
 

 

ELECTROMAGNETIC INDUCTION 

 

1.  MAGNETIC FLUX  

 ⮚ The concept of magnetic lines of force was first proposed by Faraday. Faraday tried to provide the 

lines of force a real form assuming them as stretched rubber bands. In modern physics the concept 
of magnetic lines of force is used in visualization or explaination of principles only.  

 ⮚ The tangent drawn at any point on a line of force in a magnetic field shows the direction of magnetic 

field shows the direction of magnetic field at that point and the density of lines of force, i.e., the 
number of lines of force crossing normally a unit area indicates the intensity of magnetic field.  

 ⮚ The lines of force in a uniform magnetic field are parallel straight lines equidistant from each other. 

Where the lines of force are near each other, B is higher and where the lines of force are far apart, B 
is lesser.  

 ⮚ The number of lines of force crossing a given surface is called flux from that surface. If it generally 

represented by φ. Flux is a property of a vector field. If the vector field is a magnetic field, then the 
flux is called magnetic flux.  

 ⮚ The magnetic flux crossing a certain area is equal to the scalar product of the vector field  and 

the vector area , that is  

  Magnetic flux = BdA cosθ 

  where θ is the angle between the vector field and the vector area .  

    

  For a uniform magnetic field  and plane surface      

  (Note : In real sense area is a scalar quantity, but it can be treated as whose direction is in the 
direction of perpendicular pointing outward from the surface)  

 ⮚ Magnetic flux is a scalar quantity. 

 ⮚ If a plane surface of area A is imagined in a uniform magnetic field , then 

  (a) when a surface is perpendicular to the magnetic filed, the lines of force crossing that area, i.e., 
the magnetic flux is    

 
   φ = BA because θ = 0, cos θ = 1 

  (b) if the surface is parallel to the field, then    

 
   θ = 90°, cosθ = 0 

   ∴ φ = BA cos 90° = 0 

  (c) when the normal to the surface makes an angle θ with the magnetic field, the magnetic flux is φ 
= BA cos θ  



 

 

 ⮚ If the magnetic flied is not uniform and the surface in not plane, then the element  of the surface 

may be assumed as plane and magnetic field  may also be assumed as uniform over his element. 

Thus the magnetic flux coming out from this element is  

  Hence magnetic flux coming out from the entire surface 

      

 ⮚ For a closed surface the vector area element pointing outward is positive and the vector area element 

pointing inward is negative.  

 ⮚ Magnetic lines of force are closed curves because free magnetic poles do not exist. Thus for a closed 

surface whatever is the number of the lines of force entering it, the same number of lines of force 
come out from it. As a result for a closed curve 

      or    

  Thus the net magnetic flux coming out of a closed surface is equal to zero.  

 ⮚ For a normal plane surface in a magnetic field φ = BA. Hence    B =  

  Thus the magnetic flux passing normally from a surface of unit area is equal to magnetic induction B. 

Therefore  is also called flux density.  

 ⮚ Unit of magnetic flux - In M.K.S. system the unit of magnetic flux is weber (Wb) and in C.G.S. 

system unit of magnetic flux is maxwell.  

  1 weber = 108 maxwell  

  The M.K.S unit of flux density or magnetic induction is weber/m2. It is also called tesla.  

  1 tesla = 1 weber/m2 

  The C.G.S unit of magnetic flux density is gauss.  

  1 gauss = 1 maxwell/cm2 

  1 tesla = 1 weber/m2 = 104 gauss 

 ⮚ Dimensions of magnetic flux :  
  φ = BA 

   

  = kg-m2-s2-A–1    = M1L2T–2A–1 

 

Example 1.  The plane of a coil of area 1m2 and having 50 turns is perpendicular to a magnetic field of  
3 × 10–5

 weber/m2. The magnetic flux linked with it will be - 

   (1) 1.5 × 10–3 weber  (2) 3 × 10–5 weber  (3) 15 × 10–5 weber  (4) 150 weber  

Solution :  φ = NBA cosθ 

   but N = 50, B = 3 × 10–5 wb/m2, 

   A = 1m2,  θ = 0    or  φ = NBA 

   = 50 × 3 ×10–5
 × 1 = 150 × 10–5 weber  ∴ Answer will be (1) 



 

 

Example 2.  Consider the fig. A uniform magnetic field of 0.2 T is directed along the +x axis. Then what is the 
magnetic flux through top surface of the figure ?  

 

   (1) zero    (2) 0.8m Wb  (3) 1.0m Wb  (4) –1.8m Wb 

Solution :  the magnetic flux is  φ = BA cosθ 

   for the top surface, the angle between normal to the surface and the x-axis is  

   θ = 60º, and  

   B = 0.2 T,   A = 10 × 10 × 10–4 m2 

   Thus φ = 0.2 × 10–2 × cos (60) 

   = 10–3 Wb. 

   The correct answer is thus (3) 

 
 

1.1 FARADAY’S LAWS OF ELECTROMAGNETIC INDUCTION  

      (i) When magnetic flux passing through a loop changes with time or magnetic lines of force are cut by 

a conducting wire then an emf is produced in the loop or in that wire. This emf is called induced emf. 

  If the circuit is closed then the current will be called induced current. 

  magnetic flux =   

 (ii) The magnitude of induced emf is equal to the rate of change of flux w.r.t. time in case of loop. In case 

of a wire it is equal to the rate at which magnetic lines of force are cut by a wire 

   E = –  

  (–) sign indicates that the emf will be induced in such a way that it will oppose the change of flux. 

  SI unit of magnetic flux = Weber.  
 

 
Example 3.  A coil is placed in a constant magnetic field .The magnetic field is 

parallel to the plane of the coil as shown in figure. Find the emf  

induced in the coil. 
 

Solution :  φ = 0 (always) since area is perpendicular to magnetic field. ∴ emf = 0  
 

Example 4.  Find the emf induced in the coil shown in figure. The magnetic field is 

perpendicular to the plane of the coil and is constant. 

Solution :  φ = BA (always) 

   = const.  ∴ emf = 0 

 

 

Example 5.  Find the direction of induced current in the coil shown in figure.Magnetic field is 

perpendicular to the plane of coil and it is increasing with time. 

 
Solution :  Inward flux is increasing with time. To opposite it outward magnetic field should be induced.  

  Hence current will flow anticlockwise. 
 



 

 

Example 6.  Figure shows a coil placed in decreasing magnetic field applied 

perpendicular to the plane of coil .The magnetic field is decreasing at 

a rate of 10T/s. Find out current in magnitude and direction 
 

Solution :  φ = B.A  ⇒ emf = A .   =  2 × 10 = 20 v 

   ∴ i = 20/ 5 = 4 amp. From Lenz’s law direction of current will be anticlockwise. 

 

Example 7.  Figure shows a coil placed in a magnetic field decreasing at a rate of 

10T/s. There is also a source of emf 30 V in the coil. Find the magnitude 

and direction of the current in the coil. 

