Exercise-1

marked Questions may have for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

Section (A): Electronic configuration, atomic and ionic size, density, melting and boiling points

1.	The transition elements have a general electronic configuration : (1) $ns^2 np^6 nd^{1-10}$			D ₀ - 6		
2.3	The general electronic (1) $(n-1)d^{10} ns^2$	configuration of Zn, Cd a (2) (n – 1) d ⁹ 4s ²	nd Hg is represented by (3) (n -1) d¹04s¹	: (4) (n - 1) d¹0 4s°		
3.	The d-block of the period (1) 2 – 11	odic table contains the el (2) 3 – 12	ements of the groups : (3) 3 – 11	(4) 5–14		
4.	Which of the following statements is incorrect about transition elements? (1) The last electron enters into them in (n-1) d-orbital. (2) Their properties are in between those of s- and p-block elements. (3) The transition element with smallest atomic number is scandium. (4) None of these					
5. æ	The total number of election (1) 8, 9, 10	ectrons in (n–1) d-orbitals (2) 8, 10, 10	in each element, Pd, Ag (3) 10, 10, 10	and Cd respectively are : (4) none		
6.≥	Which of the following (1) V	has largest metallic radiu (2) Mn	s ? (3) Ti	(4) Co		
7.	Amongst the following (1) Ti	metals, which has highes (2) Cr	et melting point ? (3) Fe	(4) Cu		
8.bs	The melting point of Zn is lower as compared to those of the other elements of 3d series because: (1) the d-orbitals are completely filled. (2) the d-orbitals are partially filled. (3) d-electrons do not participate in metallic bonding. (4) (1) and (3) both.					
9.	Among the following s configuration is: (1) Ti ³⁺ , V ²⁺ , Cr ³⁺ , Mn ⁴ (3) Ti ²⁺ , V ³⁺ , Cr ²⁺ , Mn ³	+	ions, the one where all (2) Ti $^+$, V $^{4+}$, Cr $^{6+}$, Mn $^{7+}$ (4) Ti $^{2+}$, V $^{3+}$, Cr $^{4+}$, Mn $^{5-}$	metal ions have 3d ² electronic		

(1) V

(2) Mn

Section (B): Ionization enthalpy, oxidation state, Electrode potential and chemical reactivity

1.	Which of the statements is False ? (1) In 3d series, there is a regular increase in the first ionisation enthalpy of transition elements from left to right. (2) In 3d series, the negative value of standard electrode potential (E/V) for M²+/M decreases in the order Ti > Mn > Cr > Fe. (3) The decreases in metallic radius coupled with increase in atomic mass results in a general increase in the density of transition elements from Ti to Cu. (4) The higher oxidation state are favoured by the heavier elements (i.e. heavier members) in the groups of d-block.					
2.	Maximum oxidation sa (1) Os	te is shown by : (2) Mn	(3) Cr	(4) Co		
3.3&	The highest oxidation s (1) (n – 1) d³ns²	state is exhibited by the (2) (n – 1) d⁵ns¹	transition metals with (3) (n − 1) d⁵ns²	configuration : (4) (n -1) d ⁸ ns².		
4.24	Low oxidation states are found in transition elements when a complex compound has: (1) ligands capable of π acceptor character. (2) ligands capable of σ donor character. (3) ligands capable of π acceptor character as well as σ donor character. (4) ligands incapable of π acceptor character as well as σ donor character.					
5.	(1) The lesser numberpresence of too few ele(2) The lesser number	ectrons to loose or share or of oxidation states in	e 3d-series towards the	inning of the series is due to the e end of the series is due to the re electrons with the ligands		
6.	The stability of particul (1) enthalpy of sublima (3) enthalpy of hydratic		etal in aqueous solutio (2) ionisation energy (4) all of these.	·		
7.	Which of the following (1) Cr ²⁺ is reducing in (3) Both (1) and (2)	is true for the species han nature.	aving 3d ⁴ configuration (2) Mn ³⁺ is oxidising (4) None of these			
8.34	(1) bigger size of atom	s of 5d-series elements uclear charge is experier	than 3d-series elemen	es elements. This is due to : ts. ons because of the weak shielding		
9.	Which amongst the following	lowing can give the grea	ter number of oxidation	n states ?		

(3) Cr

(4) Fe

Section (C): Magnetic properties, formation of coloured ions.

Which of the following has the maximum number of unpaired d-electron?

