# Chemical Equilibrium

#### Section (A) : Equilibrium and its properties

#### **Introduction :**

of the gaseous product

Equilibrium is a state in which there are no observable changes as time goes by. When a chemical reaction has reached the equilibrium state, the concentrations of reactants and products remain constant over time and there are no visible changes in the system. However, there is much activity at the molecular level because reactant molecules continue to from product molecules while product molecules react to yield reactant molecules. This dynamic situation is the subject of this chapter. Here we will discuss different types of equilibrium reactions, the meaning of the equilibrium constant and its relationship to the rate constant and factors that can disrupt a system at equilibrium.



#### Types of chemical reactions

|     | Irreversible reaction                                                    |     | Reversible reaction                                                  |
|-----|--------------------------------------------------------------------------|-----|----------------------------------------------------------------------|
| 1   | The reaction which proceeds in one direction (forward                    | 1   | The reaction which proceed in both the direction under the same      |
|     | direction) only.                                                         |     | set of experimental conditions.                                      |
| 2   | Reactants are almost completely converted into products.                 | 2   | Reactants form products and products also react to form              |
|     | Products do not react to form reactants again.                           |     | reactants in backward direction. These are possible in closed        |
|     |                                                                          |     | vessels .                                                            |
| 3   | Do not attain equilibrium state.                                         | 3   | Attain the equilibrium state and never go to completion.             |
| 4   | Such reactions are represented by single arrow $\{\rightarrow\}$         | 4   | Represented by double arrow ( $\implies$ ) or ( $\implies$ )         |
| 5   | Examples –                                                               | 5   | Examples :-                                                          |
| (a) | Precipitation reactions e.g.                                             | (a) | Homogeneous reactions- only one phase is present                     |
|     | $NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(aq) + AgCl \downarrow$         |     | (i) Gaseous phase-                                                   |
| (b) | Neutralization reactions e.g                                             |     | $H_2(g) + I_2(g) \longrightarrow 2HI(g)$                             |
|     | $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O$                         |     | $N_2(g) + O_2(g)$ 2NO(g) [Birkland eyde process (HNO <sub>3</sub> )] |
| (C) | $2\text{KCIO}_3(s) \xrightarrow{\Delta} 2\text{KCI}(s) + 3\text{O}_2(g)$ |     | $N_2(g) + 3H_2(g)$ 2NH <sub>3</sub> (g) (Haber's process)            |
| (d) | Reactions in open vessel :-                                              |     | $CH_3 COOH(I) + C_2H_5OH(I) CH_3COOC_2H_5(I) + H_2O(I)$              |
|     | Even a reversible reaction will become irreversible if it is             |     | Heterogeneous reactions- More than one phases are present            |
|     | carried out in open vessel. Ex.                                          |     | $CaCO_3(s)$ $CaO(s) + CO_2(g)$                                       |
|     | $CaCO_3(s) \iff CaO(s) + CO_2(g)$ Open                                   |     | $NH_4HS(s) \longrightarrow NH_3(g) + H_2S(g)$                        |
|     | $NH_4HS(s) \implies NH_3(q) + H_2S(q)$ vessel                            | (b) | Closed                                                               |
|     |                                                                          | . , | vessel                                                               |

#### State of Chemical equilibrium :

State of equilibrium means the balance of driving forces i.e. the factors taking the reaction in forward direction and the backword direction are balancing each other.

The equilibrium state represents a compromise between two opposing tendencies.

- Molecules try to minimise energy.
- Molecules try to maximise entropy.

In a reversible reaction like-

 $\begin{array}{c} R_{1} \downarrow \downarrow R_{2} \\ Reactants \end{array} \xrightarrow{P_{1} \downarrow \downarrow P_{2}} Products$ 

Initially only reactants are present.  $R_1$  and  $R_2$  combine to form  $P_1$  and  $P_2$ . As soon as  $P_1$  and  $P_2$  are formed, they start the backward reaction. As concentrations of  $R_1$  and  $R_2$  decrease rate of forward reaction decreases and rate of backward reaction increases. Ultimately a stage is reached when both the rates become equal. Such a state is known as "Chemical Equilibrium" or "state of Equilibrium".

#### At equilibrium :

(i) Rate of forward reaction  $(r_f)$  = rate of backward reaction  $(r_b)$ 

(ii) Concentration (mole/litre) of reactant and product remains constant with respect to time.



#### Types of equilibria on basis of physical state



#### Characteristics of chemical equilibrium :

- The nature and the properties of the equilibrium state are the same regardless of the direction from which it is achieved. It can be achieved from both direction.
- Equilibrium is <u>dynamic in nature.</u>

It means that reaction has not stopped. It appears that no change is occuring but But both the opposing reactions are proceeding at the same rate. So there is no net change. Thus equilibrium is not static in nature.

- A catalyst can alter the rate of approach of equilibrium but does not change the state of equilibrium. By using catalyst, the equilibrium can be achieved in different (more/less) time, but the relative concentrations of reactants and products are same irrespective of the presence or absence of a catalyst.
- Equilibrium can be observed by constancy of some observable properties like colour, pressure, concentration, density, temperature, refractive index etc.which may be suitable in a given reaction.
- At equilibrium, free energy change  $\Delta G = 0$
- Equilibrium state can be affected by altering factors like pressure, volume, concentration and temperature etc.(Le chateliers Principle).
- System moves toward an equilibrium state spontaneously even if it is disturbed. It will return to original state.

Solved Examples

Ex-1. Consider the following cases :



equilibrium while states in II and III are called steady state (static equilibrium).

Sol.

Law of mass action : [By Guldberg and Waage]

Rate at which a substance reacts  $\,\propto\,$  [Active Mass of the substance]

Active Mass = Molar concentration i.e. Moles/Litres = Molar wt. × Vol.(Litre)

It is represented in square brackets i.e. [] e.g. [A], [N2] etc.

The rate of a chemical reaction at a particular temperature is proportional to the product of active masses of reactants raised to the powers of their stoichiometric coefficients.

Ex.  $aA + bB - \rightarrow$  products

Rate of reaction a [A]<sup>a</sup> [B]<sup>b</sup>

Rate = k [A]<sup>a</sup> [B]<sup>b</sup>,

where k is the rate constant of the reaction.

Ex-2. Four vessel each of volume V = 10 Lilres contains  
(1) 16 g CH<sub>4</sub> (2) 18 g H<sub>2</sub>O (3) 35.5 g Cl<sub>2</sub> (4) 44 g CO<sub>2</sub>  
Which container will contain same molar concentration and same active mass as that in (1)?  
Sol. (1) 
$$\Rightarrow$$
 [ CH<sub>4</sub>] =  $\frac{16}{16 \times 10}$  = 0.1 M (2)  $\Rightarrow$  [H<sub>2</sub>O] =  $\frac{18}{18 \times 10}$  = 0.1 M  
(3)  $\Rightarrow$  [Cl<sub>2</sub>] =  $\frac{35.5}{71 \times 10}$  = 0.05 M (4)  $\Rightarrow$  [CO<sub>2</sub>] =  $\frac{44}{44 \times 10}$  = 0.1 M  
Hence, (2) and (4) has same molar concentration as that in (1).

#### Equilibrium constant (K) :

For a general reaction

 $\begin{array}{c} aA+bB \overleftarrow{\frown} cC+dD,\\ \\ \mbox{Forward reaction rate } r_f=k_f\,[A]^a\,\,[B]^b\,,\\ \\ \mbox{Backward reaction rate } r_b=k_b\,[C]^c[D]^d\,,\\ \\ \mbox{At equilibrium } r_f=r_b\\ \\ k_f\,[A]^a\,[B]^b=k_b\,[C]^c\,[D]^d \end{array}$ 

The concentrations of reactants & products at equilibrium are related by

$$\frac{K_{f}}{K_{b}} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

0

 $K_c$  is a constant and is called the **equilibrium constant in terms of concentration**. where all the concentrations are at equilibrium and are expressed in moles/litre.

e.g. 
$$PCI_{5}(g) \rightleftharpoons PCI_{3}(g) + CI_{2}(g) \Rightarrow K_{C} = \frac{\begin{bmatrix} PCI_{3} \end{bmatrix} & \begin{bmatrix} CI_{2} \end{bmatrix}}{\begin{bmatrix} PCI_{5} \end{bmatrix}}$$
  
e.g.  $N_{2}(g) + 3H_{2}(g) \rightleftharpoons 2NH_{3}(g) \Rightarrow K_{C} = \frac{\begin{bmatrix} NH_{3} \end{bmatrix}^{2}}{\begin{bmatrix} NL_{2} \end{bmatrix} & K_{C} = \frac{\begin{bmatrix} NH_{3} \end{bmatrix}^{2}}{\begin{bmatrix} NL_{2} \end{bmatrix} & K_{C} = \frac{\begin{bmatrix} NH_{3} \end{bmatrix}^{2}}{\begin{bmatrix} NL_{2} \end{bmatrix} & K_{C} = \frac{\begin{bmatrix} NH_{3} \end{bmatrix}^{2}}{\begin{bmatrix} NL_{2} \end{bmatrix}}$   
e.g.  $\frac{1}{2}H_{2}(g) + \frac{1}{2}I_{2}(g) \rightleftharpoons HI(g) \Rightarrow K_{C} = \frac{\begin{bmatrix} HI \end{bmatrix}}{\begin{bmatrix} HL_{2} \end{bmatrix}^{1/2} [I_{2}]^{1/2}}$   
Solved Examples

- **Ex-3.** In a reaction A (g) + B (g)  $\rightleftharpoons$  C (g)+ D(g) , A, B, are mixed in a vessel at temperature T. The initial concentration of A was twice the initial concentration of B. After the equilibrium is reached, concentration of C was thrice the concentration of B Calculate K<sub>c</sub>.
- **Sol.** Let concentration of B initially is 'a' mole/litre

$$A + B \rightleftharpoons C + D \Rightarrow \Delta n = 0$$
at t = 0 2a a 0 0  
at t = t<sub>eq</sub> 2a - x a - x x x  
Given that
$$x = 3 (a - x) \Rightarrow x = \frac{3}{4}a \qquad K_{c} = \frac{\begin{bmatrix} C \end{bmatrix} \begin{bmatrix} D \\ A \end{bmatrix}}{K_{c} = \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} D \\ A \end{bmatrix}}$$

$$\frac{\left(\frac{3a}{4}\right)^{2}}{\left(2a - \frac{3a}{4}\right)\left(a - \frac{3a}{4}\right)} \Rightarrow K_{c} = \frac{9}{5} = 1.8$$

- O  $K_P \rightarrow Equilibrium constant in terms of partial pressure.$  It is defined for the equilibrium reaction which contains at least one gaseous component.
  - e.g.  $aA(g) + bB(g) \rightarrow cC(g) + dD(g)$

$$\mathsf{K}_{\mathsf{P}} = \frac{\left[\mathsf{P}_{\mathsf{C}}\right]^{\mathsf{c}} \quad \left[\mathsf{P}_{\mathsf{D}}\right]^{\mathsf{d}}}{\left[\mathsf{P}_{\mathsf{A}}\right]^{\mathsf{a}} \quad \left[\mathsf{P}_{\mathsf{B}}\right]^{\mathsf{b}}}$$

where various pressures are the partial pressures of various gases substancs.

### Solved Examples.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ 

**Ex-4.** Calculate the expression for K<sub>c</sub> and K<sub>p</sub> if initially a moles of N<sub>2</sub> and b moles of H<sub>2</sub> is taken for the following reaction.

