IUPAC Nomenclature

Introduction:

The compounds which were derived from living organism were called as organic compounds while those from non living matter were known as inorganic compounds. Berzilius thought that organic compounds were produced from their element by laws different from those governing the formation of inorganic compounds. Wohler converted inorganic compound ammonium cyanate (found from non living matters) into urea (an organic compound).

Other synthesis were: Acetic acid by Kolbe in 1845 and Methane by Berthelot in 1856.

Section (A): Fundamental of Organic Chemistry

Definitions:

- (i) Catenation: The property of atoms of an element to link with one another and forming chain is called catenation.
- (ii) Homologous series: Homologous series may be defined as a series of similarly constituted compounds in which the members possess the same functional group, have similar chemical characteristics and have a regular gradation in their physical properties. The two consecutive members differ in their molecular formula by one CH₂ group.
- (iii) Isomerism: Compounds which have the same molecular formula but differ in physical and chemical properties are called isomers and the phenomenon is called isomerism.

 Isomerism can be broadly classified into two categories
 - (1) Structural isomerism

(2) Stereoisomerism

Tetravalency of carbon:

The valency of carbon is four as there are four unpaired electrons in outer most orbit in excited state.

Hybridisation	sp ³	sp ²	sp
Angle	109°28'	120°	180°
Geometry	Tetrahedral	Trigonal planar	Linear
Example	Alkane, Cycloalkane and in saturated part of all organic molecules	Alkenes and other compounds containing C=C, C=O, C=N and C=S	Alkynes and all other compounds containing C=C and C=N triple bonds,
Bond	Four-σ	Three-σ + One-π	Two-σ + Two-π
% s character	25	33.3	50
% p character	75	66.7	50
Electronegativity	2.48	2.75	3.25

Types of carbon and hydrogen atoms: There are four types of carbon atoms:

- (i) A primary (1°) carbon atom is bonded directly to one other carbon atom.
- (ii) A secondary (2°) carbon atom is bonded directly to two other carbon atoms.
- (iii) A tertiary (3°) carbon atom is bonded directly to three other carbon atoms.
- (iv) A quaternary (4°) carbon atom is bonded directly to four other carbon atoms.

The 1°, 2°, 3° and 4° carbon and 1°, 2° and 3° hydrogen atoms are illustrated below:

Ex.

(v) Benzylic carbon [The carbon atom directly attached to the benzene nucleus].

$$CH_3$$
 Benzylic carbon CH_2 - CH_2 - CH_3

(total benzylic H = 3 + 2 = 5)

(vi) Allylic carbon: The sp³ carbon atom directly attached with doubly bonded carbon atom.

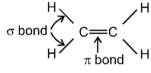
 $CH_2=CH-CH_3 \leftarrow Allylic carbon (Allylic H = 3)$

(vii) Vinylic carbon: The sp² carbon atom of doubly bonded carbon.

CH₂=CH₂ ← Vinylic carbon.

Bonding in organic compounds:

Two types of covalent bond exist in organic compounds.


- (a) Sigma bond (σ): The covalent bond formed between 2 atoms by mutual sharing of 1 pair of e^- . It is denoted by (-).
- Ex. In CH₄ molecule

H o bond H Total = 4 o bonds In C₂H₅ molecule

or bond

H
H
C
C
H

- **(b)** Multiple bond (π) : Any other bond with σ bond is π bond.
- **Ex.** (i) In ethene molecule
- (ii) In ethyne molecule

Total $\sigma = 5$, $\pi = 1$

- Total $\sigma = 3$, $\pi = 2$
- **Que.** Calculate total number of σ and π bonds in following compounds.
 - (a) HC ≡ CCH=CHCH₃

- (b) $CH_2 = C = CHCH_3$
- **Sol.** (a) $\sigma_{C-C}: 4$; $\sigma_{C-H}: 6$; $\pi_{C=C}: 1$; $\pi_{C=C}: 2$
- (b) $\sigma_{C-C}:3$; $\sigma_{C-H}:6$; $\pi_{C=C}:2$

Degree of Unsaturation (DU):

The presence of double bonds or rings within a molecule is indicated by a quantity called degree of unsaturation.

Applications: To identify the no. of π bonds or rings and also helpful in determining the structure of the molecule.

IUPAC NOMENCLATURE

Definition: Deficiency of 2H atoms with respect to fully saturated acyclic hydrocarbon is equivalent to One DU. It is also known as Hydrogen Deficiency Index (HDI) or Double Bond Equivalence (DBE)

$$CH_{3} - CH = CH_{2}$$

$$OT$$

$$OU = O$$

$$OU = O$$

$$OU = O$$

$$OU = OU$$

Where n = number of carbon atoms in the molecule


Note : Total no. of cyclic rings + total π -bonds give us degree of unsaturation.

One double bond = one DU, One ring = one DU, One triple bond = two DU

Organic Compounds

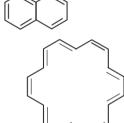
Ex. (i)
$$CH_2=CH_2$$
 $DU = 2$ $2 = 2/2 = 1$ (ii) $DU = 2$ $DU = 4$ (iv) $DU = 7$

Section (B): Classification of organic compounds

IUPAC NOMENCLATURE

(vii) Homo cyclic benzenoid aromatic compounds Benzene

und N


(viii) Heterocyclic benzenoid aromatic compound

q jÿ

Pyridine

Phenol

(ix) Homo cyclic benzenoid aromatic compounds

Napthalene

(x) Homo cyclic Non-benzenoid aromatic compound

[18] annulene

Organic compounds.

Number of known organic compounds is much more than inorganic compounds but it has been possible to group them into classes or families based on their structural features. This has given organic chemistry a logical and systematic shape.

Alkanes [general formula C_nH_{2n+2} where $n = 1, 2, 3, \dots$

These are open—chain aliphatic saturated hydrocarbons which have no functional groups. These are also called **paraffins**.

