d & f-block elements & their important compounds

Element		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Atomic											
number		21	22	23	24	25	26	27	28	29	30
Electronic con	figuration										
	М	3d ¹ 4s ²	$3d^24s^2$	3d ³ 4s ²	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	3d ⁷ 4s ²	3d84s2	3d ¹⁰ 4s ¹	3d ¹⁰ 4s ²
	M+	3d ¹ 4s ¹	3d ² 4s ¹	3d ³ 4s ¹	3d ⁵	3d ⁵ 4s ¹	3d ⁶ 4s ¹	3d74s1	3d84s1	3d ¹⁰	3d ¹⁰ 4s ¹
	M ²⁺	3d ¹	3d ²	3d ³	3d ⁴	3d ⁵	3d ⁶	3d ⁷	3d ⁸	3d ⁹	3d ¹⁰
	M ³⁺	[Ar]	3d ¹	3d ²	3d ³	3d ⁴	3d⁵	3d ⁶	3d ⁷	_	_
Enthalpy of at	omisation,	 ΔaH [⊕] / kJ	mol ⁻¹								
		326	473	515	397	281	416	425	430	339	126
Ionisation enth	nalpy / Δ _i H⁻	/ kJ mol	1								
$\Delta_i H^\oplus$	I	631	656	650	653	717	762	758	736	745	906
$\Delta_{i}H^{\oplus}$	II	1235	1309	1414	1592	1509	1561	1644	1752	1958	1734
$\Delta_i H^\oplus$	Ш	2393	2657	2833	2990	3260	2962	3243	3402	3556	3829
Metallic/ionic	М	164	147	135	129	137	126	125	125	128	137
radii/pm	M ²⁺	_	_	79	82	82	77	74	70	73	75
	M ³⁺	73	67	64	62	65	65	61	60	-	_
Standard											
electrode		-	-1.63	-1.18	-0.90	-1.18	-0.44	-0.28	-0.25	+0.34	-0.76
Potential E [⊕]											
/ V	M ³⁺ /M ²⁺	_	-0.37	-0.26	-0.41	+1.57	+0.77	+1.97	_	_	_
Density/g											
cm ⁻³		3.43	4.1	6.07	7.19	7.21	7.8	8.7	8.9	8.9	7.1

		d-block Elements										
Last	electron enters in (r	n – 1)d subshell. d-block elements lie on middle of periodic table.										
		General Introduction										
1.	Occurrence	Three of transition metals are very abundant in the earth's crust.										
		Fe \rightarrow 4 th most abundant elements in earth's crust by weight. Ti \rightarrow 5 th most abundant elements in earth's crust by weight. Mn \rightarrow 12 th most abundant elements in earth's crust by weight.										
	First row	ement with even atomic no. are in general more abundant than their neighbours ith odd atomic no. except for Mn ($Z=25$) but still 12^{th} most abundant element by eight.										
	2nd and 3rd row	Less abundant than 1 st d- series elements. Tc → does not occur in nature. Last six members of 2 nd and 3 rd row occur less than 0.16 ppm in earth's crust.										
	Coinage metals	Cu, Ag and Au are called coinage metals.										
	Noble metals	Cu, Ag, Au, Hg and Pt.										
2.	No. of elements	Total d-block elements – (40) Total transition elements – (36). If 112 elements are included in periodic table. (Except Zn, Cd, Hg and Uub)										
3.	Groups	IIIB to VIIB, VIII, IB, IIB or group 3 to 12 (IUPAC).										
4.	Period	th to 7 th 4 th period 3d- series (Sc - Zn) 5 th period 4d- series (Y - Cd) 6 th period 5d- series (La – Hg) 7 th period 6d- series (Ac – Uub)										