 

Solution :    

   Induce emf = 20V 

   equivalent i = 2A clockwise 

 

Example 8.  Figure shows a long current carrying wire and two rectangular loops moving with velocity v. 

  Find the direction of current in each loop. 

 
Solution :  In loop (i) no emf will be induced because there is no flux change.  
   In loop (ii) emf will be induced because the coil is moving in a region of decreasing magneticfield 

inward in direction. Therefore to oppose the flux decrease in inward direction, current will be 
induced such that its magnetic field will be inwards. For this direction of current should be 
clockwise.  

 
2. LENZ’S LAW (CONSERVATION OF ENERGY PRINCIPLE)  
 According to this law, emf will be induced in such a way that it will oppose the cause which has produced 

it. 
 Figure shows a magnet approaching a ring with its north pole towards the ring.  

 
 We know that magnetic field lines come out of the north pole and magnetic field intensity decreases as 

we move away from magnet. So the magnetic flux (here towards left) will increase with the approach of 



 

 

magnet. This is the cause of flux change. To oppose it, induced magnetic field will be towards right. For 

this the current must be anticlockwise as seen by the magnet. 

 If we consider the approach of North pole to be the cause of flux change, the Lenz’s law suggests that 

the side of the coil towards the magnet will behave as North pole and will repel the magnet. We know 

that a current carrying coil will behave like North pole if it flows anticlockwise. Thus as seen by the magnet, 

the current will be anticlockwise. 

 If we consider the approach of magnet as the cause of the flux change, Lenz’s law suggest that a  force 

opposite to the motion of magnet will act on the magnet, whatever be the mechanism. 

 Lenz’s law tells that if the coil is set free, it will move away from magnet, because in doing so it will oppose 

the ‘approach’ of magnet. 

 If the magnet is given some initial velocity towards the coil and is released, it will slow down .It can be 

explained as the following. 

 The current induced in the coil will produce heat. From the energy conservation, if heat is produced there 

must be an equal decrease of energy in some other form, here it is the kinetic energy of the moving 

magnet. Thus the magnet must slow down. So we can justify that the Lenz’s law is conservation of 

energy principle. 
 

2.1  INDUCED EMF, CURRENT AND CHANGE IN A CIRCUIT 

 ⮚ If e.m.f  induced in a circuit is E and rate of change of magnetic flux is dφ/dt, then from Faraday’s 

and Lenz’s law  

    E ∝ –   or  E = – K   where K is constant, equal to one. 

  Thus   E = –   

 ⮚ If there are N turns in the coil, then induced e.m.f will be  E = – N   

 ⮚ If the magnetic flux linked with the circuit changes from φ1 to φ2, in time t, then induced e.m.f will be  

  E = – N    

  = – N   

 ⮚ If the resistance of the circuit is R, then the current induced in the circuit will be  

   ampere = – ampere 

 ⮚ Induced current depends upon  

  (a) the resistance of the circuit I ∝  

  (b) the rate of change of magnetic flux   

  (c) the number of turns  (N) ; I ∝ N 

 ⮚ If R = ∞ , that is, the circuit is open, then the current will not flow and if the circuit if closed, then 

current will flow in the circuit. 

 ⮚ If change dq flows in the circuit in time dt, then the induced current will be 

  or  dq = I dt 



 

 

  but   

  ∴     or   

  If N is the number of turns, then dq = , q =  

 ⮚ Charge flowing due to induction does not depend upon the time but depends upon the total change 

in the magnetic flux. It does not depend upon the rate or time interval of the change in magnetic flux. 

Whether the change in magnetic flux be rapid or slow, the charge induced in the circuit will remain 

same.  

  Thus   q ∝ dφ   or q ∝ (φ2  – φ1) 

 ⮚ Induced charge depends upon the resistance of the circuit, i.e., q ∝ 1/R 

  If R = ∞ or circuit is open, q = 0 that is charge will not flow in the circuit.  

  If R ≠ ∞ or circuit is closed, then q ≠ 0, that is, induced charge will flow in the circuit 

 ⮚ The e.m.f induced in the circuit does not depend upon the resistance of the circuit.  

 ⮚ The e.m.f induced in the circuit depends upon the following factors -  

  (a) Number of turns (N) in the coil, 

  (b) Rate of change of magnetic flux, 

  (c) Relative motion between the magnet and the coil, 

  (d) Cross-sectional area of the coil, 

  (e) Magnetic permeability of the magnetic substance or material placed inside the coil. 
 

2.2 FLEMING’S RIGHT HAND RULE 

 This law is used for finding the direction of the induced e.m.f or current. 

According to this law, if we stretch the right hand thumb and two nearby 

fingers perpendicular to one another and first finger points in the direction 

of magnetic field and the thumb in the direction of motion of the conductor 

then the central finger will point in the direction of the induced current. 

 
 

2.3  DIRECTION OF INDUCED EMF AND CURRENT (Applications of lenz’s law) 

 ⮚ If current flowing in a coil appears anti-clockwise, then that plane of coil will behave like a N-pole. 

 

 ⮚ If current flowing in the coil appears clock-wise, then that plane of coil will behave like a S-pole. 

 



 

 

 ⮚ If the north pole of magnet is moved rapidly towards the coil, then 

according to Lenz’s law the induced current will flow in the coil in such 
a direction so as to oppose the motion of the magnetic. This will happen 
only when the face of the coil towards the magnet behaves as a north 
pole, that is, the induced current will appear flowing in anti-clockwise 
direction as seen from the side of magnet. Thus a force of repulsion 
will be produced between the magnet and the coil coming near each 
other which will oppose the motion of the magnet. Hence some 
mechanical work has to be done to move the magnet near the coil 
against this opposing force and this work (mechanical energy) is 
converted into current (electrical energy) 

 

 ⮚ On bringing a south pole towards a coil the current induced in the coil will appear flowing in clockwise 

direction as observed from the side of magnet and the face of the coil towards the magnet will behave 

as a south pole.  

 

 ⮚ On moving the north pole of a magnet away from the coil the current induced in the coil will appear 

flowing in the clockwise direction as seen from the side of magnet and the face of the coil towards 

the magnet will behave as a south pole.        

      

 
  

 ⮚ On moving the south pole of a magnet away from the coil the current induced in the coil will appear 

flowing in the anticlockwise direction as seen from the side of magnet and the face of the coil towards 

the magnet will behave like a north pole.  

 

 ⮚ If a magnet is allowed to drop freely through a copper coil, then an induced current will be produced 

in the coil. This current will oppose the motion of the magnet, as a result the acceleration of the falling 

magnet due to gravity will be less than ‘g’. If coil is cut somewhere, then the emf will be induced in 

the coil only but current will not be induced. In absence of induced current the coil will not oppose the 

motion of magnet and the magnet will fall through the coil with the acceleration equal to g.  

