
 
 

WAVE OPTICS 
🕮_____________________________________________________________________________________ 

1.   WAVEFRONTS 
 

 Consider a wave spreading out on the surface of water after a stone is thrown in. Every point on the 
surface oscillates. At any time, a photograph of the surface would show circular rings on which the 
disturbance is maximum. Clearly, all points on such a circle are oscillating in phase because they are at 
the same distance from the source. Such a locus of points which oscillate in phase is an example of a 
wavefront. 

 A wavefront is defined as a surface of constant phase. The speed with which the wavefront moves 
outwards from the source is called the phase speed. The energy of the wave travels in a direction 
perpendicular to the wavefront. 

 Figure (a) shows light waves from a point source forming a spherical wavefront in three dimensional 
space. The energy travels outwards along straight lines emerging from the source. i.e.. radii of the 
spherical wavefront. These lines are the rays. Notice that when we measure the spacing between a pair 
of wavefronts along any ray, the result is a constant. This example illustrates two important general 
principles which we will use later: 

 (i) Rays are perpendicular to wavefronts. 
 (ii) The time taken by light to travel from one wavefront to another is the same along any ray. 
 If we look at a small portion of a spherical wave, far away from the source, then the wavefronts are like 

parallel planes. The rays are parallel lines perpendicular to the wavefronts. This is called a plane wave 
and is also sketched in Figure (b) 

 A linear source such as a slit Illuminated by another source behind it will give rise to cylindrical wavefronts. 
Again, at larger distance from the source, these wave fronts may be regarded as planar. 

                          
   (a)              (b) 
 Figure :   Wavefronts and the corresponding rays in. two cases: (a) diverging spherical wave. (b) plane 

wave. The figure on the left shows a wave (e.g.. light) in three dimensions. The figure on the right shows 
a wave in two dimensions (a water surface). 
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2. PRINCIPLE OF SUPERPOSITION : 
 When two or more waves simultaneously pass through a point, the disturbance of the point is given by 

the sum of the disturbances each wave would produce in absence of the other wave(s). In case of wave 
on string disturbance means displacement, in case of sound wave it means pressure change, in case of  
E.M.W. it is electric field or magnetic field. Superposition of two light travelling in almost same direction 
results in modification in the distribution of intensity of light in the region of superposition. This 
phenomenon is called interference.    

 2.1   SUPERPOSITION OF TWO SINUSOIDAL WAVES : 
  Consider superposition of two sinusoidal waves (having same frequency), at a particular point. 
  Let,  x1(t) = a1 sin ωt 

  and,  x2(t) = a2 sin (ωt + φ) 
 represent the displacement produced by each of the disturbances. Here we are assuming the 

displacements to be in the same direction. Now according to superposition principle, the resultant 
displacement will be given by, 

   x(t) = x1(t) + x2(t) = a1 sin ωt + a2 sin (ωt + φ) = A sin (ωt + φ0) 

  where  A2 = a1
2 + a2

2 + 2a1 . a2 cos φ    ....... (1)  

  and tan φ0 =      ........(2) 
 
 
 
 



 
 

 
 
Example 1. 
 
Solution : 

If i1 = 3sin ωt and i2 = 4 cos ωt, find i3. 
 
from kirchoff’s current law,  
 i3 = i1 + i2. 

    = 3 sin ωt + 4 sin (ωt + ) 

    = 5 sin (ωt + tan–1 ) 

 

 
Example 2. S1 and S2 are two source of light which produce individually disturbance at point P given by  

E1 = 3sin ωt, E2 = 4 cos ωt. Assuming  to be along the same line, find the result of their 
superposition.  

Solution :    
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3. SUPERPOSITION OF PROGRESSIVE WAVES; PATH DIFFERENCE : 
 Let S1 and S2 be two sources producing progressive waves (disturbance travelling in space given 

by y1 and y2) 
 At point P,       

 y1 = a1 sin (ωt – kx1 + θ1) 

 y2 = a2 sin (ωt – kx2 + θ2) 
 y = y1+y2 = A sin(ωt + Δφ) 
Here, the phase difference, 
 Δφ  = (ωt – kx1 + θ1) – (ωt – kx2 + θ2) 

       = k(x2 – x1) + (θ1 – θ2) = kΔp + Δθ  

 Here Δp = Δx is the path difference  
 Clearly, phase difference due to path difference = k (path difference) 

  where k =  

  ⇒ Δφ = kΔp =  Δx       ..... (1) 
  For Constructive Interference : 
   Δφ = 2nπ,  n = 0, 1, 2 ........ or, Δx = nλ    
   Amax = A1 + A2  

  Intensity,   ⇒ Ιmax =   ... (2) 
  For Destructive interference : 
   Δφ = (2n + 1)π, n   = 0, 1, 2 ....... 

  or, Δx = (2n + 1)λ/2     

   Amin = |A1 – A2| 

  Intensity,   ⇒ Ιmax =  ... (3) 
 

 
 

 
Example 3. Light from two sources, each of same frequency and travelling in same direction, but with intensity 

in the ratio 4 : 1 interfere. Find ratio of maximum to minimum intensity. 



 
 

Solution :   =   = =  =  9 : 1. 

🕮______________________________________________________________________   
4. COHERENCE :  
 Two sources which vibrate with a fixed phase difference between them are said to be coherent. The 

phase differences between light coming form such sources does not depend on time. 

 In a conventional light source, however, light comes from a large number of individual atoms, each atom 

emitting a pulse lasting for about 1 ns. Even if atoms were emitting under similar conditions, waves from 

different atoms would differ in their initial phases. Consequently light coming from two such sources have 

a fixed phase relationship for about 1ns, hence interference pattern will keep changing every billionth of 

a second. The eye can notice intensity changes which lasts at least one tenth of a second. Hence we will 

observe uniform intensity on the screen which is the sum of the two individual intensities. Such sources 

are said to be incoherent. Light beam coming from two such independent sources do not have any fixed 

phase relationship and they do not produce any stationary interference pattern. For such sources, 

resultant intensity at any point is given by 

   Ι = Ι1 + Ι2   ...... (1) 

 

5. YOUNG’S DOUBLE SLIT EXPERIMENT (Y.D.S.E.)  

 In 1802 Thomas Young devised a method to produce a stationary interference pattern. This was based 

upon division of a single wavefront into two; these two wavefronts acted as if they emanated from two 

sources having a fixed phase relationship. Hence when they were allowed to interfere, stationary 

interference pattern was observed. 