5d¹6s²

89

Ac**

6d¹7s¹

6d Series

4f¹⁴5d²6s²

104

Rf

5d³6s²

105

Db

5d⁴6s²

106

Sg

5d⁵6s²

107

Bh

5d⁶6s²

108

Hs

5d⁷6s²

109

Mt

5d⁹6s¹

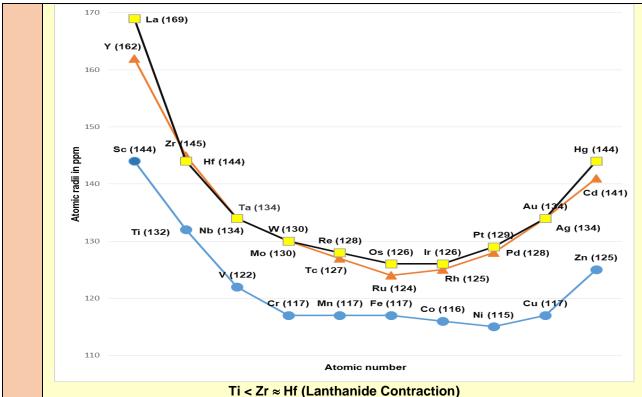
110

Ds

				Perio	dic tre	nds and	l chemi	cal pro	perties			
S.N.	Prope	erties					D	ISCRIPT	ION			
1	Met chara			metall Good Metall With t regula The tr	All the transition elements are metals, therefore they are showing al metallicproperties. Good conductor of heat and electricity. Metallic lustre, strong and ductile. With the exception of Zn, Cd, Hg, Mn all the transition metals have or egular metallic structure. The transition metals are hard and have low volatility (except Zn, Cd and I Lattice Structures of Transition Metals (Table-1)							
Sc	Ti	· ·	V	С	r	Mn	Fe	Со	Ni	(Cu	Zn
hon	han	i i	haa	h	00	X	hoo	000	200		non	<u> </u>
hcp (bcc)	(bcc)		bcc			(hcp)	bcc (hcp)	сср	сср	(X (hcp)
V	Zr		Nb		lo	Tc	Ru	Rh	Pd			Cd
Нср	hcp			cc	bcc	hcp	hcp	ccr		ср	сср	X
(bcc)	(bcc)											(hcp)
La	Hf		Та	W	l	Re	Os	lr	Pt		Au	Hg
hcp	hen									,	-tu	ı ıg
(ccp, b	hcp (bcc)		bcc	b	cc	hcp	hcp	сср	сср		сср	X
(ccp, b	Elect	ronic	ccl	= body	/ centred	cubic ; ł packed ;	ncp = he	ccp xagonal	close pa	cked		
	occ) (bcc)	ronic	ccl	= body	/ centred	cubic ; ł packed ;	ncp = he	ccp xagonal	close pa	cked		
(ccp, b	Elect	ronic	ccl	= body o = cub (n – 1	/ centred pic close)d ^{1 – 10} ns	cubic; h	ncp = hex X = a typ	xagonal pical me	close pa	cked	сср	X
(ccp, b	Elect	ronic uratio	bcc n	= body 0 = cub (n - 1	/ centred pic close)d ^{1 - 10} ns	cubic; h packed;	ncp = hex X = a tyl	ccp xagonal	close pa	cked	11	12
(ccp, b	Elect	ronic uratio 3	bcc n	= body 0 = cub (n - 1	/ centred pic close)d ^{1 – 10} ns 5 VB	cubic; h packed; 1 or 2	ncp = hex X = a type 7 VIIB	xagonal pical me	close pa tal struct	cked cure	11 IB	X X
(ccp, b	Elect	ronic uratio	bcc n	= body 0 = cub (n - 1	/ centred pic close)d ^{1 - 10} ns	cubic; h packed;	ncp = hex X = a tyl	xagonal pical me	close pa	cked	11	12
(ccp, b	Elect	ronic uratio 3 IIIB	bcc n	= body 0 = cub (n - 1	/ centred pic close)d ^{1 – 10} ns 5 VB	cubic; h packed; 1 or 2	ncp = hex X = a type 7 VIIB	xagonal pical me	close pa tal struct	cked cure	11 IB	X X
(ccp, b	Elect configu	ronic uratio 3 IIIB 21 Sc	bcc ccp n	= body 0 = cub (n - 1 4 IVB 22 Ti	/ centred pic close)d ^{1 - 10} ns 5 VB 23 V	cubic; h packed; for 2 6 VIB 24 Cr	To the state of th	xagonal pical me	close pa tal struct	cked cure	11 IB 29 Cu	12 IIB 30 Zn
(ccp, b	Elect configu	ronic uratio 3 IIIB 21 Sc 3d ¹ 4	bcc ccp n	= body 0 = cub (n - 1 4 IVB 22 Ti 3d ² 4s ²	/ centred pic close)d ^{1 - 10} ns 5 VB 23 V 3d ³ 4s ²	cubic; h packed; 1 or 2 6 VIB 24 Cr 3d ⁵ 4s ¹	7 VIIB 25 Mn 3d ⁵ 4s ²	kagonal pical met	g VIII 27 Co 3d ⁷ 4s ²	cked cure	11 IB 29 Cu 3d ¹⁰ 4s ¹	12 IIB 30 Zn 3d ¹⁰ 4s ²
(ccp, b	Elect configu	ronic uratio 3 IIIB 21 Sc 3d ¹ 4:	bcc ccp n	= body 0 = cub (n - 1 4 IVB 22 Ti 3d ² 4s ² 40	/ centred pic close)d ^{1 - 10} ns 5 VB 23 V 3d ³ 4s ² 41	cubic; h packed; 1 or 2 6 VIB 24 Cr 3d ⁵ 4s ¹ 42	7 VIIB 25 Mn 3d ⁵ 4s ² 43	xagonal poical met	9 VIII 27 Co 3d ⁷ 4s ² 45	10 28 Ni 3d ⁸ 4s 46	11 IB 29 Cu 3d ¹⁰ 4s ¹ 47	12 IIB 30 Zn 3d ¹⁰ 4s ² 48
(ccp, b	Elect configu	ronic uratio 3 IIIB 21 Sc 3d ¹ 4:	bcc ccp n	= body o = cub (n - 1 4 IVB 22 Ti 3d ² 4s ² 40 Zr	/ centred pic close)d ^{1 - 10} ns 5 VB 23 V 3d ³ 4s ² 41 Nb	6 VIB 24 Cr 3d ⁵ 4s ¹ 42 Mo	7 VIIB 25 Mn 3d ⁵ 4s ² 43 Tc	kagonal pical met	g VIII 27 Co 3d ⁷ 4s ² 45 Rh	10 28 Ni 3d ⁸ 4s 46 Pd	11 IB 29 Cu 3d ¹⁰ 4s¹ 47 Ag	12 IIB 30 Zn 3d ¹⁰ 4s ² 48 Cd
(ccp, b	Elect configu	ronic uratio 3 IIIB 21 Sc 3d ¹ 4:	bcc ccp	= body 0 = cub (n - 1 4 IVB 22 Ti 3d ² 4s ² 40	/ centred pic close)d ^{1 - 10} ns 5 VB 23 V 3d ³ 4s ² 41	cubic; h packed; 1 or 2 6 VIB 24 Cr 3d ⁵ 4s ¹ 42	7 VIIB 25 Mn 3d ⁵ 4s ² 43	xagonal poical met	9 VIII 27 Co 3d ⁷ 4s ² 45	10 28 Ni 3d ⁸ 4s 46	11 IB 29 Cu 3d ¹⁰ 4s¹ 47 Ag	12 IIB 30 Zn 3d ¹⁰ 4s ² 48
(ccp, b	Elect configu	ronic uratio 3 IIIB 21 Sc 3d ¹ 4s 39	bcc ccp nn	= body o = cub (n - 1 4 IVB 22 Ti 3d ² 4s ² 40 Zr	/ centred pic close)d ^{1 - 10} ns 5 VB 23 V 3d ³ 4s ² 41 Nb	6 VIB 24 Cr 3d ⁵ 4s ¹ 42 Mo	7 VIIB 25 Mn 3d ⁵ 4s ² 43 Tc	8 26 Fe 3d ⁶ 4s ² 44 Ru	g VIII 27 Co 3d ⁷ 4s ² 45 Rh	10 28 Ni 3d ⁸ 4s 46 Pd	11 IB 29 Cu 3d ¹⁰ 4s¹ 47 Ag	12 IIB 30 Zn 3d ¹⁰ 4s ² 48 Cd