 $n = 1 \Rightarrow CH_4$ — Methane $n = 3 \Rightarrow CH_3CH_2CH_3$ — Propane

 $n = 2 \Rightarrow C_2H_6$ -

EthaneButane

 $n = 5 \Rightarrow CH_3CH_2CH_2CH_3$ -

Pentane

 $n = 4 \Rightarrow CH_3CH_2CH_2CH_3$ $n = 10 \Rightarrow CH_3(CH_2)_8CH_3$

Decane

Alkenes [general formula C_nH_{2n} where $n = 2, 3, \dots$]

Alkenes are open chain unsaturated hydrocarbons and having carbon-carbon double bonds (C = C). These are also called **alkylenes or olefins**. The first three members are generally named by their common names.

Ex.
$$CH_2 = CH_2$$

$$CH_3 - CH = CH_2$$

$$CH_3 - CH_2 - CH = CH_2$$

$$\begin{array}{c} \mathsf{CH_3} \\ | \\ \mathsf{CH_3} - \mathsf{C} = \mathsf{CH_2} \end{array}$$

ethylene

propylene

butylene

Isobutylene

Alkynes [general formula C_nH_{2n-2} where $n = 2, 3, \dots$

Unsaturated aliphatic hydrocarbons containing a carbon–carbon triple bond are called alkynes.

The common names of a few simple alkynes are given below.

CH≡CH – Acetylene

CH₃-C≡CH - Methyl acetylene

CH₃-CH₂-C≡CH - Ethylacetylene

CH₃–C≡C–CH(CH₃)₂ – Methyl isopropyl acetylene

Some names of hydrocarbon groups

Alkyl, Alkenyl & Alkynyl groups (A)

Alkane
$$(C_nH_{2n+2}) \xrightarrow{-H} Alk + yl (C_nH_{2n+1})$$

Alkene $(C_nH_{2n}) \xrightarrow{-H} Alken + yl (C_nH_{2n-1})$

Alkyne (C_nH_{2n-2}) $\xrightarrow{-H}$ Alkyn + yl (C_nH_{2n-3})

 $\text{methane} \xrightarrow{-\text{ane}} \text{methyl} \left(\text{CH}_4 \xrightarrow{-\text{H}} -\text{CH}_3 \right)$

 $propane \xrightarrow{-ane} propyl \left(C_3H_8 \xrightarrow{-H} -C_3H_7\right)$

 $CH_2=CH_2 \xrightarrow{\text{remove H}} -CH=CH_2 \text{ (vinyl group)/ethenyl.}$

$$HC = CH \xrightarrow{-H} HC = C-$$
 (Ethynyl)

 $H_3C-C\equiv CH \xrightarrow{-H} H_3C-C\equiv C-$ (propynyl)

Iso alkyl group: A compound having $-\overset{l}{\mathsf{CH}} - \overset{\mathsf{CH}}{\mathsf{CH}}_3$ group is called iso alkyl group (B)

Ex.

Ex.

Iso propyl Iso butyl isopentyl

Iso pentane

Exception: Isooctane

(C) **Neo alkyl group:** Compound having

group is called neo alkyl group.

Neopentyl

Neohexvl

Neopentane

Neohexane

Trivial and Derived naming of organic compounds (D)

IUPAC NOMENCLATURE

No. of carbon atoms	Word root	-CHO (-aldehyde)	–COOH(–ic acid)	-CONH ₂ (-amide)	—COOR (-ate)
1	Form	HCHO	НСООН	HCONH₂	HCOOCH ₃
		Formaldehyde	Formic acid	Formamide	Methyl formate
2	Acet	CH₃CHO	CH₃COOH	CH₃CONH₂	CH₃COOCH₃
		Acetaldehyde	Acetic acid	Acetamide	Methyl acetate
3	Propion	CH₃CH2CHO	CH₃CH₂COOH	CH ₃ CH ₂ CONH ₂	CH₃CH₂COOCH₃
		Propionaldehyde	Propionic acid	Propionamide	Methyl propionate
4	Butyr	CH ₃ CH ₂ CH ₂ CHO	CH ₃ CH ₂ CH ₂ COOH	CH ₃ CH ₂ CH ₂ CONH ₂	CH ₃ CH ₂ CH ₂ COOH ₃
		n-Butyraldehyde	n–Butyric acid	n-Butyramide	Methyl n-butyrate
5	Valer	CH ₃ (CH ₂) ₃ CHO	CH ₃ (CH ₂) ₃ COOH	CH ₃ (CH ₂) ₃ CONH ₂	CH ₃ (CH ₂) ₃ COOCH ₃
		n-Valeraldehyde	n-Valeric acid	n-Valeramide	Methyl n-valerate
3C+1	Acryl	CH ₂ =CH–CHO	CH ₂ = CH–COOH	CH ₂ =CH–CONH ₂	CH ₂ =CHCOOCH ₃
Double		Acrylaldehyde	Acrylic acid	Acrylamide	Methyl acrylate
bond					
4C + 1	Croton	CH ₃ -CH=CH-CHO	CH ₃ CH ₂ =CH–COOH	CH ₃ CH ₂ =CH–CONH ₂	CH ₃ CH=CHCOOCH ₃
Double		Crotonaldehyde	Crotonic acid	Crotonamide	Methyl crotonate
bond					
(at 2 nd					
Carbon.					
atom)					

(a) Form group

Ex. HCOOH (formic acid), HCOCI (Formyl chloride), HCONH₂ (formamide), (Formic anhydride)
$$CH_3 - C -$$

Ex. CH₃COOH (Acetic acid), CH₃COCI (Acetyl chloride),
$$H = C = O = C = H$$
 (Acetic anhydride or Ac₂O) $CH_3 = CH = CH - C = CH$

(c) Croton group

Ex.. CH₃CH=CH-CHO (Crontonaldehyde), CH₃CH=CH-COOH (Crotonic acid). Ph - CH = CH - C -

(d) Cinammic group

Ex. PhCH=CH-CHO (Cinammicaldehyde), PhCH=CH-COOH (Cinammic acid).

