
1.	General character's	All the f-block eleme It shows high melting The most common of	g and boiling p							
2.	No. of elements	Total number of f-blo	otal number of f-block elements – (28)							
3.	Groups	Lanthanides and 14 III B/ 3 Sc Y La Ac	Y La Lanthanides (14) Ce ₅₈ – Lu ₇₁							
4.	E.C.		Lanthanide series $4f^{1} - 14 {}_{5d}0 \text{ or } 1 {}_{6s}^{2}$ Actinide series $5f^{1} - 14 {}_{6d}0 \text{ or } 1 {}_{7s}^{2}$							
5.	Period	Period 6 th period 7 th period	III B/ 3rd Sc Y La Ac	Lanthanides (14) Ce ₅₈ – Lu ₇₁ Actinides (14) Th ₉₀ – Lr ₁₀₃						
6.	Inner transition elements	The elements in whi and pre or antipenult elements.Ce ₅₈ = [Xe	imate (n – 2) :] 6s², 5d¹, 4f¹	e shells that is ultimate (n) penultimate $(n-1)$ shell are incomplete are called inner transition						
	(i) Lanthanide series or Rare earth elements or Lanthenone S	Lanthanides are four The first element of t In these elements, la They are present in	nner transition elements are divided into two series. Ce ₅₈ – Lu ₇₁ 14 elements anthanides are found rarely on earth so these are called rare earth metals. The first element of this series is Cerium and not Lanthanum. In these elements, last electron enters into 4f subshell. They are present in IIIB group and 6 th period of the periodic table. Promethium (₆₁ Pm) is the only lanthanide which is synthetic and radioactive in Definition							
	(ii) Actinide series or		radioactive el his series is T	ements. Thorium and not Actinium. hters into 5f subshell.						

Man made	They are present in IIIB group and 7 th period of the periodic table.
elements or	All the actinides are radioactive in nature.
Actinones	First three elements (Th, Pa, U) are found in nature while others are synthetic in
	nature.
	Transuranic actinides are man-made elements (Np ₉₃ – Lw ₁₀₃)
	After U ₉₂ i.e. from Np ₉₃ onwards elements are called transuranic elements
	because
	(i) They are heavier than uranium.
	(ii) They are derived from uranium by nuclear reactions.

The Lanthanides : The names, symbols, electronic configurations of atomic and some ionic states and atomic and ionic radii of lanthanum and lanthanide (for which the general symbol Ln is used) are given in Table.

Electronic Configurations : It may be noted that atoms of these elements have electronic configuration with $6s^2$ common but with variable occupancy of 4f level (Table). However, the electronic configurations of all the tripositive ions (the most stable oxidation state of all the lanthanides) are of the form $4f^n$ (n = 1 to 14 with increasing atomic number).

Atomic and Ionic Sizes : The overall decrease in atomic and ionic radii from Ianthanum to Iutetium (the Ianthanide contraction). The shielding of one 4 f electron by another is less than one d electron by another with the increase in nuclear charge along the series. There is fairly regular decrease in the sizes with increasing atomic number. The cumulative effect of the contraction of the Ianthanide series, known as Ianthanide contraction, causes the radii of the members of the third transition series to be very similar to those of the corresponding members of the second series. The almost identical radii of Zr (160 pm) and Hf (159 pm), a consequence of the Ianthanide contraction.

Oxidation States : In the lanthanides, La(III) and Ln(III) compounds are predominant species. However, occasionally +2 and +4 ions in solution or in solid compounds are also obtained.

This irregularity (as in ionisation enthalpies) arises mainly from the extra stability of empty, half-filled or filled f subshell. Thus, the formation of Ce^{IV} is favoured by its noble gas configuration, but it is a strong oxidant reverting to the common +3 state. The E^{Θ} value for Ce^{4+}/Ce^{3+} is + 1.74 V which suggests that it can oxidise water. However,

the reaction rate is very slow and hence Ce(IV) is a good analytical reagent.

