Exercise-1

PART-I: ONLY ONE OPTION CORRECT TYPE

SECTION	(A):	UNITS
----------------	------	-------

1.	One watt-hour is equiva (1) 3.6 × 103 Joule	alent to - (2) 3.6 × 10–3 Joule	(3) 6.3 × 103 Joule	(4) 6.3 × 10-3 Joule			
2.	Which of the following is (1) Joule/second	s not equal to watt - (2) Ampere×volt	(3) (Ampere)2×ohm	(4) Ampere/volt			
3.	Which of the following is (1) micron	s not the unit of length: (2) light year	(3) angstrom	(4) radian			
4.	Unit of Stiffen's constar (1) Watt -m ₂ -K ₄	nt is :- (2) Watt –m ₂ –K ₄	(3) Watt /m ₂ –K	(4) Watt /m ₂ K ₄			
5	The S.I. unit of gravitaid (1) J	onal potenital is (2) J . kg ₋₁	(3) J - kg	(4) J - kg ₋₂			
6.	Length cannot be meas (1) Fermi	sured by (2) Debye	(3) Micron	(4) Light year			
7.	The Value of Plancks C (1) 6.63 ×10 -34 J-sec	Constant is (2) 6.63×10 ₃₄ J/sec	(4) 6.63 ×10 -34 kg - M ₂	(4) 6.63 ×10 ₃₄ kg / sec			
8.	Faraday is the unit of (1) Charge	(2) emf	(3) Mass	(4) Energy			
9.	Curie is a unit of - (1) half life	(2) radioactivity	(3) intensity of γ-rays	(4) energy of γ-rays			
10.	Hertz is a unit of- (1) Force	(2) Acceleration	(3) Frequency	(4) Flux			
11.	Light year is a unit of- (1) Time	(2) Mass	(3) Distance	(4) Energy			
12.	SI unit of pressure is- (1) Pascal	(2) Dyne/cm2	(3) cm of Hg	(4) Atmosphere			
13.	Which of the following is (1) Kelvin	s not a fundamental unit (2) Second	– (3) Candela	(4) Kilogram weight			
14.	If n is number and u i measurement of "n"-	s the unit of a physical	quantity then which of	the following is correct for the			
15.			(3) n $\propto \sqrt{u}$ 100 dynes. In another ute, the magnitude of the (3) 3.6	(4) $n \propto \frac{1}{u}$ system where the fundamental force is- (4) 36			
16.	Pick out the right choic	e S2 = at4. Here S is m	neasured in meters, t in s	second. Then the unit of 'a' is-			
	(1) ms-2	(2) ms ₂	(3) m ₂ s ₄	(4) m ₂ s ₋₄			
17	The units of angular mo	mentum are-					

