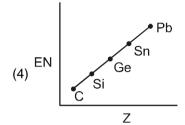
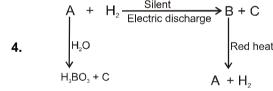

Self Practice Paper (SPP)


1. Which of the following is the correct graph for EN values of carbon family:



Ζ

- **2.** Select the incorrect statement :
 - (1) Silicon does not form an allotrope like graphite because of its no tendency of multiple bond formation.
 - (2) Catenation tendency is greater in C than in Si.
 - (3) CO is stable in nature but SiO does not
 - (4) None of these
- **3.** Which of the following statement about Si is correct.
 - (1) Si predominantly forms covalent componds with oxidation number as +4.
 - (2) Ionisation enthalpy of Si is more than that of carbon.
 - (3) Electron affinity of Si is less than that of carbon.
 - (4) Si can't show coordination number more than 4.

Identify correct statement.

- (1) C is a weak lewis acid
- (3) C is a strong acid

- (2) B is a weak lewis base
- (4) D reacts with NaOH to produce C
- 5. $4BCl_3 + 3LiAlH_4 \longrightarrow A + 3AlCl_3 + 3LiCl$

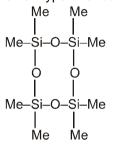
When A reacts with NaOH it produces a colourless combustible gas and another compound 'B'. Select incorrect statement about 'B'.

- (1) It aqueous solution turns red litmus blue
- (2) It shows anionic hydrolysis
- (3) It shows cationic hydrolysis
- (4) It can also produce by reaction of boron with NaOH
- **6.** When heating white lead then find out released gas (A) and (B)

$$2\text{PbCO}_3.\text{Pb(OH)}_2 \xrightarrow{\Delta} \text{Pb}_3\text{O}_4 + (A) + (B) + \text{H}_2\text{O}_4$$

(white lead)

(1) CO, O₂


- (2) CO₂, O₂
- (3) CO₂, CH₄
- (4) CO, CO₂

7. Amorphous boron is extracted from borax by following step

$$\mathsf{Borax} \ \xrightarrow{\ \ (\mathsf{A})\ \ } \mathsf{H_3BO_3} \xrightarrow{\ \ \mathsf{Heat}\ \ } \mathsf{B_2O_3} \xrightarrow{\ \ (\mathsf{B})\ \ } \mathsf{Boron}$$

Then (A) and (B) are:

- (1) H₂SO₄, AI
- (2) HCI, carbon
- (3) H₂SO₄, Mg
- (4) HCI, Fe
- 8. The role of addition of Me₃SiCl during the hydrolysis followed by conduction of Me₂SiCl₂ is.
 - (1) To catalyte the reaction.
 - (2) To terminate the chain and hence controlling the molecular weight.
 - (3) For obtaining a proper cross linking.
 - (4) All of the above
- Given type of silicones are called [P] 9.

- [P] is prepared by controlled hydrolysis of [Q]
- [P] & [Q] are respectively.
- (1) Linear silicone, CH₃SiCl₃

- (2) branched silicone, (CH₂)₂SiCI
- (3) Cyclic silicone, (CH₂)₂SiCl₂
- (4) Cyclic silicone, CH₂SiCl₂
- 10. Which of the following is not a property of silicones?
 - (1) They are combustible
 - (2) They are water repellant
 - (3) They are polymeric liquids or solids
 - (4) Their viscosity does not change significaltly with rise in tamperature.
- 11. Which allotropic form of carbon is thermodynamically most stable?
 - (1) Diamond
- (2) Graphite
- (3) Fullerene
- (4) Charcoal
- 12. Which of the following products is obtained when silicon is heated with methyl chloride at high temperature in the presence of copper?
 - (1) $[Cu(CH_3)_4]$
- (2) CuCl₂
- (3) (CH₃)₂SiCl₂
- (4) SiCl₄
- 13. The dehydration of malonic acid CH₂(COOH)₂ with P₄O₁₀ gives :
 - (1) carbon monoxide
- (2) carbon suboxide
- (3) carbon dioxide
- (4) all three
- 14. Borax on heating with cobalt oxide forms a blue bead of :
 - (1) $Co(BO_2)_2$
- (2) CoBO₂
- $(3) Co_3(BO_3)_2$
- $(4) Na_3Co(BO_3)_2$
- 15. The dissolution of Al(OH)₃ by a solution of NaOH results in the formation of :
 - (1) $[AI(H_2O)_4(OH)]^{2+}$
- (2) $[AI(H_2O)_2(OH)_4]^{-1}$ (3) $[AI(H_2O)_3(OH)_3]$
- $(4) [AI(H_2O)_6(OH)_3]$

- 16. Select the incorrect statement about the boron.
 - (1) Pure form of the elements are obtained by the reduction of BCl₂ with zinc at 900°C.
 - (2) Crystalline boron is attacked only by hot concentrated oxidising agents.
 - (3) Amorphous boron and ammonia at white heat gives (BN), a slippery white solid with a layer structure resembling that of graphite.
 - (4) Boron does form B3+ cation easily.