	(1) Zn ²⁺	(2) Fe ²⁺	(3) Ni ³⁺	(4) Cu ²⁺			
2.	Magnetic moment of Cr $(1) x < y < z$	$^{+2}$ (Z =24), Mn ⁺² (Z = 25) (2) x > y > z		z. They are in order : (4) x = z < y			
3. as.	Which one of the follow (1) Co ²⁺	ing transition metal ions (2) Ni ²⁺	is diamagnetic ? (3) Cu²+	(4) Zn ²⁺			
4.	Which of the following io (1) Ni ²⁺	ons give colourless aque (2) Fe²+	ous solution? (3) Cu ²⁺	(4) Cu+			
5.		st transition series has a expected to be present in (2) 2		culated) of 3.87 B.M. How many			
6.24	The magnetic moment of (1) +2 state	of ₂₅ Mn in ionic state is 4. (2) +3 state	83 B.M, then Mn is in : (3) +4 state	(4) +5 state			
7.a.	The colour of transition metal ions is attributed to : (1) exceptionally small size of cations (2) absorption of ultraviolet rays (3) incomplete (n – 1) d - subshell (4) absorption of infrared radiations						
Section	on (D) : Catalytic pr	operties, formation	of interstitial comp	oounds, alloy formation.			
1.	The catalytic activity of the transition metals and their compounds is ascribed to: (1) their chemical reactivity. (2) their magnetic behaviour. (3) their unfilled d-orbitals. (4) their ability to adopt multiple oxidation state and their complexing ability.						
2.	Which forms interstitial (1) Fe	compounds? (2) Co	(3) Ni	(4) All			
3.3	(2) The enthalpies of at	statement is correct? Index their many compounds Index to the transition of the transition Index generally form interstition	on metals are high.	l atoms like C, B, H etc.			
Section	· , .	-block metal compo					
1.	The yellow colour of chi (1) Cr ³⁺	romates changes to oran (2) Cr ₂ O ₃	ge on acidification due to (3) $\operatorname{Cr_2O_7^{2-}}$	o formation of : (4) CrO ₄ -			
2.	When acidified solution (1) $\text{Cr}_2\text{O}_7^{2-}$ ion is reduce (3) $\text{Cr}_2\text{O}_7^{2-}$ ion is reduce		h aqueous solution of Fe (2) $\operatorname{Cr_2O_7^{2-}}$ ion is conver (4) $\operatorname{Cr_2O_7^{2-}}$ ion is conve	rted to CrO ₄ ²⁻ ions			
3.	Which of the following dichromate? (1) K ₂ SO ₄ .Cr ₂ (SO ₄) ₃ .24H (3) FeCr ₂ O ₄ (chromite)		the starting material for (2) PbCrO ₄ (chrome yell (4) PbCrO ₄ .PbO (chrome yell (4) PbCrO ₄ .PbCrO ₄ .PbCr				

4.		esence of catalyst zin Il of faintly alkaline medit (2) Mn ₂ O ₇	•	ide is oxidised by potassium (4) Can not be oxidised			
5.≥	KMnO ₄ is the oxo salt of (1) MnO ₂	f: (2) Mn ₂ O ₇	(3) MnO ₃	(4) Mn ₂ O ₃			
6. ₂₈	(2) In acidic solution, did(3) Potassium dichroma	of K ₂ Cr ₂ O ₇ liberates iodi chromate ions are conve	decomposition to give C				
7.8	$KMnO_4$ on heating at ter (1) K_2MnO_4 , MnO_2 and (3) K_2MnO_4 , Mn_2O_7 and	_	poses to give : (2) K ₂ O, MnO ₂ and O ₂ (4) K ₂ MnO ₄ and MnO ₂				
8.	(1) the solution turns blue (3) green $Cr_2(SO_4)_3$ is for		colution: (2) SO_2 is reduced. (4) the solution is decol	ourised.			
9.≽	Mohr's salt is : (1) Fe ₂ (SO ₄) ₃ .(NH ₄) ₂ SO ₄ (3) FeSO ₄ .(NH ₄) ₂ SO ₄ .6H	=	(2) MgSO ₄ .7H ₂ O (4) FeSO ₄ .7H ₂ O				
Section	on (F) : Lanthanoids	and actinoids					
1.	The f-block of the periodic table contains those elements in which: (1) only 4f orbitals are progressively filled in 6th period. (2) only 5f orbitals are progressively filled in 7th period. (3) 4f and 5f orbitals are progressively filled in 6th and 7th periods respectively. (4) none						
2.	Among the lanthanoides (1) Lu	s the one obtained by sy (2) Pm	nthetic method is : (3) Pr	(4) Gd			
3.3	The most common lanth (1) lanthanum	nanoide is : (2) cerium	(3) samarium	(4) plutonium			
4.	Across the lanthanide s (1) increases (3) first increases and the	·	e lanthanoide hydroxides : (2) decreases (4) does not change				
5.	The +3 ion of which one (1) La	of the following has half (2) Lu	f filled 4f subshell ? (3) Gd	(4) Ac			
6.	Actinides: (1) are all synthetic elen (3) have only short lived		(2) includes element 10 (4) have variable valend				
7. 5 s.	The lanthonoide contract (1) Zr and Y have about (3) Zr and Hf have about		he fact that (2) Zr and Nb have similar oxidation state (4) Zr and Ce have the same oxidation state				
8.	Lanthanoid and actinide (1) electronic configurat (3) ionization energy		(2) oxidation state(4) formation of comple	xes			
9.🔈	The separation of lantha (1) sizes of the ions (3) the solubility of their	anoids by ion exchange in nitrates	method is based on (2) oxidation state of the (4) basicity of hydroxide				

Exercise-2

marked Questions may have for Revision Questions.

1.	Amongst the	following	set o	f transition	metal	ions,	the	one i	in which	all	metal	ions	do	not	have	d-
	electrons?															

(1) Cr(VI), Ti(IV), Mn (VII)

(2) V(V), Mn(VI), Ni(IV)

(3) Sc(III), V (V), Ti (III)

(4) Cr(VI), Sc(III), Mn(VI)

2. The radii (metallic) of Fe,Co and Ni are nearly same.

This is due to the fact that:

- (1) lanthanide contraction
- (2) increased interelectronic repulsion is balanced by increased nuclear charge.
- (3) increase in radii due to increase in 'n' is compensated by decrease in radii due to increase in effective nuclear charge (Z).
- (4) atomic radii do not remain constant but decrease in a normal gradation.
- **3.** Which of the following statements is incorrect?
 - (1) In each row i.e. transition series melting points of transition metals rise to a maximum at d⁵ (excludes, Cr, Mn and Tc) and fall regularly as the atomic number increases.
 - (2) The transition metals are very much hard and have low volatility.
 - (3) The metals of the second and third series have greater enthalpies of atomisation than the corresponding elements of the first seires.
 - (4) None
- **4.** Which of the following transition metal ions has the lowest density?
 - (1) Copper
- (2) Nickel
- (3) Scandium
- (4) Zinc

5. The names transition and inner transition metals are used to indicate the elements of :

(1) d-block elements only

(2) f-block elements only

(3) p- and d-blocks elements respectively

- (4) d- and f-blocks elements respectively
- 6. Which of the following does not belong to 3d series of transition elements?
 - (1) Titanium
- (2) Iron
- (3) Palladium
- (4) Vanadium.