Units & Dimension

	(1) kg-m ₂ /s ₂	(2) joules-s	(3) joules/s	(4) kg-m s-2			
18.	1eV is equal to - (1) 10 erg	(2) 1.6 × 10–12 erg	(3) 1.6 × 10–13 erg	(4) 1.6 × 10–19 erg			
19.	The ratio of S.I. units to (1) 10–2	the C.G.S units of 'G' is (2) 10–3	(3) 102	(4) 103			
20.	Time taken by light to tr (1) 8 seconds	eavel from sun to the eart	th is approximately - (3) 8 minutes	(4) 8 days			
21.	If the units M and L are (1) 3 times	increased three times, the (2) 6 times	hen the units of energy w (3) 27 times	vill be increased by - (4) 81 times			
22.		the meter. Suppose we a terms of the new unit ha	s a magnitude -	h which equals to x meters. The			
	(1) x	(2) x2	$\frac{1}{x}$	$(4) \frac{1}{x^2}$			
23.	Luminous flux is expres (1) Lux	ssed in - (2) Weber	(3) Candela	(4) Lumen			
24.	The ratio of S.I. to C.G.	S units for Stefan's cons	tant is -				
	(1) 100	(2) 1000	(3) 100	(4) 1000			
25.	If the units of ML are do (1) 8 times	oubled then the unit of king (2) 16 times	netic energy will become (3) 4 times	- (4) 2 times			
26.	Which of the following in (1) leap year	n not the unit of time - (2) lunar month	(3) solar day	(4) parallactic second			
27.	Unit of impulse is : (1) Newton	(2) kg-m	(3) kg- m/s	(4) Joule			
28.	Which of the following is (1) Micro second	s not the unit of time- (2) Shake	(3) Lunar months	(4) Parallactic second			
29.	The unit of permittivity of (1) Newton metre ₂ /Coul (3)Coulomb ₂ /Newton m	omb ₂	(2) Coulomb/Newton metre (4) Coulomb ₂ / (Newton metre) ₂				
SECT	ION (B) : DIMENSIO	NS					
1.	The unit of $\frac{1}{\ell} \sqrt{\frac{T}{m}}$ is the unit of $\frac{T}{m}$ is the unit	he same as that of (where (2) Time period	re T is tension and m is r (3) Wave-length	mass/length) - (4) Wave number			
2.	Which of the following height)	is not dimensionally cor	rect- (T = tension, m =	mass/length, s = distance, h =			
	- '		_{t _} 2h	v^2			
	(1) $s = \frac{1}{2}$ at2	(2) $V = \sqrt{T/m}$	$t = \frac{2h}{g}$	$a = \frac{v^2}{r}$			
3.	Which of the following s	set have different dimens	sions?				
	(1) Pressure, Young's n(3) Heat, Work done, E	nergy	(2) Emf, Potential differ(4) Dipole moment, Ele				
4.	The dimensional formul (1) $[ML_2T_{-2}A_{-1}]$	a for magnetic flux is: (2) [ML ₃ T ₋₂ A ₋₂]	(3) [M ₀ L ₋₂ T ₂ A ₋₂]	(4) [ML ₂ T ₋₁ A ₂]			

5.	The dimension of Pland (1) Energy	ck constant equals to that (2) Momentum	t of : (3) Angular momentum	(4) Power			
6.	The dimensions of univ (1) ML_2T_{-1}	ersal gravitational consta (2) M ₋₂ L ₃ T ₋₂	ant are :- (3) M ₋₂ L ₂ T ₋₁	(4) M ₋₁ L ₃ T ₋₂			
7.	The dimensional formu (1) MoLoT -1	la of angular velocity is (2) MLT -1	(3) MoLoT ₁	(4) ML ₀ T ₋₁			
8.	Dimension formula for a (1) ML ₂ T ₋₂	angular momentum is (2) ML ₂ T -1	(3) MLT -1	(4) MoL ₂ T - ₂			
9.	Which of the following (1) Stress and pressure (3) Tension and surface		ar dimensions (2) Angle and strain (4) planck's constant an	nd angular momentum			
10.	Pressure gradient has to (1) Velocity gradient (3) Energy gradient	the same dimesion as tha	at of (2) Potenital gradient (4) None of these				
11.	Dimension of R is (1) ML ₂ T ₋₁	(2) ML ₂ T ₋₃ A ₋₂	(3) ML-1 T-2	(4) None of these			
12.	"Pascal -Second "has of (1) Force	dimension of (2) Energy	(3) Pressure	(4) Coefficient of Viscosity			
13.	Which of the following i (1) Millimeter	s smallest unit (2) Angstrom	(3) Fermi	(4) Meter			
14.	Which relation is wrong (1) 1 Calore = 4.18 Jou (3) 1MeV = 1.6 ×10-13 J	les	(2) 1Å = 10-₁₀ m (4) 1 Newton =10 -₅ Dynes				
15.	Identify the pair whose (1) Torque and work (3) Force and stress	dimensions are equal	(2) Stress and energy (4) Force and work				
16.	The physical quantities (1) stress and Young's (3) torque and work	not having same dimens modulus	sions are - (2) speed and (μ0 ∈0)–1/ (4) momentum and Plar				
17.	Dimensions of $1/(\mu_0 \in 0)$ (1) L ₂ T ₋₂) where symbols have the (2) L ₂ T ₂	eir usual meaning are - (3) L-1T	(4) LT-1			
18.	In a given relation F = a and b are respectively a (1) M°L°T ₁ , M°L°T ₋₂		e the force and the time respectively, then dimensions of (3) M ₁ L ₁ T ₋₃ , M ₁ L ₁ T ₋₄ (4) M ₁ L ₁ T ₋₁ , M ₁ L ₁ T ₋₂				
19.			. ,	tical operation given below is			
	physically meaningful- (1) A/B	(2) A + B	(3) A – B	(4) None			
20.	Dimensional formula fo (1) M ₂ L ₋₂ T ₋₂	r volume elasticity is- (2) M1L-3T-2	(3) M ₁ L ₂ T ₋₂	(4) M1L-1T-2			
21.				me. Find dimension of m and n:			
22.	(1) $m = 1$, $n = 1$ The dimension of the ra (1) L°	(2) m = 1, n = 2 atio of angular momentun (2) L1	(3) m = 2, n = 1 n and linear momentum i (3) L ₂	(4) m = 2, n = 2 s - (4) MLT			
23.	Dimensions of Torque	are-					