 $(\Delta n < 0)$  (P, T, V given)

given)

Sol.

$$N_{2}(g) + 3H_{2}(g) \stackrel{\sim}{\longrightarrow} 2NH_{3}(g) \qquad (\Delta n < 0) (P, T, V)$$
At t = 0 a b 0  
t = t eq (a - x) (b - 3x) 2x  

$$[N_{2}] = \frac{a - x}{V}, \qquad [H_{2}] = \frac{b - 3x}{V}, \qquad [NH_{3}] = \frac{2x}{V}$$

$$\frac{\left(\frac{2x}{V}\right)^{2}}{\left(\frac{a - x}{V}\right)\left(\frac{b - 3x}{V}\right)^{3}} = \frac{4x^{2}V^{2}}{(a - x)(b - 3x)^{3}}$$
Total no. of moles at equilibrium = a + b - 2x  

$$(a - x) \qquad (b - 3x) \qquad (2x).$$

$$\begin{bmatrix} P_{N_2} \end{bmatrix}_{=} \frac{(a-x)}{a+b-2x} \cdot P, \quad \begin{bmatrix} P_{H_2} \end{bmatrix}_{=} \frac{(b-3x)}{a+b-2x} \cdot P, \quad \begin{bmatrix} P_{NH_3} \end{bmatrix}_{=} \frac{(2x) \cdot P}{a+b-2x} \cdot P = \frac{\left(\frac{2x}{a+b-2x} \cdot P\right)^2}{\left[\left(\frac{a-x}{a+b-2x}\right) \cdot P\right]^2} = \frac{\left[\left(\frac{a-x}{a+b-2x}\right) \cdot P\right]^2}{\left[\left(\frac{a-x}{a+b-2x}\right) \cdot P\right]^2}$$

$$K_{P} = \frac{\frac{4x^{2} \cdot P^{2}}{(a+b-2x)^{2}}}{P^{4} \cdot \frac{(a-x)(b-3x)^{3}}{(a+b-2x)^{4}}} = \frac{(a+b-2x)^{2} \cdot 4x^{2}}{P^{2}(a-x)(b-3x)^{3}}$$

#### $\mathbf{O}$ Relation between K<sub>P</sub> & K<sub>c</sub>

P = VRTPV = nRTor n P = CRT where C = V = (moles per litre)  $P_D = [D] RT$ ;  $P_A = [A] RT$ ;  $P_B = [B] RT$  $P_{c} = [C] RT;$  $[C]^{c}(RT)^{c}[D]^{d}(RT)^{d}$  $K_{P} = \frac{\overline{[A]^{a}(RT)^{a}[B]^{b}(RT)^{b}}}{[A]^{a}[B]^{b}} = \frac{\overline{[A]^{a}[B]^{b}}}{[RT)^{(c+d)-(a+b)}}$  $K_p = K_c(RT)^{\Delta n}$ 

Where  $\Delta n = (c + d) - (a + b)$ , calculation of  $\Delta n$  involves only gaseous components.

 $\Delta n =$  sum of the number of moles of gaseous products – sum of the number of moles of gaseous ⇒ reactants. An can be positive, negative, zero or even fraction.

 $CaCO_3$  (s)  $\subset$  CaO (s) + CO<sub>2</sub>(q)

 $\Delta n = 1$  (because there is only one gas component in the products and no gas component in the reaction)

 $\Rightarrow$  K<sub>p</sub> = K<sub>c</sub>.(RT)

 $\Rightarrow$ 

#### Unit of Equilibrium contants :

- Unit of K<sub>p</sub> is (atm)<sup>∆n</sup>
- Unit of K<sub>c</sub> is  $(mole/Lit)^{\Delta n} = (conc.)^{\Delta n}$

Note: O In fact, equilibrium constant does not carry any unit because it is based upon the activities of reactants and products and activities are unitless quantities. Under ordinary circumstances, where activities are not known, above types of equilibrium constant and their units are employed.

0

For pure solids and pure liquids, although they have their own active masses but they Ο remain constant during a chemical change (reaction). Therefore, these are taken to be unity for the sake of convenience.

e.g. 
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
  
 $K_0 = I CO_2 I \qquad K_0 = \frac{P_{CO_2}}{r_0}$ 

$$\mathsf{K}_{\mathsf{C}} = [\mathsf{C}\mathsf{O}_2], \quad \mathsf{K}_{\mathsf{P}} =$$

Calculate kp and Kc if initially a moles of PCI5 is taken Ex-5.

$$PCI_5(g) \longrightarrow PCI_3(g) + CI_2(g)$$

Sol.

 $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$ At t = 0а 0

4

Calculating equilibrium concentrations

The concentration of various reactants and products can be calculated using the equilibrium constant and the initial concentrations.

 $\label{eq:constraint} \textbf{Ex-6.} \quad 1 \text{ mole of } N_2 \text{ and } 3 \text{ moles of } H_2 \text{ are placed in } 1L \text{ vessel. Find the concentration of } NH_3 \text{ at equilibrium, if } NH_3 \text{ at equilibrium, } NH_3 \text{ at equil$ 

equilibrium pressure is 1 atm and the equilibrium constant at 400K is  $\overline{27}$ 

Sol. N<sub>2</sub> (g) + 3H<sub>2</sub>(g) 
$$\rightleftharpoons$$
 2NH<sub>3</sub>(g) ( $\Delta n < 0$ )  
1mol 3 mol 0  
(1-x) (3-3x) 2x  
P<sub>eq</sub> = 1 atm, T = 400 K  
 $K_{C} = \frac{[NH_{3}]^{2}}{[N_{2}] [H_{2}]^{3}} = \frac{(2x)^{2}}{(3-3x)^{3}(1-x)} = \frac{4}{27}$   
 $\frac{x^{2}}{(1-x)^{4}} = 1 \Rightarrow x = (1-x)^{2} \Rightarrow x^{2}-3x+1=0$   
 $\Rightarrow x = \frac{3 \pm \sqrt{9-4}}{2} \Rightarrow x = \frac{3 \pm \sqrt{5}}{2}$   
 $x = \frac{3 \pm 2.24}{2} \text{ or } x = \frac{3 \pm \sqrt{5}}{2}$   
 $x = \frac{5.24}{2} = 2.62 \text{ or, } x = \frac{0.76}{2}$   
 $\Rightarrow x = 0.38 \text{ (since x cannot be greater than 1)}$   
 $[NH_{3}] = 0.38 \times 2 = 0.76$ 

#### Characteristics of equilibrium constant & factors affecting it :

• Equilibrium constant <u>does not depend</u> upon concentration of various reactants, presence of catalyst, direction from which equilibrium is reached

#### **CHEMISTRY FOR JEE**

1

- The equilibrium constant does not give any idea about time taken to attain equilibrium.
- K depends on the stoichiometry of the reaction.
  - O If two chemical reactions at equilibrium having equilibrium constants  $K_1$  and  $K_2$  are added then the resulting equation has equilibrium constant  $K = K_1 \cdot K_2$

Equation constant

On adding

 $\circ$  If the reaction having eq. constant K<sub>1</sub> is reversed then resulting equation has eq. constant  $K_1$ 

$$A(g) + B(g) \longleftarrow C(g) + D(g)$$

On reversing,  $C(g) + D(g) = A(g) + B(g) = \overline{K_1}$ 

O If a chemical reaction having equilibrium constant  $K_1$  is multiplied by a factor n then the resulting equation has equilibrium constant  $K = (K_1)^n$ , n can be fraction

eg.

$$D_{2}(g) \stackrel{\frown}{\longrightarrow} 2A(g) \qquad \qquad K_{1}$$
Multiplying by  $\left(\frac{1}{2}\right), \quad \frac{1}{2} D_{2}(g) \stackrel{\frown}{\longrightarrow} A(g) \qquad \qquad K = (K_{1})^{1/2} = \sqrt{K_{1}}$ 

**Ex-7.** The value of  $K_c$  for the reaction,  $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$  at a certain temperature is 400. calculate the value of equilibrium constant for.

(i)  $2NO_2(g) \rightleftharpoons N_2(g) + 2O_2(g)$ ; (ii)  $1/2 N_2(g) + O_2(g) \rightleftharpoons NO_2(g)$ 

Sol. Equilibrium constant (K<sub>c</sub>) for the reaction N<sub>2</sub> (g) + 2O<sub>2</sub>(g)  $\rightleftharpoons$  2NO<sub>2</sub>(g) is  $\begin{aligned}
& K_{c} = \frac{[NO_{2}]^{2}}{[N_{2}][O_{2}]^{2}} = 400
\end{aligned}$ (i) For the reaction 2NO<sub>2</sub>(g)  $\rightleftharpoons$  N<sub>2</sub>(g)+ 2O<sub>2</sub>(g) , K'c =  $\frac{[N_{2}][O_{2}]^{2}}{[NO_{2}]^{2}} = \frac{1}{K_{c}}$   $K'_{c} = \frac{1}{400} = 0.0025 \text{ mole litre}^{-1}$ (ii) For the reaction 1/2 N<sub>2</sub>(g) + O<sub>2</sub>(g)  $\rightleftharpoons$  NO<sub>2</sub>(g)  $K''_{c} = \frac{[NO_{2}]}{[N_{2}]^{1/2}[O_{2}]} = \sqrt{K_{c}} \Rightarrow K''_{c} = \sqrt{400} = 20 \text{ litre}^{-1/2} \text{ mole}^{-1/2}$ 

#### • Equilibrium constant is dependent only on the temperature.

It means  $k_p$  and  $k_c$  will remain constant at constant temperature no matter how much changes are made in pressure, concentration, volume or catalyst.

O However if temperature is changed,

 $\log \frac{k_2}{k_1} = \frac{\Delta H}{2.303 \text{ R}} \left[ \frac{1}{T_1} - \frac{1}{T_2} \right]; \Delta H = \text{Enthalpy of reaction}$ 

If  $T_2 > T_1$  then  $K_2 > K_1$  provided  $\Delta H = +ve$  (endothermic reaction)

 $K_2 < K_1$  if  $\Delta H = -ve$  (exothermic reaction)

In the above equation, the unit of R and  $\Delta H/T$  should be same.

• Relation between equilibrium constant & standard free energy change.

 $\Delta G^{\circ} = -2.303 \text{ RT} \log K$ 

Where  $\Delta G^{\circ}$  = standard free energy change

T = Absolute temperature,

R = universal gas constant.

Ex-8. From the following data :

(i)  $H_2(g) + CO_2(g) \longrightarrow H_2O(g) + CO(g)$  $K_{2000K} = 4.4$ (ii)  $2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$  $K_{2000K} = 5.31 \times 10^{-10}$ (iii)  $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$  $K_{1000K} = 2.24 \times 10^{22}$ State whether the reaction (iii) is exothermic or endothermic?

**Sol.** Equation (iii) = 
$$-[2 \times (i) + (ii)]$$

$$\therefore \qquad K_{2000 \text{ (iii)}} = \frac{1}{K_1^2 K_2} = \frac{1}{(4.4)^2 \times 5.31 \times 10^{-10}} = 9.7 \times 10^7$$

 $\mathbb{X} \qquad \mathsf{T} \uparrow \mathsf{K}^{\downarrow} \Rightarrow \text{reaction is exothermic.}$ 

#### Section (B) : Calculation of K<sub>P</sub> & K<sub>c</sub> in homogenous equilibrium

#### Homogeneous liquid system : Formation of ethyl acetate :

The reaction between alcohol and acid to form ester is an example of homogeneous equilibrium in liquid system.

 $CH_{3}COOH(l) + C_{2}H_{5}OH(l) \xrightarrow{} CH_{3}COOC_{2}H_{5}(l) + H_{2}O(l)$   $\frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]}$ 

**Ex-9.** In an experiment starting with 1 mole of ethyl alcohol, 1 mole of acetic acid and 1 mole of water at T<sup>o</sup>C, the equilibrium mixture on analysis shows that 54.3% of the acid is esterfied. Calculate the equilibrium constant of this reaction.

 $CH_3COOH(l) + C_2H_5OH(l) \leftarrow CH_3COOC_2H_5(l) + H_2O(l)$ Sol. Initial 1 1 0 1 At equilibrium 1 - x1 – x 1 + x Х 1 - 0.5431 - 0.5430.543 1 + 0.5431 x 54.3 100 (54.3% of 1 mole = = 0.543 mole) Hence given x = 0.543 mole

Page | 9

Applying law of mass action :  $K_c = \frac{[ester][water]}{[acid][alcohol]} = \frac{0.543 \times 1.543}{0.457 \times 0.457} = 4.0$ 

### Section (C) : Reaction quotient Applications of Equilibrium constant :

#### • Predicting the direction of the reaction

#### **Reaction Quotient (Q)**

At each point in a reaction, we can write a ratio of concentration terms having the same form as the equilibrium constant expression. This ratio is called the reaction quotient denoted by symbol Q. It helps in predicting the direction of a reaction.

The expression  $Q = \begin{bmatrix} A \end{bmatrix}^a \begin{bmatrix} B \end{bmatrix}^b$  at any time during reaction is called reaction quotient. The concentrations [C], [D], [A], [B] are not necessarily at equilibrium.



