
Exercise-1

Marked Questions are for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

SECTION - A # ORIGIN OF LIFE

- 1.3 Atmosphere of earth, just before the origin of life, consisted of
 - (1) Water vapours, CH₄, NH₃ and Oxygen
- (2) CO₂, NH₃ and CH₄ only
- (3) CH₄, NH₃, H₂ and water vapours
- (4) CH₄, O₃, O₂ and water vapours
- 2.3 The diagram represent Millier's experiment. Choose the correct combination of labelling.

- (1) A \rightarrow electrodes, B \rightarrow NH₃ + H₂ + H₂O + CH₄, C \rightarrow cold water, D \rightarrow vacuum, E \rightarrow U trap
- (2) A \rightarrow electrodes, B \rightarrow NH₃ + H₂ + H₂O + CO₂, C \rightarrow hot water, D \rightarrow vacuum, E \rightarrow U trap
- (3) A \rightarrow electrodes, B \rightarrow NH₃ + H₂O, C \rightarrow hot water, D \rightarrow vacuum, E \rightarrow U trap
- (4) A \rightarrow Compressor, B \rightarrow NH₃ + H₂ + H₂O + CH₄, C \rightarrow steam, D \rightarrow vacuum, E \rightarrow U trap
- 3.2 The first organisms were

 - (1) Chemoautotrophs (2) Chemoheterotrophs (3) Autotrophs
- (4) Eukaryotes
- 4.3 Which was not present freely in the early atmosphere of the earth?
 - (1) Water
- (2) Carbon monoxide (3) Hydrogen
- (4) Oxygen
- 5. Complex organic compounds first evolved on earth and required for origin of life were
 - (1) Urea and amino acids

- (2) Proteins and nucleic acids
- (3) Proteins and amino acids
- (4) Urea and nucleic acid
- 6. First photosynthetic organisms to appear on earth were
 - (1) Bacteria
- (2) Green algae
- (3) Cyanobacteria
- (4) Bryophytes

7. 2 s.	Oparin's theory is based on (1) Artificial synthesis (3) God's creation			2) Spontaneous generation4) Panspermia		
8.29.	Possibly, the early source (1) Chlorophyll (3) UV radiations and li		` '	CO ₂ Green plants		
9.	Presence of NaCl in the (1) Primitive ocean	body fluid indicates that (2) Fresh water lakes		•	(4) All of the above	
10.১	Which of the following is (1) Oxygen	s most important for origi (2) Water		life? Nitrogen	(4) Carbon	
	SE	CTION - B # EVIDEI	NCE	S OF EVOLUTION	ON	
1.	· ·	red characters			ecies	
2.79.	Homologous organs had (1) dissimilar origin and (2) dissimilar origin but (3) similar origin with si (4) similar origin with di	l dissimilar structures similar functions milar or dissimilar functio	ons			
3.	Vestigeal organ of Pythol(1) Teeth	on is/are (2) Hind limbs	(3)	Scales	(4) Nose	
4.29.	` ,	n the past but continuou he past but discontinuou		•		
5.	Which is true regarding (1) Upper strata are old (3) There is no stratification	der and lower younger	. ,	Upper strata young		
6.29.	Resemblance between (1) Parallel evolution (3) Convergent evolution	widely different groups d on	(2)	o a common adaptat Divergent evolution Retrogressive evolu		
7.	Which one of the follow (1) Iris	ing is a vestigeal organ i		an ? Malleus	(4) Ear Pinna muscles	

8.2	Homologous organs are (1) Wings of Pigeon and Butterfly (3) Wings of Pigeon and arms of Humans	(2) Wings of Pigeon and Housefly(4) Wings of Bat, Housefly and Butterfly				
9.	Which one of the following is not a vestigeal (1) Epiglottis (3) Wisdom teeth	structure in humans? (2) Vermiform appendix (4) Body hair				
10.	Missing link between reptiles and birds is (1) Archaeopteryx (2) Platypus	(3) Java Ape Man (4) Whale				
11.১	Analogous organs are (1) Wings of bird and butterfly (3) Limbs of horse and man	(2) Wings of bird and bat(4) Teeth of man and Gorilla				
12.১	Fossil X is older than fossil Y because (1) Fossil X was found in deeper sedimentation (2) Fossil Y was found in deeper sedimentation (3) Fossil Y has homologous and analogous organs of X (4) Fossil X has some vestigeal organs functional in Y					
13.১೩	Which of the following has completely const (1) Monkey (2) Dinosaur	ructed phylogeny? (3) Horse (4) Man				
14.	Fossils can be dated absolutely by (1) the amount of calcium (3) their association with mammals	(2) the radioactive carbon content(4) their stratigraphic age				
15.≿⊾	Which one of the following provides direct e (1) Atavism (2) Paleontology	vidence in favour of organic evolution through ages? (3) Vestigeal organs (4) Galapagos Island fauna				
16.29.	The Finches of Galapagos islands provide a (1) biogeographical distribution (3) Lamarckism	n evidence in favour of (2) special creation (4) retrogessive evolution				
17.	Wings of mosquito, bat and bird indicate (1) Divergent evolution (3) Atavism evolution	(2) Convergent evolution(4) Parallel evolution				
18.১	Organisms present at different places, without (1) Speciation (3) Continuous distribution	out any traces in between, show (2) Discontinuous distribution (4) Migration				
19.	Mammals occur on land, air and in water. It (1) Convergent evolution (3) Example of analogous organs	is (2) Microevolution (4) Adaptive radiation				
20.≿	Darwin's finches are a good example of (1) adaptive radiation (3) homologous organs	(2) Industrial melanism(4) both (1) and (3)				