 ⮚ If a magnet is dropped freely in a hollow long metal cylinder, then the acceleration of falling magnet 

will be less than gravitational acceleration. As the magnet keeps on falling inside a tube, its 



 

 

acceleration will continue to decrease and after traversing a certain distance the acceleration will 

become zero. Now the magnet will fall with constant velocity. This constant velocity is called terminal 

velocity.  

 ⮚ If a current carrying coil is brought near another stationary coil, then the direction of induced current 

in the second coil will be in the direction of current in the moving coil.  

 

 ⮚ If a current carrying coil is taken away from a stationary coil, then the direction of induced current in 

the second coil will be opposite to the direction of current in the moving coil. 

 

 ⮚ In the coils arranged in the following way, when the key K connected 

in the circuit of primary coil, is pressed, an induced current is 

produced in the secondary coil. The direction of induced current in 

the secondary coil is opposite to the direction of the current in the 

primary coil. (From lenz’s law) 

  When the key is opened, then the current in the primary coil is 

reduced to zero but current is induced in the secondary coil. The 

direction of this induced current is same as the direction of current in 

the primary coil. (Form Lenz’s law).  

 ⮚ When current is passed through a coil, the current flowing through the coil changes. As a result the 

magnetic flux linked with the coil changes. Due to this a current is induced in the coil. If the current 

induced in the coil flows in the opposite direction of the applied current. If the current flowing in the 

coil is decreased, then the current induced in the coil flows in the direction of the applied current so 

as to oppose the decrement of the applied current.  

   

 ⮚ Two coil A and B are arranged as shown in the figure. On pressing the key K current flows through 

the coil A in the clockwise direction and the current induced in the coil B will flow in the anticlockwise 

direction . (From Lenz’s law) 

 
  On opening the key K the current flowing through the coil A will go on decreasing. Thus the current 

induced in the coil B will flow in the clockwise direction.  

 ⮚ If current flows in a straight conductor from A to B as shown in figure, then the direction of current 

induced in the loop placed near it will be clockwise. (From Lenz’s law). 



 

 

 

 ⮚ Three indentical circular coils A, B and C are arranged coaxially as 

shown in figure. The coils A and C carry equal currents as shown. 
Coils B and C are fixed in position. If coil A is moved towards B, 
then the current induced in coil B will be in clockwise wise direction 
because the direction of current induced in the coil B will be to 
oppose the motion of coil A. (The face of A towards B is south pole, 
then the face of B towards A is south pole). There is no relative 
motion between B and C so current will not be induced in coil B 
due to coil C. 

 

 

3. MOTIONAL EMF  

 We can find emf induced in a moving rod by considering the number of lines 

cut by it per sec assuming there are ‘B’ lines per unit area. Thus when a rod of 

length moves with velocity v in a magnetic field B, as shown, it will sweep 

area per unit time equal to v and hence it will cut B  v lines per unit time. 
 

 Hence emf induced between the ends of the rod = Bv  

 Also emf = . Here φ denotes flux passing through the area,swept by the rod.The rod sweeps an area 

equal to  vdt in time interval dt.Flux through this area = B vdt. Thus  = = Bv  

 If the rod is moving as shown in the following figure, it will sweep area per unit time = vsinθ and hence 

it will cut B v sinθ lines per unit time. Thus emf = Bvsinθ. 

 
 

3.1 EXPLANATION OF EMF INDUCED IN ROD ON THE BASIS OF MAGNETIC FORCE: 
 If a rod is moving with velocity v in a magnetic field B, as shown, the free electrons in a rod will experience 

a magnetic force in downward direction and hence free electrons will accumulate at the lower end and 
there will be a deficiency of free electrons and hence a surplus of positive charge at the upper end.  

 These charges at the ends will produce an electric field in downward 

direction which will exert an upward force on electron. If the rod has been 

moving for quite some time enough charges will accumulate at the ends so 

that the two forces qE and qvB will balance each other.  

 Thus E = v B.  

  VP – VQ= VB 

   The moving rod is equivalent to the following diagram, electrically.  

 
 Figure shows a closed coil ABCA moving in a uniform magnetic field B with a velocity v. The flux passing 

through the coil is a constant and therefore the induced emf is zero.        



 

 

 
 Now consider rod AB, which is a part of the coil. Emf induced in the rod =B 

L v 

 Suppose the emf induced in part ACB  is E , as shown.  

 Since the emf in the coil is zero, Emf (in ACB) + Emf (in BA) = 0 

 or –E + vBL = 0 or E   =  vBL  
 Thus emf induced in any path joining A and B is same, provided the magnetic field is uniform. Also the 

equivalent emf between A and B is BLv (here the two emf’s are in parallel) 
 

 
Example 9. Find the emf induced in the rod in the following cases. The figures are self explanatory.  

 (a)    (b)   (c)   

 

Solution : (a)  here  so  

  emf =  

 (b)  here   

  so emf =  

 (c) here   

  so emf =  
 

Example 10. A circular coil of radius R is moving in a magnetic field B with a velocity v as shown in the figure.  

 
 Find the emf across the diametrically opposite points A and B.                                       

Solution : emf =  BVleffective  = 2 R v B 

 

Example 11. Figure shows an irregular shaped wire AB moving with velocity v, as shown. 

 
   Find the emf induced in the wire.  

Solution :  The same emf will be induced in the straight imaginary wire  joining A and B , which is Bv sin θ  



 

 

 
 

Example 12. A rod of length l is kept parallel to a long wire carrying constant current i. It is moving away from 

the wire with a velocity v. Find the emf induced in the wire when its distance from the long wire 

is x. 

Solution :  E = B l V =  

     OR  

   Emf is equal to the rate with which magnetic field lines are cut. In 

dttime the area swept by the rod is l v dt. The magnetic field lines cut 

in dt time =B l vdt= .  

   ∴ The rate with which magnetic field lines are cut =  

 

 

Example 13. A rectangular loop ,as shown in the figure ,moves away from an infinitely long wire carrying a 

current i. Find the emf induced in the rectangular loop. 

 

Solution :  E = B1 LV – B2Lv =  =  

   Aliter : Consider a small segment of width dy at a distance y 

from the wire.  

   Let flux through the segment be dφ. 

 

   

   ∴  dφ = L dy   

   ∴  =   

   Now     v =  

   ∴ induced emf =  

 

    

 
 



 

 

Example 14.  A rod of length l is placed perpendicular to a long wire carrying 
current i. The rod is moved parallel to the wire with a velocity v. 
Find the emf induced in the rod, if its nearest end is at a distance 
‘a’ from the wire. 

Solution :  Consider a segment of rod of length dx, at a distance x from the 
wire. Emf induced in the segment 

   dE = dx.v   

   ∴   E =  =  

 

 

Example 15. A rectangular loop is moving parallel to a long wire carrying current i with a velocity v. Find the 
  emf induced in the loop, if its nearest end is at a distance ‘a’ from the wire. Draw equivalent 
  electrical diagram.  

 
Solution :   emf  = 0 ;        

    

 
4. INDUCED EMF DUE TO ROTATION 
4.1 ROTATION OF THE ROD  
 Consider a conducting rod of length l rotating in a uniform magnetic field. 