- The reaction quotient is a variable quantity with time.
- It helps in predicting the direction of a reaction.
  - o if Q > K<sub>c</sub> reaction will proceed in backward direction until equilibrium in reached.
  - o if Q < K<sub>c</sub> reaction will proceed in forward direction until equilibrium is established.
  - $\circ$  if Q = K<sub>c</sub> Reaction is at equilibrium.

eg.  $2A(g) + B(g) \stackrel{\frown}{=} C(g) + D(g)$ 

 $Q_C$  = Reaction quotient in terms of concentration

 $\begin{aligned} Q_{C} &= \frac{\begin{bmatrix} C \end{bmatrix} \begin{bmatrix} D \end{bmatrix}}{\begin{bmatrix} A \end{bmatrix}^{2} \begin{bmatrix} B \end{bmatrix}} \\ K_{C} &= \frac{\begin{bmatrix} C \end{bmatrix}_{eq} \begin{bmatrix} D \end{bmatrix}_{eq}}{\begin{bmatrix} A \end{bmatrix}_{eq}^{2} \begin{bmatrix} B \end{bmatrix}_{eq}} \\ \begin{bmatrix} Here & all & the conc. & are & at & equilibrium \end{bmatrix} \end{aligned}$ 

**Ex-10.** For the reaction NOBr (g)  $\Longrightarrow$  NO(g) +  $\frac{1}{2}$  Br<sub>2</sub> (g)

 $K_P = 0.15$  atm at 90°C. If NOBr, NO and Br<sub>2</sub> are mixed at this temperature having partial pressures 0.5 atm, 0.4 atm and 0.2 atm respectively, will Br<sub>2</sub> be consumed or formed ?

Sol. 
$$Q_{P} = \frac{\left[P_{Br_{2}}\right]^{1/2} \left[P_{NO}\right]}{\left[P_{NOBr}\right]} = \frac{\left[0.2\right]^{1/2} \quad [0.4]}{\left[0.50\right]} = 0.36$$
  
 $K_{P} = 0.15$   
 $\therefore \qquad Q_{P} > K_{P}$ 

- Hence, reaction will shift in backward direction
- $\therefore$  Br<sub>2</sub> will be consumed

#### • Predicting the extent of the reaction



- **Case-I** : If K is large (k > 10<sup>3</sup>) then product concentration is very very larger than the reactant ([Product] >>[Reactant]) Hence concentration of reactant can be neglected with respect to the product. In this case, the reaction is product favourable and equilibrium will be more in forward direction than in backward direction.
- **Case-II** : If K is very small (K <  $10^{-3}$ )

[Product] << [Reactant]

Hence concentration of Product can be neglected as compared to the reactant.

In this case, the reaction is reactant favourable.

### Solved Examples

- **Ex-11.** The  $K_P$  values for three reactions are  $10^{-5}$ , 20 and 300 then what will be the correct order of the percentage composition of the products.
- **Sol.** Since  $K_p$  order is  $10^{-5} < 20 < 300$  so the percentage composition of products will be greatest for  $K_p = 300$ .

#### Section (D) : Degree of dissociation (a)

It is the fraction of one mole dissociated into the products. (Defined for one mole of substance)

So,  $\alpha = no.$  of moles dissociated / initial no. of moles taken

= fraction of moles dissociated out of 1 mole.

#### Note : % dissociation = $\alpha \times 100$

Suppose 5 moles of PCI<sub>5</sub> is taken and if 2 moles of PCI<sub>5</sub> dissociated then  $\alpha = \overline{5} = 0.4$ Let a gas A<sub>n</sub> dissociates to give n moles of A as follows-

$$A_{n}(g) \qquad n A(g)$$

$$t = 0 \qquad a \qquad 0$$

$$t = t_{eq} \qquad a - x \qquad n.x \qquad \alpha = \overline{a} \Rightarrow \qquad x = a\alpha.$$

$$a - a \alpha = a(1 - \alpha) \qquad n a \alpha$$
Total no. of moles =  $a - a \alpha + n a \alpha$ 

$$= [1 + (n - 1) \alpha] a$$
Significance of n

sum of stoichiometric coefficient of product

n = sum of coefficient of reactants

#### CHEMISTRY FOR JEE

| (i)    | for PC   | l₅(g) <del>⊂</del> PCl₃(g) + C                                                          | 2 <b>(g)</b>                                    | (n = 2)                     |                                          |
|--------|----------|-----------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|------------------------------------------|
|        |          | ,                                                                                       |                                                 | $\frac{3}{2}$ $\frac{1}{2}$ |                                          |
| (ii)   | for 2N   | $H_3(g) \longrightarrow N_2(g) + 3H_2$                                                  | (g)                                             | (n = 2 + 2 = 2)             | 1                                        |
| (iii)  | for 2H   | $(g) \rightleftharpoons H_2(g) + I_2(g)$                                                |                                                 | (n = 1)                     |                                          |
|        | 5        | Solved Examp                                                                            | ples ——                                         |                             |                                          |
| Ex-12. | Calcul   | ate the degree of disso                                                                 | ociation and $K_p$ for t                        | he following read           | ction.                                   |
|        |          | PCl₅(g) ← PCl₃                                                                          | $(g) + Cl_2(g)$                                 |                             |                                          |
|        | t = 0    | a 0                                                                                     | 0                                               |                             |                                          |
|        | t = t    | a –x x                                                                                  | х                                               |                             |                                          |
|        | Since    | or a mole, x moles are                                                                  | dissociated                                     |                             |                                          |
|        |          | х                                                                                       |                                                 |                             |                                          |
| Sol.   | <i>.</i> | For 1 mole, a moles                                                                     | $s = \alpha$ are dissociate                     | d                           |                                          |
|        | <i>.</i> | x = a α                                                                                 |                                                 |                             |                                          |
|        |          | PCI <sub>5</sub>                                                                        | (g) $\Longrightarrow$ PCl <sub>3</sub> (g)      | ) + Cl <sub>2</sub> (g)     |                                          |
|        | <i>.</i> | At t = t <sub>eq</sub> a - a                                                            | α α                                             | aα                          |                                          |
|        | Total r  | o. of moles at equilibri                                                                | um = a + aα = a (1                              | + α )                       |                                          |
|        |          | a(1-α) P                                                                                | aα.                                             | Р                           | a α                                      |
|        |          | $P_{PCI_{5}} = \frac{a(1+\alpha)}{a(1+\alpha)},$                                        | P <sub>PCl3</sub> = a (1+                       | α)                          | $P_{Cl_2} = \overline{a (1+\alpha)}$ . P |
|        |          | $\frac{\left\{\left(\frac{\alpha P}{1+\alpha}\right)\right\}^2}{\left(1-\alpha\right)}$ | a <sup>2</sup> F                                |                             |                                          |
|        |          | $K_{P} = \left[ \frac{1-\alpha}{1+\alpha} \right] P$                                    | $K_{P} = \frac{\alpha \cdot r}{1 - \alpha^{2}}$ | (Remember)                  |                                          |
|        | Obser    | ved molecular weigh                                                                     | t and Observed V                                | apour Density o             | of the mixture                           |
|        | 30001    |                                                                                         | m                                               | lecular weight              | $M_{\alpha}$ of A (a)                    |
|        |          |                                                                                         | total                                           | no of moles                 | $\frac{1}{at} = \frac{1}{a(1+(n-1)a)}$   |
|        | Obser    | ved molecular weigh                                                                     | t of $A_n(g) = \frac{10121}{1012}$              |                             | $a = a(1 + (1 - 1)\alpha)$               |

$$M_{obs} = \frac{M_{th}}{[1 + (n-1)\alpha]}$$

where  $M_{th}$  = theoritical molecular weight (n = atomicity)

$$M_{mixture} \ = \ \frac{M_{A_n}}{[1+(n-1)\alpha]} \ , \ \ M_{A_n} = Molar \ mass \ of \ gas \ A_n$$

**Vapour density (V.D). :** Density of the gas divided by density of hydrogen under same temp & pressure is called vapour density.

O D = vapour density without dissociation = 
$$\frac{M_{A_n}}{2}$$
  
d = vapour density of mixture = observed v.d. =  $\frac{M_{mix}}{2}$   
 $\frac{D}{d}$  = 1 + (n - 1)  $\alpha$ 

$$\alpha = \frac{D-d}{(n-1) \times d} = \frac{M_{T} - M_{o}}{(n-1)M_{o}}$$

where  $M_T$  = Theoritical molecular wt.  $M_0$  = observed molecular wt. or molecular wt. of the mixture at equilibrium.

Note : It is not applicable for n = 1 [eg. Dissociation of HI & NO].

## Solved Examples .

**Ex-13.** The vapour density of a mixture containing NO<sub>2</sub> and N<sub>2</sub>O<sub>4</sub> is 38.3 at 33°C calculate the no. of moles of NO<sub>2</sub> if 100g of N<sub>2</sub>O<sub>4</sub> were taken initially.

Sol.

$$N_{2}O_{4}(g) \stackrel{\longrightarrow}{\longrightarrow} 2NO_{2}(g)$$

$$M_{mix} = 2 \times 38.3 = 76.6$$

$$M_{mix} = \frac{M_{th}}{1 + \alpha} = \frac{92}{1 + \alpha} \implies \alpha = 0.2$$

$$N_{2}O_{4} \stackrel{\longrightarrow}{\longrightarrow} 2NO_{2}$$

$$t = 0 \quad a \qquad 0$$

$$t = t \quad a - a\alpha \qquad 2a\alpha$$
no. of moles of NO<sub>2</sub> =  $2a\alpha = \frac{2 \times 100 \times 0.2}{92} = 0.435$ 

#### Section (E) : Heterogenous Equilibrium

For pure solid and pure liquid, active mass is taken to be unity i.e. 1 as they remain constant throughout the reaction

• CaCO<sub>3</sub> (s) <del>CaC</del>CaO (s) + CO<sub>2</sub> (g)

$$\begin{split} \mathsf{K}_{\mathsf{P}} &= \overset{\mathsf{P}_{\mathsf{CO}_2}}{\underset{\mathsf{V}}{\mathsf{N}_{\mathsf{C}}}}, \, \mathsf{K}_{\mathsf{C}} &= [\mathsf{CO}_2\left(g\right)] \\ & [\mathsf{CaCO}_3(s)] = \overset{\mathsf{moles}}{\underset{\mathsf{V} \text{olume}}{\mathsf{volume}}} = \overset{\mathsf{M}_{\mathsf{CaCO}_3}}{\underset{\mathsf{V}}{\mathsf{N}_{\mathsf{CaCO}_3}}} = \overset{\mathsf{density}}{\underset{\mathsf{M}_{\mathsf{CaCO}_3}}{\mathsf{M}_{\mathsf{CaCO}_3}}} = \mathsf{constant} \\ & \frac{[\mathsf{CaO}(s)][\mathsf{CO}_2(g)]}{[\mathsf{CaCO}_3(s)]} \\ & \mathsf{K} &= \overset{\mathsf{[CaCO}_3(s)]}{\underset{\mathsf{[CaCO}_3(s)]}{\mathsf{I}_{\mathsf{C}}}} = [\mathsf{CO}_2(g)] \\ & \mathsf{K}_{\mathsf{C}} &= [\mathsf{CO}_2(g)] \end{split}$$

 $H_2O(l) \rightleftharpoons H_2O(g)$ 

 $K_{P} = , K_{C} = [H_{2}O(g)]$ 

[For pure solid and pure liquid active mass is taken as unity i.e. = 1]

**Ex-14.** In a reaction  $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$ ,<br/>Calculate  $K_P$ .the equilibrium pressure is 12 atm. If 50% of  $CO_2$  reacts.<br/>Calculate  $K_P$ .**Sol.** $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$ 

t = 0 a 0

t = t<sub>eq</sub> a - 
$$\frac{a}{2}$$
 2 $\frac{a}{2}$   
P<sub>eq</sub> = 12 atm  
X<sub>CO<sub>2</sub></sub> =  $\frac{1}{3}$ , X<sub>CO</sub> =  $\frac{2}{3}$ ; P<sub>CO<sub>2</sub></sub> =  $\frac{1}{3}$  x 12 = 4 ; P<sub>CO</sub> =  $\frac{2}{3}$  x 12 = 8  
∴ K<sub>P</sub> =  $\frac{8 \times 8}{4}$  = 16

Ο

#### EQUATION INVOLVING IONS :

Equilibrium involving ions always take place in aquous medium . In case of expression of  $K_C$  concentration of ion is taken.

$$Ag^{+}(aq.) + CI^{-}(aq.) \longleftrightarrow AgCI(s) K_{c} = \frac{1}{[Ag^{+}][CI^{-}]}$$

#### Section (F) : Thermodynamics of Equilibrium

For a general reaction,  $mA + nB \stackrel{\longrightarrow}{\longrightarrow} pC + qD$ ,  $\Delta G$  is given by-

 $\Delta G = \Delta G^0 + 2.303 \text{ RT } \log_{10} Q$ 

where  $\Delta G = Gibb's$  Free energy change

 $\Delta G^0$  = Standard Gibb's Free energy change

Q = reaction quotient

Since, at equiibrium, Q = K

Here K is thermodynamic equilibrium constant replacing  $K_c$  or  $K_p$ 

$$K = \frac{(a_{c})^{p} (a_{D})^{q}}{(a_{A})^{m} (a_{B})^{n}}; \qquad \text{Here } a_{X} \text{ denotes the activity of } X.$$

In fact, ' $a_x$ ' is the ratio of the activity of substance at equilibrium and its activity in standard condition. That is why it is unitless and K is also unitless.

