Exercise-1

ONLY ONE OPTION CORRECT TYPE

Section (A): Physical and chemical properties of Group 13th elements

1.	Which one is a non-me (1) B	etal in group 13(III A) ? (2) Al	(3) Ga	(4) In
2.	Amongst the following, (1) In	which metal exist in liqu (2) Ga	id state during summer (3) Ge	? (4) TI
3.	Which member of grou (1) Boron	p 13 does not generally (2) Aluminium	exhibit the group valenc (3) Gallium	y in its compounds ? (4) Thallium
4.	Thallium shows stable (1) it has higher nuclea (3) it has amphoteric cl	_	se : (2) it shows inert pair (4) it has higher reacti	
5	Boric acid is polymeric (1) its acidic nature (3) its monobasic natur		(2) the presence of hy (4) its geometry	drogen bonds
6.	AICI ₃ is: (1) anhydrous and cove (3) covalent and basic	alent	(2) anhydrous and ion (4) ionic and basic	ic
7.	Which of the following (1) B ₂ O ₃	oxides is amphoteric in n (2) SiO ₂	ature ? (3) Al ₂ O ₃	(4) CaO
8.	(2) BCI ₃ and AICI ₃ are b	ooth Lewis acids and BC ooth Lewis acids and AIC ooth equally strong Lewis	I_3 is stronger than BCI_3 .	
9.	Which of the following (1) Boron trioxide show (2) Aluminium is a good (3) Boron resembles in (4) Boron does not form	s the basic character. d reducing agent. many properties with sil	icon.	
10.	(1) It on hydrolysis in w(2) It in acidified aqueo(3) It achieves stability	statements is false about rater forms tetrahedral [A us solution form octahed by forming a dimer in va er of aluminium in its crys	$I(OH)_4]^-$ species. Iral $[AI(H_2O)_6]^{3+}$ ion. pour phase.	?
11.	(1) Oxides of boron (B₂(2) Oxides of aluminium(3) Oxides of indium (In	is not correctly matched (O_3) and silicon $(SiO_2) - A_3$ in (Al_2O_3) and gallium (Ga_2O_3) and thallium (Tl_2O_3) im (GeO_2) and tin (SnO_2)	Acidic in nature. a_2O_3) – Amphoteric in na – Basic in nature.	iture.

Section (B): Compounds of boron and aluminium

1.	On the addition of m formed?	nineral acid to an aqueous	s solution of borax, wh	nich of the following compound is
	(1) Boron hydride	(2) Orthoboric acid	(3) Metaboric acid	(4) Pyroboric acid
2.	Borax is: (1) Na ₂ B ₄ O ₇	(2) Na ₂ B ₄ O ₇ .4H ₂ O	(3) Na ₂ B ₄ O ₇ .7H ₂ O	(4) Na ₂ B ₄ O ₇ .10H ₂ O
3.	Which of the following (1) Zn+2	g metal ions gives borax b (2) Pb ⁺²	ead test ? (3) Al ⁺³	(4) Mn+2
4.	When borax is heater (1) a coloured CoBO (3) a coloured CoBO	=	e with CoO on a loop of (2) a coloured Co(BC (4) a coloured Co(BC	$(0_2)_3$ bead is formed.
5.	Borax is used : (1) in making enamel (3) in making optical	and pottery glazes	(2) as a flux in solder (4) All of these	
6.	From the B_2H_6 all the (1) H_3BO_3	following can be prepared (2) [BH ₂ (NH ₃) ₂] ⁺ [BH ₄] ⁻		(4) NaBH ₄
7.	Diborane reacts with (1) HBO ₂	water to form : (2) H ₃ BO ₃	(3) H ₃ BO ₃ + H ₂	(4) H ₂
8.	When AI is added to (1) no reaction takes (3) water is produced	•	: (2) oxygen is evolved (4) hydrogen is evolv	
9.	Alum is not used: (1) As a mordant in d (3) In the purification	-	(2) As an insecticide(4) In tanning of leath	ner
10.	In the following reaction (1) B(OH) ₃ is a Lewis (3) B(OH) ₃ is amphot		OH) ₄] ⁻ + H ⁺ : (2) B(OH) ₃ is a Lewis (4) none is correct.	base.
11.	Correct formula of both (1) $Na_2[B_4O_5(OH)_4].81$ (3) $Na_2[B_4O_5(OH)_4].10$	H_2O	(2) Na[B ₄ O ₅ (OH) ₅].8H (4) Na ₂ [B ₄ O ₅ (OH) ₄].6H	-
12.	When borax is dissol (1) B(OH) ₃ is formed (3) both B(OH) ₃ and [only	(2) [B(OH) ₄] ⁻ is forme (4) [B ₃ O ₃ (OH) ₄] ⁻ is for	•
13.	Borax bead test is read (1) divalent metals (3) light metals	sponded by :	(2) heavy metals (4) metal which forms	s coloured metaborates
14.	Which of the following (1) B(OH) ₃ + HCl	g products are obtained w (2) B ₂ H ₆ + HCl	hen BCI $_3$ reacts with wa (3) B $_2$ O $_3$ + HCI	ater ? $(4) B2H5CI + H2$