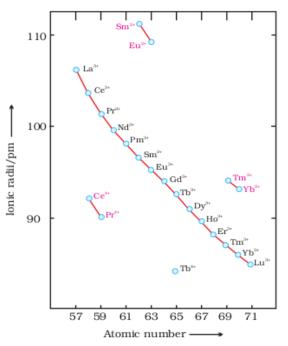


Fig. 8.6: Trends in ionic radii of lanthanoids

Pr, Nd, Tb and Dy also exhibit +4 state but only in oxides, MO_2 . Eu^{2+} is formed by losing the two s electrons and its f⁷ configuration accounts for the formation of this ion.

However, Eu²⁺ is a strong reducing agent changing to the common +3 state. Similarly Yb²⁺ which has f 14 configuration is a reductant.

 Tb^{IV} has half-filled f-orbitals and is an oxidant. The behaviour of samarium is very much like europium, exhibiting both +2 and +3 oxidation states.

	Table :- Electronic Configurations and Radii of Lanthanum and Lanthanides											
Atomic	Nama	ovmbol	Ele	ectronic co	Radii/pm							
Number	Name	symbol	Ln	Ln ²⁺	Ln ³⁺	Ln ⁴⁺	Ln	Ln ³⁺				
57	Lanthanum	La	5d ¹ 6s ²	5d ¹	4f ⁰		187	106				
58	Cerium	Ce	4f ¹ 5d ¹ 6s ²	4f ²	4f ¹	4f ⁰	183	103				
59	Praseodymiu m	Pr	4f ³ 6s ²	4f ³	4f ²	4f ¹	182	101				

d & f-block Elements

60	Neodymium	Nd	4f ⁴ 6s ²	4f ⁴	4f ³	4f ²	181	99
61	Promethium	Pm	4f ⁵ 6s ²	4f ⁵	4f ⁴		181	98
62	Samarium	Sm	4f ⁶ 6s ²	4f ⁶	4f⁵		180	96
63	Europium	Eu	4f ⁷ 6f ²	4f ⁷	4f ⁶		199	95
64	Gadolinium	Gd	4f ⁷ 5d ¹ 6s ²	4f ⁷ 5d ¹	4f ⁷		180	94
65	Terbium	Tb	4f ⁹ 6s ²	4f ⁹	4f ⁸	4f ⁷	178	92
66	Dysprosium	Dy	4f ¹⁰ 6s ²	4f ¹⁰	4f ⁹	4f ⁸	177	91
67	Holmium	Ho	4f ¹¹ 6s ²	4f ¹¹	4f ¹⁰		176	89
68	Erbium	Er	4f ¹² 6s ²	4f ¹²	4f ¹¹		175	88
69	Thulium	Tm	4f ¹³ 6s ²	4f ¹³	4f ¹²		174	87
70	Ytterbium	Yb	4f ¹⁴ 6s ²	4f ¹⁴	4f ¹³		173	86
71	Lutetium	Lu	4f ¹⁴ 5d ¹ 6s	4f ¹⁴ 5d ¹	4f ¹⁴	-	-	-

General Characteristics :

All the lanthanides are silvery white soft metals and tarnish rapidly in air.

The hardness increases with increasing atomic number, samarium being steel hard.

Their melting points range between 1000 to 1200 K but samarium melts at 1623 K.

They have typical metallic structure and are good conductors of heat and electricity. Density and other properties change smoothly except for Eu and Yb and occasionally for Sm and Tm.

Many trivalent lanthanide ions are coloured both in the solid state and in aqueous solutions. Colour of these ions may be attributed to the presence of f electrons. Neither La³⁺ nor Lu³⁺ ion shows any colour but the rest do so. However, absorption bands are narrow, probably because of the excitation within f level.

The lanthanide ions other than the f° type (La³⁺ and Ce⁴⁺) and the f¹⁴ type (Yb²⁺ and Lu³⁺) are all paramagnetic. The paramagnetism rises to maximum in neodymium.