Section (C): IUPAC-Nomenclature of Alkane

IUPAC system of nomenclature

The IUPAC name of any organic compound consists of maximum five parts in the following sequence.

Secondary prefix + Primary prefix + Word root + Primary suffix + Secondary suffix

(A) Word root (Alk):

IUPAC NOMENCLATURE

It denotes the number of carbon atoms present in the principal chain (the longest possible continuous chain of carbon atoms including the functional group of an organic compound).

No. of carbon atoms in parent chain	Word root (Alk)	No. of carbon atoms in parent chain	Word root (Alk)	No. of carbon atoms in parent chain	Word root (Alk)
1	Meth	9	Non	20	Icos
2	Eth	10	Dec	30	Triacont
3	Prop	11	Undec	40	Tetracont
4	But	12	Dodec	50	Pentacont
5	Pent	13	Tridec	60	Hexacont
6	Hex	14	Tetradec	70	Heptacont
7	Hept	15	Pentadec	80	Octacont
8	Oct	16	Hexadeca	100	Cent & Hect

(B) Primary Suffix.

A primary suffix is always added to the word root to indicate whether the carbon chain is saturated or unsaturated. The three basic primary suffixes are given below:

Type of carbon chain	Primary suffix	General name
(a) Saturated	– ane	Alkane
(b) Unsaturated with one double bond	– ene	Alkene
(c) Unsaturated with one triple bond	– yne	Alkyne

If the parent carbon chain contains two, three or more double or triple bonds, numerical prefix such as di (for two), tri (for three), tetra (for four) etc. are added to the primary suffix. For example,

Type of carbon chain	Primary suffix	General name
(a) Unsaturated with two double bonds	(a) + diene	Alkadiene
(b) Unsaturated with two triple bonds	(a) + diyne	Alkadiyne
(c) Both double and triple bonds	enyne	Alkenyne

(C) Secondary suffix:

A secondary suffix is then added to the primary suffix to indicate the nature of senior functional group present in the organic compounds. Secondary suffix of important functional groups are given below in their decreasing order of seniority.

Class	General IUPAC Name	Suffix	Prefix
1. Carboxylic acid (R–COOH)	Alkanoic Acid	oic acid (carboxylic acid)	carboxy
2. Sulphonic acid (R–SO ₃ H)	Alkane sulphonic Acid	sulphonic acid	sulpho
3. Anhydride (R–CO–O–CO–R)	Alkanoic Anhydride	oic anhydride (carboxylic anhydride)	

IUPAC NOMENCLATURE

4. Ester (R–COOR)	Alkyl alkanoate	- oate (carboxylate)	alkoxy carbonyl
5. Acid halide (R-COX)	Alkanoyl halide	-oyl halide (carbonyl halide)	halo carbonyl
6. Acid amide (R-CONH2)	Alkanamide	- amide (carboxamide)	carbamoyl
7. Cyanide (R–C≡N)	Alkanenitrile	- nitrile (carbonitrile)	cyano
8.Aldehyde (R-CH=O)	Alkanal	- al (carbaldehyde)	formyl / oxo
9. Ketone (R–CO–R)	Alkanone	– one	охо
10. Alcohol (R–OH)	Alkanol	– ol	hydroxy
11. Thiol (R-SH)	Alkanethiol	– thiol	mercapto
12. Amine (R-NH ₂ /R ₂ NH/R ₃ N) (1°/2°/3° Amines)	Alkanamine	– amine	amino

The following examples illustrate the use of word root, primary suffix and secondary suffix in naming of organic compounds.

Organic compounds	Word root	Primary suffix	Secondary suffix	IUPAC name
CH ₃ CH ₂ OH	Eth	an(e)	ol	Ethanol
CH ₃ CH ₂ CH ₂ NH ₂	Prop	an(e)	amine	Propanamine
CH ₃ CH ₂ CH ₂ COOH	But	an(e)	oic acid	Butanoic acid
CH ₃ CH ₂ CN	Prop	an(e)	nitrile	Propanenitrile
CH ₂ =CHCHO	Prop	en(e)	al	Propenal
HC≡CCOOH	Prop	yn(e	oic acid	Propynoic acid

(D) Primary prefix :

A primary prefix is used simply to distinguish between cyclic compounds from acyclic compounds. For example, in case of carbocyclic compounds, (cyclic compounds containing only carbon atoms in the ring), a primary prefix, **cyclo** is used immediately before the word root. Thus.

$$CH_2$$
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 $CYCIO$
 CH_3
 CH_3

If the prefix cyclo is not used, it simply indicates that the compound is acyclic or open chain.

(E) Secondary prefix:

In IUPAC system of nomenclature, certain groups are treated as substituents. These are called secondary prefixes and are added immediately before the word root (or the primary prefix in case of carbocyclic compounds) in alphabetical order to denote the side chains or substituent groups. The secondary prefixes for some groups which are always treated as substituent groups (regardless of the fact whether the organic compound is monofunctional or polyfunctional) are given below:

Substituent group	Secondary prefix	Substituent group	Secondary prefix
-------------------	------------------	-------------------	------------------

Ex.