5d¹⁰6s¹

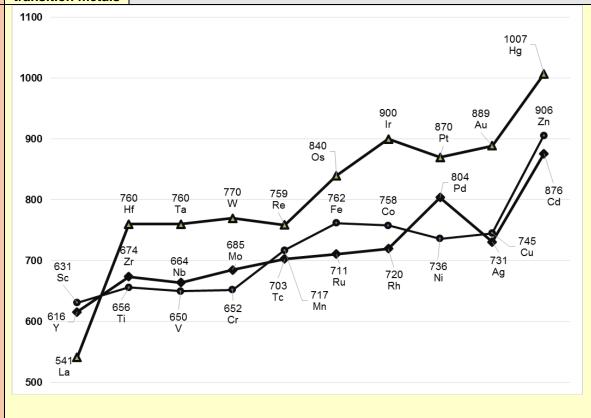
111


Rg

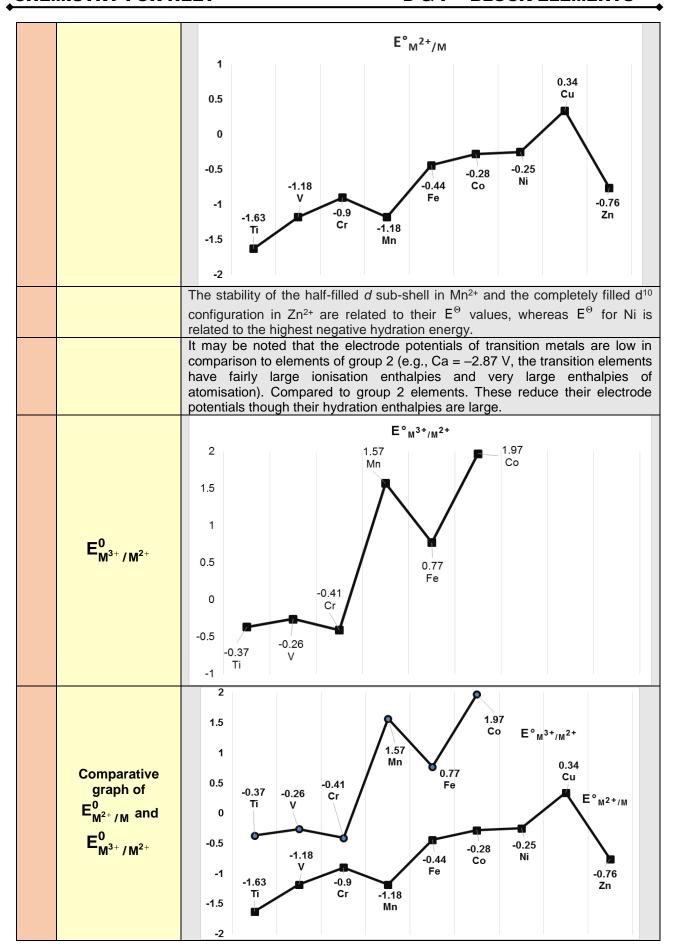
 $5d^{10}6s^2$

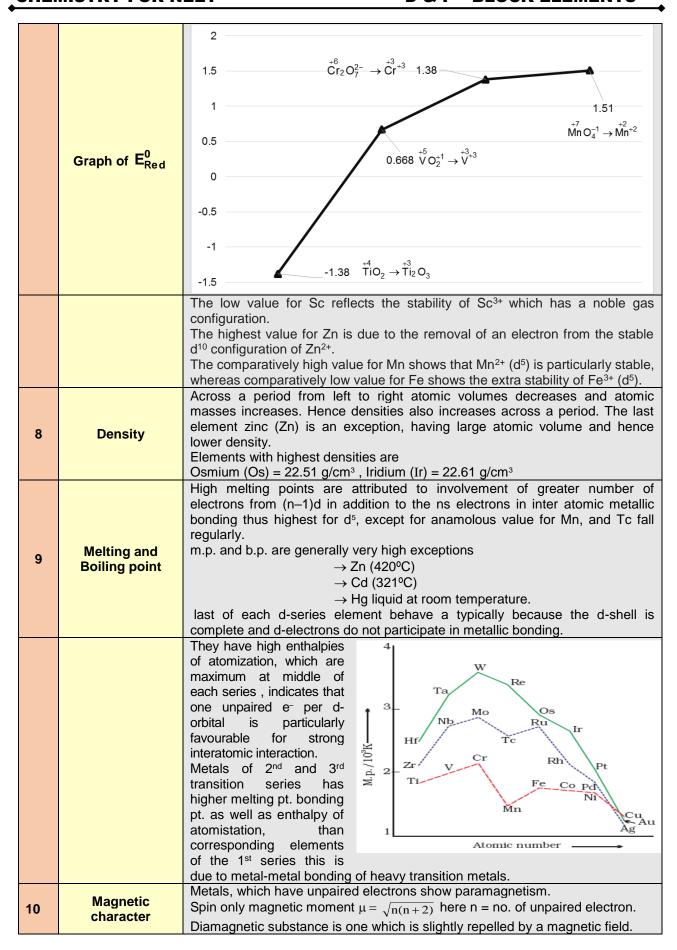
112

Cn


		Electrons are being filled penultimate shells, thus outer electronic configuration							
		remains same , with exception in some cases, e.g.Cr and Cu.							
		Cr and Cu attain extra stability of half-filled and full-filled electronic							
		configuration by changing the expected pattern of electronic configuration.							
		The electronic structure of 2 nd and 3 rd rows do not always follow the pattern of							
		the first row, e.g. Group 10 Ni 3d ⁸ 4s ²							
		Pd 4d ¹⁰ 5s ⁰							
		Pt 5d ⁹ 6s ¹							
		d-orbitals are complete at Cu, Pd, Ag, Au.							
		Ni (3d ⁸ 4s ²) Cu(3d ¹⁰ 4s ¹) Zn(3d ¹⁰ 4s ²)							
		$Pd(4d^{10}5s^0)$ $Ag(4d^{10}5s^1)$ $Cd(4d^{10}5s^2)$							
		Even though ground state of the atom has a d¹o configuration Pd and coinage							
		metals behaves as typical transition elements, as in their most common							
		oxidation states they have incomplete d-orbital. A transition element is defined as the one which has incompletely filled d							
		orbitals in its ground state or in any one of its oxidation states.							
	- .,.	Zinc, Cadmium and Mercury of group 12 have full d^{10} configuration in their							
	Transition elements	ground state as well as in their common oxidation states and hence, they are							
	elements	not regarded as transition metals.							
		All transition elements are d-block elements but all d-block elements							
		are not transition elements. (as per NCERT)							
3	Size of atoms	In the transition series (e.g. in the first transition series), the covalent radii of							
3	and ions	the elements decrease from left to right across a row until near the end when the size increases slightly.							
		On moving from left to right, extra protons are placed in the nucleus and the							
		extra electron are added. The orbital electron shield the nuclear charge							
		incompletely. Thus the nuclear charge attracts all the electrons more strongly,							
		hence a contraction in size occurs. The radii of the elements from Cr to Cu,							
	d-orbital	are very close to one another because the extra electron being added increases the repulsion between the electrons and counter balances the							
	contraction	increased nuclear charge on the outer electrons (4s). As a result of this, the							
		size of the atom does not change much in moving from Cr to Cu and for zinc							
		this repulsion even dominates the nuclear charge so size slightly increases.							
		Element Sc Ti V Cr Mn Fe Co Ni Cu Zn							
		radius (pm) 144 132 122 117 117 116 115 117 125							
		As we move along the lanthanide series, the nuclear charge increases by one							
		unit at each successive element. The new electron is added into the same							
		subshell (4f). As a result, the attraction on the electrons by the nucleus							
		increases and this tends to decrease the size. Further, as the new electron is added into the f-subshell, there is imperfect shielding of one electron by							
	Lanthanide	another in this subshell due to the shapes of these f-orbitals. This imperfect							
	Contraction	shielding in unable to counter balance the effect of the increased nuclear							
		charge. Hence, the net result is a contraction in the size though the decrease							
		is very small.							
		Thus covalent and ionic radii of Nb (5th period) and Ta (6th period) are almost							
		same due to poor shielding of f-orbitals electrons.							

Ti < Zr \approx Hf (Lanthanide Contraction) Sc < Y < La


Due to Lanthanide contraction elements of 4d and 5d series belong to a particular group have almost same atomic radii. Ex. $Zr \approx Hf$, $Tc \approx Re$, $Nb \approx Ta$, $Ru \approx Os$ etc.


4 lonization energies of transition metals

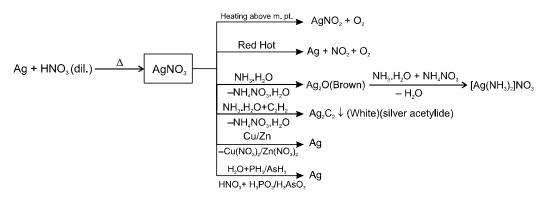
	First ionization energie	es of t	he d-blo	ck eler	nents	(Num	erical	values	are giv	en in k	.l mol ⁻¹)	
	1 113t IOTHZation Chergie											(Sc,Ti,V 8
			iffer only									(,,
									of Fe,	Co, Ni	& Cu als	so are fairly
			to one a					0,				,
		(iii) T	he value	e of fire	st ionis	sation	ener	gy for	Zn is c	onside	rably hig	her due to
											in Zn at	
		(iv) T	he first i	onizati	on ene	ergy o	f Mn i	s sligh	tly high	er than	adjacei	nt elements
		in 3d	series d	lue to h	alf-fille	ed sta	ble co	onfigur	ation.			
		(v) S	econd ic	onisatio	n ene	rgy va	alue fo	or Cr 8	Cu ar	e highe	er as the	Cr+ & Cu
			n are extra stable due to 3d ⁵ and 3d ¹⁰ Configuration.									
		(vi) Ir	ri) In vertical columns, the ionisation energy decrease from first member to									
			econd m									
			vii) However the third member (5d series) has higher value than second									
		mem		4- 1-	41	:		4! 1	E (OrdE	0 \	F (0 T	.
		•	eries) a	ue to la	antnan	iae c	ontrac	tion. I.	E. (3 ¹⁰ 1)	.S.) > 1.	E. (2 nd 1.5	S.) > I.E. (1^{s})
5	Oxidation-State	T.S.) Thev	show va	ariable	oxidat	ion_s	tate					
	Januarion Otato		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu Z	<u>'n</u>
						+1					+1	
				+2	+2	+2	+2 (a	+2	+2	<u>+2</u>		-2
			+3	+3	+3	+3	+3	+3		+3		
				+4	+4	+4	+4 ^(b)			+4		
					+5	+5	+5					
						+6	+6	+6	;			
							+7					
			cidic me					asic m	edium			
			ded sta									
			derline s									
											p-block	elements
			e genera				differs	s by ur	its of 2.			
			ds of O					1			1.4. 11	
											lated by	
												and Cu. or d ¹⁰ are
			stable.								e u , u	oi u · aie
											nts is +2.	
												d' series is
		-	Ru (44				,		3			200 10
							4, +5,	+6, +	7, +8) a	re four	d in cor	npounds o
												tronegative
		elem	ents and	good								
				~	+7	+6	O ²⁻ +	$\frac{6}{r}$ Ω^{2-}	+4 \/n \(\)	+6 40 \cdot 2-	+6 Cr O ₂ F ₂	
				.g.		-	-	-	_	-		
												/ π-bonding
												nomena of
												e is zero.
		-			•	ds in I	ow ox	dation	n states	and co	ovalent o	compounds
		ın Hi	gher oxi	dation	state.							
			For	mulas	of Ha	lides	of 3d	Metal	S			
		Ke	y: X = F	→I; X ¹	= F -	→ Br;	X = F	F, CI;)	(III =CI-	→		
	OXIDATION	Sc	Sc Ti V Cr Mn Fe Co Ni Cu Zn									
	NUMBER	30	- ' '	,			**		00	141	O u	211
	+6				CrF ₆							
	+5		T:V	VF ₅	CrF ₅	_						
	+4		TiX ₄	VX ¹ ₄	CrX ₄		1F4	- VI	0-5			
	. 9		TiX_3	VX_3	CrX ₃	Mr	1 F 3 F	FeX ^I ₃	CoF₃			