7. Which of the following is the most suitable description of transition elements?

(1) Low melting points

(2) No catalytic activity.

(3) Show variable oxidation states.

- (4) Exhibit inert pair effect.
- 8. In which of the following pairs of elements, the (n-1) d-orbitals have same number of electrons?
 - (1) Mn, Fe
- (2) Cr, Mn
- (3) Cu, Zn
- (4) (2) and (3)
- 9.5 Which of the following factor may be regarded as the main cause of Lanthanide contraction?
 - (1) Poor shielding by 4f-electrons as compared to the electrons in the other sub-shells.
 - (2) Effective shielding of one of the 4f-electrons by another in the sub-shell.
 - (3) Poorer shielding by 5d electron of 4f-electrons.
 - (4) Greater shielding of 5 d electron by 4f-electron.
- **10.** Copper has higher second ionization energy than that of both adjacent elements. This is because of :
 - (1) smaller size of copper (I) ion.
- (2) d¹0 configuration of copper (I) ion.
- (3) higher nuclear charge of copper (I) ion.
- (4) Larger size of copper (I) ion.
- **11.** ★ E^o values for the couples Cr³+/Cr²+ and Mn³+/Mn²+ are 0.41 and + 1.51 volts respectively. Considering these values select the correct option from the following statements.
 - (1) Cr²⁺ acts as a reducing agent and Mn²⁺ acts as an oxidising agent in their aqueous solutions.
 - (2) Cr²⁺ (aq.) is more stable than Cr³⁺ (aq.).
 - (3) Mn³⁺ (aq.) is more stable than Mn²⁺ (aq).
 - (4) None of these.

12.	Which oxide of mangar (1) MnO	nese is most acidic in nat (2) Mn ₂ O ₇	ure ? (3) Mn ₂ O ₃	(4) MnO ₂ .			
13.	The maximum oxidation (1) + 5, + 6, + 3, + 3 (3) + 5, + 3, + 2, + 1	n state shown by V(Z = 2	(3), $Cr(Z = 24)$, $Co(Z = 27)$ (2) + 3, + 4, + 5, + 2 (4) + 4 in each case.	7), $Sc(Z = 21)$ are respectively :			
14.	In which compound doe (1) NH ₄ VO ₂	es vanadium have an oxi (2) K ₄ [V(CN) ₆]	dation number of +4? (3) VSO ₄	(4) VOSO ₄			
15.≿⊾	In general, the transit elements like: (1) C	ion elements exhibit th	eir highest oxidation st	ates in their compounds with (4) F and O.			
16.		r copper is positive (+ 0.3	•				
17.	Which of the following p (1) Mn ²⁺ , Fe ³⁺	pairs of ions has magneti (2) Mn ²⁺ , Cr ³⁺	c moment of 5.93 B.M. ? (3) Fe ²⁺ , Co ³⁺	(4) None			
18.	mongst the following the lowest degree of paramagnetism per mole of the compound at 298 K will be						
	shown by: (1) MnSO ₄ .4H ₂ O	(2) CuSO ₄ .5H ₂ O	(3) FeSO ₄ .6H ₂ O	(4) NiSO ₄ .6H ₂ O			
19.	Compound that is both (1) $K_2Cr_2O_7$	paramagnetic and colou (2) (NH ₄) ₂ [TiCl ₆]	red is : (3) VOSO ₄	(4) K ₃ [Cu(CN) ₄]			
20.১	(i) Ti ⁴⁺ , (ii) Cu ⁺	ne following which are co 1, (iii) Co ³⁺ , (2) (i), (ii) and (iii)	(iv) Fe ²⁺ .	(4) (ii) and (iii).			
21.		oup of ions is paramagn (2) Mn ²⁺ , Fe ³⁺ , Ni ²⁺	etic in nature : (3) Cr ²⁺ , Mn ³⁺ , Sc ³⁺	(4) Cu ²⁺ , Ni ²⁺ , Ti ⁴⁺			
22.	 (1) only Zn²⁺ is colourles (2) all three are colourles (3) all three are coloure 	ss and Ni^{2+} and Cr^{3+} are (ess.) :			
23.	Which of the following is (1) Fe ²⁺	s more paramagnetic ? (2) Fe ³⁺	(3) Cr ³⁺	(4) Mn³+			
24.	The highest number of (1) Fe (3) Fe ³⁺	unpaired elelctrons are i	in : (2) Fe ²⁺ (4) all have equal number of unpaired electrons				
25.৯	The least stable oxide a (1) ZnO	at room temperature is : (2) CuO	(3) Sb ₂ O ₃	(4) Ag ₂ O			
26.	the compound?		•	s the oxidation number of Ti in			
07	(1) +1	(2) +4	(3) +3	(4) +2			
27.	activity?	_		associated with their catalytic			
	(1) Colour of hydrated i(3) High enthalpy of ato		(2) Variable oxidation states.(4) Paramagnetic behaviour.				

