Basic Inorganic Nomenclature

Section (A) : Oxidation number

Th-1 Oxidation Number

- It is an imaginary or apparent charge developed over atom of an element when it goes from its elemental free state to combined state in molecules.
- It is calculated on the basis of an arbitrary set of rules.
- It is a relative charge in a particular bonded state.
- In order to keep track of electron-shifts in chemical reactions involving formation of compounds, a more practical method of using oxidation number has been developed.
- In this method, it is always assumed that there is a complete transfer of electron from a less electronegative atom to a more electronegative atom.

Rules governing oxidation number

The following rules are helpful in calculating oxidation number of the elements in their different compounds. It is to be remembered that the basis of these rule is the electronegativity of the element.

• Fluorine atom :

Fluorine is most electronegative atom (known). It always has oxidation number equal to -1 in all its compounds

• Oxygen atom :

In general and as well as in its oxides, oxygen atom has oxidation number equal to -2.

In case of

- (i) peroxide (e.g. H_2O_2 , Na_2O_2) is -1,
- (ii) super oxide (e.g. KO₂) is -1/2
- (iii) ozonide (e.g. KO_3) is -1/3
- (iv) in OF_2 is + 2 & in O_2F_2 is +1

• Hydrogen atom :

In general, H atom has oxidation number equal to +1. But in metallic hydrides (e.g. NaH, KH), it is -1.

• HALOGEN ATOM :

In general, all halogen atoms (Cl, Br, I) have oxidation number equal to -1.

But if halogen atom is attached with a more electronegative atom than halogen atom, then it will show positive oxidation numbers.

e.g. $K \overset{+5}{ClO}_3$, $\overset{+5}{HlO}_3$, $H \overset{+7}{ClO}_4$, $K \overset{+5}{BrO}_3$

• METALS :

(a) Alkali metal (Li, Na, K, Rb) always have oxidation number +1.

(b) Alkaline earth metal (Be, Mg, Ca) always have oxidation number +2.

(c) Aluminium always has +3 oxidation number.

Note : Metal may have positive or zero oxidation number

• Oxidation number of an element in free state or in allotropic forms is always zero

e.g.
$$\overset{0}{O_2}$$
 , $\overset{0}{S_8}$, $\overset{0}{P_4}$, $\overset{0}{O_3}$

- Sum of the oxidation numbers of atoms of all elements in a molecule is zero.
- Sum of the oxidation numbers of atoms of all elements in an ion is equal to the charge on the ion.
- If the group number of an element in modern periodic table is *n*, then its oxidation number may vary from

(but it is mainly applicable for p-block elements)

e.g. N-atom belongs to 15^{th} group in the periodic table, therefore as per rule, its oxidation number may vary from -3 to +5.

$$({\overset{-3}{\mathsf{N}}}{\overset{+2}{\mathsf{N}}}_3,{\overset{+3}{\mathsf{NO}}},{\overset{+3}{\mathsf{N}}}_2{\overset{+3}{\mathsf{O}}}_3,{\overset{+4}{\mathsf{N}}}{\overset{+3}{\mathsf{O}}}_2,{\overset{+5}{\mathsf{N}}}_2{\overset{-3}{\mathsf{O}}}_5)$$

 The maximum possible oxidation number of any element in a compound is never more than the number of electrons in valence shell.(but it is mainly applicable for p-block elements)

4				N	nicr	n can	be s	show	/ in c	comp	oun	a sta	ite				10
1 1 H +1 -1																	18 2 He
	2											13	14	15	16	17	
3 Li +1	3 Be +2											5 B +3 -3	6 C +4 +2 -4 etc.	7 N +5 +4 +3 +1 -3 0	8 0 +2 -1 1/2 -1 -1 -2	9 F -1	10 Ne
11 Na +1	12 Mg +2	3	4	5	6	7	8	9	10	11	12	13 Al +3	14 Si +4 -4	etc. 15 P +5 +3 +1 -3	16 S +6 +4 +2 -2	17 CI +7 +5 +3 +1 0 -1	18 Ar 0
19 K +1	20 Ca +2	21 Sc +2 +3	22 Ti +2 +3 +4	23 V +2 +3 +4 +5	24 Cr +2 +3 +4 +5 +6	25 Mn +2 +3 +4 +5 +6 +7	26 Fe +2 +3 +4 +5 +6	27 Co +2 +3 +4 +5	28 Ni +2 +3 +4	29 Cu +1 +2	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +7 +5 +3 +1 -1	36 Kr +4 +2 0
37 Rb +1	38 Sr +2		1		1	1		1	1	1	1	49 In +3 +1	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 +5 +3 +1 0 _1	54 Xe +8 +6 +4 +2 0
55 Cs +1	56 Ba +2											81 TI +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po	85 At	86 Rn

Table-1 List of common oxidation sate of an element of periodic table, which can be show in compound state

Page 2

* Bold mark oxidation number are general stable oxidation number of an element in compound state.