15.

15.	(1) The four terminal hy(2) There are two bridg(3) All six B – H bond a	=	vo boron atoms lie in one o electron bonds.	e plane.	
16.	Alum is found to contain the ratio of: (1) 1:1:1	n hydrated monovalent (2) 1:2:3	cation [M(H ₂ O) ₆] ⁺ , trivale (3) 1:3:2	ent cation $[M'(H_2O)_6]^{3+}$ and SO_4^{2} (4) 1 : 1 : 2	
17.	Alumina is : (1) acidic	(2) basic	(3) amphoteric	(4) none of these	
18.	Aluminium oxide is not (1) aluminium oxide is r (3) aluminium oxide is h		ctions since : (2) reducing agents cor (4) the process pollutes		
Section	on (C) : Physical an	d Chemical proper	ties of Group 14thel	ements	
1.	Which of the following i (1) C	s a semiconductor ? (2) Si	(3) Pb	(4) Sn	
2.	The stability of tetrahali (1) $Pb^{4+} < Sn^{4+} < Ge^{4+} <$ (3) $Pb^{4+} < Ge^{4+} < Si^{4+} <$		o increases in the order : (2) $Si^{4+} < Ge^{4+} < Sn^{4+} <$ (4) $Sn^{4+} < Ge^{4+} < Pb^{4+} <$		
3.	The bond dissociation (1) Sn–Sn > Ge–Ge > Si–(3) C–C > Ge–Ge > Si–		reases in the order : (2) C-C > Si-Si > Ge-(4) C-C > Si-Si > Sn-Si-Si > Sn-Si > Sn-Si-Si > Sn-Si-Si > Sn-Si-Si > Sn-Si-Si > Sn-Si-Si > Sn-Si > Sn-		
4.	C and Si have: (1) Same physical prop (2) Different physical pr (3) Same physical but of (4) Different chemical a	operties. different chemical proper	ties.		
5.	Elements of group 14: (1) exhibit oxidation sta (3) form M ⁻² and M ⁴⁺ io	•	(2) exhibit oxidation sta (4) form M ²⁺ and M ⁴⁺ ior		
6.	The ability of a substan (1) isomerism	ce to assume two or mol	ore crystalline structures is called: (3) isomorphism (4) amorphism		
7.	Carbon forms a large n (1) fixed valency (3) high ionization poten	umber of compounds be	cause it has: (2) contains non-metall (4) contains property of		
8.	Silicon is an important of (1) chlorophyll	constituent of : (2) haemoglobin	(3) rocks	(4) amalgams	
9.	Diamond and graphite a	are : (2) isotopes	(3) allotropes	(4) none of the above	
10.	Which one of the follow (1) Pb	ing is effected by the wa (2) C	ter ? (3) Ge	(4) None	