28.	Geman silver is: (1) silver made in Germ (3) an alloy of copper	nany	(2) an alloy of silver(4) a silver white paint.					
29.	Which one of the follow (1) Bronze	ring alloys contain only C (2) Brass	u and Zn ? (3) Gun metal	(4) Bell metal				
30.≽	Which of the followin permanganate?	g can be used for the	e conversion of potass	ium manganate to potassium				
	(1) O ₃	(2) Cl ₂	(3) CO ₂	(4) All.				
31.	The number of moles medium is:	of KMnO ₄ that will be r	needed to react with one	e mole of sulphite ion in acidic				
	(1) 2/5	(2)3/5	(3) 4/5	(4) 1				
32.	In the iodometric estimates (1) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + \operatorname{H}^+ + \operatorname{I}^-$	ation in the laboratory wh $ ightarrow$ 2Cr ³⁺ + I ₂	nich process is involved ?	?				
		$I_2 + S_2O_3^{2-} \longrightarrow S_4O_6^{2-} +$	I-					
	(2) MnO ₄ ⁻ + H ⁺ + I ⁻ ——							
	$I_2 + S_2O_3^- \longrightarrow S_4O_6^{2-} + I^-$							
	(3) MnO ₄ ⁻ + OH ⁻ + I ⁻ —	$\rightarrow MINO_2 + I_2$ $I_2 + S_2O_2^2 - \longrightarrow S_4O_e^2 + I_2$	I-					
	(4) Cr ₂ O ₇ ²⁻ + OH ⁻ + I ⁻ —	2 2 3 4 0	1					
	(1) 312 27	$I_2 + S_2O_3^{2-} \longrightarrow S_4O_6^{2-} +$	I-					
33.	K ₂ Cr ₂ O ₇ reacts with NH (1) chromyl chlorate wit (3) chromous chloride v	-	. The product formed is: (2) chromous chloride v (4) chromyl chloride wit	with white vapour				
34.	Potassium dichromate can be converted into potassium chromate using : (1) KOH (2) H ₂ SO ₄ (3) KCI (4) KNO ₂							
35.	formation of :			blue colour is produced due to				
	(1) CrO ₃	(2) Cr_2O_3	(3) CrO ₅	(4) Cr ₄ ²⁻				
36.	Which of the following s (1) La(OH) ₃ is less basis	statements is not correct ic than Lu(OH) ₃	?					
	(3) La is actually an ele	ionic radius of Ln³+ ions ment of transition series and Hf are same because	rather than lanthanide se					
37.≿	Transuranic elements b (1) Np	pegin with (2) Cm	(3) Pu	(4) U				
38.	Lanthanide contraction is due to increase in : (1) shielding by 4f electrons (3) effective nuclear charge		(2) atomic number (4) size of 4f orbitals					
39.	Which of the following i (1) Curium	is not an actinoide ? (2) Californium	(3) uranium	(4) terbium				
40.	, ,	ith KOH, a coloured com	• •	, ,				
	(1) K ₂ MnO ₄ , green	(2) Mn ₂ O ₃ , brown	(3) Mn ₂ O ₄ , black	(4) KMnO ₄ , purple				
41.	Among the following, the (1) CuCl	ne coloured compound is (2) K_3 [Cu(CN) ₄]	: (3) CuF ₂	(4) [Cu(CH ₃ CN) ₄]BF ₄				

Exercise-3

PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS)

1.	Which of the following statement is not correct? (1) La(OH) ₃ is less basic than Li(OH) ₃ . (2) In lanthaniode series, ionic radius of Ln ³⁺ ion decreases. (3) La is actually an element of transition series rather than lanthaniodes.					
	(4) Atomic radius of Zn and Hf are same because of lanthaniode contraction.					
2.	The transition metals a (1) diamagnetic (3) neither diamagnetic	•	(2) paramagnetic(4) both diamagnetic a	nd paramagnetic	[AIPMT 01]	
3.	General electronic configuration of lanthanides is: (1) $(n-2) f^{1-14} (n-1) s^2 p^6 d^{0-1} n s^2$ (2) $(n-2) f^{10-14} (n-1) d^{0-1} n s^2$ (3) $(n-2) f^{0-14} (n-1) d^{10} n s^2$ (4) $(n-2) d^{0-1} (n-1) f^{1-14} n s^2$				[AIPMT 02]	
4.	The correct order of ionic radii of Y^{3+} , La^{3+} , Eu^{3+} and Lu^{3+} is : (1) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$ (2) $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$ (3) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ (4) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$					
5.	The basic character of the transition metal monoxide follows the order: (At. no. : Ti = 22, V = 23, Cr = 24, Fe = 26) (1) VO > CrO > TiO > FeO (2) CrO > VO > FeO > TiO (3) TiO > FeO > VO > CrO > FeO				[AIPMT 03]	
6.	Lanthanides are: (1) 14 elements in the sixth period (At. No. 90 to 103) that are filling 4f sublevel. (2) 14 elements in the seventh period (At. No. 90 to 103) that are filling 5f subshell. (3) 14 elements in the sixth period (At. No. 58 to 71) that are filling the 4f subshell. (4) 14 elements in the seventh period (At. No. 58 to 71) that are filling the 4f subshell.					
7.	The correct order of decreasing second ionization enthalpy of Ti (22), V (23), Cr (24) and					
	(1) Cr > Mn > V > Ti	(2) V > Mn > Cr > Ti	(3) Mn > Cr > Ti > V	(4) Ti > V > Cr >	[AIPMT 05] · M	
8.			transition elements are ve the highest third ionization (2) Manganese (Z = 25)	ation enthalpy?	n their atomic [AIPMT 05]	
9.	The aqueous solution (At. No. Sc = 21, Fe = $\frac{1}{2}$)	-	the following ions will be (3) Ti ³⁺	colourless ? (4) Sc³+	[AIPMT 05]	
10.	` ,	· ,	s coloured in aqueous sol	· /	[AIPMT 06]	
10.		g pairs are both the lons 2, Ni = 28, Cu = 29, Co = (2) Ni ²⁺ , Cu ⁺	•	(4) Sc³+, Ti³+	[AIFWII 00]	
11.	Identify the incorrect st (1) Shielding power of (2) There is a decrease	atement among the follo 4f electrons is quite wea e in the radii of the atom	owing.	s from La to Lu	[AIPMT 07]	