Note: (i) Themodynamic equilibrium constant is unitless since activity is unitless.

(ii) For pure solids & pure liquids, activity is unity.

(iii) For gases (ideal behaviour), the activity is its partial pressure (in atm).

(iv) For components in solution, activity is molar concentration.

At equilibrium,  $\Delta G = 0$ 

| $\Delta G^0 = -2.303 \text{ RT} \log_{10} \text{K}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta G^{0} = \Delta H^{0} - T \Delta S^{0}$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Delta H^0$ = Standard enthalpy change of the reaction                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Delta S^{\circ}$ = Standard entropy change                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $-2.303 \text{ RT} \log_{10}\text{K} = \Delta H^0 - T\Delta S^0$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\log_{10}K = -\frac{\Delta H^{\circ}}{2.303} \cdot \frac{1}{RT} + \frac{\Delta S^{\circ}}{2.303R}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                                                   | $\Delta H^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta S^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T is plotted then it is a straight line with slope = $-$                                            | R , and intercept =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                     | $\begin{split} &\Delta G^{0} = -2.303 \text{ RT } \log_{10} \text{K} \\ &\Delta G^{0} = \Delta H^{0} - T\Delta S^{0} \\ &\Delta H^{0} = \text{Standard enthalpy change of the reaction} \\ &\Delta S^{\circ} = \text{Standard entropy change} \\ &-2.303 \text{ RT } \log_{10} \text{K} = \Delta H^{0} - T\Delta S^{0} \\ &\log_{10} \text{K} = -\frac{\Delta H^{0}}{2.303} \cdot \frac{1}{\text{RT}} + \frac{\Delta S^{o}}{2.303\text{R}} \\ &\frac{1}{\text{T}} \text{ is plotted then it is a straight line with slope} = - \end{split}$ | $\begin{split} &\Delta G^{0} = -2.303 \ \text{RT} \ \text{log}_{10}\text{K} \\ &\Delta G^{0} = \Delta H^{0} - T\Delta S^{0} \\ &\Delta H^{0} = \text{Standard enthalpy change of the reaction} \\ &\Delta S^{\circ} = \text{Standard entropy change} \\ &- 2.303 \ \text{RT} \ \text{log}_{10}\text{K} = \Delta H^{0} - T\Delta S^{0} \\ &\log_{10}\text{K} = - \frac{\Delta H^{0}}{2.303} \cdot \frac{1}{\text{RT}} + \frac{\Delta S^{o}}{2.303\text{R}} \\ &\frac{1}{\text{T}} \text{ is plotted then it is a straight line with slope} = - \frac{\Delta H^{o}}{\text{R}} \text{ , and intercept} = - \frac{\Delta H^{o}}{\text{R}} \end{split}$ |



If at temperature  $T_1$ , equilibrium constant is  $K_1$  and at  $T_2$ , it is  $K_2$  then ;

$$\log_{10}K_{1} = \frac{-\Delta H^{\circ}}{2.303R} \cdot \frac{1}{T_{1}} + \frac{\Delta S^{\circ}}{2.303R} \qquad .....(i)$$
$$\log_{10}K_{2} = \frac{-\Delta H^{\circ}}{2.303R} \cdot \frac{1}{T_{2}} + \frac{\Delta S^{\circ}}{2.303R} \qquad .....(ii)$$

[Assuming  $\Delta H^0$  and  $\Delta S^0$  remains constant in this temperature range.]

Subtract eq. (ii) from (i) we get Vant Hoff equation-

$$\log \left(\frac{\mathsf{K}_{1}}{\mathsf{K}_{2}}\right) = \frac{\Delta \mathsf{H}^{\mathsf{o}}}{2.303\mathsf{R}} \left(\frac{1}{\mathsf{T}_{2}} - \frac{1}{\mathsf{T}_{1}}\right)$$

Note :  $O \Delta H$  should be substituted with sign.

O Unit of  $\Delta$ H/T and gas constant R should be same.

O For endothermic ( $\Delta H > 0$ ) reaction value of the equilibrium constant increases with the rise in temperature

O For exothermic ( $\Delta H < 0$ ) reaction, value of the equilibrium constant decreases with increase in temperature

#### Condition for Spontaneity : $\Delta G < 0$ for spontaneous process or reaction.

Since,  $\Delta G = \Delta H - T\Delta S$ 

- $\Rightarrow \quad \Delta H T\Delta S < 0 \qquad \Rightarrow \qquad T > \Delta H/\Delta S$
- ΔG > 0 for non-spontaneous process or reaction.

A I 10

\*  $\Delta G = 0$  for equilibrium.

Ex-15. Variation of equilibrium constant K with temperature T is given by van't Hoff equation,

$$\log K = \log A - \frac{\Delta \Pi^{\circ}}{2.303 \text{ RT}}$$

A graph between log K and T<sup>-1</sup> was a straight line as shown in the figure and having  $\theta = \tan^{-1} (0.5)$  and OP = 10. Calculate :

(a)  $\Delta H^{\circ}$  (standard heat of reaction) when T = 300 K,

- (b) A (pre-exponential factor),
- (c) Equilibrium constant K, at 300 K,
- (d) K at 900 K if  $\Delta H^{\circ}$  is independent of temperature.



#### Section (G) : Le-chatelier's principle

#### External factors affecting equilibrium :

#### Le Chatelier's Principle:

If a change is applied to the system at equilibrium, then equilibrium will be shifted in that direction in which it can minimise the effect of change applied and the equilibrium is established again under new conditions.

• Effect of concentration : If the concentration of a component is increased, reaction shifts in a direction which tends to decrease its concentration. e.g. In the following example.

 $\begin{array}{c} N_2 \left(g\right) + 3H_2 \left(g\right) & \longrightarrow & 2NH_3 \left(g\right) \\ \mbox{[reactant]}^{\uparrow} & & \mbox{Forward shift} \\ \mbox{[Product]}^{\uparrow} & & \mbox{Backward shift} \end{array}$ 

- O If concentration of reactant is increased at equilibrium then reaction shifts in the forward direction
- O If concentration of product is increased then reaction shifts in the backward direction

#### Note : The addition of any solid component does not affect the equilibrium.

#### • Effect of volume :

O If volume is increased, pressure decreases hence reaction will shift in the direction in which pressure

increases that is in the direction in which number of moles of gases increases and vice versa.

O If volume is increased then, for

 $\Delta n_g > 0$  reaction will shift in the forward direction

 $\Delta n_g < 0$  reaction will shift in the backward direction

$$\Delta n_g = 0$$
 reaction will not shift. eg.  $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$  (No effect)

#### **Explanation :**

#### • Effect of pressure :

On increasing pressure, equilibrium will shift in the direction in which pressure decreases i.e. no. of moles in the reaction decreases and vice versa.

P  $\propto$  no. of moles

#### Effect of catalyst :

Due to catalyst, the state of equilibrium is not affected i.e. no shift will occur as catalyst lowers the activation energy of both the forward & reverse reaction by same amount, thus altering the forward & reverse rate equally and hence, the equilibrium will be attained faster i.e time taken to reach the equilibrium is less.

#### Effect of inert gas addition :

#### At constant volume : Inert gas addition has no effect at constant volume (i)

(ii) At constant pressure : If inert gas is added then to maintain the pressure constant, volume is increased. Hence equilibrium will shift in the direction in which larger no. of moles of gas is formed

- $\Delta n_g > 0$ , reaction will shift in the forward direction (i)
- $\Delta n_q < 0$ , reaction will shift in the backward direction (ii)

(iii)  $\Delta n_g = 0$ , no effect

#### Effect of temperature :

A(g) + B(g) 
$$\subset$$
 C(g) + D(g) + Heat  $\Delta H = -ve$   
N<sub>2</sub>(g) + 3H<sub>2</sub>(g)  $\subset$  2NH<sub>3</sub>(g) + Heat

 $T^{\uparrow} \Rightarrow$  K' will decrease (from vant' hoff equation)

$$\log \frac{\frac{K_1}{K_2}}{\frac{K_1}{K_2}} = \frac{\Delta H^o}{2.303 R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$
$$\log \frac{\frac{K_1}{K_2}}{\frac{K_2}{K_2}} < 0 \implies \log K_1 - \log K_2 > 0$$
$$\implies \log K_1 > \log K_2$$
$$\implies K_1 > K_2$$

Reaction will shift in backward direction.

 $T \downarrow \Rightarrow K$  will increases.

Reaction will shift in forward direction.

(ii) Endothermic reaction : energy consumed.

$$\begin{array}{ll} A(g) + B(g) & \overleftarrow{\phantom{a}} C(g) + D(g) - \text{Heat} & \therefore \Delta H = + \text{ ve} \\ T \uparrow \Rightarrow K \uparrow \Rightarrow \text{ Forward} & ; & T \downarrow \Rightarrow & K \downarrow \Rightarrow \text{ Backward} \end{array}$$

## Solved Examples -

- **Ex-16.** The volume of a closed reaction vessel in which the equilibrium,  $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$  is halved, Now
  - (1) The rates of forward and backward reactions will remains the same.
  - (2) The equilibrium will not shift.
  - (3) the equilibrium will shift to the right.
  - (4) The rate of forward reaction will become double that of reverse reaction and the equilibrium will shift to the right.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ Sol. (4) In the reaction,

> In this reaction three moles (or volumes) of reactants are converted into two moles (or volumes) of products i.e. there is a decreases in volume and so if the volume of the reaction vessel is halved the

#### **CHEMISTRY FOR JEE**

equilibrium will be shifted to the right i.e. more product will be formed and the rate of forward reaction will incerases i.e. double that of reverse reaction.

#### Application of le chatelier's principle : Practical equilibrium situations :

#### • Vapour Pressure of Liquid :

It is the pressure exerted by the vapours over it's liquid when it is in equilibrium with the liquid. Vapour pressure of water is also called **aqueous tension**.

 $H_2O(\ell) \longrightarrow H_2O(g)$ ;  $K_P = P_{H_2O} = constant$  at fixed temperature

Hence V.P. of liquid is independent of pressure, volume and concentration change. e.g. at 25°C, vapour pressure of water 24 mm of Hg

Partial pressure of  $H_2O$  vapours

**Relative Humidity** = Vapour pressure of  $H_2O$  at that temp.

#### Formation of diamond :

C (graphite)  $\leftarrow$  C (diamond) – Heat;  $\Delta H = + ve$   $\downarrow \qquad \downarrow$ Density Low Density High

Density Low Volume High

Volume Low

Formation of diamond is favourable at high pressure and high temperature

#### • Melting of ice :

 $\begin{array}{ccc} H_2O\left(s\right) & \overleftarrow{\phantom{aaaa}} & H_2O\left(\ell\right) \; ; & \Delta H = + \; ve \\ \downarrow & \downarrow & \\ Density \; Low & Density \; High \\ Volume \; High & Volume \; Low \end{array}$ 

Melting of ice is favourable at high temperature and high pressure.