17.

17.	Aqueous solution containing 1 mol of borax reacts with 2 mol of acids. This is because of : (1) formation of 2 mol of $B(OH)_3$ only (2) formation of 2 mol of $[B(OH)_4]^-$ only (3) formation of 1 mol each of $B(OH)_3$ and $[B(OH)_4]^-$ (4) formation of 2 mol each of $[B(OH)_4]^-$ and $B(OH)_3$, of which only $[B(OH)_4]^-$ reacts with acid												
18.	the list List I ((1) Wa (2) Pro (3) Coa	s: [Fuels) ater gas oducer g	as	(3) iv iv	(4) ii ii	List II (i. A mixt ii. Meth iii. A mix	(Comp oure of Co nane ture of C	osition) Dand N_2 Oand H_2		and CO ₂ (3) ii iv	g the codes gi (4) iv i	ven below	
19.	Water transported through lead pipes becomes poisonous due to the formation							ormation (4) Pt					
20.		When steam is passed over red hot coke, the outgoing gas contains – (1) Producer gas (2) Water gas (3) Coal gas							(4) None of the above				
21.	In BF ₃ , the B-F bond length is 1.30 Å, when BF ₃ is allowed to be treated with Me ₃ N, it forms an adduct Me ₃ N \rightarrow BF ₃ , The bond length of B-F in the adduct is: (1) Greater than 1.30Å (2) Smaller than 1.30 Å (3) Equal to 1.30 Å (4) None of these									an adduct,			
22.	Aluminium is extracted by the electrolysis of : (1) alumina (3) molten cryolite. (4) bauxite (4) alumina mixed with molten cryolite												
23.	called melting boron	as inorg g point i nitride (E	ganic be s –57ºC 3N) _n . Th	nzene. The compo	The comompound X	npound `d X with and Y are	is a dexcesse respe	colourles s of NH ₃ ctively :	s liquid and a	d and is it a still h	er compound highly light senigher tempera	nsitive. Its	
24.	(1) BH ₃ and B ₂ H ₆ (2) NaBH ₄ and C ₆ H ₆ (3) B ₂ H ₆ and B ₃ N ₃ H ₆ (4) B ₄ C ₃ and C ₆ H ₆ When tin is treated with concentrated nitric acid (1) It is converted into stannous nitrate (2) It is converted into stannic nitrate (3) It is converted into metastannic acid (4) It becomes passive												
25.		dioxide			reaction		(3) Si	O ₂ + Na0	DΗ	(4) Si	Cl ₄ + NaOH		
26.	Dry ice (1) So	e is : olid NH ₃		(2) So	lid SO ₂		(3) Sc	olid CO ₂		(4) Sc	olid N ₂		
27.	(1) No	Al is add action to	akes pla		ion			kygen is vdrogen i					
28.	2 7							nertness : 2) Lead with conc. HCI 4) All of above reactions					

- 29. Which of the following statements regarding ortho boric acid (H₃BO₃) is false?
 - (1) It acts as a weak monobasic acid
- (2) It is soluble in hot water

(3) It has a planar structure

- (4) It acts as a tribasic acid
- **30.** Which of the following is a correct match:
 - I: Potash alum $K_2SO_4.Al_2(SO_4)_3.24H_2O$
 - II: Chrome alum K2SO4.Cr2(SO4)3.24H2O
 - III: Potash alum K₂SO₄.Fe₂(SO₄)₃.24H₂O
 - IV : Ammonium alum $-(NH_4)_2SO_4.Al_2(SO_4)_3.24H_2O$
 - (1) I, II, II & IV
- (2) I, II & III
- (3) I, II & IV
- (4) Only II & IV

- **31.** Which of the following is incorrect?
 - (1) The +3 oxidation state stability order is $B^{3+} > AI^{3+} > Ga^{3+} > In^{3+} > TI^{3+}$
 - (2) The +1 oxidation state stability order is $Ga^+ > In^+ > TI^{3+}$
 - (3) Boron has isohedral shape with 20 faces.
 - (4) The +2 oxidation state stability order is Ge^{2+} < Sn^{2+} < Pb^{2+}
- **32.** Which of the following statement is incorrect.
 - (1) Hardest substance found on earth is an allotrope of Carbon.
 - (2) Tin do not have allotropes.
 - (3) Thermodynamically most stable allotrope of carbon have, all the carbons as sp² hybridsed.
 - (4) Most abundant found element among plants from G-14 elements is carbon.
- **33.** Boron is not obtained by :
 - (1) Thermal decomposition of diborane
 - (2) Reduction of boron chloride by hydrogen
 - (3) Reduction of boric anhydride by magnesium metal
 - (4) Heating boric acid
- **34.** Synthetic diamond can be prepared from graphite at
 - (1) very low temperature and high pressure
 - (2) high temperature (around 1600°C & 50,000 atms)
 - (3) diamond cannot be prepared from graphite
 - (4) high temperature and low pressure
- **35.** For given processes, choose the correct order of purity of silicon obtained.