Section (B) : Inorganic nomenclature

Th-1 Elements

General Rule : The names of metals generally end with-ium or-um (examples are sodium, potassium, aluminum, and magnesium).

The exceptions are metals that were used and named in ancient times, such as iron, copper, and gold.

The names of nonmetals frequently end with-ine, -on, or -gen (such as iodine, argon, and oxygen.)

Given the names of the constituent elements and common ions, most of the common inorganic compounds can be named using the rules presented below.

Th-2 Acids :

Acids are normally classified in two groups, hydracids and oxyacids

Hydracids :

Hydracids are acids which contain hydrogen and a non-metal, but no oxygen. **General Rule :** The names of hydracids have the prefix hydro-(sometimes shortened to hydr-) and the suffix-ic attached to the stem based on the names of the constituent elements (other than hydrogen.)

For example, HCI (made of hydrogen and chlorine) is hydrochloric acid; HBr (made of hydrogen and bromine) is hydrobromic acid; HI (made of hydrogen and iodine) is hydroiodic acid; HCN (made of hydrogen, carbon and nitrogen) is hydrocyanic acid; and H_2S (made of hydrogen and sulfur) is hydrosulfuric acid.

Th-3 Cations (Positive ions) Metal atoms with single positive charge Rule : Names of positive ions end with-ium if the ion has only one oxidation state (Only one level of net charge). For example, the positive ion of sodium is Na⁺ (sodium ion), and the positive ion of aluminium is Al³⁺ (aluminium ion).

Metal atoms with more than one possible charges

Rule : If the cation has variable valency (charge), charge is specified in roman numerals in round brackets immediately after the name of metal atom. For example , Sn^{2+} is written as tin (II) ion.

Alternately, the less positive ion ends with -ous, and the more positive ion ends with -ic. For instance, the two positive ions of copper are Cu⁺ (cuprous) and Cu²⁺ (cupric). The oxidation state of a positive ion can also be designated by placing a Roman numeral after the name of the elements. These positive ions of copper can also be written as copper(I) and copper(II), respectively.

lons	Name
Cu⁺	cuprous ion
Cu ²⁺	cupric ion
Sn ²⁺	Stannous ion
Sn ⁴⁺	Stannic ion
Fe ³⁺	Ferric ion
Fe ²⁺	Ferrous ion

General Rule-3

Suffix-nium is often used with cations containing non metals.

For example, the positive ion of ammonia is NH_{4^+} (ammonium) and the positive ion of water (H₂O) is H_3O^+ or H^+ (hydronium).

Remember these names ! NO₂⁺ : nitronium NO⁺ : nitrosonium H₃O⁺ : hydronium From NH₂ ammonia is di

From NH₃ ammonia is derived NH₄⁺ : ammonium. Similarly. N₂H₄ : hydrazine \longrightarrow N₂H₅ : hydrazinium C₆H₅NH₂ : aniline \longrightarrow C₆H₅NH₃⁺ : anilinium C₅H₅N : pyridine \longrightarrow C₅H₅NH⁺ : pyridinium

Th-4 Anions (Negative lons)

Basic Inorganic Nomenclature

Anions can always be looked upon as ions derived from acids by removal of one or more protons. Accordingly, anions can be classified as follows :

Anions derived from hydracids

Rule : Names of negative ions from hydracids end in –ide.

For example, Cl⁻ (chloride) from HCl, and CN⁻ (cyanide) from HCN. Following examples will give you a better insight in this nomenclature. It is also useful to remember them.

Remember these names

Anion	Name
H⁻	Hydride ion
D-	Deuteride ion
F⁻	Fluoride ion
CI⁻	Chloride ion
Br−	Bromide ion
-	lodide ion
O ²⁻	Oxide ion
S ^{2–}	Sulphide ion
Se ²⁻	Selenide ion
Te ²⁻	Telluride ion
N ^{3–}	Nitride ion
P ^{3–}	Phosphide ion
As ^{3–}	Arsenide ion
Sb ^{3–}	Antimonide ion
C4-	Carbide ion
Si ^{4–}	Silicide ion
B ³⁻	Boride ion

Th-5 Oxoacids or Oxyacids

The acids which contain hydrogen, oxygen and a metal or non-metal.