SECTION - C # THEORIES OF EVOLUTION

For its entry into gene pool a mutation must						
(1) Centriole (3) Somatic RNA	(2) Plasma proteins (4) Germplasm DNA					
Neo-Darwinism believes that new species develop through (1) Mutations with natural selection (2) Continuous variations with natural selection (3) Hybridisation (4) Mutations only						
Some organisms, escape detection from ene (1) Homology (2) Mimicry	emies by resembling other organisms. The phenomenon (3) Artificial selection (4) Natural selection	ı is				
A very important factor in evolution of a new (1) Extensive inbreeding (3) Reproductive isolation	y species is (2) Extensive outbreeding (4) Immigration					
Hugo de Vries's contribution is (1) Theory of Natural selection (3) Law of dominance (4) Law of segregation						
Hugo de Vries worked on the plant (1) Garden Pea/ <i>Pisum sativum</i> (3) Chinese Primirose / <i>Primula sinensis</i>	(2) Sweat Pea/Lathyrus odoratus(4) Evening Primrose / Oenothera lamarckiana					
Darwin was most influenced by (1) Lamarck's theory of acquired characters (3) Wallace's theory of origin of species	(2) Weismann's theory of germplasm(4) Essay on Population by Malthus					
 Which one provides correct sequence of events in origin of new species according to Darwinism? Natural selection Variations and their inheritance Survival of the fittest Struggle for existence 						
Major defect of Darwinism was (1) Non-description of survival of fittest (2) Non-description of natural selection (3) Non-description of overproduction of young ones (4) Non-description of reason for variations.						
 Lack of pigment in cave dwellers Absence of limbs in snakes Presence of webbed toes in aquatic bird Melanisation of Peppered Moth in indust 	ds trial areas.					
	(1) Centriole (3) Somatic RNA Neo-Darwinism believes that new species of (1) Mutations with natural selection (2) Continuous variations with natural select (3) Hybridisation (4) Mutations only Some organisms, escape detection from end (1) Homology (2) Mimicry A very important factor in evolution of a new (1) Extensive inbreeding (3) Reproductive isolation Hugo de Vries's contribution is (1) Theory of Natural selection (3) Law of dominance Hugo de Vries worked on the plant (1) Garden Pea/Pisum sativum (3) Chinese Primirose / Primula sinensis Darwin was most influenced by (1) Lamarck's theory of acquired characters (3) Wallace's theory of origin of species Which one provides correct sequence of eve 1. Natural selection 2. Variations and their inheritance 3. Survival of the fittest 4. Struggle for existence (1) 1, 2, 3, 4 (2) 2, 3, 1,4 Major defect of Darwinism was (1) Non-description of survival of fittest (2) Non-description of natural selection (3) Non-description of reason for variations. Which one does not favour Lamarckian cond (1) Lack of pigment in cave dwellers (2) Absence of limbs in snakes (3) Presence of webbed toes in aquatic bird (4) Melanisation of Peppered Moth in indus	(1) Centriole (3) Somatic RNA (2) Plasma proteins (4) Germplasm DNA Neo-Darwinism believes that new species develop through (1) Mutations with natural selection (2) Continuous variations with natural selection (3) Hybridisation (4) Mutations only Some organisms, escape detection from enemies by resembling other organisms. The phenomenor (1) Homology (2) Mimicry (3) Artificial selection (4) Natural selection A very important factor in evolution of a new species is (1) Extensive inbreeding (2) Extensive outbreeding (3) Reproductive isolation (4) Immigration Hugo de Vries's contribution is (1) Theory of Natural selection (2) Theory of Mutation (3) Law of dominance (4) Law of segregation Hugo de Vries worked on the plant (1) Garden Pea/Pisum sativum (2) Sweat Pea/Lathyrus odoratus (3) Chinese Primirose / Primula sinensis (4) Evening Primrose / Oenothera lamarckiana Darwin was most influenced by (1) Lamarck's theory of acquired characters (2) Weismann's theory of germplasm (3) Wallace's theory of origin of species (4) Essay on Population by Malthus Which one provides correct sequence of events in origin of new species according to Darwinism? 1. Natural selection 2. Variations and their inheritance 3. Survival of the fittest 4. Struggle for existence (1) 1, 2, 3, 4 (2) 2, 3, 1, 4 (3) 3, 4, 1, 2 (4) 4, 2, 3, 1. Major defect of Darwinism was (1) Non-description of survival of fittest (2) Non-description of verproduction of young ones (4) Non-description of reason for variations. Which one does not favour Lamarckian concept of inheritance of acquired characters? (1) Lack of pigment in cave dwellers				

13.5

14.8

15.2

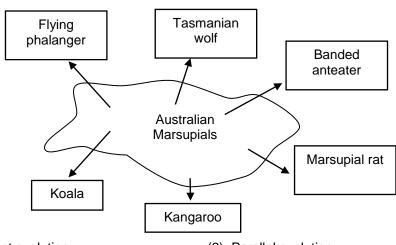
16.

17.2

18.2

19.

20.

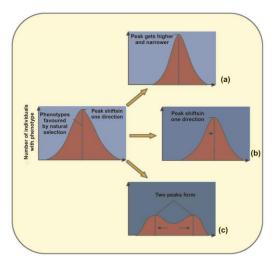

	-		oons			
In which respect, Darw (1) High efficiency of re (3) Survival of the fitter	eproduction	(2) Origin of (4) Arrival of	-			
Genetic drift is effective (1) Small population w (2) Large population w (3) Animal population (4) Plant population	ith or without mutated ge	enes				
Genetic drift (1) Is random change (2) other name of natu (3) Is an orderly chang (4) Produces greatest	ral selection	ulations.				
		=	only two allele	es. If the gene frequency	of	
(1) 0.21	enotype frequency of Aa (2) 0.42	(3) 0.36	(4)	0.7		
If the frequency of don population.	ninant allele is 60%., fin	d out the perc	entage of hete	rozygous individuals in t	the	
(1) 48%	(2) 50%	(3) 47%	(4)	45%		
The first mammals wer	e like					
(1) Chimpanzee	(2) Gorilla	(3) Shrews	(4)	Reptiles		
observation of new		eneration this		en selected will result in t speciation.	the	
iii. In 1938, a fish caud be extinct. These a	ght in South Africa happ nimals evolved into the	ened to be a c irst amphibian	,	e fins) which was thought land and water.	: to	
v. Alfred Wallace, a r	ed as pollution indicators naturalist, who worked ir on on natural selection as	Malay Archer	• "	t Indonesia) has also coi	me	
(1) i and ii	(2) i, ii, iii and iv	(3) iii and iv		all of these		
Read the following three statements (i - iii) and mark the right option. i. The thorns in <i>Bougainvillea</i> and tendrils in cucurbits represent divergent evolution. ii. The similarity in the eyes of <i>Octopus</i> and moneys is the result of convergent evolution. iii. The potato and sweet potato are the examples of homology.						
(1) i and ii correct	(2) ii and iii correct	(3) i and iii d		All are correct		

Choose the wrong statment regarding Hardy-Weinberg principle.

- (1) Allele frequencies in a population are stable and constant from generation to generation.
- (2) Sum total of all the allelic frequencies in a population is 1.
- (3) Variation due to genetic drift results in changed frequency of genes and alleles in future generations.
- (4) Genetic recombination (non-random mating) helps in maintaining Hardy-Weinberg equilibrium.
- 21. Given below are four statements (i iv) each with one or two blanks. Select the option which correctly fills up the blanks in two statements.
 - i. Wings of butterfly and birds look alike and are the results of _____(A)_____, evolution.
 - ii. Miller showed that CH₄, H₂, NH₃ and ____(A)____,when exposed to electric discharge in a flask resulted in formation of ____(B)___.
 - iii. Vermiform appendix is a _____(A)____organ and an _____(B)___evidence of evolution.
 - iv. According to Darwin evolution took place due to ___(A)___and ____(B)___of the fittest.
 - (1) iv \rightarrow (A) Small variations, (B) Survival, i \rightarrow (A) Convergent
 - (2) $i \rightarrow$ (A) Convergent, $ii \rightarrow$ (A) Oxygen, (B) Nucleosides
 - (3) ii \rightarrow (A) Water vapour, (B) Amino acids, iii \rightarrow (A) Analogous, (B) Anatomical
 - (4) iii \rightarrow (A) Vestigeal, (B) Anatomical, iv \rightarrow (A) Mutations, (B) Multiplications
- 22. Match the evolution concepts in List I with List II and select the correct answer using the codes given below the list.

	List I		List II
A.	Mutation	I.	Change in population's allele frequencies due to chance alone.
B.	Gene flow	II.	differences in survival and reproduction among variant individuals
C.	Natural selection	III.	Immigration, emigration change allele frequencies
D.	Genetic drift	IV.	Source of new alleles

- (1) $A \rightarrow I, B \rightarrow II, C \rightarrow III, D \rightarrow IV$
- (2) $A \rightarrow IV, B \rightarrow II, C \rightarrow III, D \rightarrow I$
- (3) $A \rightarrow III, B \rightarrow I, C \rightarrow IV, D \rightarrow II$
- (4) $A \rightarrow IV$, $B \rightarrow III$, $C \rightarrow II$, $D \rightarrow I$
- 23. Sometimes Following diagram provides an example of


(1) Convergent evolution

(2) Parallel evolution

(3) Recapitulation

(4) Divergent evolution

24. Following is the diagrammatic representation of the operation of natural selection of different trait, which of the following options correctly identifies all the three graphs A, B and C

	А	В	С
(1)	Directional	Stabilizing	Disruptive
(2)	Stabilizing	Directional	Disruptive
(3)	Disruptive	Stabilizing	Directional
(4)	Directional	Disruptive	Stabilizing

25. The diagram below shows four species of birds that evolved from an ancestral species that had a small pointed beak. Today, all four species inhabit the same island.

