
 

• Imagination is more important than knowledge 

•  Everything should be made as simple as possible, but not simpler. 

           Albert Einstein 

RIGID BODY DYNAMICS 

 

1. RIGID BODY :  
 Rigid  body is defined as a system of particles in which distance between each pair of particles remains 

constant (with respect to time). Remember, rigid body is a mathematical concept and any system which 

satisfies the above condition is said to be rigid as long as it satisfies it.  

 

 ☞     

 

       
 

 ☞ A & B are beads which move on a circular fixed ring  

      
● If a system is rigid, since there is no change in the distance between any pair of particles of the 

system, shape and size of system remains constant. Hence we intuitively feel that while a stone 

or cricket ball are rigid bodies, a balloon or elastic string is non rigid.  

But any of the above system is rigid as long as relative distance does not change, whether it is a 

cricket ball or a balloon. But at the moment when the bat hits the cricket ball or if the balloon is 

squeezed, relative distance changes and now the system behaves like a non-rigid system. 

    

● For every pair of particles in a rigid body, there is no velocity of seperation or approach between 

the particles. i.e. any relative motion of a point B on a rigid body with respect to another point A 

on the rigid body will be perpendicular to line joining A to B, hence with respect to any particle  A 

of a rigid body the motion of any other particle B of that rigid body is circular motion. 

 

 

 

 

  

 



 

Let velocities of A and B with respect ground be  and  respectively in the figure below. 

        
 If the above body is rigid  VA cos θ1 = VB cos θ2 (velocity of approach / seperation is zero) 

 VBA = relative velocity of B with respect to A.  

 VBA = VA sin θ1 + VB sin θ2 (which is perpendicular to line AB) 

 B will appear to move in a circle to an observer fixed at A. 
 

☞ W.r.t. any point of the rigid body the angular velocity of all other points of the rigid body is same. 
 

☞ Suppose A, B, C is a rigid system hence during any motion sides AB, BC and CA must rotate through 

the same angle. Hence all the sides rotate by the same rate. 

       
 From figure (i) angular velocity of A and B w.r.t. C is ω,  

 From figure (ii) angular velocity of A and C w.r.t. B is ω,  

     
 

       I.   Pure Translational Motion :  
 A body is said to be in pure translational motion, if the displacement of each particle of the system is 

same during any time interval. During such a motion, all the particles have same displacement , 

velocity  and acceleration  at an instant.  

 Consider a system of n particle of mass m1, m2, m3, ...... mn undergoing pure translation. 

 then from above definition of translational motion  

 

   =  (say) 

 and  =  (say) 

 

 

 From newton's laws for a system. 



 

   =  +  +  + ...................... 

   = M  

 Where  M = Total mass of the body  

   =  +  +  + ...................... 

   =  

 Total Kinetic Energy of body =  m1v1
2  +  m2v2

2 + .................   =  Mv2  
 

    II. Pure Rotational Motion :  

 
 Figure shows a rigid body of arbitrary shape in rotation about a fixed axis, called the axis of rotation. 

Every point of the body moves in a circle whose center lies on the axis of rotaion, and every point moves 

through the same angle during a particular time interval. Such a motion is called pure rotation. 

 We know that each particle has same angular velocity (since the body is rigid.)  

 so, v1 = ωr1, v2 = ωr2, v3 = ωr3 ...... vn = ωrn 

 Total Kinetic Energy  =  m1v1
2 +  m2v2

2 + .......................... 

   = [m1r1
2 + m2r2

2 + ..........................] ω2  

   = Ιω2 Where Ι = m1r1
2 + m2r2

2 + ............. (is called moment of inertia) 

   ω = angular speed of body.  
 

    III. Combined Translational and Rotational Motion :  
 A body is said to be in combined translation and rotational motion if all point in the body rotates about an 

axis of rotation and the axis of rotation moves with respect to the ground. Any general motion of a rigid 

body can be viewed as a combined translational and rotational motion. 
 

   IV. COMPARISION OF LINEAR MOTION AND ROTATIONAL MOTION  

 Linear Motion      Rotational Motion 

 (i) If acceleration is 0, v = constant and s = vt  (i) If acceleration is 0, ω = constant and θ = ωt 

 (ii) If acceleration a = constant,    (ii) If acceleration α = constant then  

 

 

 (i)      (i)  



 

 (ii)      (ii)  

 (iii) v = u + at      (iii) ω2 = ω1 + αt 

 (iv) s = ut + (1/2) at2     (iv) θ = ω1t + 1/2 αt2 

 (v) v2 = u2 + 2as     (v) ω2
2 = ω1

2 + 2 α θ  

 (vi) Snth = u + a(2n – 1)/2    (vi) θnth = ω1 + (2n – 1)α/2 

 (iii) If acceleration is not constant, the above   (iii) If acceleration is not constant, the above  

 equation will not be applicable. In this case  equation will not be applicable. In this case 

  (i)      (i)  

       (ii)     (ii)  

  (iii) vdv = ads     (iii) ωdω = αdθ 

 
 

Example 1. A bucket is being lowered down into a well through a rope passing over a fixed pulley of radius 

10 cm. Assume that the rope does not slip on the pulley. Find the angular velocity and angular 

acceleration of the pulley at an instant when the bucket is going down at a speed of 20 cm/s and 

has an acceleration of 4.0 m/s2.        

Solution : Since the rope does not slip on the pulley, the linear speed v of the rim of the pulley is same as 
the speed of the bucket. 

 The angular velocity of the pulley is then  ω = v/r =  = 2 rad/s 

 and the angular acceleration of the pulley is α = a/r =  = 40 rad/s2. 
 

Example 2. A wheel rotates with a constant angular acceleration of 2.0 rad/s2. If the wheel starts from rest, 
how many revolutions will it make in the first 10 seconds?  

Solution : The angular displacement in the first 10 seconds is given by  

  θ = ω0t + αt2  = (2.0 rad/s2) (10 s)2 = 100 rad. 

 As the wheel turns by 2π radian in each revolution, the number of revolutions in 10 s in 

  n =  = 16 
Example 3. The wheel of a motor, accelerated uniformly from rest, rotates through 2.5 radian during the first 

second. Find the angle rotated during the next second.   
Solution : As the angular acceleration is constant, we have  

  θ = ω0t +  α t2  = αt2. 

  Thus,  2.5 rad =  α (1s)2 

  α = 5 rad/s2 or α = 5 rad/s2 

 The angle rotated during the first two seconds is =  × (5 rad/s2) (2s)2 = 10 rad. 
 Thus, the angle rotated during the 2nd second is 10 rad – 2.5 rad = 7.5 rad. 

Example 4. Starting from rest, a fan takes five seconds to attain the maximum speed of  
400 rpm (revolution per minute). Assuming constant acceleration, find the time taken by the fan 
in attaining half the maximum speed. 

Solution : Let the angular acceleration be α. According to the question, 
  400 rev/min = 0 + α 5    ...........(i) 



 

 Let t be the time taken in attaining the speed  of 200 rev/min which is half the maximum. 
  Then,  200 rev/min = 0 + αt  ...........(ii) 
  Dividing (i) by (ii), we get, 
  2 = 5 t  or t = 2.5 s. 
 

Example 5. The motor of an engine is rotating about its axis with an angular velocity of 100 rev/minute. It 
comes to rest in 15 s, after being switched off. Assuming constant angular deceleration, calculate 
the number of revolutions made by it before coming to rest.  

Solution : The initial angular velocity = 100 rev/minute = (10π/3) rad/s. 
 Final angular velocity = 0. 
 Time invertial = 15 s. 
 Let the angular acceleration be α. Using the equation ω = ω0 + at, we obtain  
 α = ( – 2π/9) rad/s2 
 The angle rotated by the motor during this motion is  

 θ = ω0t + αt2  = (15s) – (15s)2 = 25π rad = 12.5 revolutions.  
 Hence the motor rotates through 12.5 revolutions before coming to rest. 

 
2. MOMENT OF INERTIA (I) ABOUT AN AXIS :  

 (i) Moment of ineria of a system of n particles about an axis is defined as : 
 Ι = m1 r1

2 + m2 r2
2 + ..................+ mn rn

2                   

 i.e.  Ι =         
 where, ri = It is perpendicular distance of mass mi from axis of rotation SΙ units of Moment of Ιnertia is 

Kgm2. Moment of inertia is a scaler positive quantity.  