The first ionisation enthalpies of the lanthanides are around 600 kJ mol⁻¹, the second about 1200 kJ mol⁻¹ comparable with those of calcium.

A detailed discussion of the variation of the third ionisation enthalpies indicates that the exchange enthalpy consideration (as in 3d orbitals of the first transition series), appear to impart a certain degree of stability to empty, half-filled and completely filled orbitals f level. This is indicated from the abnormally low value of the third ionization enthalpy of lanthanum, gadolinium and lutetium.

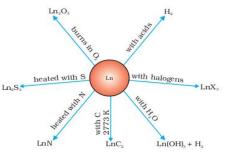


Fig 8.7: Chemical reactions of the lanthanoids.

In their chemical behaviour, in general, the earlier members of the series are quite reactive similar to calcium but, with increasing atomic number, they behave more like aluminium.

Values for E⁻ for the half-reaction:

 Ln^{3+} (aq) + $3e^- \rightarrow Ln(s)$ are in the range of -2.2 to -2.4 V except for Eu for which the value is - 2.0 V. This is, of course, a small variation.

The metals combine with hydrogen when gently heated in the gas.

The carbides, Ln₃C, Ln₂C₃ and LnC₂ are formed when the metals are heated with carbon.

They liberate hydrogen from dilute acids and burn in halogens to form halides.

They form oxides M_2O_3 and hydroxides M (OH)₃. The hydroxides are definite compounds, not just hydrated oxides.

They are basic like alkaline earth metal oxides and hydroxides.

The best single use of the lanthanides is for the production of alloy steels for plates and pipes. A well known alloy is mischmetall which consists of a lanthanide metal (~ 95%) and iron (~ 5%) and traces of S, C, Ca and Al. A good deal of mischmetall is used in Mg-based alloy to produce bullets, shell and lighter flint. Mixed oxides of lanthanides are employed as catalysts in petroleum cracking. Some individual Ln oxides are used as phosphors in television screens and similar fluorescing surfaces.

The Actinides :

The actinides include the fourteen elements from Th to Lr. The names, symbols and some properties of these elements are given in Table.

Table : Electronic Configurations and Radii of Actinium and Actinoids											
Atomic	Name		Electron	ic configu	Radii/pm						
Number		symbol	М	M ³⁺	M ⁴⁺	M ³⁺	M ⁴⁺				
89	Actinium	Ac	6d ¹ 7s ²	5f ⁰		111					
90	Thorium	Th	6d ² 7s ²	5f ¹	5f ⁰		99				
91	Proctactiniium	Pa	5f ² 6d ¹ 7s ²	5f ²	5f ¹		96				
92	Uranium	U	5f ³ 6d ¹ 7s ²	5f ³	5f ²	103	93				
93	Neptunium	Np	5f ⁴ 6d ¹ 7s ²	5f⁴	5f ³	101	92				
94	Plutonium	Pu	5f ⁶ 7s ²	5f⁵	5f ⁴	100	90				
95	Americium	Am	5f ⁷ 7s ²	5f ⁶	5f⁵	99	89				
96	Curium	Cm	5f ⁷ 6d ¹ 7s ²	5f ⁷	5f ⁷	99	88				
97	Berkelium	Bk	5f ⁹ 7s ²	5f ⁸	5f ⁷	98	87				
98	Californium	Cf	5f ¹⁰ 7s ²	5f ⁹	5f ⁸	98	86				
99	Einstenium	Es	5f ¹¹ 7s ²	5f ¹⁰	5f ⁹	-	-				
100	Fermium	Fm	5f ¹² 7s ²	5f ¹¹	5f ¹⁰	-	-				
101	Mendelevium	Md	5f ¹³ 7s ²	5f ¹²	5f ¹¹	-	-				
102	Nobelium	No	5f ¹⁴ 7s ²	5f ¹³	5f ¹²	-	-				
103	Lawrencium	Lr	5f ¹⁴ 6s ¹ 7s 2	5f ¹⁴	5f ¹³	-	-				

The actinides are radioactive elements and the earlier members have relatively long half-lives, the latter ones have half-life values ranging from a day to 3 minutes for lawrencium (Z = 103). The latter members could be prepared only in nanogram quantities. These facts render their study more difficult.