       
 Emf induced in a small segment of length dr, of the rod = v B dr = rω B dr 

 ∴ emf induced in the rod =  

 equivalent of this rod is as following or  

  

 = =  

 

 
 



 

 

 

Example 16. A rod PQ of length 2 is rotating about one end P in a uniform magnetic 

field B which is perpendicular to the plane of rotation of the rod. Point M 

is the mid point of the rod. Find the induced emf between M & Q if that 

between P & Q = 100V . 
 

Solution :  EMQ + EPM = EPQ    

   EPM =  = 100 

   EMQ +  =  ⇒ EMQ =  Bω2  =   ×100 V = 75 V 
 

Example 17. A rod of length  and resistance r rotates about one end as shown in figure. Its other end  

  touches a conducting ring a of negligible resistance. A resistance R is connected between 
  centre and periphery. Draw the electrical equivalence and find the current in the resistance R. 
  There is a uniform magnetic field B directed as shown.    

 
Solution : 

 ≡   ≡  

     current i =  
 

Example 18. Solve the above question if the length of rod is 2L and resistance 2r and it is rotating about its 

  centre. Both ends of the rod now touch the conducting ring 

 
 



 

 

Solution :  

   ≡        ≡      

      
 

Example 19. A rod of length l is rotating  with an angular speed ω about its one end which is at a distance ‘a’ 

  from an infinitely long wire carrying current i. Find the emf induced in the rod at the instant 

  shown in the figure. 

 
Solution :  Consider a small segment of rod of length dx, at a distance 

x from one end of the rod. Emf induced in the segment 

      

   dE =  (xω)dx   

  ∴ E=  (xω)dx =  . 
 

 

Example 20. A rod of mass m and resistance r is placed on fixed, resistanceless, smooth 

conducting rails (closed by a resistance R) and it is projected with an initial 

velocity u .Find its velocity as a function of time. 

Solution :   Let at an instant the velocity of the rod be v .The emf induced in the rod will 

be vBl.  
 

   The electrically equivalent circuit is shown in the following diagram. 

 

   ∴ Current in the circuit i =  



 

 

   At time t   

   Magnetic force acting on the rod is F = iB, opposite 

  to the motion of the rod. 

   iB = – m    .....(1) 

   i =      .....(2) 

   Now solving these two equation = – m.  

   –  . dt =  

 

   let  = k  

    – K.dt =  

     =  ;   ln  = – Kt 

    V = ue–Kt 

 

    

Example 21. In the above question find the force required to move the rod with constant velocity v, and also 

  find the power delivered by the external agent. 

Solution :  The force needed to keep the velocity constant  Fext = iB  =    

   Power due to external force =  =  = i2(R+r) 

   Note that the power delivered by the external agent is converted into joule heating in the  

  circuit. That means magnetic field helps in converting the mechanical energy into joule heating. 
 

Example 22. In the above question if a constant force F is applied on the rod. Find the velocity of the rod as 

  a function of time assuming it started with zero initial velocity. 

Solution :   m  = F – i B ....(1)  i =   ....(2) 

   m  = F –  

   let K =   ⇒  =  

 

   –  ⇒ n  = –  

   F – KV = F  ⇒ V =  (1 – )    
 



 

 

Example 23. A rod PQ of mass m and resistance r is moving on two fixed, resistanceless, smooth  

  conducting rails (closed on both sides by resistances R1 and R2) .Find the current in the rod at 

  the instant its velocity is v.   

 

Solution :  i =  

   this circuit is equivalent to the following diagram. 

 

 
4.2. EMF INDUCED DUE TO ROTATION OF A COIL 

 

Example 24. A ring rotates with angular velocity ω about an axis perpendicular to the plane 

of the ring passing through the center of the ring. A constant magnetic field B 

exists parallel to the axis. Find the emf induced in the ring 
 

Solution :  Flux passing through the ring φ = B.A is a constant here, therefore emf induced in the coil is 

  zero. Every point of this ring is at the same potential, by symmetry. 

 
4.3 EMF INDUCED IN A ROTATING DISC : 
 Consider a disc of radius r rotating in a magnetic field B. 

 Consider an element dx at a distance x form the centre. This element is moving with speed v = ωx.  

 ∴ Induced emf across dx 

  = B(dx) v = Bdxωx = Bωxdx 

 ∴ emf between the centre and the edge of disc.  

  =   

4.4. ROTATION OF A RECTANGULAR COIL IN A UNIFORM MAGNETIC FIELD  

 ⮚ If the figure a conducting rectangular coil of area A and turns N is shown. It is rotated in a uniform 

magnetic field B about a horizontal axis perpendicular to the field with an angular velocity ω. The 
magnetic flux linked with the coil is continuously changing due to rotation. 

 
  θ is the angle between the perpendicular to the plane of the coil and the direction of magnetic field.  



 

 

 ⮚ The magnetic flux passing through the rectangular coil depends upon the orientation of the plane of 

the coil about its axis.  

 ⮚ Magnetic flux passing through the coil  

  If there are N turns in the coil, then the flux linked with the coil φ = BAN cos ωt 

 ⮚ Since φ depends upon the time t, the rate of change of magnetic flux 

   = – BANω sin ωt  

 ⮚ According to Faraday’s law, the emf induced in the coil 

   ∈ = –   or ∈ = BAN ω sin ωt 

  BAN ω is the maximum value of emf induced, Thus writing  
  BANω = ∈0 

  ∴ ∈ = ∈0 sin ωt   
  This equation represents the instantaneous value of emf induced at time t.  

 ⮚ If the total resistance of circuit along with the coil is R, then the induced current due to alternating 

voltage 

   I = sin ωt  or  I = I0 sinωt 

  where I0 =  is the maximum value of current.  

 ⮚ The magnetic flux linked with coil and the emf induced at different positions of the coil in one rotational 

cycle are shown in the following table : 
  Time Position of coil    Magnetic flux   Induced emf  

  t = 0 Plane of the coil normal to     φ = NBA = maximum flux  = 0 

  t = T/4 Plane of the coil parallel to     φ = 0          =NBA ω = 
maximum 

  t = T/2 Plane of the coil normal to  again (θ = 180º) φ = –NBA     = 0 

  t = 3T/4 Plane of the coil parallel to  again (θ = 270º) φ = 0      = –NBA ω 

  t = T Plane of the coil normal to  (θ = 360º)   φ = NBA     = 0 

 ⮚ The variations of magnetic flux linked with the coil and induced e.m.f at different times given in the 

above table are shown in the following figure.  

 

 ⮚ The phase difference between the instantaneous magnetic flux and induced emf is π/2. 