      

 (ii) For a continuous system :  

   Ι =   
   where  dm = mass of a small element  
   r = perpendicular distance of the mass element dm from the axis 
 

 Moment of Inertia depends on :  
 (i)  density of the material of body  
 (ii)  shape & size of body  

 (iii)  axis of rotation  

 In totallity we can say that it depends upon distribution of mass relative to axis of rotation. 

 

 

Note : ● Moment of inertia does not change if the mass : 

 (i) is shited parallel to the axis of the rotation because ri does not change. 

  (ii) is rotated about axis of rotation in a circular path because ri does not change. 
 

 



 

Example 6. Two particles having masses m1 & m2 are situated in a plane perpendicular to line AB at a 

distance of r1 and r2 respectively as shown.             

                
   (i) Find the moment of inertia of the system about axis AB ? 

   (ii) Find the moment of inertia of the system about an axis passing through m1 and perpendicular 

to the line joining m1 and m2 ? 

   (iii) Find the the moment of inertia of the system about an axis passing through m1 and m2 ?   

   (iv)  Find moment of inertia about axis passing through centre of mass and perpendicular to line 

joining m1 and m2  

Solution : (i) Moment of inertia of particle on left is Ι1 = m1r1
2.  

Moment of Inertia of particle on right is Ι2 = m2r2
2.  

  Moment of Inertia of the system about AB is  Ι = Ι1+ Ι2  = m1r2
2  + m2r2

2 

 (ii) Moment of inertia of particle on left is Ι1 = 0 

  Moment of Inertia of particle on right is Ι2 = m2(r1 + r2)2.  

Moment of Inertia of the system about AB is  Ι = Ι1+ Ι2  = 0  + m2(r1 + r2)2 

 

 (iii) Moment of inertia of particle on left is Ι1 = 0 

Moment of Inertia of particle on right is Ι2 = 0  

       Moment of Inertia of the system about AB is  Ι = Ι1+ Ι2  = 0  + 0 

 (iv) Centre of mass of system rCM =  = Distance of centre mas from mass m1  

  Distance of centre of mass from mass m2 =  

  So moment of inertia about centre of mass   

Ιcm =  +    

  ΙCM =  (r1 + r2 )2   
 

Example 7. Four particles each of mass m are kept at the four corners of a square of edge a. Find the moment 

of inertia of the system about a line perpendicular to the plane of the square and passing through 

the centre of the square. 

           

Solution : The perpendicular distance of every particle from the given line is a/ . The moment of inertia 

of one particle is, therefore, m(a/ )2 = ma2. The moment of inertia of the system is, therefore, 

4 × ma2 = 2ma2. 

 



 

Example 8. Three particles, each of mass m, are situated at the vertices of an equilateral triangle ABC of 

side L (figure). Find the moment of inertia of the system about  

                    
 (i) the line AX perpendicular to AB in the plane of ABC. 

 (ii) One of the sides of the triangle ABC   

 (iii) About an axis passing through the centroid and perpendicular to plane of the triangle ABC.               

Solution :   (i)  Perpendicular distance of A from AX = 0 

 Perpendicular distance of B from AX = L 

 Perpendicular distance of C from AX = L/2 

 Thus, the moment of inertia of the particle at A = 0, of the particle at B - mL2, and of the particle 

at C = m(L/2)2. The moment of inertia of the three-particle system about AX is  

 0 + mL2 + m(L/2)2 =  

 Note  that the particles on the axis do not contribute to the moment of inertia. 

 (ii) Moment of inertia about the side AC = mass of particle B × square of perpendicular distance 

of B from side AC,  ΙAC = m =   

 (iii) Distance of centroid from all the particle is , so moment of inertia about an axis and 

passing through the centroic perpendicular plane of triangle  

ABC = ΙC = 3m = mL2   
 

Example  9. Calculate the moment of inertia of a ring having mass M, radius R and having uniform mass 

distribution about an axis passing through the centre of ring and perpendicular to the plane of 

ring ?  

 

Solution : Ι =  

 Because each element is equally distanced from the axis so r = R 

 =    

 Ι = MR2  

 (Note : Answer will remain same even if the mass is nonuniformly distributed because  

always.) 

Example 10. Four point masses are connected by a massless rod as shown in figure. Find out the moment of 

inertia of the system about axis CD ?              

    



 

Solution : I1 = m(2a)2
   

 I2 = 2ma2  

 I3 = 0  

 I4 = 4ma2   

 ICD = I1 + I2 + I3 + I4 = 10 ma2   Ans.  

 

Example 11. Three point masses are located at the corners of an equilibrium triangle of side 1 cm. Masses 

are of1,2,&3kg respectively and kept as shown in figure. Calculate the moment of Inertia of 

system about an axis passing through 1 kg mass and perpendicular to the plane of triangle ?    

           

     
Solution : Moment of inertia of 2 kg mass about an axis passing through 1 kg mass  

   I1 = 2 × (1×10–2)2  = 2×10–4   

 Moment of inertia of 3 kg mass about an axis passing through 1 kg mass  

   I2 = 3 × (1×10–2)2  = 3×10–4   

   I = I1 + I2 =  5 × 10–4 kgm2 

 

Example 12.  Calculate the moment of inertia of a uniform rod of mass M and length  about an axis 1,2,3 and 

4. 

 

Solution  

(Ι1) =  =  =     

 (Ι2) =  =  =   

 (Ι3) = 0 (axis 3 passing through the axis of rod)  

 (Ι4) =    

 

 

Example 13.  Determined the moment of inertia of a uniform rectangular plate of mass, side  'b' and ''' about 

an axis passing through the edge 'b' and  in the plane of plate.               

 



 

Solution : Each section of dm mass rod in the rectangular plate has moment of inertia about an axis passing 

through edge 'b'  dΙ =  

       

 So Ι =  =        
 

Example 14. Find out the moment of Inertia of figures shown each having mass M, radius R and having uniform 

mass distribution about an axis passing through the centre and perpendicular to the plane ? 

 (a)   (b)   (c)   

Solution : MR2 (infact M.I. of any part of mass M of a ring of radius R about axis passing through geometrical 

centre and perpendicular to the plane of the ring is = MR2) 
 

  
 (iii) Moment of inertia of a large object can be calculated by integrating M.Ι.of an element of the 

object:  

 Ι =      

 where  dΙ = moment of inertia of a small element  
  

 Element chosen should be such that : either perpendicular distance of axis from each point of the 

element is same or the moment of inertia of the element about the axis of rotation is known. 

 

 

Example 15.  Determine the moment of Inertia of a uniform disc having mass M, radius R about an axis passing 
through centre & perpendicular to the plane of disc ?  

 
 
 
 
 
 
 

Solution : Ι =    
 element - ring  dΙ = dmr2        

    



 

 dm =  2πrdr (here we have used the uniform mass distribution) 

 ∴  Ι = . (2πrdr).r2  ⇒ Ι =  
 

Example 16. Calculate the moment of inertia of a uniform hollow cylinder of mass M, radius R and length  

about its axis. 
Solution : Moment of inertia of a uniform hollow cylinder is 

 = mR2         

       

 

3. TWO IMPORTANT THEOREMS ON MOMENT OF INERTIA  
 

(i) Perpendicular Axis Theorem [Only applicable to plane laminar bodies (i.e. for 2-dimensional 

objects only)].      

 If axis 1 & 2 are in the plane of the body and perpendicular to each other.  
 Axis 3 is perpendicular to plane of 1 & 2 . 
 Then,  Ι3 = Ι1 + Ι2  

      

☞ The point of intersection of the three axis need not be center of mass, it can be any point in the plane of 

body which lies on the body or even outside it. 

 
Example 17. Find the moment of inertia of a uniform ring of mass M and radius R about a diameter. 

 
Solution : Let AB and CD be two mutually perpendicular diameters of the ring. Take them as X and Y-axes 

and the line perpendicular to the plane ofthe ring through the centre as the Z-axis. The moment 

of inertia of the ring about the Z-axis is Ι = MR2. As the ring is uniform, all of its diameters are 

equivalent and so Ιx = Ιy, From perpendicular axes theorem, 



 

  Ιz = Ιx + Ιy.  Hence Ιx =  =  

 Similarly, the moment of inertia of a uniform disc about a diameter is MR2/4. 
 

Example 18. Two uniform identical rods each of mass M and lengthare joined to form a cross as shown in 

figure. Find the moment of  

            
 inertia of the cross about a bisector as shown dotted in the figure.   

Solution :  Consider the line perpendicular to the plane of the figure through the centre of the cross. The 

moment of inertia of each rod about this line is  and hence the moment of inertia of the cross 

is . The moment of inertia of the cross about the two bisector are equal by symmetry and 

according to the theorem of perpendicular axes, the moment of inertia of the cross about the 

bisector is . 
 