11.	Which one of these is a $(1) Al_2O_3$	cidic ? (2) SnO ₂	(3) PbO ₂	(4) SiO ₂
12.		arbon family (group 14)? cter decrease.		
13.	be due to: (1) Pb is more electropo (2) ionization potential o (3) ionic radii of Pb ²⁺ an		f Ge. ose of Ge²⁺ and Ge⁴⁺.	unds are strong oxidants. It can
14.	C ₆₀ molecule has a shap (1) soccer ball	oe like : (2) bucky ball	(3) hockey ball	(4) tennis ball
15.	(2) there is large differe(3) six small chloride ion	ns can not be accomodat nce in the electronegativ	ity values between Si an ed around smaller Si ⁴⁺ du	ue to limitation of its size. d Cl. ue to limitation of its size.
16.	In graphite, electrons at (1) localised on every th (3) localised on each C-	nird C-atom.	(2) present in anti-bond (4) spread out between	_
17.	Which of the following is (1) It is a good conductor (3) It is a good conductor	or of electricity.	(2) It is soft.(4) It is made up of C, F	H and O.
Section	on (D) : Compound:	s of carbon and sili	con	
1.	Carbon monoxide is : (1) acidic	(2) neutral	(3) amphoteric	(4) basic
2.	A gas which burns with (1) CO	a blue flame is : (2) O ₂	(3) N ₂	(4) CO ₂
3.	When a mixture of air a (1) producer gas	nd steam is passed over (2) water gas	red hot coke, the outgoi (3) coal gas	ng gas is : (4) none of these gases
4.	Water gas is the mixture (1) CO and N ₂	e of : (2) CO and H ₂	(3) N ₂ and NH ₃	(4) CO, H ₂ and N ₂
5.	Glass is soluble in : (1) HF	(2) H ₂ SO ₄	(3) HCIO ₄	(4) aqua-regia
6.	Silicon reacts with hot s (1) Si(OH) ₄	olution of NaOH forming (2) Si(OH) ₂	: (3) SiO ₂	(4) Na ₂ SiO ₃
7.	The structural unit present (1) Si ₃ O ₉ ⁶⁻	ent in pyrosillicates is : (2) SiO ₄ ⁴⁻	(3) Si ₂ O ₇ ⁶⁻	(4) (Si ₂ O ₅ ²⁻) _n

8.	Quartz is a crystalline (1) Si	variety of : (2) SiO ₂	(3) Na ₂ SiO ₃	(4) SiC
9.	Which oxide of carbor sulphuric acid?	is obtained when potas	ssium hexacyanidoferra	ate(II) is warmed with concentrated
	(1) CO	(2) CO ₂	(3) Both	(4) None
10.	When a mixture of car (1) thionyl chloride	bon monoxide and chlor (2) phosgene	rine is exposed to sunliç (3) phosphine	ght the product formed is : (4) carbon tetrachloride
11.	CO ₂ in water behaves (1) weak dibasic acid I (3) weak diacid base 0	H ₂ CO ₃	(2) weak monobasic (4) weak monoacid l	_
12.	How many O-atoms a	re shared per SiO ₄ tetral (2) 2	nedral in sheet silicates	· ? (4) 1
13.	Which of the following (1) SiO ₄ ⁴⁻	anions is present in the (2) $Si_2O_7^{6-}$	ring/cyclic structure of (3) Si ₃ O ₉ ⁶⁻	
14.	Man-made silicate is : (1) cement	(2) feldspar	(3) mica	(4) zeolites
	Exercise	-2		
1.	Which one of the follo ionisation energies?	wing pairs of elements	has nearly same (i.e. o	difference of only 2-3 kJ mol-1) first
	(1) Al, Ga	(2) B, Ga	(3) In, Tl	(4) B, TI
2.	In IIIA group, TI (thalliur (1) Presence of lone p (3) Large ionic radius	air of electron in TI	ate while other members (2) Inert pair effect (4) None of these	show +3 oxidation state. Why?
3.	AI < Ga < In < TI. It is (1) decreasing first ion (2) increasing electron (3) poor shielding efferesulting into increase	isation enthalpy down the group	ne group with increasing with increasing atomic f orbitals down the gro ge.	g atomic number. c number. oup with increasing atomic number
4.	The ion(s) that act/s as (1) TI+ and AI3+	s an oxidising agent in s (2) B³+ and Al³+	olution is/are : (3) Tl³+ only	(4) B³+ only
5.	Aluminium is not used (1) in silvery paints (3) as a reducing ager		(2) for making utens (4) as oxidizer in me	
6.	(1) washing soda is ex(2) washing soda is ex(3) washing soda reac	•	m soluble aluminate.	

7.