 ⮚ The ratio of ∈max and φmax is equal to the angular velocity of the coil, Thus 

  = ω 



 

 

 ⮚ If θ =  = 45º, then  

  φ =    and   ∈ =   

  In this case the ratio of the induced emf and the magnetic flux is equal to the angular velocity of the 

coil. Thus 

   

 ⮚ The direction of induced emf in the coil changes during one cycle so it is called alternating emf and 

current induced due to it is called alternating current. This is the principle of AC generator. 

 

Example 25. The phase difference between the emf induced in the coil rotating in a uniform magnetic field and 

the magnetic flux associated with it, is  

   (1) π    (2) π/2    (3) π/3   (4) zero 

Solution :  φ = NAB cos ωt    

   and  ∈ = NAB ω sin ωt 

   Hence the phase difference between φ and ∈ will be π/2.  

   ∴ Answer will be (2)   

Example 26. A coil has 20 turns and area of each turn is 0.2 m2. If the plane of the coil makes an angle of 60º 
with the direction of magnetic field of 0.1 tesla, then the magnetic flux associated with the coil will 
be -  

   (1) 0.4 weber  (2) 0.346 weber  (3) 0.2 weber  (4) 0.02 weber 
Solution :  φ = n(B da cosθ) 

   = 20 × 0.1 × 0.2 cos (90º–  60º) = 20 × 0.1 × 0.2 ×  = 0.346 weber 
   ∴ Answer will be (2)  
 

Example 27. A ring rotates with angular velocity ω about an axis in the plane of the ring and 

which passes through the center of the ring. A constant magnetic field B exists 

perpendicular to the plane of the ring. Find the emf induced in the ring as a 

function of time. 
 

 

Solution :  At any time t , φ = BA cos θ = BA cos ωt 
   Now induced emf in the loop 

    e = = BA ω sin ωt   
   If there are N turns     
    emf = BAωN sin ωt  

   BA ωN is the amplitude of the emf   

    e = em sin ωt 

    i =  =  sin wt = im sin wt   

    im =  

 

   The rotating coil thus produces a sinusoidally varying current or alternating current. This is also 

the principle used in generator. 
 



 

 

Example 28. Figure shows a wire frame PQSTXYZ placed in a time varying magnetic field given as B=βt, 

  where β is a positive constant. Resistance per unit length of the wire is λ. Find the current 

  induced in the wire and draw its electrical equivalent diagram.  

 
Solution :   Induced emf in part PQST = β a2 (in anticlockwise 

direction, from Lenz’s Law)  

   Similarly Induced emf in part TXYZ = β b2  

   (in anticlockwise direction, from Lenz’s Law) 
   Total resistance of the part PQST =λ4a. 

   Total resistance of the part TXYZ = λ4b. The 
equivalent circuit is as shown in the following 
diagram. 

   writing KVL along the current flow  
    βb2 – βa2 – λ 4ai – λ 4bi = 0 

    i =  (b – a) 

 

 

 

5. FIXED LOOP IN A VARYING MAGNETIC FIELD               

 Now consider a circular loop, at rest in a varying magnetic field. Suppose the magnetic field is directed 

inside the page and it is increasing in magnitude. The emf induced in the loop will be   

  ε = – . Flux  through the coil will be φ = –π r2 B ;  = –πr2 ; ε= –  ∴ ε = π r2.  

 ∴  E 2 π r =  π  r2    or  E=  
 Thus changing magnetic field produces electric field which is non conservative in nature. The lines of 

force associated with this electric field are closed curves. 
 

6. SELF INDUCTION  
 Self induction is induction of emf in a coil due to its own current change.Total flux Nφ passing through a 

coil due to its own current is proportional to the current and is given as Nφ= Li where L is called coefficient 
of self induction or inductance.The inductance L is purely a geometrical property i.e., we can tell the 
inductance value even if a coil is not connected in a circuit. Inductance depends on the shape and size 
of the loop and the number of turns it has.  

 If current in the coil changes by ΔΙ in a time interval Δt, the average emf induced in the coil is given as 

   = . 

 The instantaneous emf is given as  =  
 S.I Unit of inductance is wb/amp or Henry(H) 
 L - self inductance is +ve quantity . 
 L depends on : (1) Geometry of loop  
 (2) Medium in which it is kept. L does not depend upon current. 
 L is a scalar quantity.  
 

6.1 SELF INDUCTANCE OF SOLENOID  



 

 

 Let the volume of the solenoid be V, the number of turns per unit 

length be n.   

 Let a current I be flowing in the solenoid.Magnetic field in the 

solenoid is given as B=μ0ni.The magnetic flux through one turn 

of solenoid φ =  μ0niA. 

 The total magnetic flux through the solenoid  

  = N φ  = Nμ0ni A  =  μ0n2i A  

 

 ∴  L = μ0 n2   A = μ0 n2 V ⇒ φ = µ0 n i πr2 (n)  ⇒ L =    = µ0 n2 πr2. 

 Inductance per unit volume = µ0n2. 
 Self inductance is the physical property of the loop due to which it opposes the change in current  that 

means it tries to keep the current constant.Current can not change suddenly in the inductor. 
 

7. INDUCTOR :  

 It is represent by     
 electrical equivalence of loop  

  ⇒  

 
 If current i through the inductor is increasing the induced emf will oppose the increase in current and  

hence will be opposite to the current.If current i through the inductor is decreasing the induced emf will 
oppose the decrease in current and hence will be in the direction of  the current. 

   
 Over all result   

 

  
 Note : If there is a resistance in the inductor (resistance of the coil of inductor) then : 

 ≡  

 
Example 29. A B is a part of circuit. Find the potential difference vA – vB if  

 

   (i) current i = 2A and is constant 

   (ii) current i = 2A and is increasing at the rate of 1 amp/sec. 

   (iii) current i = 2A and is decreasing at the rate 1 amp/sec.   

Solution :   =  1  

   writing KVL from A to B  



 

 

 

   VA – 1  – 5 – 2i = VB . 

   (i) Put i = 2,   = 0 

    VA – 5 – 4 = VB   ∴ VA – VB = 9 volt 

   (ii) Put i = 2 ,  = 1 ; VA – 1 – 5 – 4 = VB   or VA – VB = 10 V0  

   (iii) Put i = 2 ,  = – 1 ; VA + 1 – 5 – 2 × 2 = VB or  VA = 8 volt. 
 

 
7.1 ENERGY STORED IN AN INDUCTOR: 

 If current in an inductor at an instant is i and is increasing at the rate di/dt,the induced emf will oppose 

the current . Its behaviour is shown in the figure. 

 Power consumed by the inductor = i L  

 Energy consumed in dt time = i L dt  

  ∴ total energy consumed as the current increases from 0 to I =  = LΙ 2 =  Li2  

 ⇒ U =  L Ι2 

 Note :  This energy is stored in the magnetic field with energy density     

   

   Total energy U =  
 

 
Example 30. A circuit contains an ideal cell and an inductor with a switch. Initially the switch is open .It is 

  closed at t=0.Find the current as a function of time.    