Which statement best explains the variation in the beaks of these four species?

- (1) Over time, an abundance of seeds for food led to increasd similarities between the species
- (2) Over time, an abundance of seeds for food led to increased differences between the species
- (3) Competition of limited food resources led to selection for similar traits
- (4) Competition for limited food resources led to selection for different traits

MISCELLANEOUS QUESTIONS

- 1. Which of the following has been basic to origin of life
 - (1) Carbohydrates
- (2) Proteins
- (3) Nucleic acids
- (4) Nucleoproteins

- 2. Origin of life from pre-existing life is propounded by
 - (1) Biogenesis theory

(2) Abiogenesis theory

(3) Special creation theory

- (4) Extra terrestrial theory
- 3. Stanley Miller's experiment supports
 - (1) Abiogenesis
- (2) Biogenesis
- (3) Pangenesis
- (4) Chemical theory

4.	Which of the following	amino acids was not foui	nd to	be synthesised in M	's experiment?			
	(1) Alanine	(2) Glycine	(3)	Aspartic acid	(4)	Glutamic acid		
5.	Scientists believe that I (1) Spontaneous gene (3) Special creation	ife on earth originated by ration	(2)	Chemical evolution Extraterrestrial tran				
6.	Which one is linked to (1) Extinction	evolution? (2) Competition	(3)	Variation	(4)	Reproduction		
7.	(1) Rate and survival of(2) Environmental pres(3) Inheritance of acqu		ue to	e to variation				
8.	Darwin's finches provi which of the following e (1) Anatomy			favour of organic of Embryology		ution. These are related to Palaentology		
9.	Which of the following (1) Microspheres	was formed in S.Miller's (2) Nucleic acids		riment? Amino acids	(4)	UV radiations		
10.	Which of the following are not analogous organs? (1) Fins of fishes and flippers of Whales (2) Stings of Honey Bee and scorpion (3) Wing of insect and wings of <i>Lepisma</i> (4) Thorn of <i>Bougainvillea</i> and tendril of <i>Cucurbita</i>							
11.	Which one of the follow	ving was not given by Da	rwin'	s theory of evolution	1?			
	(1) Over-production	(2) Natural selection	(3)	Genetic drift	(4)	Struggle for existence		
12.	Biological concept of sp (1) Reproductive isolate (3) Morphology and m		(2)) Morphological features only) Methods of reproduction only				
13.	Which of the following (1) Fossils	provides most evident pr (2) Morphology		f evolution? Embryo	(4)	Vestigeal organs		
14.	Which of the following (1) Tail vertebrae (3) Nails	is not vestigeal in man?		Nictitating membra Vermiform appendi				
15.	Human hand, wing of b (1) Analogous organs (3) Homologous organ	oat and flipper of whale reas	(2)	sent Vestigeal organs Evolutionary organ	s			
16.	Monkeys and some low (1) Identical to those of (3) Somewhat similar to		(2	groups which are Identical to those o Not identical to those				

17.	Living organism with (1) Dinosaur	complete fossil history is (2 Archaeopteryx	(3) F	Horse	(4)	Man		
18.	Vestigeal pelvic girdle	e and bone remnants of hi		os are characterist Shark		Seal		
19.	The correct sequence (1) Equus, Eohippus (2) Eohippus, Mesoh (3) Mesohippus, Eoh	e of evolution of horse is , Mesohippus, Merychippu nippus, Merychippus, Equu nippus, Merychippus, Equu hippus, Equus, Mesohippu	us us	Shark	(1)	Coal		
20.	Homology is similarily (1) Appearance	/ in (2) Physiology	(3) (Origin	(4)	Function		
21.	Human beings have v	vestigeal vermiform appen (2) Herbivorous		ne ancestors must Carnivorous		been Sanguivorous		
22.	Evolution of a species (1) Fossils	s or group can be studied (2) Carbon dating	Ū	h DNA analysis	(4)	All of the above		
23.	Phenomenon of orga (1) Mimicry	nisms having dissimilar st (2) Analogy		e with a similar orio Homology		Both A and B		
24.	Tasmanian Wolf is a marsupial while Wolf is a (1) Convergent evolution (3) Parallelism			a placental mammal. This shows (2) Divergent evolution (4) Inheritance of acquired characters				
25.	Occurrence of higher number of endemic species in South America and Australia is due to (1) Retrogressive evolution (2) Continental separation (3) These species have become extinct from other regions (4) Absence of terrestrial links between these places					ralia is due to		
26.	Unit of evolution is (1) Population	(2) Species	(3) I	ndividual	(4)	Subspecies		
27.	Coevolution does not (1) Parasitism	occur in case of (2) Mutualism	(3) E	Both (1) and (2)	(4)	Commensalism		
28.	Which one of the follo (1) Flippers of seal (3) Hind limbs of Pytl	owing is not a vestigeal org	(2) (Coccyx of man Wings of Kiwi				
29.	The organs, which are (1) Analogous	e functionally different but (2) Homologous		lated through com Divergent organs		descent, are Parallel organs		
30.	(1) Wings of insects	owing statements is incorre and birds are analogous and bat are analogous	(2) V	Wings of bat and b		are homologous rds are homologous		

Reproductive isolation is

31.	Plants and animals of	Galapagos Islands rese	mbled those of the neigh	bouring mainland in
	(1) North Africa	(2) South Africa	(3) North America	(4) South America
32.	Darwin's finches show (1) Adaptive radiation		(3) Homology	(4) Natural selection
33.	Relatedness of two sp (1) RNA and proteins (3) Antibodies and tra	ecies is tested through	(2) DNA and proteins(4) none of the above	
34.	Common link between (1) Ramapithecus (3) Homo erectus	apes and man was	(2) Dryopithecus (4) Homo neandertha	alensis.
35.	Primitive Man who buil	It up dwelling huts and b (2) Cro-Magnon Man		(4) Neanderthal man
36.	Which one is closest to (1) Cro-Magnon Man		(3) Homo erectus	(4) Homo habilis
37.	Human evolution is be (1) Development of br (3) Omnivorous diet		(2) Migratory habit(4) All the above	
38.	Which one is correct? (1) Australopithecus is (2) Homo erectus is re (3) Neanderthal man (4) None of the above	eal ancestor of man is direct ancestor Homo	sapiens	
39.	The earliest hominids (1) Homo erectus	that evolved more than t (2) Australopithecus	wo million years ago wer (3) Cro-Magnon Man	
40.	During course of evolution (1) Fore brain	ution which part of brain I (2) Mid brain	has shown maximum inc (3) Hind brain	rease in size (4) All the above.
41.	Individuals of a specie (1) Flora	s which occur in a partic (2) Fauna	ular area constitute (3) Community	(4) Population.
42.	Gene pool of a popul mutations, without mig (1) Random mating (3) Natural selection		stable if the populatio (2) Moderate environ (4) Reduction in preda	•
43.	Darwin's theory states (1) Characters are acc (2) Species change m (3) Nature selects org	that quired through inheritand norphologically with time panisms which can adapt to effect of environment.	ce	