	(3) iron undergoes i	protective oxide layer or reaction with water more trivalent and divalent ion	easily .		
8.	Which one of the fo (1) ${\rm AlI_3}$	llowing can not be prepared (2) TII_3	ared in + 3 oxidation so $(3) BI_3$	tate by the reaction of metals with I ${\rm (4)~GaI_3}$	2 ?
9.	(2) it is easily availa(3) its aqueous solu	ition contains equal amo	unt of strong acid and		
10.	Which of the followi (1) B(OH) ₃	ng is a monobasic Lewis (2) PO(OH) ₃	s acid ? (3) SO ₂ (OH) ₂	(4) CIO ₃ (OH)	
11.	(1) Boric acid is a p (2) Both Tl³+ and Al³ (3) Hydrogen bondi	llowing is the correct sta rotonic acid. It ions act as oxidsing ag ng in H ₃ BO ₃ gives it a lay blue colour to the burne	gent in aqueous solution	on.	
12.	(2) H ₃ BO ₃ (aq) =	ater as : ≥ H+ (aq) + H₂BO⅓ (aq) ⇒ 2H+ (aq) + HBO⅓ (ac) ≥ 3H+ (aq) + BO⅓ (aq)			
13.	(1) There are two b(2) Each boron ator(3) The hydrogen a	ent that is not correct as ridging hydrogen atoms in forms four bonds in did toms are not in the same diborane are similar.	and four terminal hydi oorane.	orane is concerned. rogen atoms in diborane.	
14.	Which of the followi (1) MgO	ng is an amphoteric oxid	le ? (3) Cl ₂ O ₇	(4) Ti ₂ O ₂	
15.	The amphoteric oxide and (3) indium oxide and	nd aluminium oxide.	(2) aluminium ox (4) none of these	kide and gallium oxide. Э.	
16.	Which of the followi (1) BF ₃	ng does not exist in free (2) BCI ₃	state ? (3) BBr ₃	(4) BH ₃	
17.	Acidic strength of B (1) $BF_3 < BCI_3 < BB$ (3) $BBr_3 < BCI_3 < BF$	0 0	: (2) BI ₃ < BBr ₃ < I (4) BF ₃ < BI ₃ < B	3 0	
18.	(1) It has two types(2) Bridging bond a	the structure of dimer of of Al–Cl bond lengths. ngle, Cl–Al–Cl is smaller im, one empty p-orbital p	than terminal bond a	•	

Aluminium is more reactive than iron. But aluminium is less easily corroded than iron because:

19.	(1) The B atoms in it a(2) It contains two 3-ce(3) All B–H bond lengt(4) The molecule is no	entre-2-electron bonds. hs are equal due to reso	nance.	
20.	When orthoboric acid (1) metaboric acid	(H ₃ BO ₃) is heated, the re (2) boron	sidue left is : (3) boric anhydride	(4) borax
21.	An aqueous solution o (1) neutral	f borax is : (2) amphoteric	(3) basic	(4) acidic
22.	The product obtained (1) B ₂ H ₆ .NH ₃	n the reaction of diboran (2) B ₂ H ₆ .2NH ₃	e with excess of ammon (3) (BN) _x	ia at low temperature is : (4) Borazine
23.	Which of the following (1) Borazine	is known as inorganic be (2) Boron nitride		(4) Phosphonitrilic acid
24.		•	H results in the formation (3) $[AI(H_2O)_3(OH)_3]$	
25.	S ₂ : B(OH) ₃ is acidic in	nature.	bridged structure in solid with concentrated sulpho (3) F T T	
26.	=	of: Insaturated hydrocarbonaturated hydrocarbons.	s, CO, CO ₂ , N ₂ and O ₂ .	
27.	Carbon has allotropic (1) its property of cate (3) its non-metallic cha	nation	(2) its ability to form pπ (4) (1) and (2) both	t-pπ bond
28.	 (1) Sn²⁺ compounds at (2) Pb⁴⁺ compounds at (3) Oxides of Sn and F 	ct as oxidising agent. Pb are amphoteric in natu		1 ₂ .
29.	(1) chlorine is more ele(2) iodine and bromine	are of large size. are unable to oxidise Pl		
30.	Which of the following (1) Graphite	allotropic forms of carbo (2) Coal	n is isomorphous with cry (3) Coke	ystalline silicon ? (4) Diamond
31.	C(s) + H2O(g) + Air The products are: (1) CO, H ₂ , N ₂	$ \begin{array}{c} \text{1273K} \\ \text{(2) CO}_2, H_2, N_2 \end{array} $	(3) CO, CO ₂ , N ₂	(4) CO, CH ₄ , N ₂