 

Solution :  ε = L  ⇒  =   

   εt = Li  ⇒ i =  



 

 

Example 31. In the following circuit, the switch is closed at t = 0. Find the currents i1, i2, i3 and  at t = 0 and 

at t = ∞. Initially all currents are zero.  

 

Solution :  At t = 0 

   i3 is zero ,since current cannot suddenly change due to the inductor. 

   ∴ i1= i2 (from KCL) 

   applying KVL in the part ABEF we get  i1= i2= .  

   i3 = 0,  

   At t =  

   i3 will become constant and hence potential difference 

across the inductor will be zero.It is just like a simple 

wire and the circuit can be solved assuming it to be like 

shown in the following diagram. 

   i2 = i3 = , i1 = , = 0.  

 

 

Example 32.  In the circuit shown in the figure, S1 remains closed for a long time and S2 remains open. Now 

  S2 is closed and S1 is opened. Find out the di/dt just after that moment.   

 

Solution :  Before S2 is closed and S1 is opened current in the left part of the circuit = . Now when S2 

  closed S1 opened, current through the inductor can not change suddenly, current  will  

  continue to move in the inductor. 

   Applying KVL in loop 1.  

    L  +  + 4ε  = 0  

    = –  

   current inductor long after this moment i = . 

 

 



 

 

7.2 GROWTH OF CURRENT IN SERIES R–L CIRCUIT : 
 

 Figure shows a circuit consisting of a cell, an inductor L and a resistor R, 

connected in series. Let the switch S be closed at t = 0. Suppose at an 

instant current in the circuit be i which is increasing at the rate di/dt. 
 

 

 Writing KVL along the circuit, we have  – L  – i R = 0  

 On solving we get,  i =     

 The quantity L/R is called time constant of the circuit and is denoted by τ.The 

variation of current with time is as shown. 

 

 Note : 1.  Final current in the circuit =  , which is independent of  L. 

   2.   After one time constant, current in the circuit =63% of the final current (verify yourself)  

   3.  More time constant in the circuit implies slower rate of change of current. 

   4. If there is any change in the circuit containing inductor then there is no instantaneous effect 

on the flux of inductor.  

    L1 i1 = L2 i2  

 
Example 33. At t = 0 switch is closed (shown in figure) after a long time suddenly the inductance of the 

  inductor is made η times lesser (L/η) then its initial value, find out instant current just after the 
  operation. 

 
Solution :  Using above result (note 4)   

   L1 i1 = L2 i2  ⇒ i2 =   

 
7.3 DECAY OF CURRENT IN THE CIRCUIT CONTAINING RESISTOR AND INDUCTOR : 
 Let the initial current in the circuit be I0.At any time t,let the current be i 

and let its rate of change at this instant be di/dt. 

   + iR = 0,    =  

   = – .dt ⇒ ln  = – or i=I0  
 Current after one time constant :i=I0=0.37% of initial current. 

 

 

 



 

 

Example 34. In the following circuit the switch is closed at t = 0.Intially there is no current in inductor. Find 

  out current the inductor coil as a function of time. 

 
Solution :  

    
   At any time t       

   −ε + i1R – (i – i1) R = 0  

   −ε + 2i1R – iR = 0     

   i1 =      Now, −ε + i1R + iR + L.  = 0  

   −ε +  + iR + L .  = 0  ⇒ – +  = –L .  

   dt = –L . di   ⇒ –   =  

   –  =    ⇒ –  =  ln  

   – ln  =    ⇒ i = +   

 Aliter :  By replacing inductance by it resistance (i.e. zero) resultant resistance of circuit is 3R/2 

so Imax through battery is Imax = ,  

 This current is equally distributed at junction so through L maximum current is imax = . 

 So, At any time t current through inductance is i =   (1 – e–t/τ)         ..........(i) 
 To determine τ we replace battery by it’s internal resistance so resistance across inductor is 

3R/2. 

 So τ =  =  
 put in equation (1)   

   i =   
 



 

 

Example 35. Figure shows a circuit consisting of a ideal cell, an inductor L and a resistor R, connected in 

  series. Let the switch S be closed at t = 0. Suppose at t = 0 current in the inductor is i0 then 

  find out equation of current as a function of time        

 
Solution :  Let an instant t current in the circuit is i which is increasing at the 

rate di/dt. 

   Writing KVL along the circuit , we have  – L   – i R = 0  

   ⇒  ⇒   

   ⇒    ln   = –  ⇒  ε – iR = (ε – i0R)   ⇒  i =  

 
 Equivalent self inductance : 

 

      ..(1) 
 Series combination  

 

  VA – L1  – L2  = VB   ....(2) 
  from (1) and (2)  
  L = L1 + L2 ( neglecting mutual inductance) 
 Parallel Combination  :  

 

  From figure VA – VB = L1  =     ..... (3) 
  also i = i1 + i2 

  or  or  =  +  

   (Neglecting mutual inductance) 



 

 

8. MUTUAL INDUCTANCE  

 
 Consider two arbitrary conducting loops 1 and 2. Suppose that Ι1 is the instantaneous current flowing 

around loop 1. This current generates a magnetic field B1 which links the second circuit, giving rise to a 
magnetic flux φ2 through that circuit. If the current Ι1doubles, then the magnetic field B1 doubles in strength 
at all points in space, so the magnetic flux φ2 through the second circuit also doubles. Furthermore, it is 
obvious that the flux through the second circuit is zero whenever the current flowing around the first circuit 
is zero. It follows that the flux φ2 through the second circuit is directly proportional to the current Ι1 flowing 
around the first circuit. Hence, we can write φ2=M21Ι1 where the constant of proportionality M21 is called 
the mutual inductance of circuit 2 with respect to circuit 1. Similarly, the flux φ2 through the first circuit 
due to the instantaneous current Ι2 flowing around the second circuit is directly proportional to that current, 
so we can write φ1=M12Ι2 where M12is the mutual inductance of circuit 1 with respect to circuit 2. It can 
be shown that M21= M12 (Reciprocity Theorem). Note that M is a purely geometric quantity, depending 
only on the size, number of turns, relative position, and relative orientation of the two circuits. The S.I. 
unit of mutual inductance is called Henry (H). One Henry is equivalent to a volt-second per ampere. 

 Suppose that the current flowing around circuit 1 changes by an amount ΔΙ1 in a small time interval Δt. 
The flux linking circuit 2 changes by an amount Δφ2=MΔΙ1in the same time interval. According to 

Faraday’s law, an emf  is generated around the second circuit due to the changing magnetic 

flux linking that circuit. Since,  = MΔΙ1, this emf can also be written . 
 Thus, the emf generated around the second circuit due to the current flowing around the first circuit is 

directly proportional to the rate at which that current changes. Likewise, if the current Ι2 flowing around 
the second circuit changes by an amount ΔΙ1in a time interval Δt then the emf generated around the first 

circuit is  Note that there is no direct physical connection(coupling) between the two circuits: 
the coupling is due entirely to the magnetic field generated by the currents flowing around the circuits.  