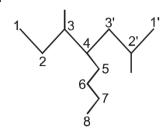
IUPAC NOMENCLATURE

- F	Fluoro	– OCH ₃ (– OMe)	Methoxy
– CI	Chloro	- OC ₂ H ₅ (-OEt)	Ethoxy
– Br	Bromo	– R	Alkyl
- I	Iodo	– CH ₃ (– Me)	Methyl
- NO ₂	Nitro	- C ₂ H ₅ (- Et)	Ethyl
– NO	Nitroso	- CH ₂ CH ₂ CH ₃ (n-Pr)	n-Propyl
	Diazo	– CH(CH₃)₂ (– iPr)	Isopropyl
– OR	Alkoxy	– C(CH ₃) ₃ (t-Bu)	t-Butyl

IUPAC nomenclature of branched / complex alkanes

(a) Select the longest continous carbon chain in the molecule.

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_2} \\ \mathsf{CH_3} - \overset{\circ}{\mathsf{C}} - \overset{\circ}{\mathsf{C}} \mathsf{H_2} - \overset{\circ}{\mathsf{C}} \mathsf{H_2} - \overset{\circ}{\mathsf{C}} \mathsf{H_3} \\ \overset{\circ}{\mathsf{C}} \mathsf{H_2} - \overset{\circ}{\mathsf{C}} \mathsf{H_2} - \overset{\circ}{\mathsf{C}} \mathsf{H_3} \end{array}$$

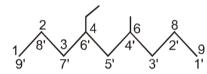

Longest chain has 7 carbon atoms so word root is "Hept"

(b) When chains of equal lengths are competing for selection then that chain is selected which has more number of substituents/branches.

CH₂ – CH₂ – CH₃ longest chain has 7 carbon atoms & 3 substituents

IUPAC NOMENCLATURE

- (c) When the number of substituents are same then the substitutents at the nearest position from the either end is prefer for parent chain selection.
- Ex. Here, 2 choices for longest chain


Chain (A): 1-2-3-4-5-6-7-8 Chain (B): 1'-2'-3'-4-5-6-7-8

Chain- (A) & Chain- (B) both have 2 substituents but in chain-B substituent is nearer (at 2nd position) than in chain-A (at 3rd position). So, chain-B will be preferred.

(d) If the two substituents are found in equivalent positions the lower number is given to the one coming first in the alphabetical order.

Ex. Here, 2 choices for longest chain

Chain (A): 1-2-3-4-5-6-7-8-9

Chain (B): 1'-2'-3'-4'-5'-6'-7'-8'-9'

In both chain-A & chain-B, substituents are at same position (4th). In chain-A substituent is ethyl & in chain-B, it is methyl. Alphabetically ethyl will be preferred. So, chain-A is selected.

Numbering of the parent carbon chain:

The numbering is done in such a way that the branched carbon atoms get the lowest possible number:

Note: (i) Write the substituents in place of secondary prefix with their appropriate locations in alphabetical order.

- If the same substituent occurs more than once in the molecule, the prefix di (for two), tri (for three), etc. are used to indicate how many times it appears.
- (iii) Prefixes di, tri, tetra etc. are not considered in deciding alphabetical order, for simple substituents but consider for the complex substituents.
- (iv) Iso & Neo is consider for alphabetical seniority order.
- (v) numbers are separated each other by commas(,).
- (vi) numbers are separated from words by hyphens and there is no break between name of substituents and word root.

$$CH_3$$

$$CH_3 - H_2C - \mathring{C}H - \mathring{C}H - \mathring{C}H_3$$

$$C\mathring{H} - \mathring{C}H_2 - \mathring{C}H_2 - \mathring{C}H_3$$

$$CH_2 - CH_2 - CH_3$$

$$(3-Ethyl-2-methyl-4-propylheptane)$$

Ex. (i)

IUPAC NOMENCLATURE

(ii) CH₃ CH₂ CH₂ CH₃ CH₂ CH₃ CH₂ CH₂ CH₃ CH₂ CH₃ CH₂ CH₃ CH₂ CH₃ CH₂ CH₃ CH₂ CH₃ (3-Ethyl-2,3-dimethyl-4-propylheptane)
$$H_3^1C - H_3^2C - H_3^2$$

Section (D): IUPAC-Nomenclature of Alkene, Alkyne & Alkenyne

Alkenes:

Ex.

Ex.

Ex.

Functional group : -C = C - C

(1) Select the longest carbon chain containing carbon–carbon double bond. This need not be the longest chain in the compound as a whole. Parent name will be alkene corresponding to number of carbon atoms in the longest chain.

$$CH_3CH_2CH_2 + C - CH = CH_2$$

$$CH_2 + CH_2$$

$$CH_2 + CH_2$$

$$CH_3 + CH_3$$

$$CH_3 + CH_3$$

Longest chain has 6 atoms ⇒ parent name = hexene

(2) Carbon atoms in the longest chain is numbered from that end in such a way that doubly bonded carbon atom gets the lowest number. The position of double bond is indicated by the smaller of the numbers assigned to two carbon atoms of double bond.

$$CH_{3}CH_{2}CH_{2} - CH_{2} - CH_{2} - CH_{2}$$

$$4CH_{2}$$

$$5CH_{2}$$

$$6CH_{3}$$

The above example can be numbered as,

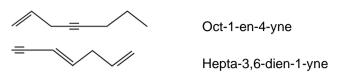
Position of double bond will be indicated as no. 1, Hence

Hence name will be 3-Methyl-3-propylhex-1-

Alkynes

Parent chain selection and numbering of longest chain is exactly same as that for alkenes.

CH₃C=C-CH₃
$$\overset{\circ}{C}$$
H₃ - $\overset{\circ}{C}$ - $\overset{\circ}{C}$ H₂ - $\overset{\circ}{C}$ = $\overset{\circ}{C}$ H But-2-yne $\overset{\circ}{C}$ H₃ 4, 4-Dimethylpent-1-yne


Alkenyne (containing both double and triple bonds)

Numbering is done in a manner that double and triple bonds get the lowest possible number. If double bond and triple bond both have same number then double bond is prefer over triple bond.