Electronic Configurations :

All the actinides are believed to have the electronic configuration of 7s² and variable occupancy of the 5f and 6d subshells.

The fourteen electrons are formally added to 5f, though not in thorium (Z = 90) but from Pa onwards the 5f orbitals are complete at element 103.

The irregularities in the electronic configurations of the actinides, like those in the lanthanides are related to the stabilities of the f°, f⁷ and f¹⁴ occupancies of the 5f orbitals. Thus, the configurations of Am and Cm are [Rn] $5f^77s^2$ and [Rn] $5f^7 6d^1 7s^2$.

Ionic Sizes :

The general trend in lanthanides is observable in the actinides as well. There is a gradual decrease in the size of atoms or M^{3+} ions across the series. This may be referred to as the actinide contraction (like lanthanide contraction). The contraction is, however, greater from element to element in this series resulting from poor shielding by 5f electrons.

Oxidation States :

There is a greater range of oxidation states, which is in part attributed to the fact that the 5f, 6d and 7s levels are of comparable energies. The known oxidation states of actinides are listed in Table.

Table : Oxidation States of Actinium and Actinides														
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
3		3	3	3	3	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	4						
		5	5	5	5	5								
			6	6	6	6								
				7	7									

The actinides show in general +3 oxidation state.

The elements, in the first half of the series frequently exhibit higher oxidation states. For example, the maximum oxidation state increases from +4 in Th to +5, +6 and +7 respectively in Pa, U and Np but decreases in succeeding elements.

The actinides resemble the lanthanides in having more compounds in +3 state than in the +4 state. However, +3 and +4 ions tend to hydrolyse. Because the distribution of oxidation states among the actinides is so uneven and so different for the earlier and latter elements, it is unsatisfactory to review their chemistry in terms of oxidation states.

General Characteristics and Comparison with Lanthanides :

The actinide metals are all silvery in appearance but display a variety of structures. The structural variability is obtained due to irregularities in metallic radii which are far greater than in lanthanides.

The actinides are highly reactive metals, especially when finely divided. The action of boiling water on them, for example, gives a mixture of oxide and hydride and combination with most non-metals takes place at moderate temperatures. Hydrochloric acid attacks all metals but most are slightly affected by nitric acid owing to the formation of protective oxide layers; alkalies have no action.

The magnetic properties of the actinides are more complex than those of the lanthanides. Although the variation in the magnetic susceptibility of the actinides with the number of unpaired 5 f electrons is roughly parallel to the corresponding results for the lanthanides, the latter have higher values.

It is evident from the behaviour of the actinides that the ionisation enthalpies of the early actinides, though not accurately known, but are lower than for the early lanthanides. This is quite reasonable since it is to be expected that when 5f orbitals are beginning to be occupied, they will penetrate less into the inner core of electrons. The 5f electrons, will therefore, be more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanides. Because the outer electrons are less firmly held, they are available for bonding in the actinides.

A comparison of the actinides with the lanthanides, with respect to different characteristics as discussed above, reveals that behaviour similar to that of the lanthanides is not evident until the second half of the actinide series. However, even the early actinides resemble the lanthanides in showing close similarities with each other and in gradual variation in properties which do not entail change in oxidation state. The lanthanide and actinide contractions, have extended effects on the sizes, and therefore, the properties of the elements succeeding them in their respective periods. The lanthanide contraction is more important because the chemistry of elements succeeding the actinides are much less known at the present time.

Some Applications of d- and f-Block Elements :

Iron and steels are the most important construction materials. Their production is based on the reduction of iron oxides, the removal of impurities and the addition of carbon and alloying metals such as Cr, Mn and Ni.

TiO for the pigment industry and MnO_2 for use in dry battery cells. The battery industry also requires Zn and Ni/Cd.

The 'silver' UK coins are a Cu/Ni alloy.