	(1) M ₁ L ₂ T ₋₂	(2) M ₂ L ₂ T ₂	(3) M-1LT-1	(4) M-2L-2T-2
24.		nd angular momentum.	not have same dimensior (2) Work and torque. (4) Torque and momen	
25.	Dimensional formula of (1) MoLoT-1	angular velocity is- (2) M ₁ L ₁ T ₋₁	(3) MoL+1T-1	(4) MoLoT-2
26.	Which of the following i (1) universal gravitation (3) relative velocity		(2) relative permittivity (4) density Energy	nv.
27.	The physical quantity w (1) Force	hich has dimensional for (2) Power	rmula as that of ^{mass×le} (3) Pressure	(4) Acceleration
28.	The dimensions of the (1) ML-1T-1	Gravitational constant G (2) MLT2	are- (3) M-1L3T-2	(4) M2L-1T2
29.	What will be the unit of	f c in the equation S = a	a + bt + ct2 if the units of	f S and t are meter and second
	respectively - (1) meter	(2) meter-sec-1	(3) meter-sec-2	(4) meter-sec
	. ,		` '	` '
30.	The dimensions of PV a (1) Work	are equivalent to those o (2) force	f - (3) pressure	(4) volume
31.	The dimensions of mc2 (1) MLT-1	are - (2) ML ₂ T ₋₁	(3) ML ₂ T ₋₂	(4) ML ₂ T ₂
		а		
32.	In the equation Sn = u + (1) MoL1To	$\frac{a}{2}$ (2n + 1) the dimensical (2) MoL1T-1	ions of Sn are - (3) M1L0T-1	(4) MoL1T-2
33.	The dimensions of light (1) T	year is - (2) L	(3) LT	(4) T ₋₁
34.	Which of the following in (1) Refractive index	s dimensional constant - (2) Poisson's ratio	(3) Relative density	(4) Gravitational constant
	•	. ,	•	,
35.	Which of the following of (1) strain	quantities is dimensionle (2) relative density	ss - (3) angle	(4) all of these
36.	If force F = at + bt2 whe (1) MLT-3, ML2T4	ere t denotes time, the di (2) MLT-3, MLT-4	mensions of a and b sha (3) MLT-1, MLT0	ll be - (4) MLT-4, MLT1
37.	A and B are two physicadimensionally correct -	al quantities having diffe	rent dimensions. Then w	hich of the following operation is
	•	Α	Α	
	(1) A + B	(2) log B	(3) A B	(4) eA/B
38.	For 10(at + 3) , the dimer (1) MoLoTo	() 0	(3) MoLoT-1	(4) none of these
39.	If velocity (V), time (T) a	and force (F) were chose	n as fundamental quantit	ties, the dimensions of mass will
	be- (1) FTV	(2) F-1TV	(3) FTV-1	(4) FT-1V
40.	If pressure P velocity V	and time T are taken as	fundamental physical qui	antities, the dimensional formula
-7 0.	of the force is- (1) PV ₂ T ₂	(2) P ₋₁ V ₂ T ₋₂	(3) PVT ₂	(4) P-1VT2
44		` ,	,	. ,
41.	A particle of masss m constant then the value		ig ii frequency of its osc	cilation is n = cmxky here c is a