 Note : (1)  M ≤  
   (2)  For two coils in series if mutual inductance is considered then  
     Leq = L1 + L2 ± 2M 

⮚ Unit of M : In M.K.S. system unit of mutual inductance is henry  

  M =  

 ∴ 1 henry =  

  =  = J/A2 

⮚ Dimensions of M :   

  M =   

  =  

  = ML2T–2A–2 



 

 

⮚ Mutual inductance between the coils depends upon the number of turns in the coils, area and the 

permeability of the core placed inside the coils. Larger is the magnitude of M, more is the emf induced in 
the secondary coil.  

⮚ Out of the two coils coupled magnetically one coil can be taken as primary and the other coil as secondary. 

Thus mutual inductance 

  MAB = MBA = M 

⮚ Mutual inductance between two coaxial solenoids of length and cross-sectional area A is 

  M =  

 where N1 and N2 are the number of turns in the two coils respectively.  

⮚ If two coils are wound one over the other, then mutual inductance will be maximum and it will be less in 

other arrangements.  

 M and L have the following relation :  

 

       

   

 where K is a coupling constant of coils and its value varies from 0 to 1.  

 (a) If K = 0, then there will be no coupling between the coils, that is magnetic flux produced by the primary 
coil is not linked with the secondary coil.  

 (b) If K = 1, then both coils are coupled together with maximum transfer to energy, that is, magnetic flux 
produced by the primary coil is totally linked with the secondary coil.  

⮚ If two coils of self inductances L1 and L2 are coupled in series such that their windings are in the same 

sense and mutual inductance between them is M, then the equivalent inductance will be  

  L = L1 + L2 + 2M 

 

 If two coils are coupled in series such that their windings are in opposite sense then equivalent inductance 
will be  

  L = L1 + L2 – 2M   

 
 
 
 

 



 

 

 

Example 36. A coil of radius 1 cm and 100 turns is placed at the centre of a long solenoid of radius 5 cm and 

8 turn/cm. The value of coefficient of mutual induction will be -  

  (1) 3.15 × 10–5 H (2) 6 × 10–5 H  (3) 9 × 10–5H  (4) zero 

Solution : M = = 4π × 10–7 × 800 × 100 π × (0.01)2 = 3.15 × 10–5 H 

  Hence the correct answer will be (1) 
 

Example 37. The coefficients of self induction of two coils are 0.01 H and 0.03 H respectively. If they oppose 

each other then the resultant self induction will be, if M = 0.01H 

  (1) 2H   (2) 0.02H  (3) 0.02H  (4) zero  

Solution : L = L1 + L2 – 2M = 0.01 + 0.03 – 2 × 0.01 

  Hence the correct answer will be (3) 
 

Example 38.  Two insulated wires are wound on the same hollow cylinder, so as to form two solenoids  
  sharing a common air-filled core. Let Ι be the length of the core, A the cross-sectional area of 
  the core, N1 the number of times the first wire is wound around the core, and N2 the number of 
  turns the second wire is wound around the core. Find the mutual inductance of the two  
  solenoids,neglecting the end effects. 

Solution :  If a current I1 flows around the first wire then a uniform axial magnetic field of strength  

  B1= is generated in the core. The magnetic field in the region outside the core is of 
  negligible magnitude. The flux linking a single turn of the second wire is B1A. Thus, the flux 
  linking all N2 turns of the second wire is 

     φ2= N2B1 A =  =MΙ1     ∴ M =   
   As described previously, M is a geometric quantity depending on the dimensions of the core and 

the manner in which the two wires are wound around the core, but not on the actual  
currents flowing through the wires.  

 

Example 39. Find the mutual inductance of two concentric coils of radii a1 and 

a2 (a1 << a2) if the planes of coils are same. 

Solution :  Let a current i flow in coil of radius a2. 

   Magnetic field at the centre of coil =  πa1
2  

   or Mi = πa1
2  or M =   

 

Example 40. Solve the above question, if the planes of coil are perpendicular. 

Solution :  Let a current i flow in the coil of radius a1. The magnetic field at the centre of this coil will now 

  be parallel to the plane of smaller coil and hence no flux will pass through it, hence M = 0. 
 

Example 41. Solve the above problem if the planes of coils make θ angle with each other. 

Solution :  If i current flows in the larger coil, magnetic field produced at the centre will be perpendicular to 

  the plane of larger coil. 

   Now the area vector of smaller coil which is perpendicular to the plane of smaller coil will make 

an angle θ with the magnetic field. 

   Thus flux =    

   or  

Example 42. Find the mutual inductance of a straight long wire and a rectangular loop, as shown in the figure 



 

 

 

Solution : dφ =  × bdr 

 φ =  × bdr     
 M = φ/i 

   M =   

 

Example 43. Find the mutual inductance between two rectangular loops, shown in the figure  

 
Solution :  Let current i flow in the loop having ∞-by long sides. Consider a 

segment of width dx at a distance x as shown flux through the regent  

   dφ =  

   ⇒ φ= .  
 

Example 44. Figure shows two concentric coplanar coils with radii a and b (a << b). A current i = 2t flows in 

  the smaller loop. Neglecting self inductance of larger loop 

 
   (a) Find the mutual inductance of the two coils  
   (b) Find the emf induced in the larger coil 

   (c) If the resistance of the larger loop is R find the current in it as a function of time 

Solution :  (a) To find mutual inductance, it does not matter in which coil we consider current and in which 

flux is calculated (Reciprocity theorem) Let current i be flowing in the larger coil. Magnetic 

field at the centre = . 



 

 

    flux through the smaller coil =   ∴  

   (b)  (2)  

   (c) current in the larger coil . 

 

9.  EDDY CURRENT  

 ⮚ When a conductor is placed in a changing magnetic field, induced emf is produced in it. As a result 

local currents   are produced in the conductor. These local currents are called eddy currents.  

 ⮚ If a conducting material is moved in a magnetic field, then eddy currents are also produced.  

 ⮚ Eddy currents flows in closed paths.  

 ⮚ There is loss of energy due to eddy currents and it appears in the form if heat.  

 ⮚ In order to minimize the energy loss in the form of heat due to eddy currents the core of dynamo, 

motor or transformer is not taken as a single piece of soft iron but in the form of a peck of thin sheets 

insulated from each other by a layer of insulating varnish, called laminated core. This device 

increases the resistance for the eddy currents. In this way eddy currents are considerably reduced 

and loss of energy becomes less.  

 

 ⮚ Uses of eddy currents :  

  (a) Moving coil galvanometer (b)  Induction furnace 

  (c) Dead beat galvanometer (d)  Speedometer  (e) Electric brakes 
 

10. GENERATOR OR DYNAMO  

 ⮚ Generator or dynamo is an electrical device which converts mechanical energy into electrical energy.  

 ⮚ Working of generators is based on the principle of electromagnetic induction. 

 ⮚ Generators are of two types :  

  (a) A.C. generator : If the current produced by the generator is alternating, then the generator is 

called A.C. generator.  