		+2		TiX ₂	VX ₂	CrX ₂	Mn	X ₂	FeX ₂	CoX	NiX ₂	CuX ₂ ^{II}	ZnX ₂
		+1										CuX ^{III}	
			For	mulas of	Oxide	s of 3c	l Met	als (/* mix	ed oxid	des)		
	OXID ATIO N NUM BER	Sc	Ti	V	Cr	Mr		F		Co	Ni	Cı	ı Zn
	+7					Mn ₂ O	7						
	+6					CrO ₃							
	+5		TiO	V ₂ O ₅	C+O.	MnO							
	+4	Sc ₂ O ₃	TiO ₂ Ti ₂ O ₃	V ₂ O ₄ V ₂ O ₃	CrO ₂ Cr ₂ O ₃	MnO ₂		Fe₂C)2				
	1	00203	11203	V2O3	01203	Mn ₃ O		Fe ₃ C		Co ₃ O ₄ *			
	+2		TiO	VO	(CrO)	MnO		FeO		CoO	NiO	CuO	ZnO
												Cu ₂ C	
6	Co	lour	They in has an from a energy MnO ₄ :	n unpaire a lower o y of excita	erent co ed electrender energy ation lieured ins	loured ron that d-orbit s in vis spite c	com at con tal is sible r	pour npou exit range conf	nds. Tund medical to the tender of	The con ay be o a high nplimer tion of	npounds coloured her ener ntary colo Mn. It	in which which when gy done of the contract of	th metal ion an electron bital, if the
	Oxidation State	Sc	Ti	V	Cr	M	In	Fe		Co	Ni	Cu	Zn
	(I)										Col		
	(II)				Blue	Pi		Gre		Pink	Green	Blue	Colurless
	(III)	Colurless		Green	Greer	ı Vio	olet	Yello	ow	Blue			
	(IV)		Colurless	Blue									
7	Electrod potentia												
		2+ / M	variati		nisation	entha	alpies	(IE					he irregular es and the
			Eler	nent (M	$)$ Δ	μHq (ľ	M) [$\Delta_{\mathrm{f}}H_{1}^{\mathrm{G}}$	Δ	$_{1}H_{2}^{\theta}$	$\Delta_{hyd}H^{\scriptscriptstyle{ heta}}$ (1	M ²⁺)	E [®] /V
				Ti V Cr Mn Fe Co Ni Cu Zn		469 515 398 279 418 427 431 339 130		661 648 653 716 762 757 736 745 908		1310 1370 1590 1510 1560 1640 1750 1960 1730	-1866 -1895 -1925 -1862 -1998 -2079 -2121 -2121 -2059		-1.63 -1.18 -0.90 -1.18 -0.44 -0.28 -0.25 0.34 -0.76

		A paramagnetic subs						
		attracted into a magn						
			stance the magnetic field					
			easier than they travel in					
			can be seen that a					
			al attracts lines of force, Paramagnetic material					
			a paramagnetic material will move from a weaker to a					
		stronger part of the fie						
			ials may be regarded as special case of paramagnetism					
	Ferromagnetism		s of individual domains becomes aligned and all points in the					
			magnetic materials ⇒ Fe, Co, Ni.					
44	Catalytic		ls and their compounds are known for their catalytic					
11	Properties		to ability to adopt multiple oxidation states and to form					
	•	complexes.	Head					
		Catalyst	Used					
		Fe	Haber's process for manufacture of NH ₃ .					
		V ₂ O ₅	Contact process for H ₂ SO ₄ manufacture.					
		Pt N:	Ostwald's process of nitric acid.					
		Ni Faco 8 II O	Hydrogenation of oils.					
		FeSO ₄ & H ₂ O ₂	Fenton's reagent for oxidising alcohol to aldehyde.					
		Cu	Dehydrogenation of alcohols Zingler Notte establish in the production of Delyathana					
		2 \ 2 3 0	Ziegler-Natta catalyst in the production of Polyethene.					
		FeCl ₃	For making CCl ₄ from CS ₂ and Cl ₂ .					
			Adams catalyst, used for reduction.					
			s have maximum tendency to form alloys.					
			ransition elements is very less and their sizes are almost					
40	FORMATION OF		transition metal atom in the lattice can be easily replaced					
12	ALLOY		netal atom and hence they have maximum tendency to					
		form alloys.	of component metals is fixed					
			of component metals is fixed. Dely hard and have high melting point.					
		* Not to be memories	lery flard and flave flight flietung point.					
		(a) Bronze	Cu (75 - 90 %) +Sn (10 - 25 %)					
		(b) Brass	Cu (60 - 80 %) +Zn (20 - 40 %)					
		(c) Gun metal	(Cu + Zn + Sn) (87 : 3 : 10)					
		(d) German Silver						
		(e) Bell metal	Cu (80 %) + Sn(20 %)					
		(f) Nichrome	(Ni + Cr + Fe)					
		(g) Alnico	(Al, Ni,Co)					
		(h) Type Metal	Pb + Sn + Sb					
		(i) Alloys of steel						
		Vanadium ste						
		Chromium st						
		Nickel steel	Ni (3 -5 %)					
		Manganese s						
	SOME	• Stainless ste						
	IMPORTANT	• Tunguston st						
	ALLOY	(o) 14 Carat Gold						
		(k) 24 Carat Gold						
		(i) Solder	Pb + Sn					
		(m) Magnellium	Mg (10%) + AI (90%)					
		(n) Duralumin	(AI + Mn + Cu)					
		(o) Artificial Gold	Cu (90 %) + Al (10%)					
		(p) Constantan	Cu(60%) + Ni (40%)					
		Name	f Carbon in different type of Iron % of C					
		(a) Wrought Iron (b) Steel	0.1 to 0.25					
			0.25 to 2.0					
			2.6 to 4.3 2.3 to 4.6					
		(d) Pig Iron	2.3 10 4.0					

1. Silver nitrate, AgNO, (Lunar Caustic)

Physical Properties


- (i) It is a colourless crystalline compound.
- (ii) Soluble in water and alcohol.
- (iii) It melts at 212°C.

Chemical Properties

- (i) It possesses powerful corrosive action on organic tissues, which at turns black especially in presence of light. The blackening is due to finely divided metalic silver, reduced by organic tissure It is therefore, stored in colored Bottles.
- (ii) Solutions of halides phosphates, sulfides chromates thiocyanates, sulphates and thiosulphates salt with silver nitrate solution.
- (iii) Ammonical silver nitrate is called as Tollen's reagent and used to identify reducing sugars and aldehydes.

PREPARATION

CHEMICAL PROPERTIES

It is known as silver mirror test of aldehydes and reducing sugars.

$$Ag_2O + HCHO \longrightarrow 2Ag + HCOOH.$$

 $Ag_2O + C_6H_{12}O_6 \longrightarrow 2Ag + C_6H_{12}O_7.$

(iv) Reactions with lodine:

6 AgNO₃ (excess) +
$$3I_2$$
 + $3H_2O$ \longrightarrow AgIO₃ + 5 AgI + 6 HNO₃
5 AgNO₃ + $3I_2$ (excess) + $3H_2O$ \longrightarrow HIO₃ + 5 AgI + 5 HNO₃

Uses: It is used

- (i) as a laboratory reagent for the identification of various acidic especially for Cl, Br and I.
- (ii) Tollen's reagent is used in organic chemistry for testing aldehydes reducing sugars etc.
- (iii) for making AgBr, used in photography.
- (iv) in the preparation of inks and hair dyes.
- (v) in preparation of silver mirror.

2. Photography:

- (i) A photographic film consists of a light sensitive emulsion of fine particles (grains) of silver salts in gelatine spread on a clear celluloid strip or a glass plate. AgBr is mainly used as the light sensitive material.
- (ii) The film is placed in a camera. When the photograph is exposed, light from the subject enters the camera and is focussed by the lens to give a sharp image on the film. The light starts a photochemical reaction by exciting a halide ion, which loses an electron. The electron moves in a conduction band to the surface of the grain, where it reduces a Ag+ ion to metallic silver.

$$2AgBr(s) \xrightarrow{light} 2Ag + Br_{a}$$

(iii) In modern photography only a short exposure of perhaps 1/100th of a second is used. In this short time, only a few atoms of silver (perhaps 10–50) are produced in each grain exposed to light. Parts of the film which have been exposed to the bright parts of the subject contain a lot of grains with some silver.

(iv) Next the film is placed a developer solution. This is a mild reducing agent, usually containing quinol. Its purpose is to reduce more silver halide to Ag metal. Ag is deposited mainly where there are already some Ag atoms. Thus the developing process intensifies the latent image on the film so it becomes visible.

$$2\mathsf{AgBr}(\mathsf{s}) + 2\mathsf{OH}^{-}(\mathsf{aq}) + \mathsf{HO} \underbrace{\hspace{1cm}} \mathsf{OH} \ (\mathsf{aq}) \longrightarrow 2\mathsf{Ag}(\mathsf{s}) + 2\mathsf{H}_{2}\mathsf{O}(\ell) + \mathsf{O} \underbrace{\hspace{1cm}} \mathsf{OH} + 2\mathsf{Br}^{-}(\mathsf{aq})$$
 hydroquinol hydroquinone

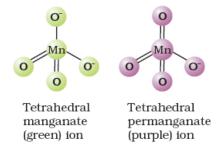
(v) If the film was brought out into daylight at this stage, the unexposed parts of the emulsion would turn black and thus destroy the picture. To prevent this happening any unchanged silver halides are removed by placing the film in a fixer solution. A solution of sodium thiosulphate is used as fixer. It forms a soluble complex with silver halides.

$$AgBr + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaBr$$

After fixing, the film can safely be brought out into daylight. This is called "negative".