#### • Boiling of water :

 $H_2O(\ell) \qquad \longrightarrow \qquad H_2O(g)$   $\downarrow \qquad \qquad \downarrow$ Density High Density Low

Volume Low Volume High

On incerasing pressure, equilibrium will shift in the direction in which volume is decreasing i.e. backward. Hence, on incerasing pressure, the boiling point increases.

#### Formation of ammonia by Haber's process :

 $N_2(g) + 3 H_2(g) \xrightarrow{} 2NH_3(g) \Delta H = -22.4 \text{ Kcal/mol.}$ 

(i) The reaction will shift in the forward direction at low temperature, but at very low temperature the rate of reaction becomes very low; thus moderate temperature is used for this reaction.

(ii) At high pressure, reaction will shift in forward direction to form more product.

#### • Manufacturing of SO<sub>3</sub> by contact process

<u>-2SO<sub>2</sub>(g) + O<sub>2</sub>(g) = 2SO<sub>3</sub>(g) + 45.2 kcal\_</u>

High pressure (1.5 to 1.7 atm), Low temperature (500°C), Higher qunatity of  $SO_2$  and  $O_2$  are favourable conditions for the formation of  $SO_3$ .

#### Manufacturing of NO by Birkeland–Eyde process

 $N_2(g) + O_2(g) \stackrel{\longrightarrow}{\longleftarrow} 2 NO(g) - 43.2 \text{ kcal}$ 

- O No effect on change of pressure
- O High temperature (1200 °C to 2000 °C), High concentration of  $N_2$  and  $O_2$  are favourable condition
- for

the formation of NO.

Solved Examples -

Ex-17. The equilibrium constant of the reaction at 25°C

 $CuSO_{4.5}H_{2}O(s) \xleftarrow{} CuSO_{4.3}H_{2}O(s) + 2H_{2}O(g)$ 

is  $1.084 \times 10^{-4} \text{ atm}^2$ . Find out under what conditions of relative humidity, CuSO<sub>4</sub>.5H<sub>2</sub>O will start loosing its water of crystallization according to above reaction. (Vapour pressure of water at 25°C is 24 mm of Hg).

Sol. 
$$K_{P} = (P_{H_2O})^2$$
 so  $P_{H_2O} = \sqrt{1.084 \times 10^{-4}} = 1.041 \times 10^{-2}$  atm 8 mm of Hg

O If in a room, pressure of water is greater than 8 mm of Hg then CuSO<sub>4</sub>.3H<sub>2</sub>O will absorb water from air and will form CuSO<sub>4</sub>.5H<sub>2</sub>O & will keep absorbing until partial pressure of H<sub>2</sub>O becomes 8 mm of Hg.

O If  $P_{H_2O}$  < 8 mm of Hg then CuSO<sub>4</sub>.5H<sub>2</sub>O will loose water of crystallization and reaction will move in forward direction.

i.e. If relative humidity  $< \frac{8}{24} < 33.33\%$ then CuSO<sub>4.5</sub>H<sub>2</sub>O will loose water of crystallization.

#### Simultaneous Equilibrium :

If in any container there are two or more equilibria existing simultaneously involving one or more than one common species. Then in both/all equilibrium the concentration of common species is the total concentration of that species due to all the equilibria under consideration.

e.g.

 $A(s) \stackrel{\longrightarrow}{\longleftarrow} X(g) + Y(g)$ t = 0а 0 0  $t = t_{eq}$ a-t t t + u  $B(s) \stackrel{\longrightarrow}{\longrightarrow} Z(g) + Y(g)$ b 0 0 b – u u u + t  $K_{C1} = t (u + t)$  $K_{C2} = (u + t) u$ 

**Ex-18.** 102 g of solid NH<sub>4</sub>HS is taken in the 2L evacuated flask at 57°C. Following two equilibrium exist simultaneously

 $NH_4HS$  (s)  $\overrightarrow{}$   $NH_3$  (g) +  $H_2S$  (g)

Sol.

$$NH_{3}(g) \stackrel{1}{\longleftrightarrow} \frac{1}{2}N_{2}(g) + \frac{3}{2}H_{2}(g)$$

one mole of the solid decomposes to maintain both the equilibrium and 0.75 mole of  $H_2$  was found at the equilibrium then find the equilibrium concentration of all the species and  $K_C$  for both the reaction.

$$Moles of NH_4HS = \frac{102}{51} = 2$$

$$NH_4HS (s) \longrightarrow NH_3 (g) + H_2S (g) \qquad K_{C_1}$$

$$2 \qquad 0 \qquad 0$$

$$1 \qquad 1-x \qquad 1$$

$$NH_3 (g) \longrightarrow N_2 (g) + \frac{3}{2} H_2 (g) \qquad K_{C_2}$$

$$1-x \qquad \frac{x}{2} \qquad \frac{3x}{2}$$
Given that moles of  $H_2 = \frac{3x}{2} = 0.75 \implies x = \frac{1}{2}$ 

$$K_{C1} = \frac{1}{2} \frac{(1-x)}{2} = \frac{1}{8} \qquad [Since V = 2 L]$$

$$\frac{\left(\frac{3x}{4}\right)^{3/2} \left(\frac{x}{4}\right)^{3/2}}{\left(\frac{1-x}{2}\right)} = \frac{\left(\frac{3}{8}\right)^{3/2} \left(\frac{1}{8}\right)^{5/2}}{\frac{1}{4}} = \frac{(3)^{3/2} \frac{1}{64} \times \frac{4}{1} = \frac{(3)^{3/2}}{16}}{16}$$

### **MISCELLANEOUS SOLVED PROBLEMS (MSPS)**

A vessel contain 5 mole of A & 10 mople of B, total pressure of vessel is 18 atm. Calculate the P<sub>B</sub> & P<sub>A</sub>
 5 10

**Ans.**  $P_A = \frac{5}{5+10} \times 18 = 6$   $P_B = \frac{10}{15} \times 18 = 12$ 

2. What should be the relationship between K<sub>2</sub> and K<sub>1</sub>, if the equilibrium constant of the reaction given below are K<sub>1</sub> and K<sub>2</sub> respectively ?

$$2SO_{2}(g) + O_{2}(g) \stackrel{\frown}{=} 2SO_{3}(g) \qquad SO_{2}(g) + \frac{1}{2}O_{2}(g) \stackrel{\frown}{=} SO_{3}(g)$$
(1)  $K_{2} = K_{1}$ 
(2)  $K_{2} = \sqrt{K_{1}}$ 
(3)  $K_{2} = K_{1}$ 
(4)  $2K_{2} = K_{1}$ 
**Ans.**  $2SO_{2}(g) + O_{2}(g) \stackrel{\frown}{=} 2SO_{3}(g) + \frac{1}{2}O_{2}(g) \stackrel{\frown}{=} SO_{3}(g)$ 

$$K_{1} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]} \qquad K_{2} = \frac{[SO_{3}]}{[SO_{2}][O_{2}]}$$
Therefore,  $K_{2} = \sqrt{K_{1}}$ 
**3.** What should be the value of Kc for the reaction  $2SO_{2}(g) + O_{2}(g) \stackrel{\frown}{=} 2SO_{3}(g)$ . If the amount are  $SO_{3} = 48g$ ,  $SO_{2} = 12.8$  and  $O_{2} = 9.6$  at equilibrium and the volume of the container is one litre ?  
(1)  $64$ 
(2)  $0.30$ 
(3)  $42$ 
(4)  $8.5$ 
**Ans.**  $2SO_{2}(g) + O_{2}(g) \stackrel{\frown}{=} 2SO_{3}(g)$ 

| [SO <sub>3</sub> ] <sup>2</sup>                                                                       |                                                    |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $K_{c} = [SO_{2}]^{2}[O_{2}]$                                                                         | Concentration in gram mole/litre, therefore        |
| 48                                                                                                    |                                                    |
| $[SO_3] = \frac{80 \times 1}{100}$                                                                    | (Where 80 is molecular weight of SO <sub>3</sub> ) |
| 128                                                                                                   |                                                    |
| $[SO_2] = \overline{64 \times 1}$                                                                     | (Where 64 is molecular weight of SO <sub>2</sub> ) |
| 9.6                                                                                                   |                                                    |
| $[O_2] = \overline{32 \times 1}$                                                                      | (Where 32 is molecular weight of O2)               |
| $\left(\frac{48}{80}\right)^2$                                                                        |                                                    |
| Thus, K <sub>c</sub> = $\overline{\left(\frac{12.8}{64}\right)^2 \left(\frac{9.6}{32}\right)} = 0.30$ | )                                                  |
|                                                                                                       |                                                    |

4. If 0.5 mole H<sub>2</sub> is reacted with 0.5 mole I<sub>2</sub> in a ten-litre container at 444°C and at same temperature value of equilibrium constant K<sub>c</sub> is 49, the ratio of [H] and [I<sub>2</sub>] will be :

(1) 7 (2) 
$$\frac{1}{7}$$
 (3)  $\sqrt{\frac{1}{7}}$  (4) 49  
Ans.  $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$   
 $K_C = \frac{[HI]^2}{[H_2][I_2]}$  if  $[H_2] = [I_2]$   
 $K_C = \frac{[HI]^2}{[I_2]^2}$  [HI]<sup>2</sup> =  $K_C \times [I_2]^2$   
 $r = \frac{[HI]^2}{[I_2]^2} K_C$  or  $\frac{[HI]}{[I_2]} = \sqrt{K_C} = \sqrt{49} = 7$ 

1.1 mole of A mixed with 2.2 mole of B and the mixture is kept in a 1 litre at the equilibrium A + 2B =
 2C + D is reached. At equilibrium 0.2 mole of C is formed then the value of K<sub>c</sub> will be :

| Ans. |                             | А              | +                              | 2B                                                                                   | $\rightarrow$         | 2C  | +  | D   |   |
|------|-----------------------------|----------------|--------------------------------|--------------------------------------------------------------------------------------|-----------------------|-----|----|-----|---|
|      | Initial mole                | 1.1            |                                | 2.2                                                                                  |                       | 0   |    | 0   |   |
|      | At Eq.                      | 1.1 –          | х                              | 2.2 – 2x                                                                             |                       |     | 2x |     | х |
|      |                             | 1.1 –          | 0.1                            | 2.2 – 0.2                                                                            |                       | 0.2 |    | 0.1 |   |
|      |                             | 1              |                                | 2                                                                                    |                       | 0.2 |    | 0.1 |   |
|      |                             | 1              |                                | 2                                                                                    |                       |     |    |     |   |
|      | Active mass                 | 1              |                                | 1                                                                                    |                       | 0.2 |    | 0.1 |   |
|      | V                           | [C]²[<br>[A][B | $\frac{D}{D^2}$ $\frac{2}{10}$ | $\frac{2}{10} \times \frac{2}{10} \times \frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ | $\frac{1}{100}$ 0.001 |     |    |     |   |
|      | $\mathbf{r}_{\mathrm{C}} =$ |                | - =                            |                                                                                      | = 0.001               |     |    |     |   |

6. For the reaction  $A + 2B \stackrel{\sim}{=} 2C + D$ , initial concentration of A is a and that of B is 1.5 times that of A. Concentration of A and D are same at equilibrium. What should be the concentration of B at equilibrium ?