     
 Figure : Young’s Arrangement to produce stationary interference pattern by division of wave front S0 into 

S1 and S2  



 
 

 
 

 5.1  ANALYSIS OF INTERFERENCE PATTERN      
 We have insured in the above arrangement that the light wave passing through S1 is in phase 

with that passing through S2. However the wave reaching P from S2 may not be in phase with 

the wave reaching P from S1, because the latter must travel a longer path to reach P than the 

former. We have already discussed the phase-difference arising due to path difference. If the 

path difference is equal to zero or is an integral multiple of wavelengths, the arriving waves are 

exactly in phase and undergo constructive interference.  

 If the path difference is an odd multiple of half a wavelength, the arriving waves are out of phase 

and undergo fully destructive interference. Thus, it is the path difference Δx, which determines 

the intensity at a point P.  

                          

  Path difference Δp = S1P – S2P =  ...(1) 
 Approximation I : 

For D >> d, we can approximate rays 1 and 2 as being 

approximately parallel, at angle θ to the principle axis. 

 

Now, S1P – S2P = S1A = = S1S2 sin θ  

⇒ path difference = d sin θ  ...(2) 

 
 

  Approximation II :  

  further if θ is small, i.e.y << D, sin θ = tan θ =   



 
 

  and hence, path difference =    ...(3) 
  for maxima (constructive interference), 

   Δp =  = nλ   

  ⇒ y = , n = 0, ± 1, ± 2, ± 3   .....(4) 
  Here n = 0 corresponds to the central maxima  

  n = ±1 correspond to the 1st maxima 

  n = ±2 correspond to the 2nd maxima and so on. 

  for minima (destructive interference). 

  Δp = ± , ±   ±  ⇒ Δp =  

  consequently, y =  .... (5) 
  Here  n = ± 1 corresponds to first minima, 

  n = ± 2 corresponds to second minima and so on. 
 

 5.2  FRINGE WIDTH : 
 It is the distance between two maxima of successive order on one side of the central maxima. 

This is also equal to distance between two successive minima. 

  fringe width  β =    ... (1) 

  
∙  Notice that it is directly proportional to wavelength and inversely proportional to the distance 

between the two slits.         
 

 5.3 INTENSITY : 
  Suppose the electric field components of the light waves arriving at point P (in the Figure) from  

  the two slits S1 and S2 vary with time as  
   E1 = E0 sin ωt  and  E2 = E0 sin (ωt + φ) 

  Here  φ  = kΔx =  Δx 

 and we have assumed that intensity of the two slits S1 and S2 are same (say Ι0); hence waves 

have same amplitude E0. 

  then the resultant electric field at point P is given by,  

   E = E1 + E2 = E0 sin ωt + E0 sin (ωt + φ)    = E0´ sin (ωt +φ´) 

  where  E0´2 = E0
2 + E0

2 + 2E0 . E0 cos φ = 4 E0
2 cos2 φ/2 

  Hence the resultant intensity at point P, 



 
 

   Ι = 4Ι0 cos2        .......(2) 

   Ιmax = 4Ι0  when  = nπ ,        n = 0, ±1, ±2,......., 

   Ιmin = 0 when   =  

  Here  φ = kΔx =  Δx  

  If D >> d,   φ =  d sin θ  

  If  D >> d  &  y << D, φ =  d  

  However if the two slits were of different intensities Ι1 and Ι2,  

  say  E1 = E01, sin ωt   

  and E2 = E02, sin (ωt + φ) 

  then resultant field at point P, 

   E = E1 + E2 = E0 sin (ωt + φ)  

  where E0
2 = E01

2 + EO2
2 + 2E01 E02 cos φ  

  Hence resultant intensity at point P, 

   Ι = Ι1 + Ι2 +  cos φ    ............ (3) 

 
Example 4. In a YDSE, D = 1m, d = 1mm and λ = 1/2 mm 

  (i) Find the distance between the first and central maxima on the screen. 

  (ii) Find the no of maxima and minima obtained on the screen. 

 

Solution : (i) D >> d 

Hence ΔP = d sin θ  

  = 2,  

clearly, n <<  = 2 is not possible for any value of n. 

Hence Δp =  cannot be used for Ist maxima, 

 Δp = d sin θ = λ  

 ⇒ sin θ =  =    

 ⇒ θ = 30º    

Hence, y = D tan θ = meter 

 

 

 

  (ii) Maximum path difference  

  ΔPmax = d = 1 mm 

  ⇒ Highest order maxima, nmax =  = 2 and highest order minima nmin =  = 2 

  Total no. of maxima = 2nmax + 1* = 3 *(central maxima). 

  Total no. of minima = 2nmin = 4 

 



 
 

Example 5. Monochromatic light of wavelength 5000 Aº is used in Y.D.S.E., with slit-width, d = 1mm, distance 

between screen and slits, D = 1m. If intensity at the two slits are, Ι1 = 4Ι0, Ι2 = Ι0, find  

  (i) fringe width β 

  (ii) distance of 5th minima from the central maxima on the screen 

  (iii) Intensity at y =  mm 

  (iv) Distance of the 1000th maxima 

  (v) Distance of the 5000th maxima 

Solution : (i)  β =  =  = 0.5 mm 

  (ii)  y = (2n – 1)  , n = 5  ⇒ y = 2.25 mm 

  (iii)  At y =  mm, y << D   Hence Δp =  

   Δφ =  = 2π   =   Now resultant intensity 

   Ι = Ι1 + Ι2 + 2  cos Δφ  = 4Ι0 + Ι0 + 2  cos Δφ = 5I0 + 4I0 cos   = 3Ι0  

  (iv)  =  = 2000  n = 1000 is not << 2000  

   Hence now Δp = d sin θ must be used  

   Hence, d sin θ = nλ = 1000 λ  

   ⇒ sin θ = 1000   =   ⇒ θ = 30º  y = D tan θ =  meter 

  (v) Highest order maxima  nmax =  = 2000 

   Hence, n = 5000 is not possible. 
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5.4 SHAPE OF INTERFERENCE FRINGES IN YDSE :  
 We discuss the shape of fringes when two pinholes are used instead of the two slits in YDSE. 

 Fringes are locus of points which move in such a way that its path difference from the two slits remains 

constant. 

  



 
 

 S2P – S1P = Δ = constant   ....(1) 

If  Δ = ±  , the fringe represents 1st minima. 

If  Δ = ±  it represents 2nd minima 

If Δ = 0 it represents central maxima,  

If Δ = ± λ, it represents 1st maxima etc.  
 

 Equation (1) represents a hyperbola with its two foci at S1 and S2  

 The interference pattern which we get on screen is the section of hyperboloid of revolution when we 

revolve the hyperbola about the axis S1S2. 

   

A. If the screen is ⊥er to the X axis, i.e. in the YZ plane, as is generally the case, firinges are 

hyperbolic with a straight central section. 

 

B. If the screen is in the XY plane, again fringes are hyperbolic. 

 

C. If screen is ⊥er to Y axis (along S1S2), ie in the XZ plane, fringes are concentric circles with center 

on the axis S1S2; the central fringe is bright if S1S2 = nλ and dark if S1S2 = (2n – 1)  . 