Units & Dimension

$$\frac{1}{2}$$
 $x = \frac{1}{2}$

(2)
$$x = -\frac{1}{2}$$
, $y = -\frac{1}{2}$ (3) $x = -\frac{1}{2}$, $y = \frac{1}{2}$

(3)
$$x = -\frac{1}{2}$$
, $y = \frac{1}{2}$

$$\frac{1}{(4)} = \frac{1}{2}, y = -\frac{1}{2}$$

42. The velocity of a freely falling body changes as gphq, where g is acceleration due to gravity and h is the height. The value of p and q are-

(1)
$$1, \frac{1}{2}$$

$$\frac{1}{2}, \frac{1}{2}$$

$$\frac{1}{2}$$
, 1

43. In the formula V = Ebda, if V; E and d are the velocity of longitudinal waves, bulk modulus of elasticity and density of the gaseous medium respectively, then the values of a and b are respectively -

$$-\frac{1}{\sqrt{2}}$$
 and $\frac{1}{2}$

$$\frac{1}{2}$$
 and $-\frac{1}{\sqrt{2}}$ (3) $-\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$

$$-\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$
 and $\frac{1}{\sqrt{2}}$

$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$
 and $-\frac{1}{\sqrt{2}}$

44. If force (F), area (A) and density (D) are taken as the fundamental units, the dimensional representation of Youngs modulus will be -

45. A spherical body of mass m and radius r is allowed to fall in a medium of coefficient of viscosity η . The time in which its velocity rises to 0.63 times the critical velocity v is known as τ . τ is dimensionally represented by

(2)
$$\sqrt{6\pi\eta mr/g}$$

(3) m/6πηrv

(4) none of the above

The dimensions of the coefficient of viscosity are -46.

(3)
$$M_{-1}L_{-1}T_{-1}$$

- (4) MoLoTo
- The ratio of the dimension of Planck's constant and that of the moment of inertia is the dimension of :-47.
 - (1) Velocity
- (2) Angular momentum (3) Time
- (4) Frequency

48. The dimensions of the coefficient of viscosity are -

Exercise-2

1. An air bubble inside water oscillates due to some explosion with period T. If T ∝ Pa db Ec then determine the values of a, b and c. Here P, d and E are the static pressure, density and total energy of explosion of water respectively. -

(1)
$$a = 5/6$$
, $b = 1$, $c = 1/3$

(2)
$$a = -5/6$$
, $b = 1/2$, $c = 1/3$

$$(3)$$
 a = 1, b = 1, c = 1

$$(4)$$
 a = 0, b = 0, c = 1

The velocity of a particle depends upon time according to the relation $v = \alpha t + \frac{t + \gamma}{2}$. The dimensions of 2. α , β and γ will be -

3. The velocity of ripples on water surface depends upon the wavelength λ , density of water d and acceleration due to gravity q. Which of the following relations is correct among these quantities -