Ex.
$$HC \equiv C - CH_2 - CH = CH_2$$

IUPAC NOMENCLATURE

1 2 3 4 5 (numbering is done from alkyne) (wrong)
5 4 3 2 1 (numbering is done from alkene) (Correct)



Section (E): IUPAC-Nomenclature of Cyclic Compounds

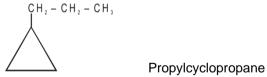
(1) The name of alicyclic compound is prefixing by "cyclo".

(2) The numbering of the carbon atoms in the ring is done in such a way that the substituent which comes first in the alphabetical order is allotted the lowest possible number and it does not violate the lowest set of locants rule.

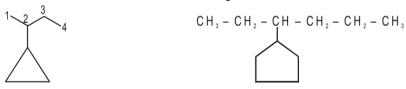
1-Ethyl-3-methylcyclohexane

Ex.

Ex.


Ex.

3-Ethyl-1,1-dimethylcyclohexane


2-Ethyl-1,4-dimethylcyclohexane

2-Bromo-1-chloro-3-iodocyclohexane

(3) When the ring contains more or equal number of carbon atoms than the alkyl group attached to it, then it is named as a derivative of cycloalkane and the alkyl group is treated as substituent

(4) If the alkyl chain contains greater number of carbon atoms than the ring, then the compound is considered as the derivative of alkane and the ring is treated as substituent.

2-Cyclopropylbutane 3-Cyclopentylhexane

(5) If ring has unsaturation and side chain is saturated then ring is selected as parent chain.
If side chain has unsaturation and ring is saturated then side chain is selected as parent chain.
If both have unsaturation then the chain with maximum unsaturation is selected as parent chain.
If both have equal unsaturation then longest chain is selected as parent chain.
If unsaturation and number of carbon atoms both are equal then ring is selected as parent chain.

IUPAC NOMENCLATURE

Note: If a multiple bond and some other substitutents are present in the ring, the numbering is done in such a way that the multiple bond gets the lowest number

1-Ethylcyclohex-1-ene

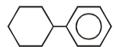
6-Ethyl-3, 3 -dimethylcyclohex-1-ene

Ex.

Ex.

Ex.

Ex.


Cyclohexyl ethene

3-Nitrocyclohex-1-ene

(6) If more than one alicyclic ring is attached to a single chain then the compound is named as a derivative of alkane and the rings are treated as substituent groups.

Dicyclopropylmethane

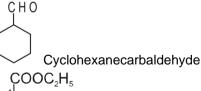
(7) If a compound contains an alicyclic ring directly linked to the benzene ring then it is named as a derivative of benzene.

Cyclohexylbenzene

(8) If the functional group is present in the molecule then that chain is consider as parent chain in which senior most functional group is present.

3 3

2-Propylcyclohexan-1-ol


1-Cyclohexylpropan-2-ol

2-Propyl cyclopropan-1-ol

(9) When chain terminating functional group is directly attached with ring then ring is taken as parent chain & special suffix is used for the following functional groups.

Functional group	Special Suffix	Functional group	Special Suffix
СНО	Carbaldehyde	COOR	Alkyl carboxylate
СООН	Carboxylic acid	CONH ₂	Carboxamide
COX	Carbonyl halide	CN	Carbonitrile

Cyclohexanecarbonitrile

1 2 0

Ethyl 2-oxocyclohexane-1-carboxylate

IUPAC NOMENCLATURE

Section (F): IUPAC - nomenclature of functional groups (-SO₃H, -OH, -NH₂, -SH, C=O) Rules for non chain terminating functional groups:

Parent chain: Select the longest carbon chain with maximum number of principal functional groups and (1) maximum unsaturation without caring whether it is longest chain or not.

Ex.

2-Ethylbutan-1-ol (Parent chain contains four rather than five carbon atoms)

Numbering: Numbering is done from that end of the chain in which lowest position alloted to the principal (2) functional group followed by double and triple bonds.

Ex.

5-Methyl hexan-3-one

(3) If a compound contains two or more like groups, the numerical prefixes di, tri, tetra etc. are used.

Ex.

Section (G & H): IUPAC-nomenclature of chain terminating functional groups (-COOH, -COOR, -COX, -CONH₂, -CN, -CHO, -CO-O-CO-)

Rules for chain terminating functional groups

When a chain terminating principal functional group such as - CHO, - COOH, - COOR, - CONH₂, -(1) COCI, $-C \equiv N$ etc. is present, it is always allotted number 1 (one.)

$${}^{4}_{CH_{3}} - {}^{3}_{CH_{2}} - {}^{2}_{CH} - {}^{CH}_{3}$$

$$\begin{array}{c}
C H_3 - C \equiv C - C H_2 - C - H_3 \\
5 & 4 & 3 & 2 & 1
\end{array}$$

Ex.

2-Methylbutan-1-oic acid

The longest chain containing functional group is of 7 carbon atoms. Therefore, the word root is hept & the chain is numbered as shown.

There is no multiple bond in it. Hence, the primary suffix is ane.

The functional groups is -CN. Hence, secondary suffix is nitrile

Moreover, there is a methyl group on carbon 5 and ethyl group on carbon 3.

The IUPAC name is 3-Ethyl-5-methylheptanenitrile

(2)The substituent name for benzene is phenyl. In case the phenyl ring is further substituted, the separate numbering is used for the ring in such a way that the substituent gets the least possible number.

IUPAC NOMENCLATURE

Ex. 1,1,1-Trichloro-2,2-diphenylethane

2-Methyl-2-(3-nitrophenyl) propanoic acid

(3) If the organic molecule contains more than one similar complex substitutents, then the numeral prefixes such as di, tri, tetra etc. are replaced by bis, tris, tetrakis etc. respectively.