       
    

5.5 YDSE WITH WHITE LIGHT :  
 The central maxima will be white because all wavelengths will constructively interference here. However 

slightly below (or above) the position of central maxima fringes will be coloured. for example if P is a point 

on the screen such that  

                       S2P – S1P =  = 190 nm, 

 completely destructive interference will occur for violet light. Hence we will have a line devoid of violet 

colour that will appear reddish.  And if  

    S2P–S1P =  = 350 nm,  

 

 completely destructive interference for red light results and the line at this position will be violet. The 

coloured fringes disappear at points far away from the central white fringe; for these points there are so 

many wavelengths which interfere constructively, that we obtain a uniform white illumination. for example 

if  

    S2P – S1 P = 3000 nm,  

 then constructive interference will occur for wavelengths λ =  nm. In the visible region these 

wavelength are 750 nm (red), 600 nm (yellow), 500 nm (greenish–yellow), 430 nm (violet). Clearly such 

a light will appear white to the unaided eye. 

 Thus with white light we get a white central fringe at the point of zero path difference, followed by a few 

coloured fringes on its both sides, the color soon fading off to a uniform white. 



 
 

 In the usual interference pattern with a monochromatic source, a large number of identical interference 

fringes are obtained and it is usually not possible to determine the position of central maxima. Interference 

with white light is used to determine the position of central maxima in such cases. 

 

 
Example 6. A beam of light consisting of wavelengths 6000Å and 4500Å is used in a YDSE with D = 1m  

and d = 1 mm. Find the least distance from the central maxima, where bright fringes due to the 

two wavelengths coincide. 

Solution :  β1 =  =  = 0.6 mm 

  β2 =  = 0.45 mm 

  Let n1th maxima of λ1 and n2th maxima of λ2 coincide at a position y.  

  then, y = n1P1 = n2P2 = LCM of β1 and β2  

  ⇒ y = LCM of 0.6 cm and 0.45 mm 

   y = 1.8 mm   Ans. 

  At this point 3rd maxima for 6000 Å & 4th maxima for 4500 Å coincide 

 

Example 7. White light is used in a YDSE with D = 1m and d = 0.9 mm. Light reaching the screen at position  

y = 1 mm is passed through a prism and its spectrum is obtained. Find the missing lines in the 

visible region of this spectrum. (A visible region from 350 nm to 750 nm)  

Solution : Δp =   = 9 × 10–4 × 1 × 10–3 m = 900 nm  

  for minima  Δp = (2n – 1)λ/2 

  ⇒ λ =  =  

   = , , , ........ 

 of these 600 nm and 360 nm lie in the visible range. Hence these will be missing lines in the 

visible spectrum. 
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6. GEOMETRICAL PATH & OPTICAL PATH :  
 Actual distance travelled by light in a medium is called geometrical path (Δx). Consider a light wave given 

by the equation  

   E = E0 sin (ωt – kx + φ)  

 If the light travels by Δx, its phase changes by kΔx = Δx, where ω, the frequency of light does not 

depend on the medium, but v, the speed of light depends on the medium as v = . 

 Consequently, change in phase 

   Δφ = kΔx =   (μΔx)   



 
 

 It is clear that a wave travelling a distance Δx in a medium of refractive index μ suffers the same phase 

change as when it travels a distance μΔx in vacuum. i.e. a path length of Δx in medium of refractive index 

μ is equivalent to a path length of μΔx in vacuum. 

 The quantity μΔx is called the optical path length of light, Δxopt . And in terms of optical path length, phase 

difference would be given by, 

   Δφ = Δxopt  =  Δxopt  .... (1) 

 where λ0 = wavelength of light in vacuum. 

 However in terms of the geometrical path length Δx, 

   Δφ =   (μΔx) =  Δx  .....(2) 

 where λ = wavelength of light in the medium (λ = ). 

 

6.1 DISPLACEMENT OF FRINGE :   
  On introduction of a glass slab  in the path of the light 

coming out of the slits– 
        

 On introduction of the thin glass-slab of thickness t 

and refractive index μ, the optical path of the ray S1P 

increases by t(μ – 1). Now the path difference 

between waves coming form S1 and S2 at any point P 

is  

 Δp = S2P – (S1P + t (μ – 1)) 

       = (S2P –S1P) – t(μ – 1) 

⇒ Δp = d sin θ – t (μ – 1)  if  d << D 

 

 and Δp =  – t(μ – 1) If y << D as well. 

  for central bright fringe, 

  Δp = 0   ⇒  = t(μ – 1). 

 ⇒ y = OO’ =  (μ – 1)t   = (μ – 1) t .  

 

 

 

 

  The whole fringe pattern gets shifted by the same distance 

  Δ = (μ – 1).  = (μ – 1)t .  

 * Notice that this shift is in the direction of the slit before which the glass slab is placed. If the 

glass slab is placed before the upper slit, the fringe pattern gets shifted upwards and if the glass 

slab is placed before the lower slit the fringe pattern gets shifted downwards. 

 

 
Example 8. In a YDSE with d = 1mm and D = 1m, slabs of (t = 1μm, μ = 3) and (t = 0.5 μm, μ = 2) are 

introduced in front of upper and lower slit respectively. Find the shift in the fringe pattern. 
 

Solution : Optical path for light coming from upper slit S1 is  
 

   S1P + 1μm (2 – 1) = S2P + 0.5 μm 

  Similarly optical path for light coming from S2 is  
 

   S2P + 0.5 μm (2 – 1) = S2P + 0.5 μm  



 
 

 

  Path difference : Δp = (S2P + 0.5 μm) – (S1P + 2μm) = (S2P – S1P) – 1.5 μm. 

         =  – 1.5 μm  
 

  for central bright fringe Δp = 0 

  ⇒    y =   × 1m = 1.5 mm. 
 

  The whole pattern is shifted by 1.5 mm upwards.   Ans.  

 

🕮_______________________________________________________________________ 
 

7. YDSE WITH OBLIQUE INCIDENCE :  
 In YDSE, ray is incident on the slit at an inclination of θ0 to the axis of symmetry of the experimental set-

up              

  

 for points above the central point on the screen, (say for P1) 

 Δp =d sinθ0 + (S2 P1 – S1P1) 

⇒ Δp = d sinθ0 + dsinθ1  (If d << D) 

 and for points below O on the screen, (say for P2) 

 Δp = |(dsin θ0 + S2P2) – S1P2| 

      = |d sin θ0 – (S1P2 – S2P2)|  

⇒ Δp     = |d sin θ0 – d sinθ2|  (if d << D) 

We obtain central maxima at a point where, Δp = 0. 