In this case, more than one possibility aries due to the presence of different number of oxygen atoms. An example of such an oxoacid series is as follows: HCIO, HCIO₂, HCIO₃, HCIO₄. All these contains same three elements but differ in the number of oxygen atoms present.

General Rule-1 :

If a class of acids contains only one member, its name is given the suffix-ic.

For example, hydrogen, carbon and oxygen combine to form only one acid i.e. H_2CO_3 . It is called carbonic acid (carbonic acid.)

General Rule-2 :

If an acid series contains two acids, such as H_2SO_4 and H_2SO_3 , the acid containing more oxygen atoms is given the suffix -ic, while the acid with fewer oxygen atoms is given the suffix-ous.

For example, H_2SO_4 is sulphuric acid, and H_2SO_3 is sulphurous acid.

Similarly, HNO_3 is nitric acid and HNO_2 is nitrous acid.

General Rule-3 :

The prefix ortho and meta have been used to distinguish acids differenting in the 'content of water'

 (H_3BO_3) - orthoboric acid $-H_2O$ $(HBO_2)_n$ - metaboric acid

General Rule-4 :

The prefix pyro has been used to designate an acid formed from two molecules of an ortho acid minus one molecule of water. For example, $H_4P_2O_7$ -pyro phosphoric acid

General Rule-5 :

The prefix peroxo indicates the substitution '-O-' by '-O-O-'

HNO₄ - peroxo nitric acid H₃PO₅ - peroxo mono phosphoric acid

General Rule-6 :

Acid derived by oxoacids by replacement of oxygen by sulphur are called thio acids. $H_2S_2O_2$ - thio sulphurous acid $H_2S_2O_3$ - thio sulphuric acid

Note : when more than one oxygen atom can be replaced by sulphur the number of sulphur atom should generally indicated H₃PO₃S mono thio phosphoric acid H₃PO₂S₂ Dithiophosphoric acid In the case of an extensive acid series

(such as HCIO, HCIO₂, HCIO₃, HCIO₄), the

Basic Inorganic Nomenclature

acid with the one oxygen atoms lesser than -ous acid is given the prefix hypo- and the suffix -ous, and the acid with the one oxygen atom more than the -ic acid is given the prefix per and a suffix-ic.

In the above example, HCIO is hypochlorous acid $HCIO_2$ is chlorous acid, $HCIO_3$ is chloric acid, and $HCIO_4$ is perchloric acid.

- Th-6 Anions derived from oxyacids (oxyanions)
- Anion derived from an oxyacid by removal of one or more H⁺ ions is termed as oxyanion.

Rule : If the oxyacid is – ic acid, suffix - ate is used with oxy-anion.

For example

CO ₃ ^{2–}	carbonate (from H ₂ CO ₃)
ZnO ₂ ^{2–}	zincate
SiO ₃ ^{2–}	silicate

(ii) Rule : If the oxyacid is - ous acid, suffix
 -ite is used with oxy-anion.
 For example, NO₂⁻ (nitrite) is derived from

 HNO_2 (nitrous acid), and $SO_3{}^{2-}$ (sulphite) is derived from H_2SO_3 (sulphurous acid)

(iii) Rule : If the oxyacid has prefixes per-or hypo-, the oxyanion will have same prefixes.

For example, CIO₄⁻ perchlorate ion from HCIO₄, perchloric acid, CIO⁻ hypochlorite ion from HCIO, hypochlorous acid Remember these names !

SO4 ²⁻	Sulphate
SO ₃ ²⁻	Sulphite
NO ₃ -	Nitrate
NO ₂ -	Nitrite
SnO₃²−	Stannate
SnO ₂ ^{2–}	Stannite
PbO ₃ ^{2–}	Plumbate
PbO ₂ ²⁻	Plumbite

(iv) Anions containing replacable hydrogen ions

Polyprotic acid. Any acid containing more than one replacable hydrogens is said to be a polyprotic acid.

(v) Replacable hydrogens. H atoms which can be lost as H⁺ in reactions with a base. H atoms connected to O atoms in oxyacids are all replacable. If all the replacable hydrogens are removed, we obtain the anions discussed in the sections above. However, in all the polyprotic acids it is always possible to remove less than the maximum number of replacable hydrogens. e.g. H₃PO₄ is triprotic. We can remove one, two or three H⁺ ions from it to generate H₂PO₄⁻, HPO₄²⁻ and PO₄³⁻.