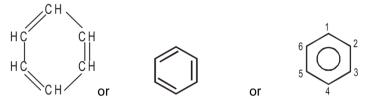
$$HO - CH_2 - CH_2 - O$$
 $CH - COOH$
 $HO - CH_2 - CH_2 - O$

Ex. 2, 2-Bis (2-hydroxyethoxy) ethanoic acid

Note: Bis, Tris, tetrakis are not consider for alphabetical seniority order.

Rules for IUPAC nomenclature of polyfunctional compounds :

- (1) When an organic compound contains two or more different functional groups then senior functional group is selected as the principal functional group while other functional groups are treated as substituents.
- (2) Some functional group such as halo groups (fluoro, bromo, chloro, iodo), nitroso (NO) nitro (– NO₂) and alkoxy (–OR) are always treated as substituent groups.


(3) If more than one same chain terminating group are present then the parent chain is selected including all principal functional groups (if possible) and numbring is done from that end which gives lowest locant to unsaturation and substituents.

Parent chain contains five rather than six carbon atoms.

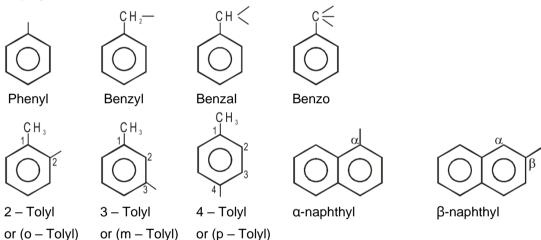
Section (I): IUPAC-Nomenclature of Aromatic compounds

IUPAC NOMENCLATURE

The aromatic compounds are cyclic compounds which contain one or more benzene rings. Benzene is the simplest hydrocarbon of aromatic series which has planar cyclic ring of six carbon atoms having three double bonds in alternate positions as shown below.

(i) Nuclear substituted:

If the functional group is directly attached to the benzene ring then in the IUPAC system they are named as derivatives of benzene. The position of the substituents in disubstituted benzenes are indicated either by prefixes such as o-(ortho) for 1, 2, m-(meta) for 1, 3 and p-(para) for 1, 4 position.


However, many of their common names have also been adopted by the IUPAC system.

(ii) Side chain substituted:

If the functional group is present in the side chain of the benzene ring then in the IUPAC system, these are usually named as phenyl derivatives of the corresponding aliphatic compounds.

The IUPAC and common names of a few important members of each family are given below.

Aryl groups:

Other aromatic examples

S.No. Compounds Common Name IUPAC Name

Aromatic Hydrocarbons :

1. Toluene Methylbenzene or Toluene

IUPAC NOMENCLATURE

1, 3, 5 – Trimethyl

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 \\ \hline \\ CH_3 & CH_3 \\ \hline \end{array}$$

2. Xylene (o,m,p) (o,m,p) Dimethylbenzene

benzene 3. Mesitylene

4. Cumene Isopropylbenzene

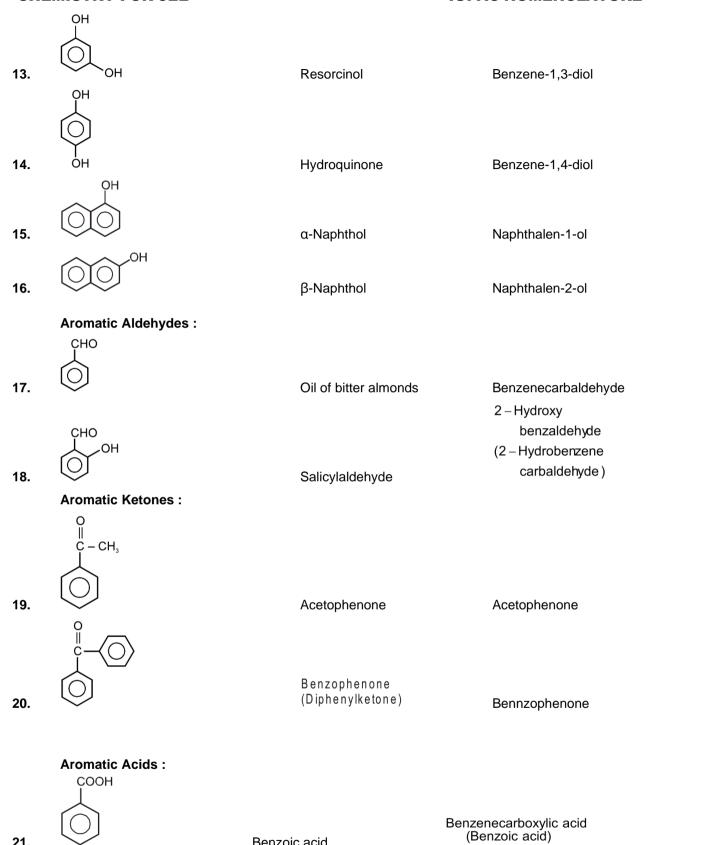
Ethenylbenzene 5. Styrene

7. Anthracene Anthracene

9. Pyrene Pyrene

10.

Aromatic Alcohols:


Carbolic acid Phenol

11. (o, m, p) cresol Methylphenol

12. Catechol Benzene-1,2-diol

8.

IUPAC NOMENCLATURE

Benzoic acid

o-toluic acid

2-Methylbenzene carboxylic acid

СООН

21.

IUPAC NOMENCLATURE

CH = CH - COOH

Cinnamic acid

3-Phenylprop-2-enoic acid

OCOCH₃

23.

24.

25.

26.

27.

.СООН

Aspirin

2-Ethanoyloxybenzene carboxylic acid

(Acetyl salicylic acid)

СООН

СООН

Phthalic acid

Benzene 1,2-dicarboxylic acid

СООН

соон

СООН

Terephthalic acid

Benzene 1,4-dicarboxylic acid

HO.

Salicylic acid

2-Hydroxybenzene carboxylic acid

Aromatic Ether:

OCH₃

Anisole

Methoxybenzene

28.