 (d sin θ0 – d sinθ2 ) = 0 

or θ2 = θ0.  
 

 This corresponds to the point O’ in the diagram. Hence we have finally for path difference. 

 Δp =  ... (1) 

  

 

 

 
 

Example 9. In YDSE with D = 1m, d = 1mm, light of  wavelength 500 nm is 

incident at an angle of 0.57º w.r.t. the axis of symmetry of the 

experimental set up. If centre of symmetry of screen is O as 

shown. 

(i) find the position of central maxima 

(ii) Intensity at point O in terms of intensity of central maxima Ι0.       

(iii) Number of maxima lying between O and the central maxima. 
 

Solution :. (i) θ = θ0 = 0.57º 

   ⇒ y = –D tan θ   – Dθ  = – 1 meter ×  

   ⇒ y = – 1cm. 

 

  (ii) for point 0,  θ = 0  

   Hence, Δp = d sin θ0 ;  dθ0 = 1 mm × (10–2 rad) 

         = 10,000 nm = 20 × (500 nm)  

   ⇒ Δp = 20 λ  

   Hence point O corresponds to 20th maxima  

   ⇒ intensity at O = Ι0  



 
 

 

  (iii) 19 maxima lie between central maxima and O, excluding maxima at O and central 

maxima. 
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8. THIN-FILM INTERFERENCE :  
 In YDSE we obtained two coherent source from a 

single (incoherent) source by division of wave-front. 

Here we do the same by division of Amplitude (into 

reflected and refracted wave).  

 

When a plane wave (parallel rays) is incident 

normally on a thin film of uniform thickness d then 

waves reflected from the upper surface interfere with 

waves reflected from the lower surface. 

 

Clearly the wave reflected from the lower surface 

travel an extra optical path of 2μd, where μ is 

refractive index of the film. 

 
 Further if the film is placed in air the wave reflected from the upper surface (from a denser medium) 

suffers a sudden phase change of π, while the wave reflected from the lower surface (from a rarer 

medium) suffers no such phase change. 

 Consequently condition for constructive and destructive interference in the reflected light is given by, 

  2μd = nλ for destructive interference 

 and 2μd = (n + )λ for constructive interference    ....(1) 

 where n = 0, 1, 2 ..............,  

 and λ = wavelength in free space. 
 

 Interference will also occur in the transmitted light and here condition of constructive and destructive 
interference will be the reverse of (9.1)  

  i.e. 2μd =  ....(2) 
 This can easily be explained by energy conservation (when intensity is maximum in reflected light it has 

to be minimum in transmitted light) However the amplitude of the directly transmitted wave and the wave 
transmitted after one reflection differ substantially and hence the fringe contrast in transmitted light is 
poor. It is for this reason that thin film interference is generally viewed only in the reflected light. 

 

 In deriving equation (1) we assumed that the medium surrounding the thin film on both sides is rarer 
compared to the medium of thin film. 

 If medium on both sides are denser, then there is no sudden phase change in the wave reflected from 
the upper surface, but there is a sudden phase change of π in waves reflected from the lower surface. 
The conditions for constructive and destructive interference in reflected light would still be given by 
equation (1). 

 

 However if medium on one side of the film in denser and that on the other side is rarer, then either there 
is no sudden phase in any reflection, or there is a sudden phase change of π in both reflection from upper 
and lower surface. Now the condition for constructive and destructive interference in the reflected light 
would be given by equation 2 and not equation (1). 

 

 
Example 10. White light, with a uniform intensity across the visible wavelength range 430–690 nm, is 

perpendicularly incident on a water film, of index of refraction μ = 1.33 and thickness  
d = 320 nm, that is suspended in air. At what wavelength λ is the light reflected by the film 
brightest to an observer? 



 
 

Solution : This situation is like that of Figure, for which euqation gives the interference maxima. Solving for 
λ and inserting the given data, we obtain 

   λ =  =   =  
  for m = 0, this give us λ = 1700 nm, which is in the infrared region. For m = 1, we find l = 

567 nm, which is yellow-green light, near the middle of the visible spectrum. For m = 2,  
λ = 340 nm, which is in the ultraviolet region. So the wavelength at which the light seen by the 
observer is brightest is  

   λ = 567 nm.  Ans. 
 

Example 11. A glass lens is coated on one side with a thin film of magnesium fluoride (MgF2) to reduce 
reflection from the lens surface (figure). The index of refraction of MgF2 is 1.38; that of the glass 
is 1.50. What is the least coating thickness that eliminates (via interference) the reflections at the 
middle of the visible specturm (λ = 550 nm)? Assume the light is approximately perpendicular to 
the lens surface. 

 

Solution : The situation here differs from figure in that n3 > n2 > n1. The 
reflection at point a still introduces a phase difference of π but 
now the reflection at point b also does the same ( see figure 
9.2). Unwanted reflections from glass can be, suppressed (at 
a chosen wavelength) by coating the glass with a thin 
transparent film of magnesium fluoride of a properly chosen 
thickness which introduces a phase change of half a 
wavelength. For this, the path length difference 2L within the 
film must be equal to an odd  
number of half wavelengths: 
  2L = (m + 1/2)λn2,    

or,   with  λn2 = λ/n2,  

  2n2 L = (m + 1/2)λ. 

 

 

We want the least thickness for the coating, that is, the smallest L. Thus we choose m = 0, the smallest 
value of m. Solving for L and inserting the given data, we obtain 

  L =  =  = 96.6 nm   Ans. 
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9.  FRESNEL'S BIRPISM EXPERIMENT  

 (1) It is optical device to obtain two coherent  sources by refraction of lights.  
 (2) The angle of biprism is 179º & refracting angle is   α  = 1/2º. 

(3) Distance between source & screen D = a + b.   

 Distance between two coherent source = d = 2a (μ –1)α 

 Where a = distance between source & Biprism  

     b = distance between screen & Biprism  

     μ = refractive index of the material of prism.  

         

 

 Note-  α is in radian . Suppose refracting angle & refractive index is not known then d can be 
calculate by convex lens.  

 
 One convex  lens whose focal length (f) and 4f < D.  



 
 

 First convex lens is kept near biprism & d1 is calculated then it is kept near eyepiece & d2 is calculated.  

     
 Application : 
 With the help of this experiment the wavelength of monochromatic light, thickness of thin films and their 

refractive index & distance between apparent coherent sources can be determined.  
 When Fresnel's arrangement is immersed in water 
 (1) Effect on d  
 dwater < dair. Thus when the Fresnel's biprism experiment is immersed in water, then the separation between 

the two virtual sources decreases but in young's double slit experiment it does not change.  
 (2) In young's double slit experiment β decrease and in fresnel's biprism experiment β increases.   

 
Example 12 In Fresnel's biprism experiment the width of 10 fringes is 2cm which are formed at a distance of 

two 2 meter from the slit. If the wavelength of light is 5100 Å then the distance between two 
coherent sources. 