	similarities with the 5d	series of elements.							
12.	<u> </u>	ons will exhibit colour in (2) Ti^{3+} (Z = 22)	aqueous solutions? (3) $Lu^{3+}(Z = 71)$	(4) Sc^{3+} (Z = 21)	[AIPMT 10]				
13.	Which of the following i (1) Ni ³⁺	ons has electronic confiç (2) Mn³+	guration [Ar]3d ⁶ ? (3) Fe³+	(4) Co ³⁺	[AIPMT 10]				
14.	Which of the following μ (1) Fe ²⁺ , Ni ²⁺	pairs has the same size (2) Zr4+, Ti4+	? (3) Zr ⁴⁺ , H <i>f</i> ⁴⁺	(4) Zn ⁴⁺ , Hf ⁴⁺	[AIPMT 10]				
15.	For the four successive there in which of the fol (1) Mn > Fe > Cr > Co (3) Co > Mn > Fe > Cr (At. nos. Cr = 24, Mn =	llowing order ?	Mn, Fe and Co), the stab (2) Fe > Mn > Co > Cr (4) Cr > Mn > Co > Fe	on state will be [AIPMT 11]					
16.	•	t minimum paramagnetic (2) [Fe(H ₂ O) ₆] ²⁺	and Co ²⁺ are d ⁴ , d ⁵ , d ⁶ and behaviour? (3) [Co(H ₂ O) ₆] ²⁺	and d^7 respectively (4) $[Cr(H_2O)_6]^{2+}$. Which one of [AIPMT 11]				
17.	Which one of the following does not correctly represent the correct order of the propagainst it? (1) Ti < V < Cr < Mn : increasing number of oxidation states (2) Ti $^{3+}$ < V $^{3+}$ < Cr $^{3+}$ < Mn $^{3+}$: increasing magnetic moment (3) Ti < V < Cr < Mn : increasing melting points (4) Ti < V < Mn < Cr : increasing 2^{nd} ionization enthalpy								
18.	Four successive memb	Four successive members of the first series of the transition metals are listed below. For which one of							
	them the standard potential $\left(E^0_{M^{2+}/M} ight)$ value has a positive sign ?								
		,	(3) Cu (Z = 29)	(4) Fe $(Z = 26)$					
19.	(1) their magnetic beha	viour	eir compounds is ascribe (2) their unfilled d-orbita (4) their chemical react	als	[AIPMT 12]				
20.	Which of the following (1) U	exhibit only + 3 oxidation (2) Th	state ? (3) Ac	(4) Pa	[AIPMT 12]				
21.	Which of the following I (At nos. Ce = 58, Sm = (1) Sm ²⁺	anthanoid ions is diamaç 62, Eu = 63, Yb = 70) (2) Eu ²⁺	gnetic ? (3) Yb²+	(4) Ce ²⁺	[AIPMT 13]				
22.	Which of the following (1) They are chemically (2) They are much hard	statements about the interior reactive. der than the pure metal. selting points than the pu	erstitial compounds is inc		[AIPMT 13]				
23.	Magnetic moment 2.83 (At.nos.Ti=22, Cr=24, N (1) Ti ³⁺	BM is given by which of Mn=25, Ni=28) (2)Ni ²⁺	the following ions? (3) Cr ³⁺	(4) Mn ²⁺	[AIPMT 14]				
24.	<u> </u>	orocesses does not invol			[AIPMT-1 15]				

(4) As a result of lanthanoid contraction, the properties of 4d series of the transition elements have no

	(3) Lik	eration	of Fe (C of H_2 fro iron she	m stean	n Fe n by iron	at high te	empera [,]	ture				
25.	electr		-	n of gad	eries. It's Iolinium ? [e] <i>4f</i> ⁹ 5s1			er is 6 e] <i>4f</i> 75			followin (e] <i>4f⁶5d</i>	ng is the correct [AIPMT-215] ² 6s ²
26.	(1) Ce (2) Eu (3) Th	e (+4) so iropium ie basici	lutions a shows + ty decrea	re wide 2 oxidat ases as	tements ly used a ion state the ionic ch more r	s oxidizir radius d	ng agen ecrease	it in vol	lumetric n Pr to Lu	analysis		[NEET-16]
27.	The reason for greater range of oxidation states in actinoids is attributed to: (1) The radioactive nature of actinoids (2) Actinoid contraction (3) 5f, 6d and 7s levels having comparable energies (4) 4f and 5d levels being close in energies											
28.	Name the gas that can readily decolourise acidified KMnO $_4$ solution: [NEET 20 (1) CO $_2$ (2) SO $_2$ (3) NO $_2$ (4) P $_2$ O $_5$							[NEET 2017]				
30.	(1) (3) The m (1) Th (2) Th (3) Th	Ssign the Colur (a) (b) (c) (d) a iv iv mangana are π-bornere is not be received.	e correct nn I Co³+ Cr³+ Fe³+ Ni²+ b v I tte and p nding inv nding inv o π—bond	c c ii ii ermang olves ovolves	d i iii anate ior verlap of overlap of	Colum (i) $\sqrt{8}$ (ii) $\sqrt{3}$ (iii) $\sqrt{3}$ (iv) $\sqrt{2}$ (v) $\sqrt{1}$ as are tet d-orbitals p-orbitals	B.M. B.M. B.M. B.M. B.M. B.M. B.M. B.M.	a iii I I, due gen wii	b v ii to: th d-orbit th d-orbit	c I iii als of mals	d ii iv [NEE anganes anganes	e.
31.	` ,		Ū		verlap of lided water				·		H ₂ O is –	
	(1) 3			(2) 1			(3) 2			(4) 5		T-2- 2019]
32.	When		or faintly	/ alkalin	e KMnO	is treate	ed with	potass	ium iodio	de, iodid		onverted into 'X', T-2- 2019]
	(1) I ₂			(2) IO	O ₄			(3)	IO ₃			(4) IO ⁻
		P	ART -	II : A	IIMS Q	UEST	ION ((PRE	VIOU	SYEA	ARS)	
1.	MnO ₄ ²⁻ (1 mole) in neutral aqueous medium disproportionates to: [AllMS 03] (1) 2/3 moles of MnO ₄ ⁻ and 1/3 mole of MnO ₂ (2) 1/3 mole of MnO ₄ ⁻ and 2/3 mole of MnO ₂ (3) 1/3 mole of Mn ₂ O ₇ and 1/3 mole of MnO ₂ (4) 2/3 mole of Mn ₂ O ₇ and 1/3 mole of MnO ₂											