Light is passed through the negative onto a piece of paper coated with AgBr emulsion. This is then developed and fixed in the same way as before.

3. Potassium Permanganatic (KMnO₄)


PREPARATION

$$\begin{array}{c} \text{MnO}_2 \text{ (fused)} + \text{KOH / K}_2\text{CO}_3 \xrightarrow[-H_2O/\text{CO}_2]{} \text{KMnO}_4 \xrightarrow[\text{Dark green})} \\ & \text{Mn}^{2^+} + \text{S}_2\text{O}_8^{2^-} + \text{H}_2\text{O} \\ & \text{MnO}_2 \xrightarrow[\text{With Air or KNO}_3]{} \text{KMnO}_4 \\ & \text{Pyrolusite} \end{array}$$

Physical Properties:

Purple coloured crystalline compound.

Moderately soluble in water at room temperature.

Structure of manganate and permanganate ion.

Chemical Properties

(i) Heating effect

$$K_2MnO_4 + MnO_2 + O_2$$

A

KMnO₄

Red Heat

 $K_2MnO_3 + O_2$

A

KOH

 $K_2MnO_4 + H_2O + O_2$

 MnO_4^{2-} in dilute alkaline, water and acidic solutions is unstable and disproportionates to give MnO_4^{-} and MnO_2 .

$$3 \text{MnO}_4^{\ 2-} + 4 \text{H}^+ \longrightarrow 2 \text{MnO}_4^- + \text{MnO}_2 \downarrow + 2 \text{H}_2 \text{O}$$

$$3 \text{MnO}_4^{\ 2-} + 2 \text{H}_2 \text{O} \longrightarrow 2 \text{MnO}_4^- + \text{MnO}_2 \downarrow + 4 \text{OH}^-$$
or
$$3 \text{MnO}_4^{\ 2-} + 3 \text{H}_2 \text{O} \longrightarrow 2 \text{MnO}_4^- + \text{MnO (OH)}_2 \downarrow + 4 \text{OH}^-$$
On heating in current of H_2 , solid KMnO₄ gives MnO
$$2 \text{KMnO}_4 + 5 \text{H}_2 \stackrel{\Delta}{\longrightarrow} 2 \text{KOH} + 2 \text{MnO} + 4 \text{H}_2 \text{O}$$

(ii) On treatment with concentrated H₂SO₄ (KMnO₄ is taken in excess), it forms manganese heptoxide via permanganyl sulphate which decomposes explosively on heating.

$$\begin{split} & 2\mathsf{KMnO_4} + 3\mathsf{H_2SO_4} & \longrightarrow 2\mathsf{KHSO_4} + (\mathsf{MnO_3})_2\mathsf{SO_4} + 2\mathsf{H_2O} \\ & (\mathsf{MnO_3})_2\mathsf{SO_4} + \mathsf{H_2O} & \longrightarrow \mathsf{Mn_2O_7} + \mathsf{H_2SO_4} \\ & \mathsf{Mn_2O_7} & \longrightarrow 2\mathsf{MnO_2} + \frac{3}{2}\mathsf{O_2} \\ & \mathsf{KMnO_4} + 3\mathsf{H_2SO_4} \, (\mathsf{conc.}) \longrightarrow \mathsf{K}^+ + \mathsf{MnO_3}^+ \, (\mathsf{green}) + 3\mathsf{HSO_4}^- + \mathsf{H_3O^+}. \end{split}$$

(iii) Potassium permanganate is a powerful oxidising agent.

Potassium permanganate acts as an oxidising agent in alkaline, neutral or acidic solutions.

A mixture of sulphur, charcoal and $KMnO_4$ forms an explosive powder. A mixture of oxalic acid and $KMnO_4$ catches fire spontaneous after a few seconds. The same thing happens when glycerine is poured over powdered $KMnO_4$.

In alkaline & neutral medium:

In strongly alkaline medium KMnO₄ is reduced to manganate.

$$2KMnO4 + 2KOH (conc.) \longrightarrow 2K2 MnO4 + H2O + [O]$$
or
$$e^{-} + MnO4^{-} \longrightarrow MnO4^{2-}$$

However if solution is dilute then K₂MnO₄ is converted in to MnO₂ which appears as a brownish precipitate.

$$2K_2MnO_4 + 2H_2O \longrightarrow 2MnO_2 + 4KOH + 2[O]$$
or
$$2e^- + 2H_2O + MnO_4^{2-} \longrightarrow MnO_2 + 4OH^-$$

This type of behaviour is shown by KMnO₄ itself in neutral medium.

$$3e^- + 2H_2O + MnO_4^- \longrightarrow MnO_2 + 4OH^-$$

In alkaline or neutral medium KMnO₄ shows following oxidising properties.

(a) It oxidises ethene to glycol.

$$\begin{array}{c} CH_2 \\ \parallel \\ CH_2 \end{array} + H_2O + [O] \longrightarrow \begin{array}{c} CH_2OH \\ CH_2OH \end{array}$$

In alkaline medium KMnO₄ solution is also known as Bayer's reagent (1% alkaline KMnO₄ solution).

(b) It oxidises iodide into iodate.

$$3e^{-} + 2H_{2}O + MnO_{4}^{-} \longrightarrow MnO_{2} + 4OH^{-} \times [2]$$

$$6OH^{-} + I^{-} \longrightarrow IO_{3}^{-} + 3H_{2}O + 6e^{-}$$

$$2MnO_{4}^{-} + I^{-} + H_{2}O \longrightarrow 2MnO_{2} + IO_{3}^{-} + 2OH^{-}$$

(c) H₂S is oxidised into sulphur:

$$2MnO_4^- + 3H_2S \longrightarrow 2MnO_2 + 2OH^- + 2H_2O + 3S$$

(d) Manganous salt is oxidised to ${\rm MnO_2}$; the presence of zinc sulphate or zinc oxide catalyses the oxidation :

$$2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$$

(e) In neutral/faintly alkaline solution thiosulphate is quantitatively oxidised to sulphate.

$$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^-$$

(f) In the presence of sodium hydroxide, sodium sulphite is oxidised in to sodium sulphate.

$$2MnO_4^- + 3SO_3^{2-} + 3H_2O \longrightarrow 2MnO(OH)_2 \downarrow + 3SO_4^{2-} + 2OH^-.$$

In acidic medium (in presence of dilute H2SO4):

Manganous sulphate is formed. The solution becomes colourless.

$$2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$
 or
$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$

This medium is used in quantitative (volumetric) estimations. The equivalent mass of $KMnO_4$ in acidic medium is = $\frac{Molecular \, mass}{5}$.

(a) Ferrous salts are oxidised to ferric salts.

$$MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$$

(b) Iodine is evolved from potassium iodide.

$$2MnO_{A}^{-} + 10I^{-} + 16H^{+} \longrightarrow 2Mn^{2+} + 5I_{2} + 8H_{2}O$$

(c) H₂S is oxidised to sulphur:

$$2MnO_{4}^{-} + 16H^{+} + 5S^{2-} \longrightarrow 2Mn^{2+} + 8H_{2}O + 5S$$

(d) SO₂ is oxidised to H₂SO₄:

$$2MnO_4^- + 5SO_2 + 2H_2O \longrightarrow 5SO_4^{2-} + 2Mn^{2+} + 4H^+$$

(e) Nitrites are oxidised to nitrates:

$$2MnO_4^- + 5NO_2^- + 6H^+ \longrightarrow 2Mn^{2+} + 3H_2O + 5NO_3^-$$

(f) Oxalic acid is oxidised to CO₂:

This reaction is slow at room temperature, but is rapid at 60°C.