Reproduction can occur within members of

	(1) Inability to interbree(3) Breeding in isolation		` '	Ability to interbreed Intraspecific breeding	ng	
45.	New species develop d (1) Isolation and mutat (3) Isolation and comp	ion	` '	Competition and multiple land solution and variation		on
46.	Different species occur (1) Allopatric	ring in different geograph (2) Sympatric		areas are known as Sibling species	(4)	Deme
47.	Unit of natural selection (1) Species	or survival of the fittest i		Family	(4)	Individual.
48.	Dark coloured Peppere because of (1) High fecundity (3) Natural selection in		(2)	industrial areas as c Mimicry Lethal mutation	omp	pared to light coloured form
49.	According to Lamarckism long necked Giraffes evolved because (1) Nature selected only long necked animals (2) Of stretching of necks by short one over many generations (3) Humans preferred long necked animals (4) Mutation					
50.	Ultimate source of varia	ation is (2) Sexual reproduction	(3)	Genetic drift	(4)	Gene flow
51.	Maintenance of genetic (1) Gause principle	equilibrium is known as (2) Bergman law	(3)	Glogger principle	(4)	Hardy-Weinberg principle
52.	Which is likely to haster (1) Favourable environ (3) Over-production	•		Abundant genotype Reproductive isolati		ations
53.	A group of interbreeding (1) Biological species	g individuals reproductive (2) Morphospecies	-	solated from others is Linnean species		Evolutionary species
54.	Sudden and a heritable (1) Selection	change in a character of (2) Heterosis		organism is Inbreeding	(4)	Mutation
55.	According to Neo Darw (1) Gene flow (3) Change in size of g	inism, evolution is due to ene pool	(2)	Change in gene stru Change in gene free		
56.	(2) Members of a spec(3) Members of a spec	species? ies occupy the different h ies are morphologically d ies canot interbreed amo ies cannot interbreed wit	lissi ngs	milar t themselves	eies	

	(1) Genus	(2) Species	(3)	Family	(4)	Order
58.	Species are differential (1) Interbreeding (3) Species diversity	ated on the basis of	` '	Reproductive isolat None of the above	ion	
59.	Two related population (1) Allopatric population (3) Quantum population		(2)	eparate area are Parapatric populati Saltational populati		
60.	An example of reprodu	uctive isolation is (2) Bonellia	(3)	Dinosaurs	(4)	Archaeopteryx
61.	Genetic drift operates (1) Large isolated pop (3) Fast reproductive	oulation	` '	Small isolated population of the second seco		
62.	and			-		tion, genetic recombination
	(1) Evolution	(2) Limiting factor	(3)	Over-production	(4)	Natural selection
63.	Darwin could not prop (1) Evidences	erly explain the theory of (2) Speciation		ution because of lacl Variations		Genetics
64.	In the early earth, orga (1) ammonia and met (3) organic matter	anic acids were produced hane	(2)	he combination of H ₂ hydrogen sulphates and nitra		1
65.	Coacervates belong to (1) cyanobacteria (2) Protozoans (3) molecular aggrega (4) molecular aggrega		emb	rane		
66.	Darwinian theory of pangenesis shows similarity with theory of inheritance of acquired characters the what will be correct accroding to it? (1) useful organs become strong and developed while useless organs becomes extinct. These organ help in struggle for survival. (2) Size of organs increase which ageing (3) Development of organs is due to will power (4) There should become physical basis of inheritance					
67.	An evolutionary patte species is called	rn characterized by a ra	ıpid i	ncrease in the num	ber	and kind of closely related
	(1) convergent evolution			divergent evolution		
	(3) adaptive radiation			parallel evolution		
68.		ch was absent during the			(4)	oorbon diewide
69.	(1) oxygenMammals have origina	(2) hydrogen ated from which of the following the control of the cont		nitrogen ig	(4)	carbon dioxide

	(1) Pisces	(2) Amphibia	(3) Reptilia	(4) Aves				
70.	Sequence of which	of the following is used to	o know phylogeny?					
	(1) mRNA	(2) rRNA	(3) tRNA	(4) DNA				
71.	Lamarckism cannot	•						
	(1) webbed toes in(3) long parrow and	aquatic birds d limbless body of snakes	(2) weak muscles ins (4) heterophylly	the son of a wrestler				
72.	, , ,	de Vries theory, evolution	, , , , , , , , , , , , , , , , , , , ,					
	(1) discontinuous	ao 11100 a1001y, 0101aao.	(2) jerky					
	(3) continuous and	smooth	(4) both (1) and (2)					
73.		ng species are restricted		(4) 0				
_,	(1) Sibling species	(2) Endemic species	. ,	(4) Sympatric species				
74.	(1) reproductive iso	of species is mainly base lation	d on (2) morphological fe	atures only				
	(3) methods of repre			methods of reproduction				
75.	Name given to foss	il hominid of Shivalik hills	in India is					
	(1) Ramapithecus	(2) Austarlopithecu	s (3) Pithecanthropus	(4) Neanderthalensis				
76.	In population 'X' proportion of gene 'M' is 60% and gene 'm' is 40% then which of the is correct for the heteozygous genotype in the offspring (According to Hardy-Weinberg							
	(1) 48%	(2) 36%	(3) 16%	(4) 20%				
		_						
	Exercise-2							
4.5.	M/Colored and all a	Mariana and a street to a street	a la caractería de caractería de contra					
1.29.	Which are actual evidence supporting the endosymbiotic theory for the origin of eukaryotes? (1) fossil evidence suggest early eukaryotes are proteobacteria							
	(2) free-living mitochondria still exist in some environments							
	, ,	(3) mitochondria and chloroplasts have their own DNA(4) all of the above are true						
2 >=	, ,		block colour is due to	a malania daminant allala. Mus				
2.29.	• •	- ·		a melanic dominant allele. Mm each population, 81 individuals				
		are white-colored, with 19 black- colored individuals. Assuming Hardy-Weinberg equillibrium, what is the approximate frequency of the melanic (M) allele in						
	each population?	emberg equilibrium, who	at is the approximate freq	uency of the meianic (M) allele in				
	(1) 0.81	(2) 0.19	(3) 0.90	(4) 0.10				
3.	The difference in cophenomenon?	olor between the new pop	pulation and the old popul	ation is due to which evolutionary				
	(1) Stabilizing selec	ction (2) Mutation	(3) Founder Effect	(4) Allopatric speciation				
4.	MI	192	4.001.111					
4.🖎		out conditions on the ear	, -					
(1) The atmosphere contained more CO ₂ than is present day								

	(2) The atmosphere contained more O ₂ than is present day								
	(3) Biochemical evidence suggests there may h	nave been life							
	(4) All of the above are false								
5.≿⊾	The evolutionary force that is believed to be the	e driving force behind sympatric evolution is:							
	(1) directional selection	(2) stabilizing selection							
	(3) disruptive selection	(4) balancing selection							
6.	Species that have evolved in earlier era and und fossils. Which of the following species is a living	dergone minimum evolutionary changes are called living fossil?							
	(1) Amoeba (2) King crab	(3) Squid (4) Monitor lizard							
7.	Though the Lamarck's hypothesis of use a demonstrated in an individual by:	and disuse has not influenced much about is best							
	(1) cornification of facial skin	(2) bone remodeling							
	(3) muscle toning	(4) sensory discrimination							
8.≿	In the evolution of man, which of the following was not involved?								
	(1) Progressive reduction in hair cover	(2) Progressive increase in size of brain							
	(3) Progressive development of erect posture	(4) Progressive increase in mobility of facial muscles							
9.	All of the following are the examples of the e	effect of use and disuse of organs influence their size							
	(1) Elongation of neck in giraffe	(2) Disappearance of limbs in snakes							
	(3) Disappearance of tail in man	(4) Disappearance of tail of tadpole of frog							
10.	Adaptive radiation in a taxon is mainly due to								
	(1) allopatric distribution	(2) sympatric distribution							
	(3) parapatric distribution	(4) orthopatric distribution							
11.🖎	The groups of extinct animals that are closest to	the extinct dinosaurs are							
	(1) crocodiles and birds	(2) chelonians and mammals							
	(3) snakes and turtles	(4) marsupials and running birds							