2.	The colourless species (1) VCI_3	is: (2) VOSO ₄	(3) Na ₃ VO ₄	(4) [V[H ₂ O] ₆ SO ₄].l	[AIIMS 03] H ₂ O		
3.	For decolorization of 1 (1) 1/2	mole of KMnO $_4$, the mole (2) 3/2	es of H_2O_2 required is: (3) 5/2	(4) 7/2	[AIIMS 04]		
4.	Among the following particle, in : (1) $T\ell^+$, $T\ell^{3+}$	airs of ions, the lower oxing (2) Cu^+ , Cu^{2+}	dation state in aqueous (3) Cr^{2+} , Cr^{3+}	solution is more st $(4) V^{2+}, VO^{2+}$	able than the [AIIMS 05]		
5.	Which one of the follow (1) Cu ²⁺	ing is not coloured ? (2) Cu ⁺	(3) Ni ²⁺	(4) Fe ³⁺	[AIIMS 10]		
6.	KMnO ₄ acts as an oxid weight of KMnO ₄ in neu (1) mol. wt. / 2		ral medium and gets red (3) mol. wt. / 4	duced to MnO ₂ . Ti	ne equivalent [AIIMS 10]		
7.	Which of the following is (1) CrO ₃	s an amphoteric oxide ? (2) Cr_2O_3	(3) V ₂ O ₃	(4) TiO	[AIIMS 10]		
8.		on M ^{x+} (Z= 24) has a spir ctrons in the compound a (2) 4	n only magnetic moment are (3) 5	of $\sqrt{15}$ Bohr Mag (4) 3	enetons. The [AIIMS 13]		
9.	Assertion: Magnetic moment values of actinides are lesser than the theoretically predicted value. Reason: Actinide elements are strongly paramagnetic. [AIIMS 13] (1) If both assertion and reason are true and reason is a correct explanation of assertion. (2) If both assertion and reason are true but reason is not a correct explanation of assertion. (3) If assertion is true but reason is false. (4) If assertion and reason both are false.						
10.	(1) The chemistry of diff(2) 4 f and 5 f-orbitals a(3) d-block element sho	w irregular and erratic cl	_	-	[AIIMS 16]		
11.	For the reaction, $Cr_2O_7^{2-} \xrightarrow{pH=x} CrO_4^{2-} -$ (1) 4 and 5	$\xrightarrow{pH=y}$ Cr ₂ O ₇ ²⁻ pH value (2) 4 and 8	s 'x' and 'y' can be (3) 8 and 4	(4) 8 and 9	AIIMS 2017]		
12.	. ,	nas maximum number of (2) Cu+	• •	, ,	AIIMS 2017]		
13.	Assertion: Separation of Zr and Hf is difficult Reason: Zr and Hf lie in the same group of the periodic table. (1) If both assertion and reason are true and reason is a correct explanation of assertion. (2) If both assertion and reason are true but reason is not a correct explanation of assertion. (3) If assertion is true but reason is false. (4) If assertion and reason both are false.						
14.	Violet colour appear in (1) Cr ³⁺	glass when we add– (2) Mn ⁴⁺	(3) I ₂	(4) K ⁺	AIIMS 2018]		
15.	Which is least stable in (1) Fe ⁺²	aqueous medium (2) Co ⁺²	(3) Ni ⁺²	(4) Mn ⁺²	AIIMS 2018]		
16.	In acidic medium which (1) MnO ₄ -	of the following does no (2) MnO ₄ ²⁻	t change its colour: (3) CrO ₄ ²⁻	(4) FeO ₄ ²⁻	AIIMS 2018]		