Mn(II) ions produced catalyse the reaction; thus the reaction is autocatalytic.

$$2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \xrightarrow{60^{\circ}C} 2Mn^{2+} + 8H_2O + 10CO_2$$

- (g) HCHO is oxidised to HCOOH $2MnO_4^- + 5HCHO + 6H^+ \longrightarrow 2Mn^{2+} + 5HCOOH + 3H_2O.$
- (h) It oxidises hydrogen halides (HCl, HBr or HI) into X_2 (halogen)

$$2MnO_4^- + 16H^+ + 10X^- \longrightarrow 2Mn^{2+} + 8H_2O + 5X_2$$

(i) H_2O_2 is oxidised to O_2 .

$$2MnO_4^- + 6H^+ + 5H_2O_2 \longrightarrow 5O_2 + Mn^{2+} + 8H_2O.$$

Uses: It is used

- (i) KMnO₄ is used as an oxidising agent in laboratory and industry.
- (ii) Alkaline potassium permanganate is called Bayer's reagent. This reagent is used in organic chemistry for the test of unsaturation. KMnO₄ is used in the manufacture of saccharin, benzoic acid, acetaldehyde etc.
- (iii) KMnO, is used in qualitative analysis for detecting halides, sulphites, oxalates, etc.

4. POTASSIUM DICHROMATE (K,Cr,O,):

Preparation:

The chromite ore is roasted with sodium carbonate in presence of air in a reverberatory furnace.

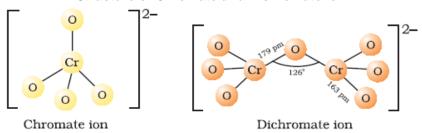
4FeO.
$$Cr_2O_3$$
 (chromite ore) + $8Na_2CO_3/K_2CO_3 + 7O_2 \xrightarrow{Roasting} 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$ (yellow)

The roasted mass is extracted with water when Na_2CrO_4 goes into the solution leaving behind insoluble Fe_2O_3 . The solution is then treated with calculated amount of H_2SO_4 .

$$2Na_2CrO_4 + H_2SO_4 \longrightarrow Na_2Cr_2O_7 + Na_2SO_4 + H_2O$$
(Orange)

The solution is concentrated when less soluble Na_2SO_4 crystallises out. The solution is further concentrated when crystals of $Na_2Cr_2O_7$ are obtained. Hot saturated solution of $Na_2Cr_2O_7$ is then treated with KCI when orange red crystals of $K_2Cr_2O_7$ are obtained on crystallisation. Sodium dichromate is more soluble than potassium dichromate.

$$Na_{2}Cr_{2}O_{7} + 2KCI \longrightarrow K_{2}Cr_{2}O_{7} + 2NaCI$$


 $K_2Cr_2O_7$ is preferred over $Na_2Cr_2O_7$ as a primary standard in volumetric estimation because $Na_2Cr_2O_7$ is hygroscopic in nature but $K_2Cr_2O_7$ is not.

Properties

(a) Physical:

It is orange-red coloured crystalline compound. It is moderately soluble in cold water but freely soluble in hot water. It melts at 398°C.

Structure of Chromate and Dichromate ion

(b) Chemical:

(i) Effect of heating:

On heating strongly, it decomposes liberating oxygen.

$$2K_2Cr_2O_7 \longrightarrow 2K_2CrO_4 + Cr_2O_3 + \frac{3}{2}O_2$$

On heating with alkalies, it is converted to chromate, i.e., the colour changes from orange to yellow. On acidifying, yellow colour again changes to orange.

$$\begin{split} & \text{K}_2\text{Cr}_2\text{O}_7 + 2\text{KOH} \longrightarrow 2\text{K}_2\text{CrO}_4 + \text{H}_2\text{O} \\ & \text{Cr}_2\text{O}_7^{2^-} \text{ (Orange)} + 2\text{OH}^- \longrightarrow 2\text{CrO}_4^{2^-} \text{ (Yellow)} + \text{H}_2\text{O} \\ & 2\text{CrO}_4^{2^-} \text{ (Yellow)} + 2\text{H}^+ \longrightarrow \text{Cr}_2\text{O}_7^{2^-} \text{ (Orange)} + \text{H}_2\text{O} \end{split}$$

Thus CrO_4^{2-} and $Cr_2O_7^{2-}$ exist in equilibrium and are interconvertable by altering the pH of solution.

$$2CrO_4^{2-} + 2H^+ \implies 2HCrO_4^- \implies Cr_2O_7^{2-} + H_2O$$

In alkaline solution, chromate ions are present while in acidic solution, dichromate ions are present.

(ii)
$$K_2Cr_2O_7 + 2H_2SO_4$$
 (conc. & cold) $\longrightarrow 2CrO_3 \downarrow$ (bright orange/red) + $2KHSO_4 + H_2O_4 + H_$

(iii) Acidified $K_2Cr_2O_7$ solution reacts with H_2O_2 to give a deep blue solution due to the formation of CrO_5 .

$$Cr_2O_7^{2-} + 2H^+ + 4H_2O_2 \longrightarrow 2CrO_5 + 5H_2O$$

Blue colour in aqueous solution fades away slowly due to the decomposition of CrO_5 to Cr^{3+} ions and oxygen. In less acidic solution $K_2Cr_2O_7$ and H_2O_2 give salt which is violet coloured and diamagnetic due to the formation of $[CrO(O_2)(OH)]^-$.

(iv) Potassium dichromate reacts with hydrochloric acid and evolves chlorine gas.

$$K_2Cr_2O_7 + 14HCl \longrightarrow 2KCl + 2CrCl_3 + 7H_2O + 3Cl_2$$

(v) It acts as a powerful oxidising agent in acidic medium (dilute H₂SO₄)

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{+3} + 7H_2O.$$
 (E⁰ = 1.33 V)

The oxidation state of Cr changes from + 6 to +3.

(a) Iodine is liberated from potassium iodide:

$$Cr_2O_7^{2^-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3^+} + 7H_2O$$

 $2I^- \longrightarrow I_2 + 2e^- \times [3]$
 $\cdots \longrightarrow Cr_2O_7^{2^-} + 14H^+ + 6I^- \longrightarrow 2Cr^{3^+} + 3I_2 + 7H_2O$

(b) Ferrous salts are oxidised to ferric salts:

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$$

(c) Sulphites are oxidised to sulphates:

$$Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \longrightarrow 3SO_4^{2-} + 2Cr^{3+} + 4H_2O$$

(d) H₂S is oxidised to sulphur:

$$Cr_2O_7^{2-} + 3H_2S + 8H^+ \longrightarrow 2Cr^{3+} + 7H_2O + 3S$$

(e) SO₂ is oxidised to H₂SO₄:

$$Cr_2O_7^{2-} + 3SO_2 + 2H^+ 2Cr^{3+} + 3SO_4^{2-} + H_2O$$
;

Chrome alum is obtained when acidified K₂Cr₂O₂ solution is saturated with SO₂.

$$K_2Cr_2O_7 + H_2SO_4 + 3SO_2 + 23H_2O \xrightarrow{T < 70^{\circ}C} K_2SO_4 \cdot Cr_2(SO_4)_3 \cdot 24H_2O$$

(f) It oxidises ethylalcohol to acetaldehyde and acetaldehyde to acetic acid

$$C_2H_5OH \xrightarrow{[O]} CH_3CHO \xrightarrow{[O]} CH_3COOH$$

ethyl alcohol acetaldehyde acetic acid

- (g) It also oxidises nitrites to nitrates, arsenites to arsenates, HBr to Br₂. HI to I₂, etc.
- (h) $K_2Cr_2O_7 + 2C$ (charcoal) $\stackrel{\Delta}{\longrightarrow} Cr_2O_3 + K_2CO_3 + CO \uparrow$
- (vi) Chromyl chloride test : $4Cl^- + Cr_2O_7^{2-} + 6H^+ \longrightarrow 2CrO_2Cl_2 \uparrow (deep red) + 3H_2O$ $CrO_2Cl_2 + 4OH^- \longrightarrow CrO_4^{2-} (yellow) + 2Cl^- + 2H_2O$ $CrO_4^{2-} (yellow) + Pb^{2+} \longrightarrow PbCrO_4 \downarrow (yellow)$
- (vii) $\operatorname{Cr_2O_7^{2-}}$ (concentrated solution) + $2\operatorname{Ag^+} \longrightarrow \operatorname{Ag_2Cr_2O_7} \downarrow$ (reddish brown)

$$Ag_2Cr_2O_7 \downarrow + H_2O \xrightarrow{boil} Ag_2CrO_4 \downarrow + CrO_4^{2-} + 2H^+$$
.