You are already familiar with phosphate ion, PO_4^{3-} . The other two anions, $H_2PO_4^{-}$ and HPO_4^{2-} still contain H atoms that are replacable. We consider their nomenclature in this section.

- (vi) Rule-1 : A prefix bi- (old notation) or hydrogen – (IUPAC notation) is attached to the name of anion.
- (vii) Rule-2 : For triprotic or higher acids, numerical prefixes (e.g. mono, bi, tri) are also used to indicate the number of replacable H atoms left in the sample).
 eg. HCO₃⁻ is bicarbonate or hydrogen carbonate
 HSO₃⁻ bisulphite or hydrogen sulphite
 HS⁻ bisulphide or hydrogen sulphide etc. when anion has –3 charge,
 e.g. PO₄³⁻ then following possibilities arise.
 HPO₄²⁻ monohydrogen phosphate,

H₂PO₄- dihydrogen phosphate.

to memory)	
Anion	Name
HO-	Hydroxide ion
O ₂ ^{2–}	Peroxide ion
O ₂ -	Superoxide ion
S ₂ ²⁻	Disulphide ion
l ₃ -	Triodide ion
N ₃ -	Azide ion
NH ²⁻	Imide ion

Th-7 Miscellaneous Anions (To be comitted to memory)

NH ₂ -	Amide ion
CN-	Cyanide ion
C ₂ ²⁻	Acetylide ion
O ₃ -	Ozonide ion
MnO4 ²⁻	Manganate ion
MnO ₄ -	Permanganate ion
SCN-	Thiocyanate ion
S ₂ O ₃ ²⁻	Thiosulphate ion
CH ₃ COO ⁻	Acetate ion
C ₂ O ₄ ²⁻	Oxalate ion

Basic Inorganic Nomenclature

- Th-8 Method of writing formula of an ionic compound
 In order to write the formula of an ionic compound which is made up of two ions (simple or polyatomic) having net charges x and y respectively, follow the following procedure.
 (i) Write the symbols of the ions side by side
- in such a way that positive ion is at the left and negative ion at the right as AB.(ii) Write their charges on the top of each
- (ii) Write their charges on the top of each symbol as A^xB^y.
- (iii) Now apply criss-cross rule as

i.e. formula AyBx.

(iv) Cancel out any common factor (or HCF).

Examples :

1.	Calcium chloride	2 Ca Cl = CaCl ₂
2.	Aluminium oxide	$AI = AI_2O_3$
3.	Potassium phosphate	$K = K_3 PO_4$
4.	Magnesium nitride	$Mg^{2} = Mg_{3}N_{2}$
5.	Calcium oxide	$2 \qquad 2 \qquad 2 \qquad = Ca_2O_2$
6.	Ammonium sulphate	1 2 NH_4 $SO_4 = (NH_4)_2SO_4$
-	Cancelling the c	ommon factor, answer is CaO

Cancelling the common factor, answer is CaO

Th.9 : Some important points :

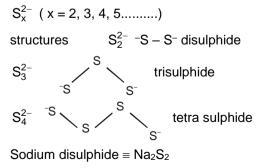
(i) If both element are non-metallic then more electronegative element is anionic part As₂O₃ – arsenic (III) oxide OF₂ – oxygen di flouride, ICl₃ – lodine trichloride

(ii) pyro name is attached with acid if it is derived by removing one water molecule from two acid molecules.
 Two acid molecules — ^{-H₂O}→ pyro acid,

N, C, Cl, Br, not forms pyroxy acids $2HCIO_4 \xrightarrow[-H_2O]{} Cl_2O_7$ not oxiacid it is an oxide

(iii) Meta acid: If one water molecule is removing from one acid molecule then meta acid is obtained.
 One acid molecule → meta acid,

N, C, S, Cl, not forms metaoxy only Si, P, B forms metaoxy acids,


(iv) Naming of oxoanions derived from oxyacids

- ic acid = - ate - us acid = - ite

There are some more anions which are (v) very common like : CrO42- - Chromate (name is derived from SO₄²⁻ sulphate as all features are same) FeO₄²⁻ – ferrate MoO₄²⁻ - molybolate WO42- - tungstate MnO42- - manganate corresponding acids can be H₂CrO₄ – chromic acid H₂MnO₄ – manganic acid Higher oxidation state of manganese = \Rightarrow +7 MnO₄[−]