I.
$$SiO_2 + 2C \longrightarrow Si + 2CO$$

II.
$$Si(pure) + 2Cl_2 \longrightarrow SiCl_4$$

$$SiCl_4 + 2Mg \longrightarrow Si + MgCl_2$$

III. Na₂[SiF₆] + 4Na
$$\longrightarrow$$
 6NaF + Si \longrightarrow Zone refined Si

- (1) | > | > | |
- (2) | || > || > |
- (3) I = II = III
- (4) |I| > I > |I|
- **36.** For reaction of boron with element (X_0) , boron forms B_2X_3 . (X_0) can be
 - (a) O₂
- (b) S
- (c) N₂
- (d) Cl₂

- (1) only a
- (2) b & c
- (3) a, b & d
- (4) a & b

- **37.** Choose least probable reaction
 - (1) C(graphite) + O_2 (g) \longrightarrow CO_2 (g)
- (2) C(graphite) + $\frac{1}{2}$ O₂ (g) \longrightarrow CO(g)

(3) Si + $O_2(g) \longrightarrow SiO_2$

(4) Si + $\frac{1}{2}O_{2}(g) \longrightarrow SiO$

38. E represents an element belonging to boron family.

$$2E + 3X_2 \longrightarrow 2EX_3$$

(X = F, Cl, Br, I)

- (1) Oxidation state of E in all EX₃ is +3
- (2) All EX₃ are predominantly ionic
- (3) TI does not form TIX, as TI+1 is more stable than TI+3
- (4) There exists some EX₃ for which E shows +1 oxidation state.
- 39. E represents an element belonging to carbon family.

$$E + 2X_2 \longrightarrow EX_4$$

(X = F, Cl, Br, I)

- (1) Stability of EX, decreases down the 14th group
- (2) Pbl, does not exist
- (3) Ge & Pb forms EX, as well.
- (4) All are correct
- 40. Conc. HNO₃
 - (1) Reacts with aluminium vigorously
- (2) Reacts with aluminium to form aluminium nitrate
- (3) Does not react with aluminium
- (4) Reacts with platinum
- 41. The hardest substance amongst the following is:
 - (1) B₄C
- (2) graphite
- (3) titanium
- (4) SiC

42. Which of the following reaction yields boron nitride.

(1)
$$B_2H_6 + NH_3(excess) \frac{1000}{temperature}$$

(2)
$$B_2H_6 + NH_3(excess) = \frac{(>200^{\circ}C)}{\text{high temperature}}$$

(3)
$$B_2H_6 + 2NH_3 \xrightarrow{\text{high temperature}}$$

$$(4) B2F6 + 2N(CH3)3 \longrightarrow$$

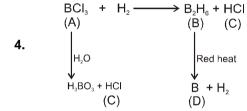
- 43. Which hydride among the following has different structure than others:
 - (1) Diborane (B₂H₆)

(2) Dimer of alane (Al₂H₆)

(3) Digallane (Ga₂H_e)

- (4) Silane (SiH₄)
- Production of Silane from trichlorosilane involves boiling of HSiCl₂, products obtained are: 44.
 - (1) Only SiH,
- (2) SiH₄ and SiCl₄
- (3) SiH_4 , H_2 and $SiCI_4$ (4) H_2 and SiH_4

- 45. In Zeolite:
 - (1) Ti^{IV} substitute some Si^{IV} in 3D–network of SiO₂.
 - (2) Aluminium atoms substitute some Si^{IV} in 3D-network of SiO₂.
 - (3) Na+ or Ca2+ replaces some Si^{IV} in 3D-network of SiO₂.
 - (4) Aluminium replaces oxygen in 3D-network of SiO₂.