Exercise-3

PART - I : NEET / AIPMT QUESTION (PREVIOUS YEARS)

1.	Concept of chemical evolution of life is based (1) Effect of solar radiations on chemicals (2) Interaction of water, air and clay under ir (3) Combination of chemicals under hot moi (4) Crystallization of chemicals	(AIPMT-2001)					
2.	Similarities between organisms of different g (1) Convergent evolution	genotypes is due to (2) Divergent evolution	(CBSE-2001)				
	(3) Microevolution	(4) Macroevolution					
3.	Reason for diversity in living beings is due to (1) Short term evolutionary changes (3) Mutations	(2) Long term evolutinary changes (4) Gradual change	(CBSE-2001)				
4.	In Lederberg's replica plating, streptomycin r (1) Minimal medium and streptomycin (3) Only minimal medium	resistant strain can develop by using (2) Complete medium and streptomy (4) Only complete medium.	(CBSE-2001) cin				
5.	Darwin's theory of pangenesis proposes (1) Some physical basis of inheritance (2) Development of useful organs and degeneration of useless organs (3) Increase in organ size with age (4) Development of organs due to will power						
6.	In which condition gene ratio remains consta (1) Gene flow (2) Mutation	ant in a species (3) Random mating (4) Sexual se	(CBSE-2002)				
7.	Fossil evidence indicates that original place (1) Java (2) France	for start of human evolution was (3) Africa (4) China	(CBSE-2002)				
8.	Which is sequenced during phylogeny? (1) mRNA (2) rRNA	(3) tRNA (4) DNA	(CBSE 2002)				
9.	Which is most important for speciation? (1) Seasonal isolation (3) Temporal isolation	(2) Reproductive isolation(4) Behavioural isolation	(CBSE-2002)				
10.	Some bacteria can grow in streptomycin con (1) Induced mutation (3) Reproductive isolation	ntaining medium due to (2) Natural selection (4) Mimicry	(CBSE-2002)				
11.	Which one of the following sequences was p (1) Overproduction, variations, constancy of (2) Variations, constancy of population size, (3) Overproduction, constancy of population (4) Variations, natural selection, overproduction	f population size, natural selection , overproduction, natural selection n size, variations, natural selection	c evolution? (CBSE-2003)				

12. Random genetic drift in a population probably results from (CBSE-2003) (1) Highly genetically variable individuals (2) Interbreeding within small population (3) Constant low mutation rate (4) Large population size 13. Industrial melanism is an example of (CBSE-2003) (1) Drug resistance (2) Darkening of skin due to smoke from industries (3) Protective resemblance with the surroundings (4) Defensive adaptation of skin against ultraviolet radiations 14. Which experiment suggests that simplest living organisms could not have originated spontaneously (AIPMT-2005) from non-living matter? (1) Microbes did not appear in stored meat (2) Microbes appeared from unsterilized organic matter (3) Larvae could appear in decaying organic matter (4) Meat was not spoiled when heated and kept in sealed vessel 15. (CBSE-2005) Which one supports Darwin's concept of natural selection? (1) Development of transgenic animals (2) Production of Dolly sheep by cloning (3) Prevalence of pesticide resistant insects (4) Development of organs from stem cells for organ transplantation 16. Which is relatively the most accurate method of dating of fossils? (CBSE-2005) (1) Radiocarbon dating method (2) Potassium - Argon method (3) Electron Spin Resonance (ESR) method (4) Uranium - Lead method 17. There are two opposing views about origin of modern man. According to one view Homo erectus in Asia was ancestor of modern man. A study of variations of DNA, however suggested African origin of modern man. What kind of observation on DNA variations could suggest this (CBSE-2005) (1) Greater variation in Asia than in Africa (2) Greater variation in Africa than in Asia (3) Similar variation in Africa and Asia (4) Variation only in Asia and no variation in Africa 18. Industrial melanism as found in peppered moth proves that (AIPMT-2007) (1) Melanic form has no selective advantage in industrial area (2) Lighter form has no selective advantage in polluted industrial area and non-polluted area

(AIPMT-2007)

A high density elephant population in an area will result in

(1) Mutualism

(2) Pred

(4) True black melanic form develops by recurring random mutation

(3) Melanism is pollution generated feature

(2) Predation on one another

(3) Interspecific competition

19.

(4) Intraspecific competition

20. Select the correct statement (AIPMT-2007) (1) Darwinian variations are small and directionless (2) Mutations are random and directional (3) Fitness is the end result of the ability to adapt and get selected by nature (4) All mammals except whales and camels have seven cervical vertebrae 21. Which one is the important consequence of geographical isolation (AIPMT-2007) (1) Preventing speciation (2) Allopatric speciation (3) Random creation of new species (4) No change in isolated fauna 22. The finches of Galapagos Islands provide an evidence in favour of (CBSE PMT-2007) (1) Evolution due to mutation (2) Retrogressive evolution (3) Biogeographical evolution (4) Special creation 23. Adaptive radiation refers to (CBSE PMT-2007) (1) Evolution of different species from a common ancestor (2) Migration of members of a species to a geographical area (3) Power of adaptation in an individual to a variety of environments (4) Adaptation due to geographical isolation 24. Which one of the following statements is correct? (AIPMT 2007) (1) There is no evidence of presence of gills in mammalian embryos (2) Ontogeny repeats phylogeny (3) All plant and animal cells are totipotent (4) Stem cells are specialized cells 25. Two species of different genealogy show resemblance due to similar adaptation. The phenomenon is (1) Convergent evolution (2) Divergent evolution (AIPMT 2007) (3) Micro-evolution (4) Co-evolution 26. Which is incorrect about protobionts in abiogenic origin of life? (AIPMT-2008) (1) They were partially isolated from surroundings (2) They could maintain an internal environment (3) They were able to reproduce (4) They could separate combination of molecules from the surroundings 27. Darwin's finches are an excellent examples of (CBSE-2008) (1) Brood parasitism (2) Seasonal migration (3) Connecting links (4) Adaptive radiation 28. Thorns of Bougainvillea and tendril of Cucurbita are examples of (CBSE-2008) (1) Vestigeal organs (2) Analogous organs (3) Retrogressive evolution (4) Homologous organs 29. Crocodile and Penguin are similar to Whale and Dogfish in which one of the following features? (1) Have gill slits at some stage (AIPMT Mains 2010) (2) Possess a solid single stranded central nerovous system (3) Lay eggs and guard them till they hatch (4) Possess bony skeleton