So called permanganate, HMnO₄ permanganic acid

(vi) Polysulphides

Page| 7

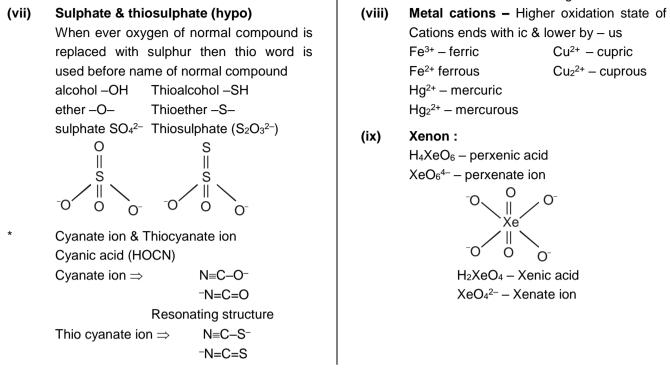
Basic Inorganic Nomenclature

Ο

Xe

Ш

0


0

 \cap

Resonating structure

Cu²⁺ – cupric

 $Cu_2^{2+} - cuprous$

	Resonating structure Thio cyanate ion \Rightarrow N=C-S ⁻ -N=C=S		
		betw	veen Atoms and ions
	Atoms		lons
1	Atoms are perfectly neutral	1	lons are charged particles containing one or more
			atoms.
2	In atoms, the number of protons is equal to	2	In cations (positively charged ions), number of
	the number of electrons. Na (protons 11,		protons is more than the number of electrons. In
	electrons 11) ; CI (protons 17, electrons 17)		anions (negatively charged ions) the no. of protons
			is less than the number of electrons. e.g.
			Na ⁺ (protons 11, electrons 10).
			Cl⁻ (protons 17, electrons 18)
3	Except noble gases, atoms have less than 8	3	lons have generally 8 electrons in the outermost
	electrons in the outermost orbit e.g. Na : 2, 8,		orbit, i.e., ns ² np ⁶ configuration.
	1; Ca : 2, 8,8, 2; Cl : 2, 8, 7; S : 2, 8, 6		Na ⁺ : 2, 8; Cl ⁻ : 2, 8, 8; Ca ²⁺ : 2, 8, 8
4	Chemical activity is due to loss or gain or	4	The chemical activity is due to the charge on the
	sharing of electrons as to acquire noble gas		ion. Oppositely charged ions are held together by
	configuration		electrostatic forces.
L		L	

			Table - 3 : Naming of Oxyacid	laming of	Oxyacid		
Acid	Acid end with IC suffix		Suffix-ous	Pr	Prefix -per;suffix-ic		Prefix -pyro
Formula	Name	Formula	Name	Formula	Name	Formula	Name
H ₃ BO ₃	Orthoboric acid	HNO ₂	Nitrous Acid	HNO4	Peroxynitric acid	$H_4P_2O_7$	Pyrophosphoric acid
H ₂ CO ₃	Carbonic acid	H_2SO_3	Sulphurous acid	H ₃ PO ₅	Peroxymonophosphoric acid	I H4P2O5	Pyrophosphrous acid
HONC	Isocyanic acid	$H_2S_2O_5$	Disulphurous acid	$H_4P_2O_5$	Peroxy diphosphric acid	$H_4B_2O_5$	Pyroboric acid
HOCN	Cyanic acid	HCIO ₂	Chlorous acid	H_2SO_5	Peroxymono sulphuric acid	$H_6Si_2O_7$	Pyro silicilic acid
HNO ₃	Nitric Acid	Prefix	Prefix - Hypo ; suffix-ic	$H_2S_2O_8$	Peroxy disulphuric acid	$H_2S_2O_7$	Pyrosulphuric acid
H ₂ NO ₂	Nitroxylic acid	$H_2N_2O_2$	Hyponitrous acid	HCIO4	Perchloric acid		
H ₃ PO ₄	Orthophosphoric acid	HCIO	Hypochlorous acid				
H ₂ SO ₄	Sulphuric acid	Prefix	Prefix-meta;suffix-ic				
HCIO ₃	Chloric acid	(HBO ₂) _n	Metaboric acid				
$H_2S_2O_6$	Dithionic acid	(HPO ₃) _n	(HPO ₃) _n Meta phosphoric acid				