Example 19.  In the figure shown find moment of inertia of a plate having mass M, length  and width b about 

axis 1,2,3 and 4. Assume that mass is uniformly distributed.   

 
Solution :  Moment of inertia of the plate about axis 1 (by taking rods perpendicular to axis 1) 

  I1 = Mb2 / 3 

 Moment of inertia of the plate about axis 2 (by taking rods perpendicular to axis 2) 

  I2 = M2 / 12 

 Moment of inertia of the plate about axis 3 (by taking rods perpendicular to axis 3) 

  I3  = Mb2 / 12 

 Moment of inertia of the plate about axis 4 (by taking rods perpendicular to axis 4) 

  I4  = M2 / 3 

Example 20.  In the figure shown find the moment of inertia of square plate having mass m and sides a. About 

an axis 2 passing through point C (centre of mass) and in the palne of plate.  

                   
Solution :  Using perpendicular axis theorems IC = I4 + I2 = 2I'    

 Using perpendicular theorems ΙC = Ι3 + Ι1 = Ι + Ι = 2Ι  

 2I' = 2I   



 

 I' = I  

 IC = 2I =   ⇒  I' =  
 

Example 21.  Find the moment of Inertia of a uniform disc of mass M and radius R about a diameter.  

Solution :  Consider x & y two mutually perpendicular diameters of the ring.  

 Ιx + Ιy = Ιz  

 Ιx = Ιy (due to symmetry) 

 Ιz =  

 Ιx = Ιy =       

  
 

Example  22. Calculate the moment of Inertia of figure shown each having mass M, radius R and having 

uniform mass distribution about an axis pependicular to the plane and passing through centre? 

 (a)   (b)   (c)   

Solution : dΙ = dm  

 Ι =  =  =   

 

 

 

 

 
 

Example 23. Calculate the moment of inertia of a uniform solid cylinder of mass M, radius R and length  about 

its axis. 

                



 

Solution. Each segment of cylinder is solid disc so   

 Ι =  Ans.  

 
(ii) Parallel Axis Theorem (Applicable to planer as well as 3 dimensional objects):  

   

  If ΙΑΒ = Moment of Inertia of the object about axis AB  
  Ιcm = Moment of Inertia of the object about an axis  

          passing through centre of mass and parallel to  axis AB      
 

  M = Total mass of object  

  d = perpendicular distance between axis AB about which     

 moment of Ιnertia is to be calculated & the one passing through the centre of mass and 

 parallel to it. 

  ΙΑΒ = Ιcm  + Md2  

 

 
Example 24.  Find out relation between I1 and I2 . 

  I1 and I2 moment of inertia of a rigid body mass m about an axis as shown in figure. 

      
Solution :  Using parallel axis theorem  I1 = IC + ma2   .............. (1)  

       I2 = IC + mb2  ............... (2)  

  From (1) and (2)   I1 – I2 = m(a2 – b2)    

 

Example 25.  Find the moment of inertia of a uniform sphere of mass m and radius R about a tangent if the 

spheres (i) solid  (ii) hollow  

Solution (i)  Using parallel axis theorem  I = ICM + md2   

  for solid sphere  ICM = mR2   ,  d = R   

   I = mR2   

  (ii)  Using parallel axis theorem  

   I = ICM + md2   

  for hollow sphere  



 

   ICM = mR2   ,  d = R   

   I = mR2      

   
Example 26.  Find the moment of inertia of a solid cylinder of mass M and radius R about a line parallel to the 

axis of the cylinder and on the surface of the cylinder.   

Solution :  The moment of inertia of the cylinder about its axis =  

  Using parallel axes theorem, Ι = Ι0 + MR2 =  + MR2 = MR2. 

  Similarly, the moment of inertia of a solid sphere about a tangent is MR2 + MR2 = MR2. 
 

Example 27. Find out the moment of inertia of a semi circular disc about an axis passing through its centre of 

mass and perpendicular to the plane?  

Solution : Moment of inertia of a semi circular disc about an axis passing through centre and perpendicular 

to plane of disc, I = .  

 Using parallel axis theorem , d is the perpendicular distance between two parallel 

axis passing through centre C and COM.  

 I = , d =     ⇒  = ICM +M   ⇒  ICM =  

Example 28. Find the moment of inertia of the two uniform joint rods having mass m each about point P as 

shown in figure. Using parallel axis theorem. 

           

Solution:  Moment of inertia of rod 1 about axis P , I1 =   

 Moment of inertia of rod 2 about axis P,  I2 =  +  

 So momentum of inertia of a system about axis P ,  



 

 I = I1 + I2 =  +  +   

 I = 5           

     

  
 

List of some useful formule : 
 

      Object        Moment of Inertia  

 

 Solid Sphere    

          (Uniform) 
 

 Hollow Sphere  

            (Uniform)   

 Ring. 

                 MR2 (Uniform or Non Uniform) 

 Disc  

         (Uniform) 

 Hollow cylinder  



 

       MR2 (Uniform or Non Uniform) 

 Solid cylinder  

         (Uniform) 
 

 

         (Uniform) 

        (Uniform) 

         (Uniform) 

    Rectangular Plate  

               Ι =  (Uniform)   

 Square Plate  

     ΙAB = ΙCD = ΙDF =   (Uniform) 
 

         Square Plate   

                   (Uniform)   

  Cuboid  



 

            (Uniform);  (When a = b)   
 

4. RADIUS OF GYRATION : 
 Is a measure of the way in which the mass of rigid body is distributed with respect to the axis of rotation, 

we define a new parameter, the radius of gyration (K). It is related to the moment of intertia and total 

mass of the body.  
   Ι = MK2  

 where     Ι = Moment of Inertia of a body  

   M = Mass of a body  

   K = Radius of gyration 

   K =  

☞ Length K is the geometrical property of the body and axis of rotation.  

 S.Ι. Unit of K is meter.  

 

 

 

 
Example 29. Find the radius of gyration of a solid uniform sphere of radius R about its tangent.  

Solution : Ι =  =  = mK2   

  ⇒   K =  
 

Example 30. Find the radius of gyration of a hollow uniform sphere of radius R about its tangent. 

Solution :  Moment of inertia of a hollow sphere about a tengent, I = MR2    

  MK2 = MR2      ⇒ K =   

 

5. MOMENT OF INERTIA OF BODIES WITH CUT  : 

 
 

Example 31 A uniform disc of radius R has a round disc of radius R/3 cut as shown in Fig. .The mass of the 

remaining (shaded) portion of the disc equals M. Find the moment of inertia of such a disc relative 

to the axis passing through geometrical centre of original disc and perpendicular to the plane of 

the disc.   



 

                
Solution : Let the mass per unit area of the material of disc be σ. Now the empty space can be considered 

as having density –σ and σ.  

  Now Ι0 = Ισ + Ι–σ   

  Ισ = (σ πR2)R2/2 = M.I. of σ about o  

  Ι–σ =  + [–σπ(R/3)2] (2R/3)2   = M.I. of –σ about o  

  ∴ Ι0 = MR2   Ans. 
 

Example 32. Find the moment of inertia of a uniform disc of radius R1 having an empty symmetric annular 

region of radius R2 in between, about an axis passing through geometrical centre and 

perpendicular to the disc. 

Solution : ρ =  ⇒ Ι = ρ × Ι =  Ans.  

 

 

 

 

 

 

 

 

6. TORQUE :  
 Torque represents the capability of a force to produce change in the rotational motion of the body.  

 6.1 Torque about a point :  

      

  Torque of force  about a point         

  Where   = force applied  

    P =  point of application of force  

    Q = Point about which we want to calculate the torque.  

     = position vector of the point of application of force w.r.t. the point about 

    which we want to determine the torque.  

     = r F sinθ = r⊥F =    

  Where  θ = angle between the direction of force and the position vector of P wrt. Q.  

    r⊥ = r sin θ = perpendicular distance of line of action of force from point Q ,it is 

    also called force arm.  



 

    F⊥ = F sin θ = component of  perpendicular to  

    SΙ unit of torque is Nm   
 

☞ Torque is a vector quantity and its direction is determined using right hand thumb rule and its always 

perpendicular to the plane of rotation of the body. 
 

 

Example 33. A particle of mass M is released in vertical plane from a point P at x = x0 on the x-axis it falls 

vertically along the y-axis. Find the torque τ acting on the particle at a time t about origin ?   

Solution :   Torque is produced by the force of gravity.  