Solution :         ........(1) 
  According to question λ = 5100 × 10–10 m   

         ........(2)   
  D = 2m    d = ?   

  From eqs. (1) and (2)  = 5.1 × 10–4 m 
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DIFFRACTION OF LIGHT 

 Bending of light rays from sharp edges of an opaque obstacle or aperture and its spreading in the 

eometricle shaddow region is defined as diffraction of light or deviation of light from its rectilinear 

propogation tendency is defined as diffraction of light.   

    

 Diffraction was discovered by Grimaldi 

 Theoritically explained by Fresnel 

 Diffraction is possible in all type of waves means in mechanical or electromagnetic waves shows 

diffraction.  

 Diffraction depends on two factors : 

 (i) Size of obstacles or aperture   

  



 
 

 (ii) Wave length of the wave   

 

 Condition of diffraction. Size of obstacle or aperture should be nearly equal to the wave length of light  

  λ ~ a   ~ 1 

 If size of obstacle is much greater then wave length of light, the rectilinear motion of light is observed. 

 

 It is practically observed when size of aperture or obstacle is greater than 50 λ then obstacle or aperture 

does not shows diffraction. 
 

 

 Wave length of light is in the order 10–7m. In general obstacle of this wave length is not present so light 

rays does not show diffraction and it appears to travel in straight line Sound wave shows more diffraction 

as compare to light rays because wavelength of sound is high (16 mm to 16m). So it is generally diffracted 

by the objects in our daily life. 
 

 Diffraction of ultrasonic wave is also not observed as easily as sound wave because their wavelength is 

of the order of about 1 cm. Diffraction of radio waves is very conveniently observed because of its very 

large wavelength (2.5 m to 250 m). X-ray can be diffracted easily by crystel. It was discovered by Lave. 

 

  

TYPES OF DIFFRACTION 

 (i) There are two type of diffraction of light : 

 (a) Fresnel's diffraction   (b) Fraunhofer's's diffraction 

 (a) Fresnel diffraction 

 If either source or screen or both are at finite from the diffracting device (obstacle or aperture), the 

diffraction is called fresnel diffraction and the pattern is the shadow of the diffracting device modified by 

diffraction effect. 

 Example :- Diffraction at a straight edge, small opaque disc, narrow wire are examples of fresnel 

diffraction. 



 
 

     

 (b) Fraunhofer diffraction 

 Fraunhofer diffraction is a particular limiting case of fresnel diffraction. 

 In this case, both source and screen are effectively at infinite distance from the diffracting device and 

pattern is the image of source modified by diffraction effects. 

 Example :- Diffraction at single slit, double slit and diffraction grating are the examples of fraunhofer 

diffraction. 

         

 

 

FRAUNHOFER DIFFRACTION DUE TO SINGLE SLIT 

 Ab is single slit of width a, Plane wavefront is incident on a slit AB. Secondary wavelets coming from 

every part of AB reach the axial point P in same phase forming the central maxima. The intensity of 

central maxima is maximum in this diffrection. Where θn represents direction of nth minima Path difference 

BB' =a sin θn\ 

 

 for nth minima a sin θn = nλ  ∴  sin θn   θn =  (if θn is small) 

 When path difference between the secondary wavelets coming from A and B is nλ or  



 
 

 or even multiple of   then minima occurs  

 

 For minima  a sin θn =  

 When path difference between the secondary wavelets coming from A and B is (2n + 1)   

 or odd multiple of  then maxima occurs 

 For maxima a sin θn = (2n + 1)  where n = 1, 2, 3 ...... 

 n = 1 → first maxima  and  n = 2 → second maxima. 

 In alternate order minima and maxima occurs on both sides of central maxima. 

 For nth minima 

   
 If distance of nth minima from central maxima = xn 

 distance of slit from screen = D, width of silt = a 

 Path difference δ = a sinθn =  ⇒ sinθn =     

 In Δ POP' tan θn =   If θn is small ⇒ sin θn  tanθn  θn  

 Xn =  ⇒ θn =  =  First minima occurs both sides on central maxima. 

 For first minima x =  and θ =  =  

 Linear width of central maxima wx = 2x ⇒ wx =  

 Angular width of central maxima wθ = 2θ =  

   

SPECIAL CASE 

 Lens L2 is shifted very near to slit AB.    



 
 

 In this case distance between slit and screen will be nearly equal to the focal lenght of lense L2  

 (i.e. D  f) 

 θn =  =  ⇒  xn =  

 wx =  and angular width of cnetral maxima wB =  =   
 

 

 

 

 Fringe width 

 Distance between two consecutive maxima (bright fringe) or minima (dark fringe) is known as fringe 

width. 

 β = xn + 1 – xn = (n + 1)  –  =   
 Intensity curve of Fraunhofer's diffraction 

  

 Intensity of maxima in Fraunhofer's diffrection is determined by I =  
 I0 = intensity of central maxima 

 n = order of maxima 

 intensity of first maxima I1 = dθ    

 intensity of second maxima I2 =  

 Diffraction occurs in slit is always fraunhofer diffraction as diffraction pattern obtained from the cracks 

between the fingers, when viewed a distant tubelight and in YDSE experiment are fraunhofer diffraction 

 

GOLDEN KEY POINTS 

● The width of central maxima ∝ λ, that is, more for red colour and less for blue. 

 i.e., wx ∝ λ 

 as λblue < λred ⇒ wblue < wred 

 

● For obtaining the fraunhofer diffraction, focal length of second lens (L2) is used. 

 wx ∝ λ ∝ f ∝ 1/a 

 width will be more for narrow slit 

● By decreasing linear width of slit, the width of central maxima increase. 
 



 
 

RESOLVING POWER (R.P.) 
 A large number of images are formed as consequence of light diffraction of from a source. If two sources 

are separated such that their central maxima do not overlap, their images can be distinguished and are 

said to be resolved R.P. of an optical instrument is its ability to distinguish two neighbouring points. 
 

  Linear R.P. d / λD here D = Observed distance 

  Angular R.P. d / λ  d = Distance between two points, 

 

 Fraunhofer Differaction by a circular aperture : 

 The mathematical analysis shows that the first dark ring is formed by the light diffeacted from at an angle 

θ with the axis sin θ =  

  

 The radius of the diffraction disc is given by R =  

 Limits of Resolution 

 The fact that a lens forms a disc image of a point source, puts a limit on resolving two next points imaged 

 by a lens. 

         
 For two objects to be barely resolved, the angular separation between then should be at θR = sin–1 

.  