30.	The most apparent change during the evolution	nary history of <i>Homo sap</i>	piens is traced in
	(1) Remarkable increase in the brains size(3) Walking upright	(2) Loss of body hair(4) Shortening of the j	(AIPMT Mains 2010)
31.	Evolution of different species in a given area sareas is known as (1) Adaptive radiation (2) Natural selection		
32.	According to Darwin, The organic evolution is a (1) Interspecific competition (2) Competition within closely related species (3) Reduced feeding efficiency in one species (4) Intraspecific competition	due to	(NEET-2013)
33.	Variation in gene frequencies within population This is referred to as (1) Genetic drift (2) Random mating	ns can occur by chance ra (3) Genetic load	(NEET-2013) (4) Genetic flow
34.	The process by which organisms with diadaptations in response to a common environr (1) Convergent evolution (3) Adaptive radiation	•	d (NEET-2013)
35.	Which one of the following are analogous struct (1) Wings of Bat and Wings of Pigeon (2) Gills of Prawn and Lungs of Man (3) Thorns of Bougainvillea and Tendrils of Cu (4) Flippers of Dolphin and legs of Horse		(AIPMT-2014)
36.	A population will not exist in Hardy-Weinberg et (1) there are no mutations (3) the population is large	equilibrium if (2) there is no migration (4) individuals mate so	
37.	Which is the most common mechanism of ger organism? (1) Chromosomal aberrations (3) Recombination	netic variation in the population (2) Genetic drift (4) Transduction	ulation of a sexually-reproducing (AIPMT-2015)
38.	Which of the following had the smallest brain of (1) Homo sapiens (3) Homo habilis	capacity? (2) Homo neandertha (4) Homo erectus	(AIPMT 2015) lensis
39.	Industrial melanism is an example of : (1) Natural selection (2) Mutation	(3) Neo Lamarckism	(Re-AIPMT 2015) (4) Neo Darwinism
40.	The wings of a bird and the wings of an insect (1) analogous structures and represent conver (2) phylogenetic structures and represent diver (3) homologous structures and represent conv (4) homologous structures and represent diver	gent evolution rgent evolution ergent evolution	(Re-AIPMT 2015)

41.	which of the follow	ing structures is nomologu	is to the wing of a bird?		(NEE1-1 2016)
	(1) Flipper of Wha	e	(2) Dorsal fin of the S	hark	
	(3) Wing of a Moth		(4) Hind limb of Rabb	it	
42.	Analogous structur	es are a result of :			(NEET-1 2016)
	(1) Stabilizing selec	ction	(2) Divergent evolution	n	
	(3) Convergent evo	lution	(4) Shared ancestry		
43.	Following are the to	wo statements regarding th	ne origin of life:		(NEET-1 2016)
	(a) The earliest org	anisms that appeared on t	the earth were non-green	and presumab	ly anaerobes.
	(b) The first autotro	phic organisms were the o	chemoautotrophs that nev	er released ox	ygen.
	Of the above states	ments which one of the foll	lowing options is correct?		
	(1) Both (a) and (b)	are false.			
	(2) (a) is correct bu	t (b) is false.			
	(3) (b) is correct bu	t (a) is false.			
	(4) Both (a) and (b)	are correct.			
44.	Genetic drift operat	es in			(NEET-2 2016)
	(1) slow reproductive	ve population	(2) small isolated pop	ulation	
	(3) large isolated p	opulation	(4) non-reproductive	population	
45.	In Hardy-Weinberg	g equation, the frequency o	of heterozygous individua	l is represented	i by
					(NEET-2 2016)
	(1) <i>q</i> 2	(2) <i>p2</i>	(3) 2 <i>pq</i>	(4) pq	
46.	The chronological	order of human evolution for	rom early to the recent is		(NEET-2 2016)
	-	s \rightarrow Homo habilis \rightarrow Ram	•	us	,
		is \rightarrow Ramapithecus \rightarrow Ho	•		
	• •	→ Australopithecus→ Hon			
	` '	→ Homo habilis → Austral			
47.		ing is the correct sequence			(NEET-2 2016)
77.	I. Formation of prot		se of events in the origin of	or inc :	(14221-2 2010)
	II. Synthesis of orga	anic monomers			
	III. Synthesis of org				
	IV. Formation of DI	NA-based genetic systems	;		
	(1) II, III, IV, I	(2) II, III, IV	(3) I, III, II, IV	(4) II, III, I, I	V
48.	Artificial selection to	o obtain cows yielding high	ner milk output represents	S:	(NEET-2017)
	(1) stabilizing selec	ction as it stabilizes this cha	aracter in the population.		
	(2) directional as it	pushes the mean of the ch	naracter in one direction.		
	(3) disruptive as it s	splits the population into tw	vo, one yielding higher ou	tput and the otl	ner lower output.
	(4) stabilizing follow	ved by disruptive as it stab	ilizes the population to pr	oduce higher y	ielding cows.
49.	Which of the follow	ing represents order of 'Ho	orse'?		(NEET-2017)
	(1) Equidae	(2) Perissodactyla	(3) Caballus	(4) Ferus	,

50	(1) Fc	relimbs	of man,		cheetah	gent evolution, select the <i>inco</i> (2) Eye of octopus, bat and r (4) Heart of bat, man and ch	man			
51	(1) Ho	omology			e in the forelimbs	of many vertebrates is an exa (2) Adaptive radiation (4) Analogy	mple of (NEET-2018)			
52	(1) Mu	ultiple st	Hugo de ep muta c variatio	tions	ne mechanism of	evolution is (2) Minor mutations (4) Saltation	(NEET-2018)			
53.	(1) sm	nall and	used by directior nd direct	nless	ı, as proposed by	Hugo de Vries, are: (2) random and directional (4) small and directional	(NEET-1-2019)			
54.						ency of dominant allele A is 0.4, then what will be the gous and homozygous recessive individuals in the (NEET-1-2019)				
	(1) 0.16 (M); 0.36 (Aa); 0.48 (aa) (3) 0.16 (M); 0.24 (Aa); 0.36 (aa)					(2) 0.36 (M); 0.48 (Aa); 0.16 (4) 0.16 (M); 0.48 (Aa); 0.36				
55.	betwee Which (1) Cy	een 3 to n type of /clical Se	3.3 kg s	urvive won proces	_	m 2 to 5 kg. 97% of the newborinfants born with weights from? (2) Directional Selection (4) Disruptive Selection				
56.	(a) Ho (b) Ho (c) Ho (d) Ho	omo hab omo nea omo erec omo sap	oilis Indertha ctus	lensis	correct brain size (i) 900cc (ii) 1350 cc (iii) 650-800cc (iv) 1400cc (d) (ii) (ii) (iv) (ii)	:	(NEET-1-2019)			
57.	This t (1) Ac	ype of e	volution Radiation	may be	placental mammareferred to as -	als have evolved to share ma (2) Divergent Evolution (4) Convergent Evolution	any similar characteristics. (NEET-2-2019)			

8.