    = r F sin θ   
  or τ =         

     = r mg  = mgx0  

    
 

 

 
 

Example 34.   A particle having mass m is projected with a velocity v0 from a point P on a horizontal ground 

making an angle θ with horizontal. Find out the  torque about the point of projection acting on 

the particle when it is at its maximum height ?  

                              

Solution :  τ = rFsinθ = mg = mg   τ =    
 

Example 35.  Find the torque about point O and A.  

   

          

Solution :  Torque about point O, ,    

   × ( ) =   

  Torque about point A, ,    

   × ( ) =   
 



 

Example 36. Find out torque about point A, O and B  

              

Solution :  Torque about point A,  

   

 Torque about point B,  

   

 Torque about point O ,  

     

 
 6.2 Torque about an axis : 

  The torque of a force  about an axis AB is defined as the component of torque of  about 
 any point O on the axis AB, along the axis AB.  

 In the given figure torque of  about O is  

 The torque of  about AB, τAB is component of  along line AB.  

      
 There are four cases of torque of a force about an axis.: 

Case I  : Force is parallel to the axis of rotation,  
  AB is the axis of rotation about which torque is required  

   is perpendicular to , but , hence  is perpendicular to .  

  The component of  along  is, therefore, zero. 
Case II  : The line of force intersects the axis of rotation (F intersect AB) 

   

   intersects AB along  then  and  are along the same line. The torque about O is  

    = 0. 
  Hence component this torque along line AB is also zero. 
 



 

Case III  :  perpendicular to  but  and AB do not intersect. 

     
  In the three dimensions, two lines may be perpendicular without intersecting each other. 
  Two nonparallel and nonintersecting lines are called skew lines. 
 Figure shows the plane through the point of application of force P that is perpendicular to the axis 

of rotation AB. Suppose the plane intersects the axis at the point O. The force F is in this plane 
(since F is perpenedicular to AB). Taking the origin at O,  

  Torque =  =  ×  Thus, torque = rF sin θ = F(OS)  

 where OS is the perpendicular from O to the line of action of the force . The line OS is also 
perpendicular to the axis of rotation. It is thus the length of the common perpendicular to the force 
and the axis of rotation. 

 The direction of  =  ×  is along the axis AB because  ⊥   and  ⊥ . The torque 
about AB is, therefore, equal to the magnitude of  that is F.(OS). 

 

☞ Thus, the torque of F about AB = magnitude of the force F × length of the common perpendicular to the 

force and the axis. The common perpendicular OS is called the lever arm or moment arm of this torque. 

Case IV :  and  are skew but not perpendicular. 

 Here we resolve  into two components, one is parallel to axis and other is perpendicular to axis. 

Torque of the perallel part is zero and that of the perpendicular part may be found, by using the 

result of case (III). 

 

Example 37.  Find the torque of weight about the axis passing through point P.    

 

Solution :    

 r and F both are at perpendicular so torque about point P = mgRsinθ   
 

Example 38.  A bob of mass m is suspendend at point O by string of length  . Bob is moving in a horizontal 

circle find out (i) torque of gravity and tension about point O and O'.  (ii) Net torque about axis 

OO of gravity' tension and net force .   



 

              
Solution :  (i)  Torque about point O  

  Torque of tension (T), τten = 0 (tension is passing through point O)   

  Torque of gravity   τmg = mgsin θ  

  Torque about point O'  

  Torque of gravity τmg = mgr   ;   r = sin θ  

  Torque of tension  τmg = mgsin θ   (along negative )        
 

  Torque of tension  τten = Trsin(90+ θ)    (Tcosθ = mg)   

  τten = Trcosθ  

  τten =  (sinθ ) cos θ  = mg sinθ  (along positive )     

      
  (ii) Torque about axis OO'  

  Torque of gravity about axis OO'   τmg  = 0   (force mg parallel to axis OO')   

  Torque of tension about axis OO'  τten = 0    (force T is passing through the axis OO')   

  Net torque about axis OO'  τnet = 0   

Example 39. A wheel of radius 20 cm has four forces applied to it as shown in Fig. Then, the torque produced 

by these forces about an axis which is passing through O and perpendicular to plane.    

   
(1) 5.4 Nm anticlockwise   (2) 1.80 Nm clockwise    

 (3) 2.0 Nm clockwise    (4) 5.4 Nm clockwise  
Solution :  

  



 

 torque due to 6 N, 8 cos 30º N, will be zero because line of action of these forcse passing through 

the axis. 

 Net torque = 8 sin 30º × 0.2 – 4 × 0.2 + 9 × 0.2 = 1.8 Nm 

 clock wise  
 

Example 40.  Calculate the total torque acting on the body shown in figure about an axis which is passing 

through point O and perpendicular to plane -      

                
 (1) 0.54 N-m  (2) 0.27 N-m  (3) 1.08 N-m  (4) .0054 N-m. 
Solution :   

   
 Torque due to 5 N, 20 sin 60º N, 15 cos 37º N will be zero because line of action of these forcse 

passing through the axis. 

 Net torque = 20 cos 60º × 0.04 + 15 sin 37º × 0.06 – 10 × 0.04 = 0.54 Nm 

 anti clock wise 

 6.3 Force Couple :  
 A pair of forces each of same  magnitude and acting in opposite direction is called a force couple. 

     
 Torque due to couple = Magnitude of one force ×  

 distance between their lines of action.                          

 Magnitude of torque = τ = F (2d) 
 

☞ A couple does not exert a net force on an object even though it exerts a torque.  

 

☞ Net torque due to a force couple is same about any point. 



 

     
  Torque about A = x1F + x2F  

    = F(x1 + x2) = Fd 

  Torque about B = y1F – y2F  

    = F(y1 – y2) = Fd 

 
☞ If net force acting on a system is zero, torque is same about any point. 

 

☞ A consequence is that, if Fnet = 0 and τnet = 0 about one point, then τnet = 0 about any point.  
 

  
 6.4 Point of Application of Force : 
 Point of Application of force is the point at which, if net force is assumed to be acting, then it will 

produce same translational as well as rotational  effect, as was produced earlier.  

 We can also define point of application of force as a point about which torque of all the forces is 

zero. 

   =    

 Consider three forces  acting on a body if D is point of application of force then torque of 

 acting at a point D about O is same as the original torque about O.   

   =  
 

 

 

Example 41.  Determine the point of application of force from point A, when forces of 20 N & 30 N are acting 

on the rod as shown in figure. 

           
Solution :  Nett force acting on the rod Frel = 10N  

 Nett torque acting on the rod about point C  
 τc = (20 × 0) + ( 30 × 20) = 600 clockwise  

 Let the point of application be at a distance x from point C   

       



 

  600  = 10 x ⇒ x = 60 cm  

 ∴   70 cm from A is point of Application  
 

Example 42. Determine the point of application of force, when forces are acting on the rod as shown in figure. 

     
Solution :  

  
 Torque of B about A  τ1  = 3N × 5 = 15N cm  (clockwise) 

 Torque of C about A   τ2 =  6N × 10 = 60 N cm    (anticlockwise)   

 Resultant force perpendicular to the rod F = 8 N  

 τ1 + τ2 =  F x    (x = distance from point A) 

 – 15 + 60 = 8 x   

 x = 45/8 = 5.625 cm   
 

Note :  (i) Point of application of gravitational  force is known as the centre of gravity.  

 (ii) Centre of gravity coincides with the centre of mass if value of  is assumed to be constant.  

 (iii) Concept of point of application of force is imaginary, as in some cases it can lie outside the body. 
 

  
 6.5   Rotation about a fixed axis : 
  If ΙHinge  = moment of inertia about the axis of rotation (since this axis passes through the hinge, 

 hence the name  ΙHinge ). 

   = resultant external torque acting on the body about axis of rotation  

  α =  angular acceleration of the body. 

     = ΙHinge        

     

  Rotational Kinetic Energy =  

    

     
  Net external force acting on the body has two component tangential and centripetal.  

  ⇒  FC = maC =  = mω2 rCM
    

  ⇒  Ft = mat = mα rCM
  

 

 
 

Example 43. The pulley shown in figure has a moment of inertia Ι about its axis and its radius is R. Find the 

magnitude of the acceleration of the two blocks.  



 

 Assume that the string is light and does not slip on the pulley.    