(1) [BCl₃ and BrCl₃]

(2) [NH₃ and NO-₃]

(3) $[NF_3 \text{ and } BF_3]$

32. CO forms a voltile compound with: (1) nickel (2) copper (3) sodium (4) aluminium 33. In which of the following silicates, three O-atoms are shared per SiO, tetrahedral? (1) Orthosilicate (2) Pyrosilicate (3) Cyclic silicate (4) Sheet silicate $Me_2SiCl_2 \xrightarrow{H_2O} (A) \xrightarrow{condensation} (B)$ 34. The nature of product (B) may be: (1) only linear polymers (2) cyclic products (3) (1) and (2) both (4) none of these 35. A complex cross-linked polymer (silicone) is formed by : (1) hydrolysis of (CH₃)₃ SiCl. (2) hydrolysis of a mixture of (CH₃)₃SiCl and (CH₃)₂SiCl₃ (3) hydrolysis of CH, SiCl, (4) hydrolysis of SiCl, 36. Nitrogen gas is absorbed by: (1) calcium hydroxide (2) ferrous sulphate (3) calcium carbide (4) aluminium carbide 37. Which of the following statements is false for silicon dioxide? (1) In SiO₂, each silicon atom is covalently bonded in a tetrahedral manner to four oxygen atoms. (2) In SiO₂, each oxygen atom is covalently bonded to two silicon atoms. (3) In SiO₂, each oxygen atom is tetrahedrally bonded to four silicon atoms. (4) SiO₂ structure has eight membered rings with alternate silicon and oxygen atoms. 38. SiF, gets hydrolysed giving (1) SiO₂ (2) Si(OH)₂F₂ (3) H₂SiF₆(4) Si(OH), Hydrolysis of SiCl, yields: 39. (1) H₂SiO₃ (2) H₂SiO₄ (3) H₂SiCl₆ (4) None of these 40. Carborundum is: (1) SiC (2) AICI₂ $(3) Al_{2}(SO_{4})_{2}$ (4) Al₂O₂.2H₂O **Exercise-3** PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS) The correct order of C-O bond length among CO, CO₂²⁻ and CO₂ is: 1. [AIPMT 2007] (4) $CO < CO_2 < CO_3^{2-}$ (1) $CO_2 < CO_3^2 < CO$ (2) $CO < CO_3^2 < CO_2$ (3) $CO_3^2 < CO_2 < CO$ Which one of the following compounds is a peroxide? 2. [AIPMT 2010] (4) NO₂ (1) KO₂ (2) BaO₂ (3) MnO₂ The tendency of BF₃, BCl₃ and BBr₃ to behave as Lewis acid decreases in the sequence : 3.> [AIPMT 20101 (1) $BCl_3 > BF_3 > BBr_3$ (2) $BBr_3 > BCl_3 > BF_3$ (3) $BBr_3 > BF_3 > BCl_3$ (4) $BF_3 > BCl_3 > BBr_3$ Which one of the following pairs is isostructural (i.e. having the same shape and hybridization)? 4. [AIPMT 2012]

(4) $[BF_4^- \text{ and } NH_4^+]$

5.>	Which of the following $(1) (SiH_3)_2$	ng is electron-deficient? (2) (BH ₃) ₂	(3) PH ₃	(4) (CH ₃) ₂	[NEET 2013]
6.	_			vater	rty is shown by [AIPMT-2015]
7.		because its molecule roton from water molecule		aceable H+ ion from water releasing p	[NEET-2016]
8.	AIF ₃ is soluble in HF (1) K [AIF ₃ H]	only in presence of KF. It i (2) K ₃ [AIF ₃ H ₃]	s due to the formation $(3) K_3 [AIF_6]$	tion of (4) AIH ₃	[NEET-2016]
9.	 (1) Sn²⁺ is reducing v (2) Sn²⁺ is oxidising v (3) Sn²⁺ and Pb²⁺ are 	ility of ns ² electrons of the while Pb ⁴⁺ is oxidising while Pb ⁴⁺ is reducing both oxidising and reducing while Pb ⁴⁺ is oxidising		rticipate in bonding that	t : [NEET-2017]
10.	The correct order of (1) B < Al < In < Ga (3) B < Ga < Al < TI		ements is (2) B < Ga < Al < (4) B < Al < Ga <		[NEET-2018]
11.	Which one of the foll	owing elements is unable t	o form MF ₆ ³⁻ ion?		[NEET-2018]
	(1) Ga	(2) In	(3) B	(4) AI	
	PART	- II : AIIMS QUEST	ION (PREVIO	OUS YEARS)	
1.	In diborane, the two (1) 60°, 120°	H — B — H angles are nea (2) 95°, 120°	arly : (3) 95°, 150°	(4) 120°, 180°	[AIIMS 2005]
2.	The wrong statement (1) it has 5-members (2) it has 6-members (3) it has sp² hybridiz (4) it has 5-members	ed carbon ring ed carbon ring	pered rings.		[AIIMS 2011]
3.	Reason: P is more (1) If both assertion at (2) If both assertion at (3) If Assertion is true.	exists $R_3N = O$ does not electronegative than N. and reason are true and reand reason are true but reason is false. and reason are false.	ason is the correct	•	