Basis of life are (1) nucleic acids

(1) Insects

(2) proteins

The animal group which does not exist in Galapagos is land is

(2) Protozoa

◆					$-\!\!\!\!-\!\!\!\!-$					
58.	A population of a s	necies invades a new	area Which of the follo	owing condition wil	Llead to Adaptive					
JO.	A population of a species invades a new area. Which of the following condition will lead to Adaptive Radiation? (NEET-2-2019)									
	(1) Area with large number of habitats having very low food supply.									
	(2) Area with a sing	le type of vacant habitat	t.							
	(3) Area with many	(3) Area with many types of vacant habitats.								
	(4) Area with many	habitats occupied by a	arge number of species	S.						
59.	Which of the followi	ng statements is correc	t about the origin and ev	volution of men? (N	NEET-2-2019)					
		e around 50,000 years b		•	•					
	(2) The Dryopithecu	is and Ramapithecus pr	imates existing 15 millio	on years ago, walke	ed like men.					
	(3) Homo habilis pro	obably ate meat.								
	(4) Neanderthal me	n lived in Asia between	100000 and 40000 yea	rs back						
	PART	- II : AIIMS QUE	STION (PREVIC	US YEARS)						
1.	A compound import	ant in prebiotic evolution	n was		(AIIMS 1997)					
	(1) SO ₂	(2) CH ₄	(3) SO ₃	(4) NO						
2.	Which ones are the	most essential for origin	n of life?		(AIIMS-2001)					
۷.	(1) Enzymes	(2) Proteins	(3) Carbohydrate	es (4) Nucleic	,					
	(1) Elizyilles	(2) 1 10101113	(b) Carbonydiate	(4) INCOCIO	aoius					
3.	The early stage hun	nan embryo distinctly po	ossesses		(AIIMS-2003)					
	(1) Gills	(2) Gill slits	(3) External ear (Pinna) (4) Eye bro	WS					
4.	Age of fossils was previously determined by radioactive elements. More precise recent method which									
	has led to revision of	(AIIMS 2007)								
		ydrate and protein in fo	ssils							
	(2) Study of conditi		.							
	• •	sonance and fossil DNA								
	(4) Presence of Car	bohydrate and protein i	II TOCKS							
5.	Which of the followi	ng postulates is related	with Neo-Darwinism?		(AIIMS-2009)					
	, ,	elieved to form new spe								
	. ,		component of evolution							
		e occurrence of unchar	nged forms over millions	of years						
	(4) all of the above									
6.	The concept of cher	mical evolution is based	on		(AIIMS-2010)					
	` '	ater, air and clay under	intense heat							
	` '	adiation on chemicals								
		-	chemicals under suitab	le environmental co	onditions					
	(4) crystallization o	t chemicals								

(3) nucleoproteins

(3) Crustacea

Page 55

(AIIMS-2011)

(AIIMS-2011)

(4) amino acids

(4) Amphibia

	what shall be corre	ct according to it?		(AIIMS-2013)						
	(1) Useful organs	become strong and dev	eloped while useless or	gans become extinct. These organs						
	help in struggle	for survival								
	(2) Size of organs	increase with ageing								
	(3) Developement	of organs is due to will p	oower							
	(4) There should b	e some physical basis o	f inheritance							
10.	From the statemen	ts given below, which or	ne most likely represents	an example of disruptive selection?						
	 Industrial mela 	nism in peppered moth.		(AIIMS-2017)						
	II. Population of b	utterflies that are either	all yellow or all blue.							
	III. Population of ra	abits that evolves more b	oody fat in response to a	cold climate.						
	IV. Population of w	rens that evolves to be	smaller at sexual maturit	y in response to predation pressure.						
	V. Very tall and ve	ery short pine trees being	g removed from a popula	ition by herbivorey.						
	(1) Only II	(2) II and III	(3) Only IV	(4) III and IV						
11.	The best descriptio	The best description of natural selection is (AIIMS-2017)								
	(1) the survival of the	(1) the survival of the fittest								
	(2) the struggle for	(2) the struggle for existence								
	(3) the reproductive of the members of a population best adapted to the environment									
	(4) a change in the	proportion of variations	within a population							
12	Radioactive C-datir	(AIIMS-I-2018)								
	(1) Biological age		(2) Geological age							
	(3) Age of Rock		(4) Geographical d	istribution						
13	Which of the follow	ing explained evolution i	n most acceptable form?	(AIIMS-III-2018)						
	(1) Lamarck, Darwi	n, Hugo de Vries	(2) Anaximander, I	Darwin, Malthus						
	(3) F. Redi, Richter	, Cuvier	(4) Lamarck, Hard	y Weinberg, Darwin						
14	Select the option ha	aving correct sequence	of geological periods –	(AIIMS-III-2018)						
	Permian, Triassic,	Jurassic								
	$(1)\ 1 \rightarrow 2 \rightarrow 3$	$(2) \ 3 \rightarrow 2 \rightarrow 1$	$(3) \ 2 \rightarrow 3 \rightarrow 1$	$(4) \ 3 \rightarrow 1 \rightarrow 2$						
15	What was the reason	on of mass extinction du	ring Mesozoic era?	(AIIMS-IV-2018)						
	(1) Due to meteorite	e falling on earth	(2) Due to continer	ntal drift						
	(3) Glaciation		(4) Volcanic eruption	(4) Volcanic eruption						

If Darwin's theory of pangenesis shows similarity with theory of inheritance of acquired characters then

		nsv	<i>i</i> ers										
						EXER	CISE -	1					
SECT	TION - A												
1. 8. SEC1	(3) (3) T ION - B	2. 9.	(1) (1)	3. 10.	(2) (2)	4.	(4)	5.	(2)	6.	(3)	7.	(1)
1. 8. 15.	(1) (3) (2)	2. 9. 16.	(3) (1) (1)	3. 10. 17.	(2) (1) (2)	4. 11. 18.	(4) (1) (2)	5. 12. 19.	(2) (1) (4)	6. 13. 20.	(3) (3) (4)	7. 14.	(4) (2)
	TION - C		()		()		()		()		()		
1. 8. 15. 22.	(4) (4) (2) (4)	2. 9. 16. 23.	(1) (4) (1) (4)	3. 10. 17. 24.	(2) (4) (3) (2)	4. 11. 18. 25.	(3) (3) (4) (4)	5. 12. 19.	(2) (4) (1)	6. 13. 20.	(4) (1) (4)	7. 14. 21.	(4) (1) (1)
				M	ISCEL	LANE	OUS Q	UESTI	ONS				
1. 8. 15. 22. 29. 36. 43. 50. 57. 64. 71.	(3) (2) (3) (4) (2) (1) (3) (1) (2) (1) (2)	2. 9. 16. 23. 30. 37. 44. 51. 58. 65. 72.	(1) (3) (1) (3) (4) (1) (1) (4) (2) (3) (4)	3. 10. 17. 24. 31. 38. 45. 52. 59. 66. 73.	(4) (4) (3) (1) (4) (2) (1) (4) (1) (4) (2)	4.	(4) (3) (1) (2) (1) (2) (1) (1) (1) (1) (1) (2) (2)	5. 12. 19. 26. 33. 40. 47. 54. 61. 68. 75.	(2) (1) (2) (1) (2) (1) (4) (4) (2) (1) (1) (3)	6. 13. 20. 27. 34. 41. 48. 55. 62. 69. 76.	(3) (1) (3) (4) (2) (4) (3) (4) (4) (3) (1)	7. 14. 21. 28. 35. 42. 49. 56. 63. 70.	(1) (3) (2) (1) (4) (1) (2) (4) (4) (4) (4)
8.	(4)	9.	(4)	10.	(1)	11.	(1)						
						EXER	CISE -	3					
	(0)	•	(4)	•	(0)		NRT- I	_	(4)	•	(0)	_	(0)
1. 8. 15. 22. 29. 36. 43. 50.	(3) (4) (3) (3) (1) (4) (4) (2) (4)	2. 9. 16. 23. 30. 37. 44. 51.	(1) (2) (3) (1) (1) (3) (2) (1) (3)	3. 10. 17. 24. 31. 38. 45. 52.	(2) (2) (2) (1) (3) (3) (4) (4)	4. 11. 18. 25. 32. 39. 46. 53.	(1) (3) (4) (1) (4) (1) (3) (3)	5. 12. 19. 26. 33. 40. 47. 54.	(1) (2) (4) (3) (1) (1) (4) (4)	6. 13. 20. 27. 34. 41. 48. 55.	(3) (3) (4) (1) (1) (2) (3)	7. 14. 21. 28. 35. 42. 49. 56.	(3) (4) (2) (4) (2) (3) (2) (4)
1. 8. 15.	(2) (4) (1)	2. 9.	(4) (4)	3. 10.	(2) (1)	4. 11.	(3) (1)	5. 12.	(4) (1)	6. 13.	(3) (1)	7. 14.	(1) (1)