(2) V₂ ∝
$$\frac{1}{g\lambda}$$

4.	A wave is represented by $y = a \sin (At - Bx + C)$ where A, B, C are constants. The dimensions of A, B, C are - (1) T-1, L, MoLoTo (2) T-1, L-1, MoLoTo (3) T, L, M (4) T-1, L-1, M-1								
5.	The dimensions of Ryd (1) MoL-1T	` ,	(3) MoL-1To	(4) ML ₀ T ₂					
6.	The SI unit of Mechanic (1) Joule × Calorie	cal Equivalent of heat is - (2) Joules@Calorie	(3) Calorie × Ergs	(4) Ergs@Calorie					
7.	•	ment of a particle is give	n by $x = A_2 \sin kt$, where	t denote the time. The unit of k					
	is - (1) hertz	(2) metre	(3) radian	(4) seconds					
8.	k1 and k2 are respective	ely as –		e and time respectively. Units of					
9.	(1) Metre, sec	(2) Metre-1, sec-1	(3) Metre-1, sec	(4) Metre, sec-1					
J.	the dimensions of EJ ₂ /r (1) angle		(3) mass	nal constant respectively. Then (4) time					
	, , ,	. , .	• •	, ,					
10.	dimension of mass in the	ne new system will be -		e taken as fundametal units the					
	(1) c1/2h1/2 G1/2	(2) c1/2h1/2 G-1/2	(3) c-3/2h1/2 G1/2	(4) c-5/2h1/2 G1/2					
	<u>X</u>								
11.	Force F = density + C (1) MLT-2	is a dimensionally corre- (2) MLT ₋₃	ct relation, then X will have (3) ML ₂ T ₋₃	ve dimensions - (4) M2L-2T-2					
12.	If P is the pressure of a (1) P _{1/2} ρ -1/2	gas and ρ is its density, (2) P1/2 ρ 1/2	then dimension of veloci (3) P-1/2 ρ1/2	ty is given by - (4) P-1/2 ρ-1/2					
13.	The equation of a plane of –	e progressive wave is giv	ven by $y = A \sin(\omega t - kx)$.	The dimensions of ω/k are that					
	(1) Frequency	(2) Velocity	(3) Wavelength	(4) Inverse of velocity					
14.	If L denotes the inducta (1) ML ₂ T ₋₂ (3) MLT ₋₂	nce of an inductor throu	gh which a current i is flo (2) Not expressible in N (4) M2L-2T-2						
15	The velocity v (in em/se	va) of a partials is siven in	tormo of timo t (in acc) h	by the relation $v = at + \frac{b}{t+c}$, the					
15.	dimensions of a, b and	c are-	n terms of time t (in sec) b						
	(1) $a = L2$, $b = T$, $c = LT$ (3) $a = LT_{-2}$, $b = L$, $C =$		(2) $a = LT_2$, $b = LT$, $c = I$ (4) $a = L$, $b = LT$, $c = T_2$	<u></u>					
16.	Which of the following r (1) Joule / second	represents a volt- (2) Watt / Ampere	(3) Watt / Coulomb	(4) Coulomb / Joule					
17.	In the relation $y = a \cos(1)$ [M ⁰ L ₋₁ T ₋₁]	s ($\omega t - kx$) the dimension (2) [M ⁰ LT ₋₁]	al formula for k is – (3) [MºL-1Tº]	(4) [M°LT]					
18.	In a system of unit if for dimensional formula of (1) FA ₂ T		(A) and time (T) are taken as fundamental units then (3) F ₂ AT (4) FAT						
19.	,	mensional quantities, whi gravity	. ,	called a dimensional constant vater					