SPP Answers

1.	(2)	2.	(4)	3.	(1)	4.	(3)	5.	(3)	6.	(4)	7.	(3)
8.	(2)	9.	(3)	10.	(1)	11.	(2)	12.	(3)	13.	(2)	14.	(1)
15.	(2)	16.	(4)	17.	(4)	18.	(1)	19.	(3)	20.	(2)	21.	(1)
22.	(4)	23.	(3)	24.	(3)	25.	(1)	26.	(3)	27.	(4)	28.	(4)
29.	(4)	30.	(3)	31.	(2)	32.	(2)	33.	(4)	34.	(2)	35.	(2)
36.	(4)	37.	(4)	38.	(4)	39.	(4)	40.	(3)	41.	(1)	42.	(2)
43.	(4)	44.	(2)	45.	(2)								

SPP Solutions

1. The EN values of Carbon family are:

Element	С	Si	Ge	Sn	Pb	
EN	2.5	1.8	1.8	1.8	1.9	

- 5. A is B_2H_6 $B_2H_6 + 6 \text{ NaOH} \longrightarrow 2 \text{ Na}_3\text{BO}_3 + 6 \text{ H}_2$ B is Na_3BO_3 a salt of SBWA.
- 6. $2PbCO_3.Pb(OH)_2 \xrightarrow{\Delta} Pb_3O_4 + CO + CO_2 + H_2O$
- 7. $\begin{aligned} \text{Na}_2 \text{B}_4 \text{O}_7 + \text{H}_2 \text{SO}_4 + 5 \text{H}_2 \text{O} &\longrightarrow \text{Na}_2 \text{SO}_4 + 4 \text{H}_3 \text{BO}_3 \\ 2 \text{H}_3 \text{BO}_3 &\longrightarrow \text{B}_2 \text{O}_3 + 3 \text{H}_2 \text{O} \\ \text{B}_2 \text{O}_3 + 3 \text{Mg} &\longrightarrow 2 \text{B} + 3 \text{MgO} \end{aligned}$
- **8.** Being containing one hallogen atom it is ultilized for terminating the chain.
- 9. $4(CH_3)_2 + 8H_2O \rightarrow [P] + 8HCI + 4H_2O$
- 10. It is a fact.
- **11.** ΔH_f^{Θ} of graphite is taken as zero.
- 12. $2CH_3CI + Si \xrightarrow{Cu \text{ powder}} (CH_3)_2SiCl_2$
- **14.** CoO + $B_2O_3 \longrightarrow Co(BO_2)_2$ (blue bead)
- **15.** As Al(OH)₃ is amphoteric in nature and thus form $[Al(H_2O)_2(OH)_4]^T$.
- **16.** Due to small size of boron, the sum of its first three ionization enthalpies is very high. This prevents it to form +3 ions.
- 17. $[B_4O_5(OH)_4]^{2-} + 5H_2O \Longrightarrow 2B(OH)_3$ (weak acid) + $2[B(OH_4)]^-$ (salt)

- **22.** Alumina is mixed with cryolite, in molten state which make alumina good conductor and lowers the fusion temperature also.
- 23. The reactions involved are

$$3B_2H_6 + 6NH_3 \longrightarrow 2B_3N_3H_6 + 12H_2$$
; $B_2H_6 + NH_3$ (excess) $\xrightarrow{\text{at higher temperature}}$ $(BN)_n + H_2$ (X)

Y is borazole which is isosteric with benzene.

- 28. (1) Pb + $H_2SO_4 \longrightarrow PbSO_4$ (layer) + $H_2 \uparrow$
 - (2) Pb + Conc. HCl → PbCl₂(Coating) + H₂ ↑
 - (3) $2AI + 3/2 O_2 \longrightarrow AI_2O_3(s)$
- **29.** $B(OH)_3 + 2HOH \Longrightarrow [B(OH)_4]^- + H_3O^+$.

In aqueous solution the boron completes its octet by accepting OH- from water molecules. It therefore function as a weak monobasic lewis acid.

- 31. The +1 oxidation state stability order is $B^+ < Al^+ < Ga^+ < In^+ < Tl^+$.
- 32. (2) is incorrect. Tin can exist as white Tin and Grey tin.
 - (1) Correct, Diamond.
 - (3) Graphite thermodynamically more stable than diamond.
 - (4) Plants have high carbon content among G-14 elements.
- 33. $B_2H_6 \xrightarrow{\Delta} 2B + 2H_2 \uparrow$

$$BCl_3 + H_2 \xrightarrow{\Delta} B + HCl \uparrow$$

$$B_2O_3 + Mg \longrightarrow B + MgO$$

$$H_3BO_3 \xrightarrow{\Delta} B_2O_3 + H_2O$$

36. (1) $4B + 3O_2 \xrightarrow{\Delta} 2B_2O_3$

(2) 2B + 3S $\xrightarrow{1200^{\circ}\text{C}}$ B₂S₃

(3) $2B + N_2 \xrightarrow{\Delta} 2BN$

- (4) $2B + 3Cl_2 \xrightarrow{\Delta} 2BCl_3$
- **41.** Boron carbide is harder than silicon carbide.