      

Solution :  Suppose the tension in the left string is T1 and that in the right string in T2. Suppose the block of 

mass M goes down with an acceleration α and the other block moves up with the same 

acceleration. This is also the tangential acceleration of the rim of the wheel as the string does 

not slip over the rim. The angular acceleration of the wheel is, therefore, α = a/R. The equations 

of motion for the mass M, the mass m and the pulley are as follows : 

  Mg – T1 = Ma   .........(i) 

  T2 – mg = ma   .........(ii) 

  T1R – T2R = Iα = Iα /R  .........(iii) 

  Putting T1 and T2 from (i) and (ii) into (iii), 

  [(Mg – a) – m(g + a)] R = Ι which gives a =  
 

Example 44.  A uniform rod of mass m and length  can rotate in vertical plane about a smooth horizontal axis 

hinged at point H.   

           
(i) Find angular acceleration α  of the rod  just after it is released from initial horizontal position 

from rest ?  

 (ii) Calculate the acceleration (tangential and radial) of point A at this moment. 

 (iii) Calculate net hinge force acting at this moment. 

 (iv) Find α and ω when rod becomes vertical. 

 (v) Find hinge force when rod become vertical. 

 

Solution :  (i) τH  = IH   α  

  mg.  =     ⇒ α =    

      

 (ii)  atA = α= .=   

   aCA = ω2 r =  0. = 0   ( ω = 0 just after release) 

 (iii) Suppose hinge exerts normal reaction in  component form as shown   

      
  In vertical direction  

  Fext = maCM 

  ⇒ mg – N1 = m.  (we get the value of aCM from previous example)  

  ⇒ N1 =  

  In horizontal direction 

  Fext = maCM ⇒ N2 = 0   ( aCM in horizontal = 0 as ω = 0 just after release). 

 (vi) Torque = 0 when rod becomes vertical. 

  so α = 0  



 

  using energy conservation     ω  =  

 (v) When rod becomes vertical  

  α = 0, ω  =   

  FH – mg =  

  FH =  Ans.  

 

Example 45.  A cylinder of mass M and radius r is mounted on a frictionless axle over a well. A rope of negligible 

mass is wrapped around the solid cylinder  and a bucket of mass m is suspended from the rope. 

The linear acceleration of the bucket will be 

Solution : mg – T = ma 

        T = m(g – a)  

  τ = Iα = r T  ⇒  (1/2) Mr2 . a/r = r T      

  ⇒   T = 1/2 Ma  .......(2)  

       
  From (1) and (2),  

  (1/2) Ma = m (g – a)   ⇒  a = mg, ⇒  

 

Example 46.  A uniform solid cylinder of mass M and radius R rotates about a frictionless horizontal axle. Two 

similar masses suspended with the help of two ropes wrapped around the cylinder. If the system 

is released from rest then the tension in each rope will be 

Solution : mg – T = ma  

  mg – T = ma 

  From these equation, 2mg – 2T = 2ma   ....(1)   

      

  τ = (2T) R = I α = (1/2)MR2. (a/R)   ....(2)      

      

  From (1) and (2),   Note: Also a = 4mg (M + 4m)  

 



 

7. EQUILIBRIUM  

 A system is in mechanical equilibrium if it is in translational as well as rotational equilibrium. 

 For this :    (about every point) 

 

 From (6.3),  if  then  is same about every point  

 Hence necessary and sufficient condition for equilibrium is ,  about any one point, which 

we can choose as per our convenience. (  will automatically be zero about every point)   

 ☞    

 
 The equilibrium of a body is called stable if the body tries to regain its equilibrium position after being 

slightly displaced and released. It is called unstable if it gets further displaced after being slightly 

displaced and released. If it can stay in equilibrium even after being slightly displaced and released, it is 

said to be in neutral equilibrium. 

 
Example 47. Two light vertical springs with spring constants k1 & k2 and same natural lengths are separated 

by a distance . Their upper ends are fixed to the ceiling and their lower ends to the ends A and 

B of a light horizontal rod AB. A vertical downward force F is applied at point C on the rod. AB 

will remain horizontal in equilibrium if the distance AC is :    

          

 (1)    (2)   (3)   (4*)  

Solution : AC = x   xo = extn. in each spring 

 Torque about C  K1xox = K2xo ( – x)   x =    

 



 

Example 48. A uniform ladder of length 5 m and mass 100 kg is in equilibrium between vertical smooth wall 

and rough horizontal surface. Find minimum friction co-efficient between floor and ladder for this 

equilibrium. 

     

 (1) 1/2    (2) 3/4     (3) 1/3    (4*) 2/3 

Solution : For vertical equilibrium ; 

   
 mg = N2    .......(i) 

 For horizontal equilibrium ; 

 μN2 = N1    .......(ii)   

 Torque about A ; 

 N1 × 5 sin37º = mg × 2.5 cos37º  .......(iii) 

 Solving ; μ = 2/3 

 

 

 

 

 

Example 49. A uniform metre stick having mass 400 g is suspended from the fixed supports through two 

vertical light  strings of equal lengths fixed at the ends. A small object of mass 100 g is put on the 

stick at a distance of 60 cm from the left end. Calculate the tensions in the two strings.  

(g = 10 m/s2)  
Answer. 2.4 N in the left string and 2.6 N in the right   
Solution.  

   
  Using force balance   T1 + T2 = 0.4 g + 0.1 g = 0.5 g = 5 

  Torque about any point should be zero for rotation equilibrium. 

  τA = 0 (T2 × 100 cm) = (0.4 g) (50 cm) + (0.1 g) (60 cm) 

  T2 = (0.4 × 10 × 0.5) + (0.1 × 10 × 0.6) = 2.6 N 

  T2 = 2.6 N 

  T1 = 2.4 N  

 

8. ANGULAR MOMENTUM ( )  
 

 8. 1. Angular momentum of a particle about a point. 
   =  ⇒ L = rpsinθ  



 

  or  = r⊥  P   or  = P⊥ r 

      

  Where  = momentum of particle  

    = position of vector of particle with respect to point O about which angular  

  momentum is to be calculated . 

   θ = angle between vectors  

   r⊥ =  perpendicular distance of line of motion of particle from point O. 

   P⊥=  component of momentum perpendicular to .  

  SI unit of angular momentum is kgm2/sec. 

 

 

 

 

 

 

 

 

 

Example 50.  A particle of mass 'm' starts moving from point (o,d) with a  constant velocity u . Find out its 

angular momentum  about origin at this moment what will be the answer at the later time? 

                

Solution :   = – m d u .  
 

Example 51.  A particle of mass 'm' is projected on horizontal ground with an initial velocity of u making an 

angle θ with horizontal . Find out the angular momentum of particle about the point of projection 

when 

 (i)  it just starts its motion   

 (ii)  it is at highest point of path.    

 (iii)  it just strikes the ground.  

Answer.  (i)  O;  (ii) mu cosθ ;  (iii) mu sin θ  

Solution :         



 

   
 (i) Angular momentum about point O is zero. 

 (ii) Angular momentum about point A. 

   
  L = H × mu cosθ 

  L = mu cosθ    Ans. 

 (iii) Angular momentum about point B. 

  L = R × mu sinθ 

  L = mu sin θ    Ans. 

 

Example 52. A particle of mass'm' is projected on horizontal ground with an initial velocity of u making an angle 

θ with horizontal . Find out the angular momentum at any time t of particle p about : 

 (i) y axis (ii) z-axis  

     
 

 

Solution :  (i) velocity components are parallel to the y-axis. so, L = 0    

  (ii) τ =  – 1/2 mu cos θ. gt2        

 – mgx =  – mgx dt = dL  

  

    
  angular momentum about the z-axis is :  L = – 1/2 mu cos θ. gt2   Ans.   

  
    8.2 Angular momentum of a rigid body rotating about fixed axis : 



 

      
  Angular momentum of a rigid body about the fixed axis AB is LAB = L1 + L2 + L3 +....... +Ln   

  L1 = m1 r1ωr1 ,  L2 =  m2 r2ωr2  , L3  = m3 r3ωr3  ,  Ln = mn rnωrn    

  LAB = m1 r1ωr1  + m2 r2ωr2  + m3 r3ωr3  ........ + mn rnωrn     

  LAB =  × ω            

  LAB = ΙH ω   

  LH = IH ω  

  LH = Angular momentum of object about axis of rotation.  

  IH = Moment of Inertia of rigid body about axis of rotation.  

  ω = angular velocity of the object.  
 

 

Example 53. Two small balls A and B, each of mass m, are attached rigidly to the ends of a light rod of length 

d. The structure rotates about the perpendicular bisector of the rod at an angular speed ω. 

Calculate the angular momentum of the individual balls and of the system about the axis of 

rotation. 