  (b) D.C. generator : If the current produced by the generator is direct current, then the generator is 

called D.C. generator.  



 

 

 

 ⮚ Generator consists of the following parts.  

  (a) Armature (coil) (b) Magnet (c) Slip rings  (d) Brushes 

  In D.C. generator commutator is used in place of slip rings. 

 ⮚ In order to produce the magnetic field in big generators several magnetic poles are used. In these 

generators the armature coils are kept stationary and magnetic pole pieces are made to rotate around 

the armature. The frequency of alternating current produced by generator of multi poles is  

  =  =  

 ⮚ Energy loss in generators : The loss of energy is due to the following reasons :  

  (a) Flux leakage,   (b) Copper losses,   (c) Eddy current losses,  

  (d) Hysteresis losses,  (e) Mechanical losses 

 ⮚ Efficiency of generator : Practical efficiency of a generator   

  =  

  Practical efficiencies of big generators are about 92% to 95%. 
 

11.  MOTOR  

 ⮚ It converts electrical energy into mechanical energy. 

 ⮚ When a current carrying conductor (coil) is placed in a magnetic field, a couple acts on it which makes 

the coil to rotate.  

 ⮚ Electric motors are of two types :  

  (a) Alternating current motor (AC motor)   (b) Direct current motor (DC motor) 

 ⮚ D.C. motor consists of the following parts :  

  (a) armature (b) magnet  (c) commutator  (d) brushes  

 ⮚ Back E.M.F : When current from an external electric source is passed through the armature of the 

electric motor, armature coil rotates in the magnetic field. In cuts the magnetic lines of force as a 

result emf is induced in it. According to Lenz’s law this induced emf opposes the rotation of the 

armature i.e., the emf induced works opposite to the emf applied by the external electric source and 

opposes the motion of the armature. This induced emf is called back emf. Greater is the speed of 

armature coil, greater is the back emf.  

 ⮚ At the time of start of the motor back emf is almost zero and the current flowing in the motor in 

maximum. As the speed of the armature coil increases, back emf also increases. When the coil 

increases, back emf also increases. When the coil attains maximum speed, the induced emf becomes 

constant and current reduced to minimum.  



 

 

 ⮚ Back emf is directly proportional to the angular velocity ω of rotation of armature and the magnetic 

field B, i.e., for constant magnetic field back emf. e ∝ ω or e = Kω where K is a constant. 

 ⮚ If E is applied emf, e is the back emf and R is the resistance of the coil (armature), then the current 

flowing through the coil will be  

  i =   or E = e + iR  but e = Kω 

  ∴ i =  

 ⮚ In the beginning, i.e. at the time of start of the motor ω = 0  ∴ i =   

  In this case current will be maximum.  

 ⮚  As armature coil is made from copper wire so its resistance is very small. When motor starts running, 

a very heavy current passes through the armature coil in the beginning. Due to which motor may get 

burnt. To prevent the motor from burning at the time of start a special variable resistance is connected 

in series with the armature, which is called starter.  

 ⮚ High resistance is connected in series with the armature coil with the help of starter at the time of 

start of the motor. As the motor starts picking up speed, the resistance is gradually reduced till it 

becomes zero. 

 ⮚ Starter is used in a high power motors but not in the low power motors because its coil starts rotating 

with a very high speed in a short time  

 ⮚ Power of electric motor = ie 

 ⮚ Efficiency of motor  

   η =  

  or  η =  × 100% =   

  Generally the efficiency of the motor is from 80% to 90%. 

12.  L-C OSCILLATION 

 When a charged capacitor C having an initial charge q0 

is  discharged through an inductance L, the charge and 

current in the circuit start oscillating simple harmonically. 

If the resistance of the circuit is zero, no energy is 

dissipated as heat, we also assume an idealized 

situation in which energy is not radiated away  from the 

circuit. The total energy associated with the circuit is 

constant. Frequency of oscillation is given by  

 

  ω =   or  f =  

  

 

 
 



 

 

Problem 1.  Find the emf across the points P and Q which are diametrically opposite points of a  
  semicircular closed loop moving in a magnetic field as shown. Also draw the electrical  
  equivalent circuit of each branch.        

 

Solution :  Here   

     so emf =  
   Induced emf = 0 

        

   

Problem 2.  Find the emf across the points P and Q which are 

diametrically opposite points of a semicircular closed 

loop moving in a magnetic field as shown. Also draw the 

electrical equivalence of each branch.  

Solution :  Induced emf = 2Bav      
 

Problem 3.   Figure shows a rectangular loop moving in a uniform magnetic field .Show the electrical 
equivalence of each branch.   

 

Solution :   
 

Problem 4.  Figure shows a rod of length l and resistance r  moving on two rails 

shorted by a resistance R.A uniform magnetic field B is present normal 

to the plane of rod and rails .Show the electrical equivalence of each 

branch. 

 

Solution :   
 

Problem 5.  A rod PQ of length 2 is rotating about its mid point C, in a uniform magnetic field B which is 

  perpendicular to the plane of rotation of the rod. Find the induced emf between P Q and PC. 
  Draw the circuit diagram of parts PC and CQ. 

 

Solution :  emfPQ = 0 ; emfPC =      



 

 

Problem 6.  A rod of length  is rotating  with an angular speed ω about its one 

end which is at a distance ‘a’ from an infinitely long wire carrying 

current i. Find the emf induced in the rod at the instant shown in the 

figure. 

Solution :  E =  × (rω) . (dr)  

   E=  ⇒ E =  

 

 

Problem 7.   Find the velocity of the moving rod at time t if the initial velocity of the rod is zero and a constant 

force F is applied on the rod. Neglect the resistance of the rod. Capacitor is initially uncharged. 

 

Solution :  At any time t, let the velocity of the rod be v . 

   Applying Newtons law:  F – ilB = ma  .....(1)  

   Also  B l v = i1R =  

   Applying Kcl,  i = i1+ = +   

   or   i =   + BC a 

   Putting the value of i in eq (1),   F – = (m + B22C)a =(m + B22C)  

   (m + B22C)  = dt 

   Integrating both sides, and solving we get  v =  

Problem 8.  A rod PQ of length  is rotating about end P, with an 

angular velocity ω. Due to centrifugal forces the free 
electrons in the rod move towards the end Q and an emf 
is created. Find the induced emf. 

 

Solution :  The accumulation of free electrons will create an electric field which will finally balance the 
  centrifugal forces and a steady state will be reached. In the steady state  meω2x = e E. 

     VP–VQ  =  =  =   
 

Problem 9.  Which of the two curves shown has less time constant.          



 

 

 
Solution :   Curve1 

Example 10. If the current in the inner loop changes according to i = 2t2 then, find the current in the capacitor 

  as a function of time. 

 

Solution :   

     

   ⇒ e  (4t)  

   Applying KVL :- 

   +e –  – iR = 0 

    
   differentiate wrt time :- 

    
   on solving it  

   i =  

 
 