29.

OC₂H₅

Phenetol

Ethoxybenzene

Aromatic Nitro Compounds:

NO₂

Oil of mirbane

Nitrobenzene

31.

32.

30.

NO₂ ОН NO₂ ΝO₂

1,3 - Dinitrobenzene (m – Dinitrobenzene)

Picric acid 2,4,6 -Trinitrophenol

IUPAC NOMENCLATURE

$$O_2N$$
 NO_2
 NO_2

33.

2,4,6 - Trinitrotoluene(TNT) an explosive

Aromatic Amines:

34.

35.

36.

NH₂

37.

$$\mathsf{JH}_2$$

(o, m, p) Toluidine

Aniline

Methylaniline

Aniline (Benzenamine)

o-Phenylenediamine Benzene-1,2-diamine

N,N-Dimethylaniline N,N-Dimethylbenzenamine

Aromatic Alkyl Amines:

38.

Benzylamine

Phenylmethanamine

Aromatic Amides:

39.

40.

$$\begin{array}{c} \textbf{Aromatic Anhydrides:} \\ \textbf{C}_6\textbf{H}_5 - \textbf{C} - \textbf{O} - \textbf{C} - \textbf{C}_6\textbf{H}_5 \\ || & || \end{array}$$

Benzamide

Benzenecarboxamide

Acetanilide

Benzoic anhydride

N-Phenylethanamide

Benzenecarboxylic anhydride

 $C_6H_5 - C - O - C - C_6H_5$

0 0 41.

IUPAC NOMENCLATURE

Oil of winter green (Methyl salicylate)

Methyl 2 – hydroxy benzenecalboxylate

Arenediazonium Salts:

43.
$$N = NHSO_4^{\ominus}$$
 $N = NHSO_4^{\ominus}$
 $N = NCI^{\ominus}$

Benzene diazonium hydrogen sulphate

Benzene diazonium chloride

 $N = N = N$

Diazobenzene

Common and IUPAC Names of Some Organic Compounds

S.No.	Compund	Common Names	IUPAC Name
1.	$CH_2 - Br$ $CH_2 - Br$ $CH_2 - Br$ $CH_3 - CH - Br$	Ethylene dibromide	1,2-Dibromoethane
2.	Br	Ethylidene bromide	1,1-Dibromoethane
3.	$CH \equiv C - CH_2 - OH$	Propargyl alcohol	Prop-2-yn-1-ol
4.	CH ₃ - CH - CH ₂ OH OH	Propylene glycol	Propane-1, 2-diol
5.	HO – CH ₂ – CH ₂ – CH ₂ – OH	Trimethylene glycol	Propane-1,3-diol
6. 7.	CH ₂ - CH - CH ₂ 	Glycerol or Glycerine Formaldehyde	Propane-1,2,3-triol Methanal
8.	CH₃ – CHO	Acetaldehyde	Ethanal
9.	CH ₃ CH ₂ CH ₂ – CHO	n-Butyraldehyde	Butanal
10.	CH ₃ CH – CHO	Isobutyraldehyde	2-Methylpropanal
S.No.	Compound	Common Name	IUPAC Name
11.	$CH_2 = CH - CHO$	Acrolein	Propenal

IUPAC NOMENCLATURE

_		•	
12.	CH₃CH = CH – CHO	Crotonaldehyde	But-2-enal
13.	$CH_3 - CO - CH_3$	Dimethyl ketone or Acetone	Propanone
14.	CH ₃ – CO – CH ₂ CH ₃	Ethyl methyl ketone	Butanone
15.	CH ₃ – CO – CH ₂ CH ₂ CH	I₃ Methyl n-propyl ketone	Pentan-2-one
16.	CH ₃ CH ₂ – CO – CH ₂ CH	13 Diethyl ketone	Pentan-3-one
17.	$CH_3CO - CH = CH_2$	Methylvinyl ketone	But-3-en-2-one
18.	H – COOH	Formic acid	Methanoic acid
19.	CH₃ – COOH	Acetic acid	Ethanoic acid
20.	CH ₃ CH ₂ CH ₂ – COOH	n-Butyric acid	Butanoic acid
21.	CH ₃ CH ₂ CH ₂ CH ₂ COOH	n-Valeric acid	Pentanoic acid
	CH - COOH		
22.	CH ₃ CH = COOH	Iso-butyric acid	2-Methylpropanoic acid
23.	$CH_2 = CH - COOH$	Acrylic acid	Propenoic acid
	соон		
24.	СООН	Oxalic acid	Ethanedioic acid
25.	H ₂ C COOH	Malonic acid	Propanedioic acid
	H ₂ C - COOH		
26.	H ₂ C - COOH	succinic acid	Butanedioic acid
27.	H_2C $CH_2 - COOH$ $CH_2 - COOH$	Glutaric acid	Pentanedioic acid
	H H ₃ C – C – COOH 		
28.	ÓН	Lactic acid	2-Hydroxypropanoic acid
29.	O H ₃ C – C – COOH	Pyruvic acid	2-Oxopropanoic acid
30.	HOCHCOOH HOCHCOOH	Tartaric acid	2,3–Dihydroxybutane dioic acid