 

 

Solution :  Consider the situation shown in figure. The velocity of the ball A with respect to the centre O is v 

= . The angular momentum of the ball with respect to the axis is 

                        

 L1 = mvr = m  = mωd2. The same the angular momentum L2 of the second ball. The 
angular momentum of the system is equal to sum of these two angular momenta i.e.,  
L = 1/2 mωd2.   

 

Example 54. Two particles of mass m each are attached to a light rod of length d, one at its centre and the 
other at a free end. The rod is fixed at the other end and is rotated in a plane at an angular speed 
ω. Calculate the angular momentum of the particle at the end with respect to the particle at the 
centre. 

Solution :  The situation is shown in figure. The velocity of the particle A with respect to the fixed end O is  

vA = ω  and that of B with respect to O is vB = ωd. Hence the velocity of B with respect to 

A is vB – vA = ω  . The angular momentum of B with respect to A is, therefore, 



 

      

 L = mvr = mω  = mωd2     
 along the direction perpendicular to the plane of rotation. 
 

Example 55.  A uniform circular disc of mass 200 g and radius 4.0 cm is rotated about one of its diameter at 
an angular speed of 10 rad/s. Find the kinetic energy of the disc and its angular momentum about 
the axis of rotation.         

Solution :  The moment of inertia of the circular disc about its diameter is  

 Ι = Mr2 = (0.200 kg) (0.04 m)2 =  8.0 × 10–5 kg-m2. 
 The kinetic energy is  

 K = Ιω2 = (8.0 × 10–5 kg - m2) (100 rad2/s2) = 4.0 × 10–3 J 
 and the angular momentum about the axis of rotation is  
 L = Ιω = (8.0 × 10–5 kg-m2) (10 rad/s) 
   = 8.0 × 10–4 kg-m2/s = 8.0 × 10–4 J-s. 
 

Example 56. A particle of mass m starts moving from origin with a constant velocity  find out its angular 
momentum about origin at this moment. What will be the answer later on? What will be the  

 answer if the speed increases.       

      
 

Solution :   

  = 0 

 

 8.3  Conservation of Angular Momentum  

 Newton's 2nd law in rotation :     

 where  and  are about the same axis.  

☞ Angular momentum of a particle or a system remains constant if τext  = 0 about the axis of rotation.   

 Even if net angular momentum is not constant, one of its component about an axis remains constant if 

component of torque about that axis is zero  

 Impulse of Torque :       ΔJ → Charge in angular momentum.  

(i) Suppose a ball is tied at one end of a cord whose other end passes through a vertical hollow tube. 

 The tube is held in one hand and the cord in the other. The ball is set into rotation in a horizontal circle. If 

the cord is pulled down, shortening the radius of the circular path of the ball, the ball rotates faster than 

before. The reason is that by shortening the radius of the circle, the moment of inertia of the ball about the 

axis of rotation decreases.Hence, by the law of conservation of angular momentum, the angular velocity of 

the ball about the axis of rotation increases.[fig. (1)] 



 

       

(ii)  When a diver jumps into water from a height, he does not keep his body straight but pulls in his arms and 

legs toward: the centre of his body. On doing so, the moment of inertia I of his body decreases. But since 

the angular momentum I ω remains constant, his angular velocity ω correspondingly increases. Hence  

during jumping he can rotate his body in the air - fig. (2)] 

       

(iii) In, a man with his arms outstretched and holding heavy dumb bells in each hand, is standing at the centre 

of a rotating table. When the man pulls in his arms, the speed of rotation of the table increases. The reason 

is that on pulling in the arms, the distance R of the dumbells from the axis of rotation decreases and so the 

moment of inertia of the man decreases. Therefore, by conservation of angular momentum, the angular 

velocity increases. [fig. (3)] 

       

 In the same way, the ice skater and the ballet dancer increase or decrease the angular velocity of spin 

about a vertical axis by pulling or extending out their limbs. 
 

 

Example 57. A uniform rod of mass m and length can rotate freely on a smooth horizontal plane about a 

vertical axis hinged at point H. A point mass having same mass m coming with an initial speed u 

perpendicular to the rod, strikes the rod perfectly in-elastically (e = 0) at its free end. Find out the 

angular velocity of the rod just after collision ?      

          

Solution :  Angular momentum is conserved about H because no external force is present in horizontal plane 

which is producing torque about H.  

 mul  =  ω   ⇒ ω =  

 



 

Example 58. A cockroach of mass ‘m’ is start moving, with velocity v on the circumference of a disc of mass 

‘M’ and radius ‘R’ what will be angular velocity of disc. Initially total angular momentum = Final 

total angular momentum.  

   0 + 0 = mvR + ω ω = (–)   –ive angular velocity for opposite direction.  
 

Example 59. A  rotating table has angular velocity ‘ω’ and moment of inertia Ι1. A person of mass ‘m’ stands 

of centre of rotating table. If the person moves r from the centre what will be angular velocity of 

rotating table.    

   Ι1 ω = (Ι1 + mr2) ω2 or    

 

Example 60. A horizontal disc is rotating about a vertical axis passing through its centre at the rate of 100 

rev/min. A blob of wax, of mass 20 gm, falls on the disc and sticks to it at a distance of 5 cm from 

the axis. If the moment of inertia of the disc about the given axis is 2 × 10–4 kg-m², find the new 

frequency of rotation of the disc. 

Solution : The M.Ι. of the disc,   Ι1 = 2 × 10–4 kg-m². 

  The M.Ι. of the blob of wax, Ι2 = 20 × 10–3 × (0.05)2 = 0.5 × 10–4 kg-m². 

  Let the initial angular speed of the disc be ω = 2πn and let the final angular speed of the disc and 

blob of wax be ω´ = 2πn´. 

  Then,    Ι1ω = (Ι1 + Ι2) ω´  (The law of conservation of angular momentum) 

  or Ι1 × 2πn = (Ι1 + Ι2) 2πn´ 

  ∴ 2 × 10–4 × 100 = (2 × 10–4 + 0.5 × 10–4) × n´ so  = 80 rev/min. 
Example 61. A solid cylinder of mass ‘M’ kg and radius ‘R’  is rotating along its axis with angular velocity ω 

without friction. A particle of mass ‘m’ moving at v m/sec collide against the cylinder and sticks to 

it. Then calculate angular velocity and angular momentum of cylinder and initial and final kinetic 

energy of system?  

  Intial momentum of cylinder = Ιω  Intial momentum of particle = m v R   

  Before sticking total angular momentum  J1 = Ιω + mvR  

  After sticking total angular momentum  J2 = (Ι + mR2) ω´ 

  if τ = 0  then   J1 = J2      

   Angular velocity    

   Initial kinetic energy of system   

    Final kinetic energy of system   

Example 62 Ιf the earth were suddenly to shrink to half its size (its mass remaining const) what would be the 

length of a day.  

Solution : Ι1 ω1 = Ι2 ω2    so    

  hence T1 = 24 hr     T2 = 6hr 

 

9. COMBINED TRANSLATIONAL AND ROTATIONAL MOTION OF 

A RIGID BODY   
 



 

 The general motion of a rigid body can be thought of as a sum of two independent motions. A translation 

of some point of the body plus a rotation about this point . A most convenient choice of the point is the 

centre of mass of the body as it greatly similifies the calculations.  

☞ Consider a fan inside a train, and an observer A on the platform.  

 It the fan is switched off while the train moves, the motion of fan is pure translation as each point on the 

fan undergoes same translation in any time interval.  

 It fan is switched on while the train is at rest the motion of fan is pure rotation about is axle ; as each point 

on the axle is at rest, while other points revolve about it with equal angular velocity.  

 if the fan is switched on while the train is moving, the motion of fan to the observer on the platform is 

neither pure translation nor pure rotation. This motion is an example of general motion of a rigid body. 

 Now if there is an observer B inside the train, the motion of fan will appear to him as pure rotation.  

 Hence we can see that the general motion of fan w.r.t. observer A can be resolved into pure rotation of 

fan as observed by observer B plus pure translation of observer B (w.r.t. observer  A)   

 Such a resolution of general motion of a rigid body into pure rotation & pure translation is not restricted 

to just the fan inside the train, but is possible for motion of any rigid system.  

 9.1 Kinematics of general motion of a rigid body :  
For a rigid body as earlier stated value of angular displacement (θ) , angular velocity (ω), angular 

acceleration (α) is same for all points on the rigid body about any other point on the rigid body. 