	of rcv in SI units w (1) [LT ²] Answer	(2) [LA ⁻²]	(3) [LTA]	[JEE M a (4) [A ⁻¹]	in 2019]
3.			tance, capacitance and	voltage, respectively. T	he dimension
2.	If speed (V), accele modulus will be : (1) V ⁻⁴ A ² F	ration (A) and force (F) a $(2) V^{-2}A^{2}F^{-2}$	re considered as fundam (3) V ⁻⁴ A ⁻² F	ental units, the dimension [JEE Main 2019] (4) V ⁻² A ² F ²	_
1.	•		kgm ⁻³ . In certain units it value of density of the m (3) 640		ngth is 25 cm nin 2019]
	PART - II : JE	E (MAIN) / AIEE	E PROBLEMS (F	PREVIOUS YEAR	RS)
5.	If energy (E), veloci of surface tension v (1) [EV-1 T-2]		nosen as the fundamenta	al quantities, the dimens [AIPMT-2015] (4) [EV-2T-1]	sional formula
4.	If force (F), velocity (1) [FVT ₋₁]	(V) and time (T) are tak (2) [FVT ₋₂]	en as fundamental units (3) [FV ₋₁ T ₋₁]	, the dimensions of mas [AIPMT-2 (4) [FV ₋₁ T]	
3.			inits is 4g/cm ₃ . In a syste of density of material wil (3) 400		t of lengths is MT-2011]
2.	The dimension of (1) ML ₂ T ₋₂	$\frac{1}{2} \varepsilon_0 E^2$, where ε_0 is perm (2) ML ₋₁ T ₋₂	ittivity of free space and (3) ML ₂ T ₋₁	E is electric field, is [Al (4) MLT ₋₁	PMT-2010]
1.	(1) pressure if a =1(3) acceleration if a	, b= -1, c = -2 =1, b= 1, c = -2	given by MaLbTc, then the (2) velocity if a =1, (4) force if a =0, be	b = 0, c = -1 [AIP	be MT-2009]
	PART-I:	NEET / AIPMT Q	UESTION (PREV	IOUS YEARS)	
	Exercis	e-3			
22.	If the unit of force a (1) 16 times	nd length each be incre (2) 8 times	ased by four times, then (3) 2 times	the unit of energy is inc (4) 4 times	creased by
21.	The dimensions of (1) MLT-1 [note - there was no	(Z) IVI L-2 I -2	of free space; E: electri (3) MLT-2 we made the correct op	(4) ML-1T-2	
20.		3YZ2, X and Z have dimnsions of Y in MKSQ sys (2) [M-3 L-2 T4 Q4]		_	

						EXER	CISE	- 1					
SECT	ΓΙΟΝ (A))											
1.	(1)	2.	(4)	3.	(4)	4.	(4)	5	(2)	6.	(2)	7.	(1)
8.	(1)	9.	(2)	10.	(3)	11.	(3)	12.	(1)	13.	(4)	14.	(4)
15.	(3)	16.	(4)	17.	(2)	18.	(2)	19.	(4)	20.	(3)	21.	(3)
22.	(4)	23.	(4)	24.	(4)	25.	(1)	26.	(4)	27.	(3)	28.	(4)
29.	(3)												
SECT	ΓΙΟΝ (B))											
1.	(1)	2.	(3)	3.	(4)	4.	(1)	5.	(3)	6.	(4)	7.	(3)
8.	(2)	9.	(3)	10.	(4)	11.	(2)	12.	(4)	13.	(1)	14.	(4)
15.	(1)	16.	(4)	17.	(1)	18.	(3)	19.	(1)	20.	(4)	21.	(2)
22.	(2)	23.	(1)	24.	(4)	25.	(1)	26.	(2)	27.	(4)	28.	(3)
29.	(3)	30.	(1)	31.	(3)	32.	(1)	33.	(2)	34.	(4)	35.	(4)
36.	(2)	37.	(3)	38.	(3)	39.	(3)	40.	(1)	41.	(3)	42.	(2)
43.	(1)	44.	(3)	45.	(4)	46.	(1)	47.	(4)	48.	(1)		
						EXER	CISE	- 2					
1.	(2)	2.	(1)	3.	(1)	4.	(2)	5.	(3)	6.	(2)	7.	(1)
8.	(2)	9.	(1)	10.	(2)	11.	(4)	12.	(1)	13.	(2)	14.	(1)
15.	(3)	16.	(2)	17.	(3)	18.	(2)	19.	(4)	20.	(2)	21.	(4)
22.	(1)												
						EXER	CISE	- 3					
						P/	ART-I						
1.	(1)	2.	(2)	3.	(2)	4.	(4)	5.	(2)				
						PA	RT-II						
1.	(2)	2.	(1)	3.	(4)								