(viii) $Cr_2O_7^{2-} + Ba^{2+} + H_2O \implies 2BaCrO_4 \downarrow + 2H^+$

As strong acid is produced, the precipitation is only partial. But if NaOH or CH₃COONa is added, precipitate becomes quantitative.

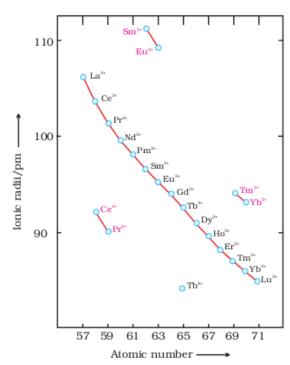
Uses: It is used:

- (i) as a volumetric reagent in the estimation of reducing agents such as oxalic acid, ferrous ions, iodide ions, etc. It is used as a primary standard.
- (ii) for the preparation of several chromium compounds such as chrome alum, chrome yellow, chrome red, zinc yellow, etc.
- (iii) in dyeing, chrome tanning, calico printing, photography etc.
- (iv) as a cleansing agent for glass ware in the form of chromic acid.
- (iv) in leather industry and as an oxidant for preparation of azo compounds.

f-block elements

		enters in (n – 2)f subshell. ne Bottom portion of periodic table.
S.No.	Properties	DISCRIPTION
1.	General character's	All the f-block elements are heavy metals. It shows high melting and boiling point. The most common oxidation state of these elements is +3.
2.	No. of elements	Total number of f-block elements – (28)
3.	Groups	IIIB/3rd group is called longest group having 32 elements including 14 Lanthanides and 14 Actinides. III B/ 3rd Sc Y La Lanthanides (14) Ce ₅₈ – Lu ₇₁ Ac Actinides (14) Th ₉₀ – Lr ₁₀₃
4.	E.C.	Lanthanide series 4f ^{1 - 14} 5d ⁰ or 1 6s ² Actinide series 5f ^{1 - 14} 6d ⁰ or 1 7s ²
5.	Period	Period III B/ 3rd Sc Y 6th period La Lanthanides (14) Ce ₅₈ – Lu ₇₁ 7th period Ac Actinides (14) Th ₉₀ – Lr ₁₀₃
6.	Inner transition elements	The elements in which all the three shells that is ultimate (n) penultimate (n-1) and pre or antipenultimate (n - 2) shell are incomplete are called inner transition elements. $Ce_{58} = [Xe] 6s^2$, $5d^1$, $4f^1$ Inner transition elements are divided into two series.
	(i) Lanthanide series or Rare earth elements or Lanthenones	Ce ₅₈ – Lu ₇₁ 14 elements Lanthanides are found rarely on earth so these are called rare earth metals. The first element of this series is Cerium and not Lanthanum. In these elements, last electron enters into 4f subshell. They are present in IIIB group and 6 th period of the periodic table. Promethium (₆₁ Pm) is the only lanthanide which is synthetic and radioactive in nature.
	(ii) Actinide series or Man made elements or Actinones	Th ₉₀ – Lr ₁₀₃ 14 elements. All the actinides are radioactive elements. The first element of this series is Thorium and not Actinium. In these elements, last electron enters into 5f subshell. They are present in IIIB group and 7 th period of the periodic table. All the actinides are radioactive in nature. First three elements (Th, Pa, U) are found in nature while others are synthetic in nature. Transuranic actinides are man-made elements (Np ₉₃ – Lw ₁₀₃) After U ₉₂ i.e. from Np ₉₃ onwards elements are called transuranic elements because (i) They are heavier than uranium. (ii) They are derived from uranium by nuclear reactions.

The Lanthanides: The names, symbols, electronic configurations of atomic and some ionic states and atomic and ionic radii of lanthanum and lanthanide (for which the general symbol Ln is used) are given in Table.


Electronic Configurations : It may be noted that atoms of these elements have electronic configuration with 6s² common but with variable occupancy of 4f level (Table). However, the electronic

configurations of all the tripositive ions (the most stable oxidation state of all the lanthanides) are of the form $4f^n$ (n = 1 to 14 with increasing atomic number).

Atomic and Ionic Sizes: The overall decrease in atomic and ionic radii from lanthanum to lutetium (the lanthanide contraction). The shielding of one 4 f electron by another is less than one d electron by another with the increase in nuclear charge along the series. There is fairly regular decrease in the sizes with increasing atomic number. The cumulative effect of the contraction of the lanthanide series, known as lanthanide contraction, causes the radii of the members of the third transition series to be very similar to those of the corresponding members of the second series. The almost identical radii of Zr (160 pm) and Hf (159 pm), a consequence of the lanthanide contraction.

Oxidation States: In the lanthanides, La(III) and Ln(III) compounds are predominant species. However, occasionally +2 and +4 ions in solution or in solid compounds are also obtained.

This irregularity (as in ionisation enthalpies) arises mainly from the extra stability of empty, half-filled or filled f subshell. Thus, the formation of Ce^{IV} is favoured by its noble gas configuration, but it is a strong oxidant reverting to the common +3 state. The E^{Θ} value for Ce^{4+} / Ce^{3+} is + 1.74 V which suggests that it can

oxidise water. However, the reaction rate is very slow and hence Ce(IV) is a good analytical reagent. Pr, Nd, Tb and Dy also exhibit +4 state but only in oxides, MO₂. Eu²⁺ is formed by losing the two s electrons and its f⁷ configuration accounts for the formation of this ion.

However, Eu²⁺ is a strong reducing agent changing to the common +3 state. Similarly Yb²⁺ which has f 14 configuration is a reductant.

Tb^{IV} has half-filled f-orbitals and is an oxidant. The behaviour of samarium is very much like europium, exhibiting both +2 and +3 oxidation states.

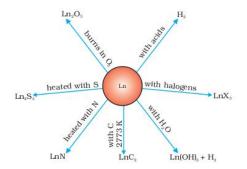
	Table :- Electronic Configurations and Radii of Lanthanum and Lanthanides											
Atomic	Nome	ovemb of	Ele	ectronic co	onfiguratio	ns*	Radii/pm					
Number	Name	symbol	Ln	Ln ²⁺	Ln ³⁺	Ln ⁴⁺	Ln	Ln ³⁺				
57	Lanthanum	La	5d ¹ 6s ²	5d ¹	4f ⁰		187	106				
58	Cerium	Ce	4f ¹ 5d ¹ 6s ²	4f ²	4f ¹	4f ⁰	183	103				
59	Praseodymium	Pr	4f ³ 6s ²	4f ³	4f ²	4f ¹	182	101				
60	Neodymium	Nd	4f ⁴ 6s ²	4f ⁴	4f ³	4f ²	181	99				
61	Promethium	Pm	4f ⁵ 6s ²	4f ⁵	4f ⁴		181	98				
62	Samarium	Sm	4f ⁶ 6s ²	4f ⁶	4f ⁵		180	96				
63	Europium	Eu	4f ⁷ 6f ²	4f ⁷	4f ⁶		199	95				
64	Gadolinium	Gd	4f ⁷ 5d ¹ 6s ²	4f ⁷ 5d ¹	4f ⁷		180	94				
65	Terbium	Tb	4f ⁹ 6s ²	4f ⁹	4f ⁸	4f ⁷	178	92				
66	Dysprosium	Dy	4f ¹⁰ 6s ²	4f ¹⁰	4f ⁹	4f ⁸	177	91				
67	Holmium	Но	4f ¹¹ 6s ²	4f ¹¹	4f ¹⁰		176	89				
68	Erbium	Er	4f ¹² 6s ²	4f ¹²	4f ¹¹		175	88				
69	Thulium	Tm	4f ¹³ 6s ²	4f ¹³	4f ¹²		174	87				
70	Ytterbium	Yb	4f ¹⁴ 6s ²	4f ¹⁴	4f ¹³		173	86				
71	Lutetium	Lu	4f ¹⁴ 5d ¹ 6s ²	4f ¹⁴ 5d ¹	4f ¹⁴	-	-	-				

General Characteristics:

All the lanthanides are silvery white soft metals and tarnish rapidly in air.

The hardness increases with increasing atomic number, samarium being steel hard.

Their melting points range between 1000 to 1200 K but samarium melts at 1623 K.


They have typical metallic structure and are good conductors of heat and electricity. Density and other properties change smoothly except for Eu and Yb and occasionally for Sm and Tm.