(1) Microscope : In reference to a microscope, the minimum distance between two lines at which they are 

just distinct is called Resolving limit (RL) and it's reciprocal is called Resolving power (RPO) 

 R.L. =  and R.P. =  ⇒ R.P. ∝    

   

 λ = Wavelength of light used to illuminate the object 

 μ = Refractive index of the medium between object and objective. 

 θ = Half angle of the cone of light from the point object, μ sin θ = Numerical aperture. 

   



 
 

(2) Telescope : Smallest angular separations (dθ) between two distant object, whose images are 

separated in the telescope is called resolving limit. So resolving limit dθ =   and resolving power 

 (RP) =   =   ⇒ R.P. ∝   where a = aperture of objective. 

 

Example 13.  Light of wavelength 6000Å is incident normally on a slit of width 24 × 10–5 cm. Find out the angular 

position of second minimum from central maximum ? 

Solution : a sinθ = 2λ  
  given λ = 6 × 10–7 m, a = 24 × 10–5 × 10–2 m 

  sinθ =   =   ∴ θ = 30º 

Example 14.  Light of wavelength 6328Å is incident normally on a slit of width 0.2 mm. Calculate the angular 

width of central maximum on a screen distance 9 m ? 

Solution : given λ = 6.328 × 10–7 m, a = 0.2 × 10–3 m 

  wθ =   =   radian =   = 0.36≡ 

Example 15.  Light of wavelength 5000Å is incident on a slit of width 0.1 mm. Find out the width of the central 

bright line on a screen distance 2m from the slit ? 

Solution : wx =   =   = 20 mm 

 

Example 16.  The fraunhofer diffraction pattern of single slit is formed at the focal plane of a lens of focal length 

1m. The width of the slit is 0.3 mm. If the thrid minimum is formed at a distance of 5 mm from the 

central maximum then calculate the wavelength of light. 

Solution : xn =   ⇒  λ =   =   = 5000Å   
Example 17.  Find the half angular width of the central bright maximum in the Fraunhofer diffraction pattern of 

a slit of width 12 × 10–5 cm when the slit is illuminated by monochromatic light of wavelength 

6000Å. 

Solution :  sinθ =  θ = half angular width of the central maximum. 

 a = 12 × 10–5 cm, λ = 6000 Å = 6 × 10–5 cm ∴ sinθ =    =   = 0.50 ⇒ θ = 30º 

 

Example 18.  Light of wavelength 6000 Å is incident on a slit of width 0.30 mm. The screen is placed 2 m from 

the slit. Find (a) the position of the first dark fringe and (b) the width of the central bright fringe. 

Solution : The first fringe is on either side of the central bright fringe. 

 here  n = + 1, D = 2m, λ = 6000 Å = 6 j 10–7 m 

 ∴ sinθ =  ⇒  a = 0.30 mm = 3 × 10–4 m ⇒ a sinθ  = nλ ⇒     = nλ 

 (a) x =  ⇒ x =  +  = +4 × 10–3 m 

 The positive and negative signs corresponds to the dark fringes on either side of the central bright 

fringe. 



 
 

 (b) The width of the central bright fringe y = 2x = 2 × 4 × 10–3 = 8 × 10–3 m = 8 mm 

 
🕮_______________________________________________________________________ 

DIFFERENCE BETWEEN INTERFERENCE AND DIFFRACTION : 

 

 

 
Example 19. A Slit of width a is illuminated by monochromatic light of wavelength 650 nm at normal incidence. 

Calculate the value of a when : 

 (a) the first minimum falls at an angle of diffraction of 30º 

 (b) the first maximum falls at an angles of diffraction of 30º 

Solution : (a) for first minimum sinθ1 = , 

 ∴ a =   =   =  = 1.3 × 10–6 m 

 (b) for first maximum sinθ1 =  , ∴ a =  =  = 1.95 × 10–6 m 
 

Example 20. Red light of wavelength 6500 Å from a distance source falls on a slit 0.50 mm wide. What is the 

distance between the first two dark bands on each side of the central bright of the diffraction 

pattern observed on a screen placed 1.8 m. from the slit. 

Solution : Given λ = 6500Å = 65 × 10–8 m, a = 0.5 mm = 0.5 × 10–3 m., D = 1.8 mm 

 

Example 21. In a single slit diffraction experiment first minimum for λ1 = 660 nm coincides with first maxima 

for wavelength λ2. Calculate λ2. 

Solution : For minima in diffraction pattern  d sinθ = nλ 

 For first minima    d sinθ1 = (1)λ1 ⇒ sinθ1 =  

 for first maxima    d sinθ2 =  ⇒ sinθ2 =  
 Two will coincide if, θ1 = θ2 or sinθ1 = sinθ2 

 ∴  =  ⇒ λ2 =  =  × 660 nm = 440 nm. 

 



 
 

 
 
🕮_______________________________________________________________________ 

POLARISATION 
 

 Experiments on interference and diffraction have shown that light is a form of wave motion. These effects 

do not tell us about the type of wave motion i.e. whether the light waves are longitudinal or transverese. 

 The phenomenon of polarization has helped to establish beyond doubt that light waves are transverse 

waves. 
 

UNPOLARISED LIGHT 

 An ordinary beam of light consists of a large number of waves emitted by the atoms of the light source.  

Each atom produces a wave with its own orientation of electric vector  so all direction of vibration of  

are equally probable.   

       

 The resultant electromagnetic wave is a super position of waves produced by the individual atomic 

sources and it is called unpolarised light. In ordinary or unpolarised light, the vibrations of the electric 

vector occur symmetrically in all possible directions in a plane perpendicular to the direction of 

propagation of light. 

 

POLARISATION 

 The phenomenon of restricting the vibration of light (electric vector) in a particular direction perpendicular 

to the direction of propagation of wave is called polarisation of light. 

 In polarised light, the vibration of the electric vector occur in a plane perpendicular to the direction of 

propagation of light and are confined to a single direction in the plane (do not occur symmetrically in all 

possible directions.) 

 After polarisation the vibrations become asymmetrical about the direction of propagation of light. 

 

POLARISER 

 Tourmaline crystal 

 When light is passed through a tomaline crystal cut parallel to its optic axis, the vibrations of the light 

carrying out of the tourmaline crystal are confined only to one direction in a plane perpendicular to the 

direction of propagation of light. The emergent light from the crystal is said to be plane polarised light. 

 Nicol Prism 

 A nicol prism is an optical device which can be used for the production and detection of plane polarised 

light. It was invented by William Nicol in 1828. 

 Polaroid 

 A polaroid is a thin commercial sheet in the form of circular disc which makes use of the property of 

selective absorption to produce an intense beam of plane polarised light. 

 PLANE OF POLARISATION AND PLANE OF VIBRATION : 



 
 

 The plane in which vibrations of light vector and the direction of propogation lie is known as plane of 

vibration. A plane normal to the plane of vibration and in which no vibration takes place is known as plane 

of polarisation.    