| а     | а     | 3a    |                      |
|-------|-------|-------|----------------------|
| (1) 4 | (2) 2 | (3) 4 | (4) All of the above |

| Ans.             | A +                                                                                                                                                                                                                                                                                                                                                                          | 2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\rightleftharpoons$                                                                                                                       | 2C                                                             | +                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
|                  | а                                                                                                                                                                                                                                                                                                                                                                            | 1.5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                            | 0                                                              |                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | initial mole                                                                                                                                                       |            |  |
|                  | (a–x)                                                                                                                                                                                                                                                                                                                                                                        | (1.5a –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2x)                                                                                                                                        | 2x                                                             |                                                                           | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | moles at equilibrium                                                                                                                                               |            |  |
|                  | Concentration of A and D are same at equilibrium.                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | ax = x                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | 2x = a                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | а                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | $x = \overline{2}$                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | Therefore, con                                                                                                                                                                                                                                                                                                                                                               | centratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of B =                                                                                                                                   | 1.5 (a) -                                                      | - 2(a/2)                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | [B] = 0.5 a                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | а                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | [B] = 2                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
| 7.               | In the reaction                                                                                                                                                                                                                                                                                                                                                              | , N <sub>2</sub> + O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₂ ╤ 2                                                                                                                                      | NO, the                                                        | moles/li                                                                  | tre of N <sub>2</sub> , C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 and NO re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | spectively 0.25, 0.05 and 1.0                                                                                                                                      | at         |  |
|                  | equilibrium, the                                                                                                                                                                                                                                                                                                                                                             | e initial co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oncentra                                                                                                                                   | tion of N                                                      | $I_2$ and $O_2$                                                           | 2 will respe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ctively be :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                    |            |  |
|                  | (1) 0.75 mol/lit                                                                                                                                                                                                                                                                                                                                                             | re, 0.55 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nole/litre                                                                                                                                 | )                                                              |                                                                           | (2) 0.50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ole/litre, 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o mole/litre                                                                                                                                                       |            |  |
|                  | (3) 0.25 mole/li                                                                                                                                                                                                                                                                                                                                                             | itre, 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mole/ lit                                                                                                                                  | re                                                             |                                                                           | (4) 0.25 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ole/litre, 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mole/litre                                                                                                                                                         |            |  |
| Ans.             | N2 +                                                                                                                                                                                                                                                                                                                                                                         | <b>O</b> <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\rightarrow$                                                                                                                              | 2NO                                                            |                                                                           | 2x = 1.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nole/litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |            |  |
|                  | а                                                                                                                                                                                                                                                                                                                                                                            | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            | 0                                                              |                                                                           | x = 1.0/2 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nole/litre = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 mole/litre                                                                                                                                                      |            |  |
|                  | (a – x)                                                                                                                                                                                                                                                                                                                                                                      | (b–x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            | 2x                                                             |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | If $a - x = 0.25$ ,                                                                                                                                                                                                                                                                                                                                                          | b - x = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05                                                                                                                                       |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  | $[N_2] = a = a - x$                                                                                                                                                                                                                                                                                                                                                          | x + x = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25 + 0.5                                                                                                                                   | 0 = 0.75                                                       | mole/lit                                                                  | re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |            |  |
| 0                |                                                                                                                                                                                                                                                                                                                                                                              | 200°C fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |                                                                |                                                                           | ) x 10-4 on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l og uilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amounto of N and O are use                                                                                                                                         | ۰.d        |  |
| 8.               | Value of K <sub>C</sub> at                                                                                                                                                                                                                                                                                                                                                   | 300°C fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or $N_2 + C$                                                                                                                               |                                                                | 2NO is §                                                                  | 9 × 10 <sup>-4</sup> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | amounts of $N_2$ and $O_2$ are use                                                                                                                                 | ∍d.        |  |
| 8.               | Value of $K_c$ at<br>The concentrat                                                                                                                                                                                                                                                                                                                                          | 300°C fo<br>tion of N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or N₂ + C<br>O at equ                                                                                                                      | ilibrium                                                       | 2NO is 9<br>will be                                                       | 9 × 10 <sup>-4</sup> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | amounts of $N_2$ and $O_2$ are use                                                                                                                                 | ∍d.        |  |
| 8.               | Value of $K_c$ at<br>The concentrat<br>(1) 0.0148 a                                                                                                                                                                                                                                                                                                                          | 300°C fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or N <sub>2</sub> + O<br>O at equ<br>(2) 0.29                                                                                              | ) <sub>2</sub>                                                 | 2NO is 9<br>will be                                                       | 9 × 10 <sup>-4</sup> and<br>(3) 0.148 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d equilibrium<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | amounts of $N_2$ and $O_2$ are use (4) 0.0296 a                                                                                                                    | ∍d.        |  |
| 8.<br>Ans.       | Value of $K_c$ at<br>The concentrat<br>(1) 0.0148 a<br>N <sub>2</sub> +                                                                                                                                                                                                                                                                                                      | 300°C fo<br>tion of NG<br>O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29                                                                                              | ilibrium<br>96 a                                               | 2NO is 9<br>will be<br>2NO                                                | 9 × 10 <sup>-4</sup> and<br>(3) 0.148 ;<br>Ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d equilibrium<br>a $c = 9 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | amounts of $N_2$ and $O_2$ are use (4) 0.0296 a                                                                                                                    | əd.        |  |
| 8.<br>Ans.       | Value of $K_c$ at<br>The concentrat<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a                                                                                                                                                                                                                                                                                                 | 300°C fo<br>tion of No<br>O <sub>2</sub><br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29                                                                                              | $b_2 \longrightarrow$<br>ilibrium<br>$b_2 = b_2$               | 2NO is 9<br>will be<br>2NO<br>0                                           | 9 × 10 <sup>–4</sup> and<br>(3) 0.148 a<br>Ka<br>In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d equilibrium<br>a<br>$c = 9 \times 10^{-4}$<br>itial mole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | amounts of N₂ and O₂ are use<br>(4) 0.0296 a                                                                                                                       | əd.        |  |
| 8.<br>Ans.       | Value of $K_c$ at<br>The concentrat<br>(1) 0.0148 a<br>$N_2$ +<br>a<br>(a - x)                                                                                                                                                                                                                                                                                               | 300°C fo<br>tion of No<br>O <sub>2</sub><br>a<br>(a-x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29                                                                                              | $p_2 \longrightarrow$<br>ilibrium v<br>96 a                    | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>–4</sup> and<br>(3) 0.148 ;<br>Ka<br>In<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium<br>a<br>$c = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | ed.        |  |
| 8.<br>Ans.       | Value of K <sub>C</sub> at<br>The concentrat<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>[NO] <sup>2</sup>                                                                                                                                                                                                                                                        | 300°C fc<br>tion of No<br>$O_2$<br>a<br>(a-x)<br>$4x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29                                                                                              | $p_2 \longrightarrow$<br>ilibrium<br>96 a                      | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>–4</sup> and<br>(3) 0.148 ;<br>Ka<br>In<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium<br>a<br>$c = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | ed.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>K <sub>c</sub> = $\frac{[NO]^2}{[N_2][O_2]}$ =                                                                                                                                                                                                                        | 300°C fo<br>tion of No<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29                                                                                              | $p_2 \longrightarrow$<br>ilibrium v<br>96 a                    | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>–4</sup> and<br>(3) 0.148 ;<br>Ka<br>In<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium<br>a<br>c = 9 × 10 <sup>-4</sup><br>itial mole<br>ole at equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | ∋d.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentrat<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>K <sub>c</sub> = $\frac{[NO]^2}{[N_2][O_2]}$ =                                                                                                                                                                                                                           | 300°C fo<br>tion of No<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29                                                                                              | $p_2 \longrightarrow$<br>ilibrium<br>$p_6 a$                   | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>–4</sup> and<br>(3) 0.148 :<br>Ki<br>In<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium<br>a<br>c = 9 × 10 <sup>-4</sup><br>itial mole<br>ole at equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | əd.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>K <sub>c</sub> = $\frac{[NO]^2}{[N_2][O_2]}$ =<br>$\frac{2x}{a - x} = \sqrt{9 \times 10}$                                                                                                                                                                             | 300°C fo<br>tion of N<br>$O_2$<br>a<br>$(a-x)$ $\frac{4x^2}{(a-x)^2}$ $\overline{(a-x)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10^{-2}$                                                                      | $p_2 \longrightarrow$<br>ilibrium v<br>$p_6 a$                 | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>–₄</sup> and<br>(3) 0.148 ;<br>Ka<br>In<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium<br>a<br>c = 9 × 10 <sup>-4</sup><br>itial mole<br>ole at equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | ed.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>K <sub>c</sub> = $\frac{[NO]^2}{[N_2][O_2]}$ =<br>$\frac{2x}{a - x} = \sqrt{9 \times 10}$<br>2x = 0.03 (a - x)                                                                                                                                                        | 300°C for<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O_2}^{-4} = 3 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or $N_2 + C$<br>O at equ<br>(2) 0.29<br>= 9 × 10<br>$10^{-2}$                                                                              | $p_2 \longrightarrow$<br>ilibrium<br>$p_6$ a                   | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>–4</sup> and<br>(3) 0.148 :<br>Ki<br>In<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium<br>a<br>c = 9 × 10 <sup>-4</sup><br>itial mole<br>ole at equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | əd.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$\frac{[NO]^2}{K_c = \frac{[N_2][O_2]}{a - x} = \sqrt{9 \times 100}}$ $\frac{2x}{a - x} = \sqrt{9 \times 100}$ $2x = 0.03 (a - x)$ $2x = 0.03x = 0$                                                                                                                   | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{)^{-4}} = 3 \times (a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10^{-2}$                                                                      | $p_2 \longrightarrow$<br>ilibrium v<br>$p_6 a$                 | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>-4</sup> and<br>(3) 0.148 ;<br>Ka<br>In<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d equilibrium<br>a<br>c = 9 × 10 <sup>-4</sup><br>itial mole<br>ole at equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | ∍d.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>K <sub>c</sub> = $\frac{[NO]^2}{[N_2][O_2]}$ =<br>$\frac{2x}{a - x} = \sqrt{9 \times 10}$<br>2x = 0.03 (a -x)<br>2x = 0.03 x = 0<br>2x + 0.03 x = 0                                                                                                                   | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a)$<br>.03a<br>0.03 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or $N_2 + C$<br>O at equ<br>(2) 0.29<br>= 9 × 10<br>$10^{-2}$                                                                              | $p_2 \longrightarrow$<br>ilibrium<br>$p_6$ a<br>-4<br>or<br>or | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | 9 × 10 <sup>-4</sup> and<br>(3) 0.148 :<br>Ki<br>In<br>M<br>2x = 0.03a<br>2 03x = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d equilibrium<br>$a = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>$a = 0.03 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | ∍d.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$K_c = \frac{[NO]^2}{[N_2][O_2]} =$<br>$\frac{2x}{a - x} = \sqrt{9 \times 10}$<br>2x = 0.03 (a - x)<br>2x = 0.03 x = 0<br>2x + 0.03 x = 0<br>x = 0.0148 a                                                                                                             | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a^2)$<br>.03a<br>0.03 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10^{-2}$                                                                      | $p_2$<br>ilibrium v<br>$p_6$ a<br>-4<br>or<br>or<br>Therefo    | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | $9 \times 10^{-4}$ and<br>(3) 0.148 ;<br>Ka<br>In<br>M<br>2x = 0.03a<br>2.03x = 0.<br>2x = 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d equilibrium<br>$a = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>$a = 0.03 \times 10^{-4}$<br>03 a<br>26a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | əd.        |  |
| 8.<br>Ans.       | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$\frac{[NO]^2}{K_c} = \frac{2x}{a - x} = \sqrt{9 \times 100}$<br>2x = 0.03 (a - x)<br>2x = 0.03 x = 0<br>2x + 0.03 x = 0<br>x = 0.0148 a                                                                                                                              | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a^2)$<br>.03a<br>0.03 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10^{-2}$                                                                      | or<br>or<br>Therefo                                            | 2NO is 9<br>will be<br>2NO<br>0<br>2x                                     | $9 \times 10^{-4}$ and<br>(3) 0.148 =<br>(3) 0.148 =<br>(3) 0.148 =<br>(4) 0.148 =<br>(1) 0.148 = | d equilibrium<br>a<br>$c = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>a - 0.03 x<br>03 a<br>96a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium                                                                                                               | ed.        |  |
| 8.<br>Ans.<br>9. | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$K_c = \frac{[NO]^2}{[N_2][O_2]} =$<br>$\frac{2x}{a - x} = \sqrt{9 \times 10}$<br>2x = 0.03 (a - x)<br>2x = 0.03x = 0<br>2x + 0.03 x = 0<br>x = 0.0148 a<br>One mole PCI                                                                                              | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a - x)^2$<br>.03a<br>0.03 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10^{-2}$<br>ted in a                                                          | or<br>or<br>Therefo                                            | 2NO is 9<br>will be<br>2NO<br>0<br>2x<br>2x                               | 9 × 10 <sup>-4</sup> and<br>(3) 0.148 ;<br>Ka<br>In<br>M<br>2x = 0.03a<br>2.03x = 0.<br>2x = 0.029<br>er of one lit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d equilibrium<br>$a = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>$a = 0.03 \times 10^{-4}$<br>03 a<br>96a<br>re capacity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium<br>At equilibrium 20% PCI₅ is r                                                                               | əd.        |  |
| 8.<br>Ans.<br>9. | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$\frac{[NO]^2}{K_c = [N_2][O_2]} =$<br>$\frac{2x}{a - x} = \sqrt{9 \times 10}$<br>2x = 0.03 (a - x)<br>2x = 0.03x = 0<br>2x + 0.03x = 0<br>x = 0.0148 a<br>One mole PCI<br>dissociated. W                                                                             | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a - x)^2$<br>.03a<br>0.03 a<br>a<br>$b_5$ is heat<br>hat shou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10^{-2}$<br>ted in a<br>Id be the                                             | or<br>or<br>Therefo<br>e value o                               | 2NO is 9<br>will be<br>2NO<br>0<br>2x<br>2x<br>bre<br>containe            | $9 \times 10^{-4}$ and<br>(3) 0.148 :<br>Ki<br>In<br>M<br>2x = 0.03a<br>2.03x = 0.<br>2x = 0.028<br>er of one lit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d equilibrium<br>$a = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>$a = 0.03 \times 10^{-4}$<br>$a = 0.03 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium<br>At equilibrium 20% PCI₅ is r                                                                               | ∍d.<br>not |  |
| 8.<br>Ans.<br>9. | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$K_c = \frac{[NO]^2}{[N_2][O_2]} =$<br>$\frac{2x}{a - x} = \sqrt{9 \times 10}$<br>2x = 0.03 (a - x)<br>2x = 0.03 x = 0<br>2x + 0.03 x = 0<br>x = 0.0148 a<br>One mole PCI<br>dissociated. W<br>(1) $(3 - 2)^{-1}$                                                     | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a - x)^2$<br>$\overline{O^{-4}} = 3 \times (a - x)^2$<br>$\overline{O^{-4}}$ | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10$<br>$10^{-2}$<br>ted in a<br>ld be the<br>(2) 3.2                          | or<br>or<br>Therefo<br>e value o                               | 2NO is 9<br>will be<br>2NO<br>0<br>2x<br>2x<br>Dre<br>containe            | $9 \times 10^{-4}$ and<br>(3) 0.148 ;<br>Ka<br>In<br>M<br>2x = 0.03a<br>2.03x = 0.<br>2x = 0.029<br>er of one lift<br>(3) 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d equilibrium<br>$a = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>$a = 0.03 \times 10^{-4}$<br>03 a<br>96a<br>re capacity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium<br>At equilibrium 20% PCI₅ is r<br>(4) 42                                                                     | ∍d.        |  |
| 8.<br>Ans.<br>9. | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$\frac{[NO]^2}{K_c = [N_2][O_2]} =$ $\frac{2x}{a - x} = \sqrt{9 \times 10}$ 2x = 0.03 (a - x)<br>2x = 0.03 (a - x)<br>2x = 0.03 x = 0 2x + 0.03 x = 0<br>x = 0.0148 a<br>One mole PCI<br>dissociated. W<br>(1) (3 - 2)^{-1}<br>PCI <sub>5</sub>                       | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a - x)^2$<br>.03a<br>0.03 a<br>$A_5$ is heat<br>hat shou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>= 9 × 10<br>$10^{-2}$<br>ted in a<br>ld be the<br>(2) 3.2<br>PCl <sub>3</sub>             | or<br>or<br>or<br>Therefo<br>e value o<br>+                    | 2NO is 9<br>will be<br>2NO<br>0<br>2x<br>2x<br>Dre<br>containe<br>of Kc ? | $9 \times 10^{-4}$ and<br>(3) 0.148 a<br>Ka<br>In<br>M<br>2x = 0.03a<br>2.03x = 0.<br>2x = 0.028<br>or of one lift<br>(3) 2.4<br>(20% is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d equilibrium<br>$a = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>$a = 0.03 \times 10^{-4}$<br>$a = 0.03 \times 10^{-4}$<br>a | amounts of N <sub>2</sub> and O <sub>2</sub> are use<br>(4) 0.0296 a<br>rium<br>At equilibrium 20% PCI <sub>5</sub> is r<br>(4) 42<br>I, i.e., 80% is dissociated) | ed.        |  |
| 8.<br>Ans.<br>9. | Value of K <sub>c</sub> at<br>The concentration<br>(1) 0.0148 a<br>N <sub>2</sub> +<br>a<br>(a - x)<br>$\frac{[NO]^2}{K_c} = \frac{2x}{[N_2][O_2]} =$<br>$\frac{2x}{a-x} = \sqrt{9 \times 10}$<br>2x = 0.03 (a - x)<br>2x = 0.03 (a - x)<br>2x = 0.03 x = 0<br>2x + 0.03 x = 0<br>x = 0.0148 a<br>One mole PCI<br>dissociated. W<br>(1) $(3 - 2)^{-1}$<br>PCI <sub>5</sub> 1 | 300°C fo<br>tion of N(<br>$O_2$<br>a<br>(a-x)<br>$\frac{4x^2}{(a-x)^2}$<br>$\overline{O^{-4}} = 3 \times (a - x)^2$<br>$\overline{O^{-4}} = 3 \times (a - x)^2$<br>$\overline{O^{-4}}$ | or N <sub>2</sub> + C<br>O at equ<br>(2) 0.29<br>$= 9 \times 10$<br>$10^{-2}$<br>ted in a<br>Id be the<br>(2) 3.2<br>PCl <sub>3</sub><br>0 | or<br>or<br>or<br>Therefo<br>e value o<br>+                    | 2NO is 9<br>will be<br>2NO<br>0<br>2x<br>2x<br>Dre<br>containe<br>of Kc ? | $9 \times 10^{-4}$ and<br>(3) 0.148 ;<br>Ka<br>In<br>M<br>2x = 0.03a<br>2.03x = 0.<br>2x = 0.025<br>er of one lift<br>(3) 2.4<br>(20% is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d equilibrium<br>$a = 9 \times 10^{-4}$<br>itial mole<br>ole at equilib<br>$a = 0.03 \times 10^{-4}$<br>$a = 0.03 \times 10^{-4}$<br>a | amounts of N₂ and O₂ are use<br>(4) 0.0296 a<br>rium<br>At equilibrium 20% PCI₅ is r<br>(4) 42<br>I, i.e., 80% is dissociated)                                     | ∍d.        |  |