Many trivalent lanthanide ions are coloured both in the solid state and in aqueous solutions. Colour of these ions may be attributed to the presence of f electrons. Neither La³⁺ nor Lu³⁺ ion shows any colour but the rest do so. However, absorption bands are narrow, probably because of the excitation within f level.

The lanthanide ions other than the f° type (La³+ and Ce⁴+) and the f¹⁴ type (Yb²+ and Lu³+) are all paramagnetic. The paramagnetism rises to maximum in neodymium.

The first ionisation enthalpies of the lanthanides are around 600 kJ mol^{-1} , the second about 1200 kJ mol^{-1} comparable with those of calcium.

A detailed discussion of the variation of the third ionisation enthalpies indicates that the exchange enthalpy consideration (as in 3d orbitals of the first transition series), appear to impart a certain degree of stability to empty, half-filled and completely filled orbitals f level. This is indicated from the abnormally low value of the third ionization enthalpy of lanthanum, gadolinium and lutetium.

In their chemical behaviour, in general, the earlier members

of the series are quite reactive similar to calcium but, with increasing atomic number, they behave more like aluminium.

Values for E⁻ for the half-reaction:

 Ln^{3+} (aq) + $3e^- \rightarrow Ln(s)$ are in the range of -2.2 to -2.4 V except for Eu for which the value is - 2.0 V.

This is, of course, a small variation.

The metals combine with hydrogen when gently heated in the gas.

The carbides, Ln₃C, Ln₂C₃ and LnC₂ are formed when the metals are heated with carbon.

They liberate hydrogen from dilute acids and burn in halogens to form halides.

They form oxides M₂O₃ and hydroxides M (OH)₃. The hydroxides are definite compounds, not just hydrated oxides.

They are basic like alkaline earth metal oxides and hydroxides.

The best single use of the lanthanides is for the production of alloy steels for plates and pipes. A well known alloy is mischmetall which consists of a lanthanide metal (~ 95%) and iron (~ 5%) and traces of S, C, Ca and Al. A good deal of mischmetall is used in Mg-based alloy to produce bullets, shell and lighter flint. Mixed oxides of lanthanides are employed as catalysts in petroleum cracking. Some individual Ln oxides are used as phosphors in television screens and similar fluorescing surfaces.

The Actinides:

The actinides include the fourteen elements from Th to Lr. The names, symbols and some properties of these elements are given in Table.

	Table: Electronic Configurations and Radii of Actinium and Actinoids											
Atomic	Name	symbol	Electron	ic configu	rations*	Radii/pm						
Number		Syllibol	М	M ³⁺	M ⁴⁺	M ³⁺	M ⁴⁺					
89	Actinium	Ac	6d ¹ 7s ²	5f ⁰		111						
90	Thorium	Th	6d ² 7s ²	5f1	5f ⁰		99					
91	Proctactiniium	Pa	5f ² 6d ¹ 7s ²	5f ²	5f ¹		96					
92	Uranium	U	5f ³ 6d ¹ 7s ²	5f ³	5f ²	103	93					
93	Neptunium	Np	5f ⁴ 6d ¹ 7s ²	5f ⁴	5f ³	101	92					
94	Plutonium	Pu	5f ⁶ 7s ²	5f ⁵	5f ⁴	100	90					
95	Americium	Am	5f ⁷ 7s ²	5f ⁶	5f ⁵	99	89					
96	Curium	Cm	5f ⁷ 6d ¹ 7s ²	5f ⁷	5f ⁷	99	88					
97	Berkelium	Bk	5f ⁹ 7s ²	5f ⁸	5f ⁷	98	87					
98	Californium	Cf	5f ¹⁰ 7s ²	5f ⁹	5f ⁸	98	86					

99	Einstenium	Es	5f ¹¹ 7s ²	5f ¹⁰	5f ⁹	-	-
100	Fermium	Fm	5f ¹² 7s ²	5f ¹¹	5f ¹⁰	-	-
101	Mendelevium	Md	5f ¹³ 7s ²	5f ¹²	5f ¹¹	-	-
102	Nobelium	No	5f ¹⁴ 7s ²	5f ¹³	5f ¹²	-	-
103	Lawrencium	Lr	5f ¹⁴ 6s ¹ 7s ²	5f ¹⁴	5f ¹³	-	-

The actinides are radioactive elements and the earlier members have relatively long half-lives, the latter ones have half-life values ranging from a day to 3 minutes for lawrencium (Z =103). The latter members could be prepared only in nanogram quantities. These facts render their study more difficult.

Electronic Configurations:

All the actinides are believed to have the electronic configuration of 7s² and variable occupancy of the 5f and 6d subshells.

The fourteen electrons are formally added to 5f, though not in thorium (Z = 90) but from Pa onwards the 5f orbitals are complete at element 103.

The irregularities in the electronic configurations of the actinides, like those in the lanthanides are related to the stabilities of the f° , f^{7} and f^{14} occupancies of the 5f orbitals. Thus, the configurations of Am and Cm are [Rn] $5f^{7}7s^{2}$ and [Rn] $5f^{7}6d^{1}7s^{2}$.

Although the 5f orbitals resemble the 4f orbitals in their angular part of the wave-function, they are not as buried as 4f orbitals and hence 5f electrons can participate in bonding to a far greater extent.

Ionic Sizes:

The general trend in lanthanides is observable in the actinides as well. There is a gradual decrease in the size of atoms or M³+ ions across the series. This may be referred to as the actinide contraction (like lanthanide contraction). The contraction is, however, greater from element to element in this series resulting from poor shielding by 5f electrons.

Oxidation States:

There is a greater range of oxidation states, which is in part attributed to the fact that the 5f, 6d and 7s levels are of comparable energies. The known oxidation states of actinides are listed in Table.

	Table : Oxidation States of Actinium and Actinides													
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
3		3	3	3	3	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	4						
		5	5	5	5	5								
			6	6	6	6								
				7	7									

The actinides show in general +3 oxidation state.

The elements, in the first half of the series frequently exhibit higher oxidation states. For example, the maximum oxidation state increases from +4 in Th to +5, +6 and +7 respectively in Pa, U and Np but decreases in succeeding elements.

The actinides resemble the lanthanides in having more compounds in +3 state than in the +4 state. However, +3 and +4 ions tend to hydrolyse.

Because the distribution of oxidation states among the actinides is so uneven and so different for the earlier and latter elements, it is unsatisfactory to review their chemistry in terms of oxidation states.

General Characteristics and Comparison with Lanthanides:

The actinide metals are all silvery in appearance but display a variety of structures. The structural variability is obtained due to irregularities in metallic radii which are far greater than in lanthanides.

The actinides are highly reactive metals, especially when finely divided. The action of boiling water on them, for example, gives a mixture of oxide and hydride and combination with most non metals takes place at moderate temperatures. Hydrochloric acid attacks all metals but most are slightly affected by nitric acid owing to the formation of protective oxide layers; alkalies have no action.

The magnetic properties of the actinides are more complex than those of the lanthanides. Although the variation in the magnetic susceptibility of the actinides with the number of unpaired 5 f electrons is roughly parallel to the corresponding results for the lanthanides, the latter have higher values.

It is evident from the behaviour of the actinides that the ionisation enthalpies of the early actinides, though not accurately known, but are lower than for the early lanthanides. This is quite reasonable since it is to be expected that when 5f orbitals are beginning to be occupied, they will penetrate less into the inner core of electrons. The 5f electrons, will therefore, be more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanides. Because the outer electrons are less firmly held, they are available for bonding in the actinides.

A comparison of the actinides with the lanthanides, with respect to different characteristics as discussed above, reveals that behaviour similar to that of the lanthanides is not evident until the second half of the actinide series. However, even the early actinides resemble the lanthanides in showing close similarities with each other and in gradual variation in properties which do not entail change in oxidation state. The lanthanide and actinide contractions, have extended effects on the sizes, and therefore, the properties of the elements succeeding them in their respective periods. The lanthanide contraction is more important because the chemistry of elements succeeding the actinides are much less known at the present time.

Some Applications of d- and f-Block Elements:

Iron and steels are the most important construction materials. Their production is based on the reduction of iron oxides, the removal of impurities and the addition of carbon and alloying metals such as Cr. Mn and Ni.

TiO for the pigment industry and MnO₂ for use in dry battery cells. The battery industry also requires Zn and Ni/Cd.

The 'silver' UK coins are a Cu/Ni alloy.