4. Assertion: Pb⁴⁺ compounds are stronger oxidizing agents than Sn⁴⁺ compounds.

Reason: The higher oxidation sate for group-14 elements are more stable for the heavier member of the group due to inert pair effect.

[AIIMS 2017]

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If Assertion is true but reason is false.
- (4) If both assertion and reason are false.

5. In Alum: K₂SO₄. Al₂(SO₄)₃. 24H₂O

[AIIMS 2018]

Which metal can replace Al

(1) Cr

(2) Mn

(3) In

(4) Sc

PART - III : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. Aluminium is extracted by the electrolysis of :

[AIEEE 2002]

(1) alumina

(2) bauxite

(3) molten cryolite.

- (4) alumina mixed with molten cryolite & CaF₂
- 2. Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite:

 [AIEEE 2003]
 - (1) is a non-crystalline substance.
 - (2) is an allotropic form of diamond.
 - (3) has molecules of variable molecular masses like polymers.
 - (4) has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds.
- 3. The soldiers of Napolean army while at Alps during freezing winter suffered a serious problem as regards to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder. This transformation is related to:

 [AIEEE 2004]
 - (1) a change in the crystalline structure of tin.
 - (2) an interaction with nitrogen of the air at very low temperature.
 - (3) a change in the partial pressure of oxygen in the air.
 - (4) an interaction with water vapour contained in the humid air.
- 4. Aluminium chloride exists as dimer, Al₂Cl₆ in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives : [AIEEE 2004]

(1) $[AI(OH)_6]^{3-} + 3HCI$ (2) $[AI(H_2O)_6]^{3+} + 3CI^{-}$

(3) $AI^{3+} + 3CI^{-}$

(4) Al₂O₃ + 6HCl

5. In silicon dioxide : [AIEEE 2005]

- (1) there are double bonds between silicon and oxygen atoms.
- (2) silicon atom is bonded to two oxygen atoms.
- (3) each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bonded to two silicon atoms.
- (4) each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bonded to two silicon atoms.

6. Heating an aqueous solution of aluminium chloride to dryness will give :

[AIEEE 2005]

(1) AI(OH)CI₂

(2) Al₂O₃

(3) Al₂Cl₆

(4) AICI₃

7. The structure of diborane (B_2H_6) contains :

[AIEEE-2005]

- (1) four 2c–2e bonds and four 3c–2e bonds
- (2) two 2c-2e bonds and two 3c-3e bonds
- (3) two 2c–2e bonds and four 3c–2e bonds
- (4) four 2c-2e bonds and two 3c-2e bonds

8.