   
EXPERIMENTAL DEMONSTRATION OF POLARISATION OF LIGHT 

 Take two tourmaline crystals cut parallel to their crystallographic axis (optic axis) 

 First hold the crystal A normally to the path  of a beam of colour light. The emergent beam will be 

slightly coloured.     

    

    

    
 

 Rotate the crystal A about PO. No change in the intensity or the colour of the emergent beam of light. 

Take another crystal B and hold it in the path of the emergent beam of so that its axis is parallel to the 

axis of the crystal A. The beam of light passes through both the crystals and outcoming light appears 

coloured. 

 Now, rotate the crystal B about the axis PO. It will be seen that the intensity of the emergent beam 

decreases and when the axes of both the crystals are at right angles to each other no light comes out of 

the crystal B. 

 If the crystal B is further rotated light reappears and intensity becomes maximum again when their axes 

are parallel. This occurs after a further rotation of B through 90º 

 This experiment confirms that the light waves are transverse in nature. 

 The vibrations in light waves are perpendicular to the direction of propogation of the wave. 

 First crystal A polarises the light so it is called polariser. 

 Second crystal B, analyses the light whether it is polarised or not, so it is called analyser. 

METHODS OF OBTAINING PLANE POLARISED LIGHT 

 Polarisation of reflection 

 The simplest method to produce plane polarised light is by reflection. This method was discovered by 

Malus in 1808. When a beam of ordinary light is reflected from a surface, the reflected light is partially 



 
 

polarised. The degree of polarisation of the polarised light in the reflected beam is greatest when it is 

incident at an angle called polarising angle or Brewster's angle.   

    

 Polarising angle 

 Polarising angle is that angle of incidence at which the reflected light is completely plane polarisation. 

 Brewster's Law 

 When unpolarised light strikes at polarising angle θP on a interface separating a rare medium from a 

denser medium of refractive index μ, such that μ = tan θP then the reflected light (light in rare medium) 

is completely polarised. Also reflected and refracted and refracted rays are normal to each other. 

 This relation is known as Brewster's Law. 

 The law state that the tangent of the polarising angle of incidence of a transparent medium is equal to 

tis refractive index  μ = tan θP 

 In case of polarisation by reflection : 

 (i) For i = θP refracted light is partially polarised. 

 (ii) For  i = θP reflected and refracted rays are perpendicular to each other. 

 (iii) For i < θP  or   i > θP both reflected and refracted light become partially polarised. 

 According to snell's law  μ =   ..........(i) 

 But according to Brewster's law μ  = tanθO =  ..........(ii) 

 From equation (i) and (ii)  =  ⇒ sinθr = cosθP 

 ∴ sinθr = sin (90º – θP) ⇒ θr = 90º – θP  or θP + θr = 90º 

 Thus reflected and refracted rays are mutually perpendicular 

 

 

 

 

 

 

 By Refraction 

 In this method, a pile of glass plates is formed by taking 20 to 30 microscope slides and light is made to 

be incident a polarising angle 57º. According Brewster law, the reflected light will be plane polarised with 

vibrations perpendicualr to the plane of incidence and the transmitted light will be partially polarised. 

 Since in one reflection about 15% of the light with vibration perpendicular to plane of paper is reflected 

therefore after passing through a number of plates emerging light will become plane polarised with 

vibrations in the plane of paper.   



 
 

  

 By Dichroism 

 Some crystals such as tourmaline and sheets of iodosulphate of quinone have the property of strongly 

absorbing the light with vibrations perpendicular of a specific direction (called transmision axis) and 

transmitting the light with vibration parallel to it. This selective absorption of light is called dichroism. So 

if unpolarised light passes through proper thickness of these, the transmitted light will plane polarised 

withvibrations parallel to transmission axis. Polaroids work onthis principle. 

      

 By scattering : 

 When light is incident on small particles of dust, air molecule etc. (having smaller size as compared to 

the wavelength of light,) it si absorbed by the electrons and is re-radiated in all directions. The 

phenomenon is called as scattering. Light scattered in a direction at right angles to the incident light is 

always plane-polarised. 

 

 Law of Malus 

 When a completely plane polarised light beam light beam is incident analyser, then intensity intensity of 

emergent light varies as the square of cosine of the angle between the planes of transmision of the 

analyser and the polarizer. I ∝ cos2θ ⇒ I = I0 cos2θ 



 
 

                
 (i) If θ = 0º then I = I0 maximum value (Parallel arrangement) 

 (ii) If θ = 90º then, I = 0 minimum value (Crossed arrangement) 

 If plane polarised light of intensity I0 (= KA2) is incident on a polaroid and its vibrations of amplitude A 

make angle θ with transmission axis, then the component of vibrations parallel to transmission axis will 

be A cosθ while perpendicular to it will be be A sinθ . 

 Polaroid will pass only those vibrations which are parallel to transmission axis i.e. Acos θ, 

   I0 ∝ A2 

 So the intensity of emergent light  I = K (Acos θ)2 = KA2cos2θ 

 If an unpolarised light is converted into plane polarised light its intensity becomes half. 

 If light of light emerging from the second polaroid is : 

 I2 = I1 cos2θ θ = angle between the transmission axis of the two polaroids.  
 

APPLICATIONS AND USES OF POLARISATION 

 By determining the polarising and and using Brewster's law μ = tanθP refractive index of dark transparent 

substance can be determined. 
 

 In calculators and watches, numbers and letters are formed by liquid crystals through polarisation of light 

called liquid crystal display (L.C.D) 
 

 In CD player polarised laser beam acts as needle for producing sound from compact disc. 
 

 It has also been used in recording and reproducing three dimensional pictures. 
 

 Polarised light is used in optical stress analysis known as photoelasticity. 
 

 Polarisation is also used to study asymmetries in molecules and crystals through the phenomenon of 

optical activity. 

 

 

 

 

 

 

Example 22.  Two polaroids are crossed to each other. When one of them is rotated through 60º, then what 
percentage of the incident unpolarised light will be transmitted by the polaroids ? 

Solution : Initially the polaroids are crossed to each other, that is the angle between their polarising 
directions is 90º. When one is rotated through 60º, then the angle between their polarising 
directions directions will become 30º. 

 Let the intensity of the incident unpolarised light = I0 

 This light is plane polarised and passes through the second polaroid. 



 
 

 The intensity of light emerging form the second polaroid is I2 = I1 cos2θ 

 θ = the angle between the polarising directions of the two polaroids. 

 I1 =   and θ = 30º so O2 = I1 cos230º ⇒   =  

 ∴ transmission percentage =  × 100 =  × 100 = 37.5% 

Example 23.  At what angle of incidence will the light reflected from water (μ = 1.3) be completely polarised ? 