Hence if we know velocity of any one point (say A) on the rigid body and angular velocity of any 

point on the rigid body about any other point on the rigid body (say ω), velocity of each point on 

the rigid body can be calculated.  

          
  since distance AB is fixed  

    ⊥   

  we know that ω =   

   VBA⊥ = VBA = ωrBA       

  in vector form  =    

  Now from relative velocity :   

    ⇒  

  similarly  [for any rigid system]   

 
Example 63. Consider the general motion of a wheel (radius r) which can be view on pure translation of its 

center O (with the velocity v) and pure rotation about O (with angular velocity w)   



 

     

 Find out  and    

Solution :     =   

   =      

   =  ;   =    

  similarly  = ωr    

    = ωr    

    = ωr  

    =   

  similarly  =   

    =    

    =   

  

 9.2 Pure Rolling (or rolling without sliding) :   
 Pure rolling is a special case of general rotation of a rigid body with circular cross section (e.g. 

wheel, disc, ring, sphere) moving  on some surface. Here, there is no relative motion between 

the rolling body and the surface of contact, at the point of contact   

  ☞    

 Here contact point is A & contact surface is horizontal ground. For pure rolling velocity of A w.r.t. 

ground = 0   ⇒ VA = 0 .  

  ☞    
  From above figure, for pure rolling, velocity of A w.r.t. to plank is zero  ⇒ VA =V.  

  ☞    
  From above figure for, pure rolling, velocity of A w.r.t. ground is zero.  

⇒ v – ωr = 0  

v = ωr 
    Similarly  a = αr  



 

 

Example 64. A wheel of radius r rolls (rolling without sleeping) on a level road as shown in figure.  

 
  Find out velocity of point A and B  
Solution : Contact surface is in rest for pure rolling velocity of point A is zero.  
 so v = ω r   
 velocity of point B = v + ωr = 2v    

  

 9.3 Dynamics of general motion of a rigid body : 
 This motion can be viewed as translation of centre of mass and rotation about an axis passing 

through centre of mass  
  If ΙCM = Moment of inertia about this axis passing through COM 

   = Net torque about this axis passing through COM 

   = Acceleration of COM 

   = Velocity of COM 

   = Net external force acting on the system. 

   = Linear momentum of system. 

   = Angular momentum about centre of mass. 

   = Position vector of COM w.r.t. point A. 

  then  (i)  

   (ii)  

   (iii)   

   (vi) Total K.E.=  +  

   (v)  

   (vi) Angular momentum about point A =  about C.M. +  of C.M. about A  

    

☞ ( ) ≠ . Notice that torque equation can be applied to a rigid body in a 

general motion only and only about an axis through centre of mass. 

 

Example 65. A uniform sphere of mass 200 g rolls without slipping on a plane surface so that its centre moves 

at a speed of 2.00 cm/s. Find its kinetic energy.      

Solution :  As the sphere rolls without slipping on the plane surface, its angular speed about the centre is  

ω = . The kinetic energy is  

 K =  Ιcmω2  +  Mvcm
2    = . Mr2ω2 + Mvcm

2 

 =  Mvcm
2 + Mvcm

2  = Mvcm
2   =  (0.200 kg) (0.02 m/s)2 = 5.6 × 10–5 J. 



 

Example 66. A force F acts tangentially at the highest point of a sphere of mass m kept on  a rough horizontal 

plane. If the sphere rolls without slipping, find the acceleration of the centre (C) and point A and 

B of the sphere.            

      

Solution :  The situation is shown in figure. As the force F rotates the sphere, the point of contact has a 

tendency to slip towards left so that the static friction on the sphere will act towards right. Let r be 

the radius of the sphere and a be the linear acceleration of the centre of the sphere. The angular 

acceleration about the centre of the sphere is α = a/r, as there is no slipping.   

 For the linear motion of the centre, 

 F + f = ma   ..........(i) 

 and for the rotational motion about the centre, 

 Fr – f r = Ι α =    or F – f = ma,    ...........(iii) 

 From (i) and (ii),   

 2F = ma     or a =  

 Acceleration of point A is zero.  

 Acceleration of point B is 2a = 2  
 

Example 67. A circular rigid body of mass m, radius R and radius of gyration (k) rolls without slipping on an 

inclined plane of a inclination q.  Find the linear acceleration of the rigid body and force of friction 

on it. What must be the minimum value of coefficient of friction so that rigid body may roll without 

sliding?  

 

 

 

 

 

 

 

 

Solution.  

 
 If a is the acceleration of the centre of mass of the rigid body and f the force of friction between 

sphere and the plane, the equation of translatory and rotatory motion of the rigid body will be.  

  mg sin θ – f = ma   (Translatory motion)    

  fR = Ι α    (Rotatory motion)    



 

  f =  

  Ι = mk2 ,  due to pure rolling a = αR 

  mg sin θ –  = mαR   mg sin θ = m αR +  

  mg sin θ = m  α R +  mg sin θ = ma +  

  mg sin θ =   a =   a =    f =  

  f =  ⇒    f ≤ μN   

   a ≤ μ ≤ mg cos θ    R2  ×  ≤ µg cos θ  

  µ ≥    µmin  =    
 

Note :   From above example if rigid bodies are solid cylinder, hollow cylinder, solid sphere and hollow sphere.  
 

 (1)  Increasing order of acceleration.   

  asolid sphere  > ahollow sphere  > asolid cylinder  > ahollow cylinder   
 

 (2) Increasing order of required friction force for pure rolling.   
 

  fhollow cylinder     > fhollow sphere >  fsolid cylinder   >   fsolid sphere     
 

 (3) Increasing order of required minimum friction cofficient for pure rolling.  

  µhollow cylinder     > µhollow sphere >  µsolid cylinder   >   µsolid sphere     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9.4 Instataneous axis of rotation :  
It is the axis about which the combined translational and rotational motion appears as pure 

rotational motion.  

      

  The combined effect of translation of centre of mass and rotation about an axis through the 

 centre of mass is equivalent to a pure rotation with the same angular speed about a stationary 

 axis ; this axis is called instantaneous axis of rotation. It is defined for an instant and its position 

 changes with time.  

  eg. In pure rolling the point of contact with the surface is the instataneous axis of rotation. 
 



 

Geometrical construction of instataneous axis of rotation (I.A.R). Draw velocity vector at 

any two points on the rigid body.  The I.A.R.  is the point of intersection of the perpendicular 

drawn on them.   

        

☞ In case of pure rolling the lower point is instataneously axis of rotation. 

 The motion of body in pure rolling can therefor by analysed as pure rotation about this axis. 

 Consequently 

  τP = ΙPα 

  αP = ΙPω 

 K.E. = 1/2 ΙP ω2  

 Where  ΙP is moment of inertial instantaneous axis of rotation passing through P. 

 
Example 68.  

   
  Prove that kinetic energy = 1/2 ΙP ω2  

Solution : K.E. =  Ιcm ω2 +  Mvcm
2 = Icm ω2 +  Mω2R2 

   (Ιcm + MR2) ω2  ⇒      

☞ Notice that pure rolling of uniform object equation of torque can also be applied about the contact point. 

 

 

 

 

 

 

 

 

 

 The nature of friction in the following cases assume body is  

perfectly rigid  
 (i) v = ωR    

 
 No friction and pure rolling.  

 (ii) v = ωR    

 
 No friction and pure rolling (If the body is not perfectly rigid, then there is a small friction acting in this 

case which is called rolling friction)  



 

 (iii) v > ωR  or  v < ωR  

 
 No friction force but not pure rolling.  

 (iv) v > ωR   

 
 There is Relative Motion at point of contact so Kinetic Friction, fk = µN will act in backward direction. This 

kinetic friction decrease v and increase ω , so after some time v = ωR and pure rolling will resume like in 

case (ii). 

 (v) v < ωR    

 
 There is Relative Motion at point of contact so Kinetic Friction, fk = µN will act in forward direction. This 

kinetic friction increase v and decrease ω , so after some time v = ωR and pure rolling will resume like in 

case (ii).  

 (vi) v = ωR  (initial)  

 
  No friction and no pure rolling.  

 (vii) v = ωR  (initial)  

 
 Static friction whose value can be lie between zero and µsN will act in backward direction. If coefficent of 

friction is sufficiently high, then fs compensates for increasing v due to F by increasing ω and body may 

continue in pure rolling with increases v as well as ω .  

 
Example 69. A rigid body of mass m and radius r rolls without slipping on a rough surface. A force is acting on 

a rigid body x distance from the centre as shown in figure. Find the value of x so that static friction 

is zero. 