Common Name IUPAC Name

S.No. Compound

IUPAC NOMENCLATURE

CIILI	MISIKI FOR JEE				IOPAC NOMENCLATORE
	H₂C – COOH OH C			2_H _V	droxypropane-1-2,3-tricarboxylic
31.	COOH CH ₂ = COOH	Citric acid	I	acid	uroxypropane-1-2,5-tricarboxylic
	HO-CH-COOH				
32.	СН₂СООН	Malic acid	I	2-Hydr	oxy-butanedioic acid
	н соон				
	ll C				
33.	H COOH	Maleic aci	id	cis-But	-2-enedioic acid
	НССООН				
24	HOOC	Fumorio o	aid		trana Dut 2 anadiaia asid
34. 35.	$CH_3 - N^+ \equiv C^-$		Fumaric acid		trans-But-2-enedioic acid Methane isocyanide
33.	0113 - 14 - 0		[Methyl isocyanide or Methyl carbyl amine]		Methane isocyanide
36.	$H_3C - CH = CH - COC$	OH C	rotonic acid		But-2-enoic acid
37.	H – COOCH ₃	М	lethyl formate		Methyl methanoate
38.	$H-COOC_2H_5$	Et	thyl formate		Ethyl methanoate
39.	$CH_3 - COOC_2H_5$	Et	thyl acetate		Ethyl ethanoate
40.	H – COCI (unstable)	Fo	ormyl chloride		Methanoyl chloride
41.	CH ₃ – COCI	A	cetyl chloride		Ethanoyl chloride
42.	(CH ₃ CO) ₂ O	A	cetic anhydride)	Ethanoic anhydride
43.	(CH ₃ CH ₂ CO) ₂ O	Pı	ropionic anhyd	ride	Propanoic anhydride
44.	H – CONH ₂	Fo	ormamide		Methanamide
45.	$CH_3 - CONH_2$	Ad	cetamide		Ethanamide
46.	$CH_3 - CH_2 - CONH_2$	Pı	ropionamide		Propanamide
47.	$CH_3 - O - N = O$	М	lethyl nitrite		Methyl nitrite
48.	$CH_3CH_2 - O - N = O$	Et	thyl nitrite		Ethyl nitrite
49.	$H_2N - SO_3H$	Sı	ulphamic acid		Aminosulphonic acid
50.	CH₃ – CN		lethyl cyanide o	or	Ethanenitrile
	$O = H_2C - CH_2$ $O = H_1C - H_1C$				
51.	$H_2C - H_2C$	D	ioxane		-1, 4-Dioxacyclohexane
S.No.	Compound	Common Name			IUPAC Name

IUPAC NOMENCLATURE

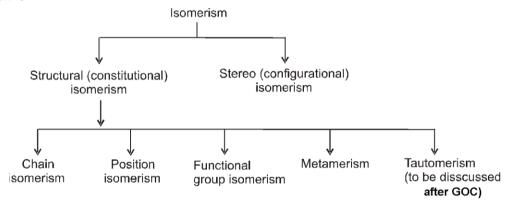
Trioxane 1,3,5-Trioxacyclohexane

(Gammexane or Lindane or 666)

BHC Hexachlorocyclohexane

[Benzene hexachloride]

53.


Barbituric acid

55. HO OH

Ascorbic acid

Structural Isomerism

Classification.

Section (J & K): Structural Isomerism

When two or more organic compounds have same molecular formula but different structural formula, (i.e., they differ in connectivity of atoms) then they are called **structural isomers** and the phenomenon is called structural isomerism

Note: Structural isomers have always different IUPAC name

$$CH_3 - CH = CH - CH_3$$

 $But - 2 - ene$

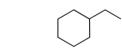
$$CH_3CH_2CH = CH_2$$
But -1 ene

Ex-1.

Ex-2.

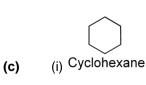
IUPAC NOMENCLATURE

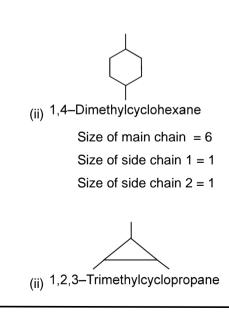
Isomers	Characteristics	Conditions		
(1) Chain Isomers	They have different size of	They should have same nature of		
	main chain or side chain	locants		
(2) Positional Isomers They have different position of T		They should have same size of main chain, side		
	locants/multiple bond/functional	chain, nature of locants, multiple bonds and		
	group	functional groups		
(3) Functional Isomers	Different nature of functional	Chain and positional isomerism is not		
	group	considered		
(4) Metamerism Different nature of alkyl group		They should have same nature of functional		
	along a polyvalent functional group	groups.		
		Chain & positional isomerism ignored		
(5) Tautomerism	Different position of hydrogen	The two functional isomers		
	atoms	remains in dynamic equilibrium		
		to each other		


Ex-3. Relationship between the given compounds-

(a) (i) $CH_3 - CH_2 - CH_3$ (ii) $CH_3 - CH - CH_3$ Butane 2-Methylpropane

Size of main chain = 4 Size of main chain = 3


Size of side chain = 0 Size of side chain = 1


Structure (i) & (ii) are chain isomers.

(b) (i) 1-Ethylcyclohexane
Size of main chain = 6
Size of side chain = 2

Structure (i) & (ii) are chain isomers.

IUPAC NOMENCLATURE

Size of main chain = 6

Size of side chain = 0

Size of main chain = 3

Size of side chain 1 = 1

Size of side chain 2 = 1

Size of side chain 3 = 1

Structure (i) & (ii) are chain isomers.

$$H_3C-CH_2-CH=CH_2 \quad \text{(but-1-ene)} \\ H_3C-CH=CH-CH_3 \quad \text{(but-2-ene)} \\ \end{bmatrix} position isomers$$

Ethanol

Functional groups - OH

Structure (i) & (ii) are functional isomers.

(g) (i) Ethanoic acid

Functional groups - COOH

Structure (i) & (ii) are functional isomers.

(h) (i)
$$C_2H_5 - O - C_2H_5$$

Diethyl ether

 $Hydrocarbon\ groups-C_2H_5\ ,-C_2H_5$

Structure (i) & (ii) are metamers.

(ii) Methyl methanoate

(ii)
$$C_3H_7 - O - CH_3$$

Methyl propyl ether

Hydrocarbon groups - C₃H₇, - CH₃

Structure (i) & (ii) are tautomers.