Solution : μ = 1.3, 

 From Brewster's law tan θP = μ = 1.3 ⇒ θ = tan–1 1.3 = 53º 

Example 24.  If light beam is incident at polarising angle (56.3º) on air-glass interface, then what is the angle 
of refraction in glass ? 

Solution :  iP + rP = 90º  ∴ rP = 90º – iP = 90º – 56.3º = 33.7º 
 

Example 25.  A polariser and an analyser are oriented so that maximum light is transmitted, what will be the 
intensity of outcoming light when analyer is rotated through 60º 

Solution : According to Malus Law I = I = I0 cos2θ = I0 cos260º = I0  =  
 

 

Problem 1. Consider interference between waves from two sources of intensities Ι & 4Ι. Find intensities at 

points where the phase difference is π. 

Solution : I = R2 = a1
2 + a2

2 + 2a1 a2 cos δ  = Ι + 4Ι + 4Ι cos π 

            Ι  = 5Ι - 4Ι = Ι  
 

Problem 2. The width of one of the two slits in a Young's double slits experiment is double of the other slit. 
Assuming that the amplitude of the light coming from a slit is proportion to slit-width. Find the 
ratio of the maximum to the minimum intensity in the interference pattern.  

Solution : Suppose the amplitude of the light wave coming from the narrow slit is A and that coming from 
the wider slit is 2A. The maximum intensity occurs at a place where constructive interference 
takes place. Then the resultant amplitude is the sum of the individual amplitudes. Thus,  

  Amax = 2A + A = 3A 
  The minimum intensity occurs at a place where destructive interference takes place. The 

resultant amplitude is then difference of the individual amplitudes.  

  Thus,  Amin = 2A – A = A.  ∴    
 

Problem 3. In  a Young's experiment, the separation between the slits is 0.10mm, the wavelength of light 
used is 600nm and the interference pattern is observed on a screen 1.0 m away. Find the 
separation between the successive bright frignes.  

Solution : The separation between the successive bright fringes is   

    β = 6.0 mm  
 

Problem 4. Two waves originating from source S1 and S2 having zero phase difference and common 

wavelength λ will show completely destructive interference at a point P if (S1 P – S2 P) is  

Solution : For destructive interference :   

 Path difference = S1 P – S2 P = (2n – 1) λ/2 

 For  n = 1, S1 P – S2 P = (2 × 1 – 1)λ/2 = λ/2  

   n = 2, S1 P – S2 P = (2 × 2 –1)λ/2 = 3λ/2  

   n = 3, S1 P – S2 P = (2 × 3 – 1)λ/2 = 5λ/2 

   n = 4, S1 P – S2 P = (2 × 4 – 1)λ/2 = 7λ/2 

   n = 5, S1 P – S2 P = (2 × 5 – 1)λ/2 = 9λ/2 

   n = 6, S1 P – S2 P = (2 × 6 – 1)λ/2 = 11λ/2 

 So, destructive pattern is possible only for path difference = 11λ/2. 

 



 
 

Problem 5. In Young's experiment the wavelength of red light is 7.5×10–5 cm. and that of blue light  

5.0 × 10–5 cm. The value of n for which (n +1)th  the blue bright band coincides with nth red band.  

Solution : n1 λ1 = n2 λ2 for bright fringe 

  n(7.5 × 10–5) = (n + 1) (5 × 10–5) ;  = 2. 

 

Problem 6.  In Young's slit experiment, carried out with lights of wavelength λ = 5000 Aº, the distance between 

the slit is 0.2 mm and the screen is at 200 cm from the slits. The central maximum is at x = 0. 

The third maximum will be at x equal to. 

Solution :  or    

  = 1.5 cm   

Problem 7. Two slits separated by a distance of 1mm are illuminated with red light of wavelength   

6.5 × 10–7 m. The interference fringes are observed on a screen placed 1m from the slits. The 

distance between third dark fringe & the fifth bright fringe. 

Solution :  

 β = .65 ×10–3 m = .65 mm  

 The distance between the fifth bright fringe from third dark fringe   

     = 5β – 2.5 β ⇒ 2.5 β = 2.5 × .65 = 1.63 mm       

 

Problem 8.  In an experiment the two slits are 0.5 mm apart and the fringes are observed to 100 cm from the 

plane of the slits. The distance of the 11th bright fringe from the Ist bright fringe is 9.72 mm. 

Calculate the wavelength.  

Solution : Given d  = .5 mm = 5× 10–2 cm,   

  D = 100 cm  

  Xn = X11 – X1 = 9.72 mm 

 ∴    n = 11 – 1 = 10   λ = 4.86 × 10–5 cm 

 

Problem 9.  In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are 

observed one meter away. If it produces the second dark fringe at a distance of 1mm from the 

central fringe, the wavelength of monochromatic light used. 

 

 

 

Solution : D =1m, d = .90 mm = .9 × 10–3 m  
 The distance of  the second dark ring from centre  = 10–3 m   

    

   for n = 2,   

  ⇒  =  
  λ = 6 × 10–7 m ⇒ λ = 6 ×10–5 cm 
 
Problem 10.  A beam of light consisting of two wavelength 6500Aº & 5200Aº is used to obtain interference 

fringes in a young's double slit experiment. The distance between the slits is 2.0 mm and  the 
distance between the plane of the slits and the screen is 120 cm. What is the least distance from 
the central maximum where the bright fringes due to both the wave length coincide ? 

Solution : Suppose the mth bright fringe of 6500Aº coincides with the nth bright fringe of 5200Aº. 

    ⇒ = ⇒      



 
 

   distance y is   ⇒ y = 0.156 cm .  
 

Problem 11.  Interference fringes were produced in young's double slit experiment using light of wave length 
5000 Aº. When a film of material 2.5 × 10–3 cm thick was placed over one of the slits, the fringe 
pattern shifted by a distance equal to 20 fringe width. The refractive index of the material of the 
film is - 

Solution :  

   

   
 20β = (μ - 1) 2.5 × 10–3 (β/5000 ×10–8) 

   ⇒ μ = 1.4 
 

Problem 12.  The path difference between two interfering waves at a point on screen is 171.5 times the 
wavelength. If the path difference is 0.01029 cm. Find the wavelength.  

Solution : Path difference = 171.5 λ  

   =  odd multiple of half wavelength .  
  It means dark finge is observed  
  According to question .  

    

  ⇒     

  ⇒ λ = 6000Aº 
 
Problem 13.  Find the minimum thickness of a film which will strongly reflect the light of wavelength 589 nm. 

The refractive index of the material of  the film is 1.25 

Solution : For strong reflection, the least optical path difference introduced by the film should be λ/2 . The 

optical path difference between the waves reflected from the surfaces of the film is 2μd. 
 Thus, for strong reflection,  
 2μd = λ/2 

   nm. 