 
Solution. Torque about centre of mass   

Fx = Ιcm α ............ (1)   

 F = ma ........... (2)      



 

 From eqn. (1) & (2)   

 max = Ιcm α  (a = αR)   

 x =   

Note :-  For pure rolling if any friction is required then friction force will be statics friction. It may be zero, backward 

direction or forward direction depending on value of x. If F below the point P then friction force will act in 

backward direction or above the point P friction force will act in forward direction.  
 

Example 70. A hollow sphere is projected horizontally along a rough surface with speed v and angular velocity 

ω0 find out the ratio . So that the sphere stop moving after some time.  

    
Solution : Torque about lowest point of sphere. 

 fk × R = Ια  

 μmg × R =  

 α =   angular acceleration in opposition direction of angular velocity. 

 ω = ω0 – αt  (final angular velocity ω = 0) 

 ω0 =  t =  

 acceleration 'a = μg' 

 vf = v – at (final velocity vf = 0) 

 v = μg × t t =   

 To stop the sphere time at which v & ω are zero, should be same. 

  =  

 

Example 71. A cylinder is released from rest from the top of an incline of inclination θ and length. If the cylinder 

rolls without slipping, what will be its speed when it reaches the bottom ? 

Solution :  Let the mass of the cylinder be m and its radius r. Suppose the linear speed of the cylinder when 

it reaches the bottom is v. As the cylinder rolls without slipping, its angular speed about its axis 

is ω = v/r. The kinetic energy at the bottom will be  

 K = Ιω2 + mv2 = ω2 + mv2 = mv2 + mv2 = mv2. 

 This should be equal to the loss of potential energy mg sinθ. Thus,  

 mv2 = mg sinθ or v =  
 

Example 72. A rod AB of mass 2m and length  is lying on a horizontal frictinless surface. A particle of mass 

m traveling along the surface hits the end 'A' of the rod with a velocity v0 in a direction 

perpendicular to AB. The collisin is elastic. After the collision the particle comes to rest. Find out 

after collision  

 (a) Velocity of centre of mass of rod (b) Angular velocity. 

Solution : (a) Let just after collision lthe sped of COM of rod is v and angular velocity about COM is ω.  



 

      
 External force on the system (rod + mass) in horizontal plane is zero 

 Apply conservation of linear momentum in x direction  

  mv0 = 2mv   ....(1) 

 Net torque on the system about any point is zero  

 Apply conservation of angular momentum about COM of rod. 

  mv0  = Ιω  ⇒ mv0  = ω  

  mv0 = mω    ....(2) 

 From eq (1) velocity of centre of mass v =  

 From eq (2) anuglar velocity ω = . 

 

Example 73. Uniform & smooth Rod of length  is moving with a velocity of centre v and angular velocity ω on 

smooth horizontal surface. Findout velocity of point A and B.      

     

Solution : velocity of point A w.r.t. center is ω     

 velocity of point A w.r.t. ground  VA = V + ω    

 velocity of point B w.r.t. center is  – ω     

 velocity of point B w.r.t. ground  VB = V –  ω   
 

Example 74. Find the moment of inertia of the uniform square plate of side 'a' and mass M about the axis AB.

    

            

Solution : dI = dm ;   I =  =  =   
 

 



 

Example 75. Find the moment of inertia of a uniform rectangular plate of mass M, edges of length '' and 'b' 

about its axis passing through centre and perpendicular to it.    

     

Solution : Using perpendicular axis theorem I3 = I1 + I2      

 I1 =     

 I2 =  

 I3 =  

     

Example 76. Find the moment of inertia of a uniform square plate of mass M, edge of length '' about its axis 

passing through P and perpendicular to it.      

     

Solution : IP =  =   
Example 77. Find out the moment of inertia of a ring having uniform mass distribution of mass M & radius  R 

about an axis which is tangent to the ring and (i) in the plane of the ring (ii) perpendicular to the 
plane of the ring.  

 (i)   (ii)    
Solution : (i)  Moment of inertia about an axis passing through centre of ring and plane of the ring  

  I1 =   

  Using parallel axis theorem  I' = I1 + MR2  =   
 (ii)  Moment of inertia about an axis passing through centre of ring and perpendicular to 

 palne of the ring  
  IC = MR2   
  Using parallel axis theorem  I'' = IC + MR2  =  2MR2   
 

Example 78. Calculate the moment of inertia of a rectangular frame  formed by uniform rods having mass m 
each as shown in figure about an axis passing through its centre and perpendicular to the plane 
of frame ? Also find moment of inertia about an axis  

 passing through PQ ?          



 

       

Solution : (i) Moment of inertia about an axis passing through its centre and perpendicular to the plane of 
frame  

   IC = I1 + I2 + I3 + I4   
   I1 = I3 , I2 = I4    
   IC = 2I1 + 2I2   

   I1 =   ⇒ I2 =    

   so, IC =  
  (ii)  M.I. about axis PQ of rod PQ   I1 = 0  

   M.I. about axis PQ of rod PS    I2 =  

   M.I. about axis PQ of rod QR    I3 =  
   M.I. about axis PQ of rod SR    I4 = mb2 

   I = I1 + I2 + I3 + I4 =  
 

Example 79. In the previous question, during the motion of particle from P to Q. Torque of gravitational force 

about P is : 

 (1) increasing     (2) decreasing   

 (3) remains constant     (4) first increasing then decreasing  

Solution : Increasing because distance from point P is increasing.  
 

Example 80. A uniform rod of mass m and length  can rotate in vertical plane about a smooth horizontal axis 

hinged at point H. Find angular acceleration α  of the rod  just after it is released from initial 

position making an angle of 370 with horizontal from rest? Find force exerted by the hinge just 

after the rod is released from rest. 

             
Solution : Torque about hing = τH = Ι α  

 mgcos37  = α  

 α = 6g / 5       

 at = α  =  

 mgcos37 – N1 = mat    

 N1 =  

 angular velocity of rod is zero. so N2 = mgsin37° = 3mg/5   

 N =  =  =  



 
 

Example 81.  A uniform rod of length , mass m is hung from two strings of equal length from a ceiling as shown 

in figure . Determine the tensions in the strings ?         

 

Solution : TA + TB = mg   ............(i) 

 Torque about point A is zero 

 So, TB ×  = mg   ............(ii) 

 From eq. (i) & (ii),  TA = mg/3,  TB = 2mg/3. 
 

Example 82. A uniform rod of mass m and length  can rotate freely on a smooth horizontal plane about a 

vertical axis hinged at point H. A point mass having same mass m coming with an initial speed u 

perpendicular to the rod, strikes the rod and sticks to it at a distance of 3/4 from hinge point. 

Find out the angular velocity of the rod just after collision ?      

     
Solution : Angular Momentum about hinge Li = Lf    

  mu =     ⇒ ω =  

Example 83. A cord is wound round the circumference of a wheel of radius r. The axis of the wheel is horizontal 

and moment of inertia about it is I. A weight mg is attached to end of the cord and falls from rest. 

After falling through a distance h, the angular velocity of the wheel will be. 

Solution. mgh = (1/2) Iω2 + (1/2) mv2 = (1/2) Iω2 + (1/2) mr2ω2 or 2mgh = [I + mr2]w2,   ∴      

Example 84. A mass m is supported by a massless string wound round a uniform cylinder of mass m and 

radius R. On  releasing the mass from rest, it will fall with acceleration  

Solution. mgh = mv2 + Iω2 = mv2 + [ mR2] v2/R2 = mv2 

   [ v2 = u2 + 2as] ∴ mgh = m × 2ah    ⇒     a = g  

Example 85. A hollow sphere of mass M and radius R as shown in figure slips on a rough horizontal plane. At 

some instant it has linear velocity v0 and angular velocity about the centre  as shown in figure. 

Calculate the linear velocity after the sphere starts pure rolling.   

           



 

Solution :  Velocity of the centre = v0 and the angular velocity about the centre = . Thus v0 > ω0R. The 

sphere slips forward and thus the friction by the plane on the sphere will act backward. As the 

friction is kinetic, its value is µN = µMg and the sphere will be decelerated by acm = f/M. Hence,  

   v(t) = v0 – t.   .............(i) 

 This friction will also have a torque  = fr about the centre. This torque is clockwise and in the 

direction of ω0. Hence the angular acceleration about the centre will be  

α = f =  =  

 and the clockwise angular velocity at time t will be  ω(t) = ω0  + t =  + t 

 Pure rolling starts when v(t) = Rω(t) i.e., v(t) =  +  t ............(ii) 

 Eliminating t from (i) and (ii),  v(t) + v(t) = v0 +   or v(t) =  × 2v0 = v0. 

 Thus, the sphere rolls with linear velocity 4v0/5 in the forward direction. 

 