|             | [PCl <sub>3</sub> ][Cl <sub>2</sub>           | $2] 0.8 \times 0.8$                          |                                                |                |               |               |                       |                            |
|-------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------|----------------|---------------|---------------|-----------------------|----------------------------|
|             | $K_{C} = [PCI_5]$                             |                                              | 3.2                                            |                |               |               |                       |                            |
| 10.         | In the reaction pressure is 3 a               | , PCl₅ <del>Cl</del> ₂, t<br>atmosphere. The | he amount of eavent of the value of KP will be | ach PCl₅<br>be | , PCl₃ ar     | nd Cl₂ is     | 2 mole                | at equilibrium and total   |
|             | (1) 1.0 atm                                   | (2) 3.0                                      | atm                                            | (3) 2.9        | atm           |               | (4) 6.0               | atm                        |
| Ans.        | PCI <sub>5</sub>                              | PCl <sub>3</sub> +                           | Cl <sub>2</sub>                                |                |               |               |                       |                            |
|             | 2                                             | 2                                            | 2                                              |                |               |               |                       |                            |
|             | Total mole of e                               | equilibrium = 2 +                            | 2 + 2 = 6 mole                                 |                |               |               |                       |                            |
|             | and total press                               | sure (P) = 3 atm                             |                                                |                |               |               |                       |                            |
|             | $p_{PCl_3}p_{Cl_2}$                           |                                              |                                                |                |               |               |                       |                            |
|             | $K_P = P_{PCI_5}$                             |                                              |                                                |                |               |               |                       |                            |
|             | 2                                             |                                              | 2                                              |                |               | 2             | 2                     |                            |
|             | $(p_{PCl_3}) = 6 \times 3$                    | = 1 ;                                        | $(p_{Cl_2}) = 6 \times 3 =$                    | = 1            | ;             | $(p_{PCl_5})$ | $3 = \times 3$        | = 1                        |
|             | 1×1                                           |                                              |                                                |                |               |               |                       |                            |
|             | ∴ K <sub>P</sub> = 1 1 a                      | atm                                          |                                                |                |               |               |                       |                            |
| 44          |                                               | lee ner litre of DC                          | l haa ta ha taka                               | a ta abtai     | in 0 1 ma     |               | the volu              | o of aquilibrium contant   |
|             |                                               |                                              | 15 Has to be take                              | 110 0018       | III U. I IIIC |               | line valu             | le of equilibrium containt |
|             | (1) 1 15                                      |                                              | (2) 0 25                                       |                | (3) 0 35      | 5             |                       | (4) 0 05                   |
| <b>A</b> no | (1) 1110                                      | $DCL(\mathbf{a})$                            |                                                |                |               |               | $Cl_{\alpha}(\alpha)$ | (1) 0.00                   |
| AIIS.       | Initial mole                                  | PC15(9)                                      |                                                | 0              | PC13(g)       | +             | C12(9)                | Here a = ?                 |
|             | Mole at                                       | a<br>a-x                                     |                                                | 0              | x             | 0             | x                     | $K_{\rm C} = 0.04$         |
|             | equilibrium                                   | u A                                          |                                                |                | X             |               | X                     |                            |
|             |                                               | <b>x</b> <sup>2</sup>                        | 0.1×0.1                                        |                |               |               |                       |                            |
|             |                                               | $k_{a} = \overline{(a-x)V}$                  | $\frac{V(a-x)}{V(a-x)}$                        |                |               |               |                       |                            |
|             | 0 1×0                                         | 1 1                                          |                                                |                |               |               |                       |                            |
|             | $a - x - \frac{1 \times 0.04}{1 \times 0.04}$ | $\frac{1}{4} - \frac{1}{4} - 0.25$           |                                                |                |               |               |                       |                            |
|             | a = a - x + x =                               | 0.25 + 0.10 = 0.25                           | 35                                             |                |               |               |                       |                            |
|             |                                               |                                              |                                                |                |               |               |                       |                            |
| 12.         | At 227°C, 60%                                 | of 2 gram moles                              | s of PCl₅ gets dis                             | sociated       | l in a two    | litre cor     | ntainer.              | The value of $K_p$ will be |
|             | (1) 450 R                                     | (2) 400                                      | ) R                                            | (3) 50 l       | R             |               |                       | (4) 100 R                  |
| Ans.        | PCl₅                                          | $\rightleftharpoons$                         | PCl <sub>3</sub> +                             | $CI_2$         |               |               | Initial m             | nole                       |
|             | <u>2-12</u>                                   |                                              | <u>12</u>                                      | 12             |               |               |                       |                            |
|             | 2                                             |                                              | 2                                              | 2              |               |               | Mole at               | t equilibrium              |
|             | <b>x</b> <sup>2</sup>                         | 12×12                                        |                                                |                |               |               |                       |                            |
|             | $K_c = V(a - x) =$                            | 2(2-12)                                      |                                                |                |               |               |                       |                            |
|             | 12×12                                         |                                              |                                                |                |               |               |                       |                            |
|             | $K_{\rm C} = \overline{2 \times 0.80} =$      | : 0.9                                        |                                                |                |               |               |                       |                            |
|             | $K_p = K_C \times (RT)$                       | $^{1} = 0.9 \times (R \times 50)$            | 0) = 450 R                                     |                |               |               |                       |                            |
| 40          | <b>T</b> I                                    |                                              |                                                | <b>f</b> 1     |               | -: h          | المعادلية المع        |                            |

**13.** The reaction,  $PCI_5 \rightleftharpoons PCI_3 + CI_2$  is statted in a five litre container by taking one mole of  $PCI_5$ . If 0.3 mole of  $PCI_5$  is there at equilibrium, the total mole and concentration of  $PCI_5$  and  $K_c$  will respectively be

|      |                        | 49                     |      |         | 23                      |                      |
|------|------------------------|------------------------|------|---------|-------------------------|----------------------|
|      | (1) 0.70, 0.14,        | 150                    |      | (2) 0.3 | 0, 0.12, <sup>100</sup> |                      |
|      |                        | 23                     |      |         | 49                      |                      |
|      | (3) 0.10, 0.07,        | 100                    |      | (4) 0.0 | 5, 20, 150              |                      |
| Ans. | PCI <sub>5</sub>       | $\rightleftharpoons$   | PCl₃ | +       | Cl <sub>2</sub>         |                      |
|      | 1                      |                        | 0    |         | 0                       | Initial mole         |
|      | 1-0.7                  |                        | 0.7  |         | 0.7                     |                      |
|      | 5                      |                        | 5    |         | 5                       | Conc. at equilibrium |
|      | Total mole of I        | $PCI_3 = 0.7$          |      |         |                         |                      |
|      | Concentration          | = 0.14                 |      |         |                         |                      |
|      | X <sup>2</sup>         | 0.7×0.7 49             |      |         |                         |                      |
|      | $K_{c} = (1 - x)V_{=}$ | $= 0.3 \times 5 = 150$ |      |         |                         |                      |

**14.** When sulphur in the form of  $S_8$  is heated at 900 K, the initial pressure of 1 atm falls by 29% at equilibrium. This is because of conversion of some  $S_8$  to  $S_2$ . Find the value of equilibrium constant for this reaction.