17.	AgNO ₃ does not decome (1) U.V. radiation	npose where : (2) Skin (human)	(3) Water 25°C	(4) Glucose	[AIIMS 2018]		
18.	KMnO ₄ is added to KO (1) Pale pink	H, which of the following (2) Brown	colour is observed (3) Black	(4) Green	[AIIMS 2018]		
	PART - III : JEE	(MAIN) / AIEEE F	PROBLEMS (PR	EVIOUS YE	ARS)		
1.	Number of electrons tr Mn ²⁺ , Mn(OH) ₃ and Mn ⁴ (1) 3,5,4 and 1		when KMnO $_4$ acts as a (3) 1,3,4 and 5	n oxidising agen (4) 5,4,3 and 1	t to give MnO ₂ , [AIEEE 2002]		
2.	Which of the following i (1) Mn ²⁺	ons has the maximum m (2) Fe ²⁺	nagnetic moment? (3) Ti ²⁺	(4) Cr ²⁺ .	[AIEEE 2002]		
3.	Most common oxidation (1) +3, +4	n state fo Ce (Cerium) ar (2) +2, +3	re: (3) +2, +4	(4) +3, +5	[AIEEE 2002]		
4.		f V,Cr,Mn and Fe are resighest second ionization (2) Mn	spectively 23,24,25 and enthalpy? (3) Fe	26. Which one o	f these may be [AIEEE 2003]		
5.	Which of the following (1) Cu, Ag, Au	group of transition metals (2) Ru, Rh, Pb	s is called coinage metal (3) Fe, Co, Ni	s ? (4) Os. Ir, Pt	[AIEEE 2003]		
6.	•	mic number of La = 57) i Lu ³⁺ (Atomic number of I (2) 1.40Å	is 1.06Å. Which one of th Lu = 71) ? (3) 1.06Å	he following give (4) 0.85Å	n values will be [AIEEE 2003]		
7.	Cerium (Z = 58) is an important member of the lanthanoide. Which of the following s cerium is incorrect? (1) The common oxidation state of cerium are +3 and +4. (2) The +3 oxidation state of cerium is more stable than +4 oxidation state. (3) The +4 oxidation state of cerium is not known in solution. (4) Cerium (IV) acts as an oxidizing agent.						
8.	The lanthanide contrac (1) Zr and Y have abou (3) Zr and Hf have abou		e fact that (2) Zr and Nb have sim (4) Zr and Zn have san				
9.	Which of the following factors may be regarded as the main cause of lanthanide contract (1) Greater shielding of 5d electrons by 4f electrons (2) Poorer shielding of 5d electron by 4f electrons (3) Effective shielding of one of 4f electrons by another in the sub-shell (4) Poor shielding of one of 4f electron by another in the sub-shell.						
10.	The "spin-only" magne (atomic number of Ni = (1) 2.84		Sohr magneton, $(\mu_{\scriptscriptstyle B})$ of N $(3)~0$	i ²⁺ in aqueous so (4) 1.73	lution would be [AIEEE 2006]		
11.	Lanthanoid contraction is caused due to: (1) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge (2) the appreciable shielding on outer electrons by 5f electrons from the nuclear charge (3) the same effective nuclear charge from Ce to Lu (4) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge						
12.	(1) The chemistry of va(2) 4f and 5f orbitals are(3) d-block elements sh	now irregular and erratic			[AIEEE 2007]		

- 13. The actinoids exhibit more number of oxidation states in general than the lanthanoids. This is because (1) The actinoids are more reactive than the lanthanoids. [AIEEE 2007, 3/120]
 - (2) The 5f orbitals extend farther from the nucleus than the 4f orbitals.
 - (3) The 5f orbitals are more buried than the 4f orbitals
 - (4) There is a similarity between 4f and 5f orbitals in their angular part of the wave function
- 14. Larger number of oxidation states are exhibited by the actinoids than those by the lanthanoids, the main reason being. [AIEEE 2008, 3/105]
 - (1) lesser energy difference between 5f and 6d than between 4f and 5d orbitals
 - (2) more energy difference between 5f and 6d than between 4f and 5d orbitals
 - (3) more reactive nature of the actinoids than the lanthanoids
 - (4) 4f orbitals more diffused than the 5f orbitals
- 15. In context with the transition elements, which of the following statements is incorrect?

[AIEEE 2009, 4/144]

- (1) In the highest oxidation states, the transition metal show basic character and form cationic complexes.
- (2) In the highest oxidation states of the first five transition elements (Sc to Mn), all the 4s and 3d electrons are used for bonding.
- (3) Once the d⁵ configuration is exceeded, the tendency to involve all the 3d electrons in bonding decreases.
- (4) In addition to the normal oxidation states, the zero oxidation state is also shown by these elements in complexes.
- 16. Knowing that the Chemistry of lanthanoids (Ln) is dominated by its +3 oxidation state, which of the following statement is incorrect?

 [AIEEE 2009, 4/144]
 - (1) The ionic sizes of Ln (III) decrease in general with increasing atomic number.
 - (2) Ln (III) compounds are generally colourless.
 - (3) Ln (III) hydroxides are mainly basic in character
 - (4) Because of the large size of the Ln (III) ions the bonding in its compounds is predominently ionic in character.
- 17. The correct order of $E_{M^{2+}/M}^{\circ}$ values with negative sign for the four successive elements Cr, Mn, Fe and Co is [AIEEE 2010, 4/144]
 - (1) Mn > Cr > Fe > Co (2) Cr > Fe > Mn > Co (3) Fe > Mn > Cr > Co (4) Cr > Mn > Fe > Co
- 18. In context of the lanthanoids, which of the following statement is not correct? [AIEEE 2011, 4/120]
 - (1) There is a gradual decrease in the radii of the members with increasing atomic number in the series.
 - (2) All the member exhibit +3 oxidation state.
 - (3) Because of similar properties the separation of lanthanoids is not easy.
 - (4) Availability of 4f electrons results in the formation of compounds in +4 state for all the members of the series.
- **19.** The outer electronic configuration of Lu (Atomic No : 71) is :

[AIEEE 2011, 4/120]

- (1) 4f³ 5d⁵ 6s²
- (2) 4f8 5d0 6s2
- (3) 4f⁴ 5d⁴ 6s²
- (4) $4f^{14}5d^16s^2$
- **20.** Which of the following arrangements does not represent the correct order of the property stated against it?
 - (1) $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: paramagnetic behaviour

[JEE(Main) 2013, 4/120]

- (2) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size
- (3) $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$: stability in aqueous solution
- (4) Sc < Ti < Cr < Mn : number of oxidation states
- 21. Four successive members of the first row transition elements are listed below with atomic numbers.

Which one of them is expected to have the highest ${}^{E_{M^3\text{-}/M^2\text{+}}^0}$ value ?