8.	The number and type	of bonds between two ca	rbon atoms in calcium ca		
	(1) one sigma, one pi	(2) one sigma, two pi	(3) two sigma, one pi	_	EE-2005, 2011] two pi
9.	The correct reason for	energy of B – F in BF $_3$ is higher B – F bond dissoctative B and F in BF $_3$ as	ciation energy as compar	ed to that of C -	- - F is : [AIEEE-2009]
	(2) significant pπ-pπ interaction between C(3) lower degree of pπ-	interaction between B a	and F in $\mathrm{BF_3}$ whereas B and F in $\mathrm{BF_3}$ than that B	there is no pos	ssibility of such
10.	•	es of Si, Ge, Sn and Pb ir $_{2}$ < PbX $_{2}$		< SnX ₂	[AIEEE 2007]
11.	the correct statement? (1) CO is removed by a (2) H ₂ is removed throu (3) CO is oxidized to CO	absorption in aqueous Cu	$u_2^{}\text{Cl}_2^{}$ Solution.	by absorption of	[AIEEE 2008]
12.	Among the following sun hydrolysis is: (1) RSiCl ₃	ubstituted silanes, the one $(2) R_2 SiCl_2$	e which will give rise to c (3) R ₃ SiCl ₂	ross linked silico (4) R ₄ Si	one polymer on [AIEEE 2008]
13.	(1) Beryllium exhibits of(2) Chlorides of both be	ving is the correct statem coordination number of six eryllium and aluminium has 'inorganic benzene'.	х.	ı vapour phase.	[AIEEE 2008]
14.	Boron cannot form white (1) BF_6^{3-}	ch one of the following at (2) BH ₄ -	nions? (3) B(OH) ₄ -	(4) BO ₂ -	EE 2011, 4/120]
15.	(a) They are polymers(b) They are biocompa(c) In general, they ha	ve high thermal stability a esistant to oxidation and	ter. and low dielectric strengt	[JEE (Main) 2 6 h.	019, 4/120]
16.	The chloride that CANI (1) PbCl ₄	NOT get hydrolysed is : (2) SiCl ₄	(3) CCl ₄	[JEE (Main) 2 (4) SnCl ₄	019, 4/120]
17.	The element that does (1) Sn	NOT show catenation is (2) Si	: (3) Ge	[JEE (Main) 2 (4) Pb	019, 4/120]

A	ns	WE	ers

		IIÐM		P F									
						EXER	CISE	- 1					
SEC1	ΓΙΟΝ (A)												
1.	(1)	2.	(2)	3.	(4)	4.	(2)	5	(2)	6.	(1)	7.	(3)
8.	(1)	9.	(1)	10.	(4)	11.	(4)						
SECT	TION (B))											
1.	(2)	2.	(4)	3.	(4)	4.	(4)	5.	(4)	6.	(3)	7.	(3)
8.	(4)	9.	(2)	10.	(1)	11.	(1)	12.	(3)	13.	(4)	14.	(1)
15.	(3)	16.	(4)	17.	(3)	18.	(3)						
SECT	TION (C))											
1.	(2)	2.	(1)	3.	(2)	4.	(4)	5.	(2)	6.	(2)	7.	(4)
8.	(3)	9.	(3)	10.	(1)	11.	(4)	12.	(2)	13.	(4)	14.	(1,2)
15.	(1)	16.	(4)	17.	(3)								
SECT	TION (D))											
1.	(2)	2.	(1)	3.	(1)	4.	(2)	5.	(1)	6.	(4)	7.	(3)
8.	(2)	9.	(1)	10.	(2)	11.	(1)	12.	(3)	13.	(3)	14.	(1)
						EXER	CISE	- 2					
1.	(1)	2.	(2)	3.	(3)	4.	(3)	5.	(4)	6.	(3)	7.	(2)
8.	(2)	9.	(1)	10.	(1)	11.	(3)	12.	(4)	13.	(4)	14.	(2)
15.	(2)	16.	(4)	17.	(1)	18.	(4)	19.	(3)	20.	(3)	21.	(3)
22.	(2)	23.	(1)	24.	(2)	25.	(3)	26.	(2)	27.	(4)	28.	(4)
29.	(3)	30.	(4)	31.	(1)	32.	(1)	33.	(4)	34.	(1)	35.	(3)
36.	(3)	37.	(3)	38.	(4)	39.	(1)	40.	(1)				
						EXER	CISE	- 3					
						P	ART-I						
1.	(4)	2.	(2)	3.	(2)	4.	(4)	5.	(2)	6.	(3)	7.	(4)
8.	(3)	9.	(1)	10.	(2)	11.	(3)						
						PA	ART-II						
1.	(2)	2.	(4)	3.	(3)	4.	(3)	5.	(1)				
						PA	RT-III						
1.	(4)	2.	(4)	3.	(1)	4.	(2)	5.	(4)	6.	(2)	7.	(4)
8.	(2)	9.	(2)	10.	(3)	11.	(3)	12.	(1)	13.	(2)	14.	(1)
15.	(4)	16.	(3)	17.	(4)								