Sol. Sol.  $S_8(g) \leftarrow 4S_2(g)$ Initial pressure 1 atm 0 Eq. Pressure (1-x) atm 4x atm But x = 0.29 atm  $\therefore P_{S_8} = 1 - x = 1 - 0.29 = 0.71$  atm P\_

$$^{S_2} = 4x = 4 \times 029 = 1.16 \text{ atm}$$
  
 $K_p = \frac{(pS_2)^4}{pS_8} = \frac{(1.16)^4}{0.71} = 2.55 \text{ atm}^3$ 

**15.** The  $K_p$  for the reaction,  $N_2O_4 \rightleftharpoons 2NO_2$  is 640 mm at 775K. Calculate the percentage dissociation of  $N_2O_4$  at equilibrium pressure of 160 mm. At what pressure the dissociation will be 50% ?

Suppose number of moles of  $N_2O_4$  taken = 1 mol

Degree of dissociation =  $\alpha$ 

|               | $N_2O_4$  | 2NO2   |
|---------------|-----------|--------|
| Initial moles | 1 mol     | 0      |
| At Eq.        | (1–x) mol | 2a mol |

Total number of moles at equilibrium =  $1 - \alpha + 2\alpha = 1 + \alpha$ 

Let P be the total pressure at equilibrium, then = 
$$P_{N_2O_4} = \frac{(1-\alpha)}{(1+\alpha)} \times P$$

$$P_{NO_2} = \frac{2\alpha}{(1+\alpha)} \times P$$

$$K_{p} = \frac{\frac{P_{NO_{2}}^{2}}{P_{N_{2}O_{4}}}}{\frac{P_{N_{2}O_{4}}}{P_{1}}} = \frac{\left[\frac{2\alpha}{(1-\alpha)} \times P\right]}{\left[\frac{1-\alpha}{1+\alpha} \times P\right]} = \frac{4\alpha^{2}}{(1+\alpha)(1-\alpha)} \times P$$

Substituting  $K_p = 640$  mm and P = 160 mm

$$640 = \frac{4\alpha^2}{1 - \alpha^2} \times 160$$

Sol.

 $\alpha = 0.707$  ot 70%

For 50% dissociation, a = 0.5, Substituting the value of K<sub>p</sub> and a in equation (i)  $\frac{4(0.5)^2}{640} = \frac{4(0.5)^2}{1-(0.5)^2} \times P \quad \Rightarrow \quad P = 480 \text{ mm}$ At 540 K, 0.10 mol of PCI<sub>5</sub> are heated in a 8.0 L flask. The pressure of the equilibrium mixture is found to

Sol.

16.

be 1.0 bar. Calcualted  $K_p$  and  $K_c$  for the reaction.

$$n = \frac{PV}{RT} = \frac{1 \text{ bar } \times 8L}{0.083 \text{ L bar } \text{mol}^{-1} \text{ K}^{-1} \times 540\text{K}} = 0.18$$

$$0.1 + x = 0.18$$

$$x = 0.08$$

$$[PCl_5] = \frac{0.1 - 0.08}{8} \text{ M} = 2.5 \times 10^{-3} \text{ M}$$

$$[PCl_3] = \frac{0.08}{8} \text{ M} = 0.01 \text{ M}$$

$$[Cl_2] = \frac{0.08}{8} \text{ M} = 0.01 \text{ M}$$

$$K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{0.01 \times 0.01}{2.5 \times 10^{-3}} = 4 \times 10^{-2}$$

$$K_p = K_c (RT)^{\Delta n} = 4 \times 10^{-2} \times (0.083 \times 540) = 1.79 \text{ bar}$$

**17.** The  $K_p$  value for the reaction  $H_2 + I_2 \rightleftharpoons 2HI$  at 460°C is 49. If the initial pressure of  $H_2$  and  $I_2$  is 0.5 bar respectively, determine the partial pressure of each has at equilibrium.

Sol.  
H<sub>2</sub> + I<sub>2</sub> 2 2HI  
Initial pressure (bar) 0.5 0.5 0  
Eq. Pressure (0.5-x) (0.5-x) 2x  

$$K_{p} = \frac{(P_{H_{1}})^{2}}{P_{H_{2}} \times P_{I_{2}}} = \frac{(2x)^{2}}{(0.5-x)(0.5-x)}$$

$$49 = \frac{(2x)^{2}}{(0.5-x)^{2}}$$

$$7 = \frac{2x}{(0.5-x)} \text{ or } x = 0.389$$

$$P_{H_{2}} = 0.5 - x = 0.5 - 0.389 = 0.111 \text{ bar}$$

$$P_{H_{2}} = 0.5 - x = 0.5 - 0.389 = 0.111 \text{ bar}$$

$$P_{H_{1}} = 2x = 2 \times 0.389 = 0.788 \text{ bar}$$

#### **CHEMISTRY FOR JEE**

**18.** When 3.06 g of solid NH<sub>4</sub>HS is introduced into two litre evacualted flask at 27°C, 30% of the solid decomposes into gaseous ammonia and hydrogen sulphide.

(i) Calculate  $K_p$  and  $K_p$  for the reaction at 27°C.

(ii) What would happen to the equilibrium when more solid NH4HS is introduced into the flask ?

Moles of  $H_2S$  formed = 0.018

**Sol.** (i)  $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$ 

mass of NH<sub>4</sub>HS decomposed =  $\frac{3.06 \times 30}{100}$  = 0.918 g

0.918

Moles of NH<sub>4</sub>HS decomposed = 51 = 0.018Moles of NH<sub>3</sub> formed = 0.018 Moles

 $[NH_3] = \frac{0.18}{2} = 0.009 \text{ M} \qquad [H_2S] = \frac{0.018}{2} = 0.009 \text{ M}$  $[NH_3][H_2S] = 0.009 \times 0.009$ 

 $K_c = [NH_4HS] = 1 = 8.1 \times 10^{-5}$ 

 $K_p = K_c \times (RT)^{\Delta_n} = 8.1 \times 10^{-5} \times (0.083 \times 300)^2 = 5.02 \times 10^{-2} \text{ bar}^2$ 

(ii) Since conc. of solid NH<sub>4</sub>HS remains same no matter how much of it is present, addition of solid NH<sub>4</sub>HS would not distrub the equilibrium.

**19.** At certain temperature, the equilibrium constant (K<sub>c</sub>) is 16 for the reaction,

 $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g).$ 

If we take one molw each each of all the four gases in 1 L container, what be comcentration of NO and  $NO_2$  at equilibrium ?

**Sol.**  $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) = NO(g)$ 

Suppose x moles of SO<sub>2</sub> react with x moles of NO<sub>2</sub> to form x moles of SO<sub>3</sub> and x moles of No to attain equilibrium. The equilibrium concentration, therefore woud be

$$[SO_{2}] = (1 - x) \text{ mol } L^{-1}; \qquad [NO_{2}] = (1 - x) \text{ mol } L^{-1}; [SO_{3}] = (1 + x) \text{ mole } L^{-1}; \qquad [NO] = (1 + x) \text{ miole } L^{-1}; [NO] = (1 + x) \text{ miole } L^{-1}; [NO] = (1 + x) \text{ miole } L^{-1}; [NO] = (1 + x) \text{ miole } L^{-1}; [NO] = (1 + x)^{2} = 16 \qquad \text{or} \qquad \frac{(1 + x)}{(1 - x)^{2}} = 16 \\ \frac{(1 + x)^{2}}{(1 - x)^{2}} = 16 \qquad \text{or} \qquad \frac{(1 + x)}{(1 - x)} = 4 \\ 1 + x = 4 - 4x \text{ or } 5x = 3 \qquad \text{or} \qquad x = \frac{3}{5} = 0.6 \text{ mole} \\ [NO_{2}] = (1 - x) = (1 - 0.6) = 0.4 \text{ mol } L^{-1} \\ [NO] = (1 + x) = (1 + 0.6) = 1.6 \text{ mol } L^{-1}$$

**20.** At 340 K,  $K_p$  for the reaction,  $N_2O_4$  (g)  $\rightleftharpoons$  2NO<sub>2</sub>(g) is 0.8 bar. Calculate the per cent dissociation of  $N_2O_4$  at 340 K and a total pressure of 1 bar.

Sol.

|     | 1102                                    |
|-----|-----------------------------------------|
|     | $K_p = (P_{N_2O_4}) = 0.8 \text{ bar}$  |
|     | $P_{NO_2} + P_{N_2O_4} = 1 \text{ bar}$ |
| Let | $P_{NO_2}$ be x bar                     |
|     |                                         |

 $(P_{NO})^{2}$ 

*:*..

$$K_{p} = \frac{x^{2}}{(1-x)}$$

$$0.8 = \frac{x^{2}}{1-x}$$
or
$$x^{2} + 0.8 x - 0.8 = 0 \text{ or } x = 0.58$$

$$P_{NO_{2}} = 0.58 \text{ bar}$$
and
$$P_{N_{2}O_{4}} = (1 - 0.58) = 0.42 \text{ bar}$$

Since each mole of N<sub>2</sub>O<sub>4</sub> on dissociation producess 2 moles of NO<sub>2</sub>, the initial pressure of N<sub>2</sub>O<sub>4</sub> ( $P_{N_2O_4}$ ) is given as

p° N<sub>2</sub>O<sub>4</sub> = 
$$P_{N_2O_4} + \frac{1}{2}P_{NO_2} = 0.42 + \frac{0.58}{2} = 0.71$$
 bar  
Percent dissociation =  $\frac{\frac{1}{2}p_{NO_2}}{p^{\circ}N_2O_4} \times 100 = \frac{0.29}{0.71} \times 100 = 40.8\%$ 

- **21.** Nitrogen and hydrogen react to form ammonia as per the reaction,  $2 N_2(g) + 3/2H_2(g) \rightleftharpoons NH_3(g)$ When the mixture of the three gases is in equilibrium predict whether the amount of ammonia increases or decreases if
  - (i) The pressure on the system is increased,
  - (ii) The temperature of the system is raised,
  - (iii) The concentration of hydrogen is increased.
- **Sol.** (i) When pressure is increased, equilibrium shifts to that direction in which pressure decreases i.e. in the direction in which the number i of moles of gases decreases. hence, the reaction shifts in the forward direction and thus the amount of NH<sub>3</sub> increases.

(ii) As the forward reaction is exthormic, increases of temperature will shifts the equilibrium in the back directiuon (endothermic direction) and thus the amout of Nh<sub>2</sub> decreases.

(iii) On increasing the concentration of  $H_2$  the equilibrium will shifts in the forward direction and thus the amount of  $NH_3$  increases.

- 22. An endothermic reaction, A(g) + 2B(g) 2C(g) is in equilibrium at a certain temperature. can we increase the amount of C by (i) adding catalyst (ii) Increasing pressure (iii) Increasing temperature
- Sol. No, because catalyst does not distrub the equilibrium state
   (ii) Yes, because increase in pressure will shift the equilibrium in forward direction as the number of moles of products is less than that of reactants.
   (iii) Yes, because increase in temperature would shift the reaction in the forward direction Condethermin

(iii) Yes, because increase in temperature would shift the reaction in the forward direction 9endothermic direction)