[JEE(Main) 2013, 4/120]

- (1) Cr(Z = 24)
- (2) Mn(Z = 25)
- (3) Fe(Z = 26)
- (4) Co(Z = 27)

22. The colour of $KMnO_4$ is due to :

[JEE(Main) 2015, 4/120]

- (1) $M \rightarrow L$ charge transfer transition
- (2) d d transition

	(3) $L \rightarrow M$ charge trans	iter transition	(4) $\sigma - \sigma^{\alpha}$ transition								
11.	complexes is :			among all the transition metal [JEE(Main) 2019, 4/120]							
	(1) 4.90	(2) 6.93	(3) 3.87	(4) 5.92							
12.	The transition element	that has lowest enthalpy	of atomisation, is:	[JEE(Main) 2019, 4/120]							
	(1) V	(2) Fe	(3) Zn	(4) Cu							
13.	The 71st electron of an element X with an atomic number of 71 enters into the orbital: [JEE(Main										
	(1) 6s	(2) 5d	(3) 4f	(4) 6p							
14.	The element that usual (1) Cu	ly does NOT show varial (2) Ti	ole oxidation states is : (3) Sc	[JEE(Main) 2019, 4/120] (4) V							
15.	$\underline{A} \xrightarrow{4KOH, O_2} 2\underline{B} + 2H$ (Green)	l ₂ O		[JEE(Main) 2019, 4/120]							
	$3 \underline{B} \xrightarrow{4HCl} 2\underline{C} + MnO_2 + 2H_2O$ (Purple)										
	$2 \ \underline{C} \xrightarrow{H_2O,Kl} 2\underline{A} + 2 \ KOH + \underline{D}$ In the above sequenec of reactions, \underline{A} and \underline{D} , respectively, are : (1) KIO_3 and MnO_2 (2) MnO_2 and KIO_3 (3) KI and K_2MnO_4 (4) KI and $KMnO_4$										
	(1) 11103 and 141102	(2) WITO2 and KIO3	(3) Iti and ItziviiiO4	(4) IXI and IXIIIIO4							
16.	[M(H ₂ O) ₆]Cl ₂ is :	ns that can give a spir (2) V ²⁺ and Co ²⁺		It of 3.9 BM for the complex [JEE(Main) 2019, 4/120] (4) Co ²⁺ and Fe ²⁺							
			(=)	, ,							
17.	The correct order of ato (1) Eu > Ce > Ho > N		(3) Ce > Eu > Ho > N	[JEE(Main) 2019, 4/120] (4) Ho > N > Eu > Ce							

ne		ĸœ

						EXER	CISE	- 1					
SEC1	TION (A))											
1.	(3)	2.	(1)	3.	(2)	4.	(4)	5.	(3)	6.	(3)	7.	(2)
8.	(4)	9.	(4)										
SEC1	TION (B))											
1.	(1)	2.	(1)	3.	(3)	4.	(3)	5.	(3)	6.	(4)	7.	(3)
8.	(2)	9.	(2)										
SECT	TION (C))											
1.	(2)	2.	(4)	3.	(4)	4.	(4)	5.	(3)	6.	(3)	7.	(3)
SECT	TION (D))											
1.	(4)	2.	(4)	3.	(4)								
SECT	TION (E))											
1.	(3)	2.	(1)	3.	(3)	4.	(1)	5.	(2)	6.	(2)	7.	(1)
8.	(3)	9.	(3)										
	TION (F)												
1.	(3)	2.	(2)	3.	(2)	4.	(2)	5.	(3)	6.	(4)	7.	(3)
8.	(1)	9.	(1)										
						EXER	CISE	- 2					
1.	(1)	2.	(2)	3.	(4)	4.	(3)	5.	(4)	6.	(3)	7.	(3)
8.	(4)	9.	(1)	10.	(2)	11.	(1)	12.	(2)	13.	(1)	14.	(4)
15.	(4)	16.	(3)	17.	(1)	18.	(2)	19.	(3)	20.	(1)	21.	(2)
22.	(1)	23.	(2)	24.	(3)	25.	(4)	26.	(3)	27.	(2)	28.	(3)
29.	(2)	30.	(4)	31.	(1)	32.	(1)	33.	(4)	34.	(1)	35.	(3)
36.	(1)	37.	(1)	38.	(3)	39.	(4)	40.	(1)	41.	(3)		
						EXER	CISE	- 3					
						PA	ART-I						
1.	(1)	2.	(2)	3.	(1)	4.	(1)	5.	(4)	6.	(3)	7.	(1)
8.	(2)	9.	(4)	10.	(3)	11.	(4)	12.	(2)	13.	(4)	14.	(3)
15.	(1)	16.	(3)	17.	(3)	18.	(3)	19.	(3)	20.	(3)	21.	(3)
22.	(1)	23.	(2)	24.	(2)	25.	(3)	26.	(3)	27.	(3)	28.	(2)
29.	(1)	30.	(2)	31.	(2)	32.	(3)						
						PA	RT-II						
1.	(1)	2.	(3)	3.	(3)	4.	(1)	5.	(2)	6.	(2)	7.	(2)
8.	(4)	9.	(2)	10.	(2)	11.	(3)	12.	(1)	13.	(2)	14.	(1)
15.	(1)	16.	(1)	17.	(3)	18.	(4)						
						PA	RT-III						
1.	(1)	2.	(1)	3.	(1)	4.	(1)	5.	(1)	6.	(4)	7.	(3)
8.	(3)	9.	(4)	10.	(1)	11.	(4)	12.	(2)	13.	(2)	14.	(1)
15.	(1)	16.	(2)	17.	(1)	18.	(4)	19.	(4)	20.	(1)	21.	(4)
22.	(3)	11.	(4)	12.	(3)	13.	(2)	14.	(3)	15.	(2)	16.	(2)
17.	(1)												