Self Practice Paper (SPP)

1.	Which was the first am	nino acid to be formed in	Stanely Miller's exper	iment?					
	(1) Alanine	(2) Aspartic acid	(3) Glutamic acid	(4) Glycine					
2.	According to taxonomi	cal position, find the odd	l one						
	(1) Tyrannosaurus	(2) Tricerotops	(3) Archaeopteryx	(4) Pteranodon					
3.	octopus eye lack	_(C)		liffer in(B)position an	ıC				
		S o Retinal, C o Blind sp							
	-	$S \to Retinal, C \to Cornea$							
	. ,	$B \to Corneal, C \to Retination$							
	(4) A → Homologous,	$B \rightarrow aqueous chamber,$, C → Cornea						
4.	Match the following & f	find animals showing ada	aptive convergence.						
	A. Anteater	i. Flying phalanger							
	B. Lemur	ii. Tasmanian tiger c	at						
	C. Bobcat	iii. Numbat							
	D. Flying squirrel	iv. Spotted cuscus							
	$(1) A \rightarrow ii, B \rightarrow i, C \rightarrow$	iii, $D \rightarrow iv$	(2) $A \rightarrow iv, B \rightarrow ii, G$	$C \rightarrow i, D \rightarrow iii$					
	(3) $A \rightarrow iii$, $B \rightarrow iv$, $C \rightarrow iv$	\rightarrow ii, D \rightarrow i	(4) $A \rightarrow i$, $B \rightarrow iii$, C	$C \rightarrow iv, D \rightarrow ii$					
5.	Difference in shape of	beak in Darwin's finches	s is due to differential e	expression of which gene?					
	(1) BMP - 1	(2) BAP - 12	(3) BCP - 5	(4) BMP - 4					
6.	Which of the following is not placental mammal?								
	(1) Mole	(2) Lemur	(3) Tiger cat	(4) Bobcat					
7.	According to Darwin, v	which of the following is n	mechanism of evolutio	n?					
	(1) Natural selection	-	(2) Variations						
	(3) Reproductive isola	ition	(4) Mutation						
8.	Which of the following	is not an example of evo	olution of due to anthro	ppogenic action?					
	(1) Excess use of herb	-	(2) Antibiotics used against microbes						
	(3) Industrial melanisr	n	(4) Dominance of p	lacental mammals on earth					
9.	Which of the following	is true wrt continental dr	rift?						
	(1) Due to continental	drift all present day sea	were formed						
	(2) Due to continental	drift South America sepa	arated from North Am	erica					
	(3) Due to continental	drift animals of east Afri	ca over-ridden by anir	nals of North America					
	, ,		•	en by animals of North America					
10.	In experiments similar	to Stanley Miller, Which	of the given compoun	ds were not formed?					
	(1) Pigment	(2) Sugar	(3) Nitrogenous ba						

11.	Which of the following are most important & least important evidence of evolution?									
	(1) Fossils & Analogous organs respectively	(2) Biogeographical & Analogous respectively								
	(3) Vestigeal organs & Analogous respectively	(4) Fossils & Comparative biochemistry respectively								
12.	First amphibians that can live on both water & la	nd, were evolved from								
	(1) Lung fishes	(2) Lobefin fishes								
	(3) Shark & rays	(4) early reptiles who went back to water								
13.	First plant to colonize land were									
	(1) Bryophytes (2) Pteridophytes	(3) Chlorophytes (4) Tracheophytes								
14.	Variations as proposed by Darwin are									
	(1) Directionless & small	(2) Directional & large								
	(3) Directional & small	(4) Directionless & large								
15.	The rate of appearance of variations leading to	speciation is directly related to								
	(1) Acquired Traits	(2) Life span								
	(3) Cranial capacity	(4) Non heritable Characters								
16.	Mutations are discontinuous variations, which w	ere called								
	(A)by Darwin &(B)	by Bateson.								
	(1) A = Saltatory Variations, B = Sports									
	(2) A = Sports, B = Saltatory Variations									
	(3) A = Sports, B = Saltatory Variations									
	(4) A = Slatatory Variations, B = Punctuated eq	uilibrium								
17.	Drosophila pseudoobscura & Drosophilla persin	nilis are examples of								
	(1) Sibling species	(2) Polytypic species								
	(3) Evolutionary species	(4) Temporal isolation								
18.	Occurence of prototherians & metatherians is in	Australia only, it is an example of								
	(1) Continental drift	(2) Continuous distribution								
	(3) Discontinuous distribution	(4) Both (1) & (3)								
19.	Evolution of diversified to similar species due to	common environmental change is called								
	(1) Divergent evolution	(2) Convergent evolution								
	(3) Parallel evolution	(4) Both (1) & (3)								
20.	Given below is a list of certain factors									
	Mutation, Isolation, Speciation, Gene Migra Putrefaction.	tion, Fossilization, Genetic drift, Natural Selection								
	How many of these are known to affect H.W.E.	orinciple?								
	(1) Two (2) Three	(3) Four (4) Five								
21.	In Miller. Urey experiment ratio of CH4, NH3 and	H ₂ was								
	(1) 1:2:3 (2) 2:1:3	(3) 1:3:2 (4) 2:1:2								

22.	Here are given some e similartiy with modern r	•	rania	I capacity of which of	of the	ese should have maximum			
	(1) Cro-Magnon Man	(2) Neanderthal man	(3)	Jara Man	(4)	Peking Man			
23.	(1) Fitness is based or(2) There must be a so(3) Branching descent	nents about biological eventhe characterstics, which matric basis for getting selection are to based on certain observable.	ch ar elect wo k	e inherited ed and to evolve. ey concepts of Darw	iniar				
24.	Which of the following it (1) Alouatta (Howler M	lonkey)	(2) Ateles (spider Monkey)						
	(3) Macaca (Rhesus M	• ,	(4)	Cebus (Capuchin M	ionk	ey)			
25.	Which of the following in (1) Anteater	is Australian marsupial? (2) Lemur	(3)	Spotted cuscus	(4)	Bobcat			
26.	Which of the follows ha	ve not left any evidence	of or	ganic evolution?					
	(1) Archaeopteryx	(2) Cow	(3)	Peripatus	(4)	Neopilina			
27.	The classical examples (1) Darwin's finches (3) Giant turtle	s of adaptive radiation in	development of new species is (2) Marsupials of Australia (4) All of these						
28.	Atavism in man means								
	(1) Appearance of new(3) Appearance of and		(2) Evolution of existing characters(4) Presence of tail in some reptiles						
29.		ion of adaptations to cha lired adaptations to envil resources	_	_					
30.	An evolutionary patter species is called	n characterized by a ra	pid ii	ncrease in the numl	oer a	and kind of closely related			
	(1) convergent evolution(3) adaptive radiation	on	. ,	divergent evolution parallel evolution					
31.	-	preserved in amber		aracters					
32.	Genetic drift in a new c (1) Natural selection	olony is known as the (2) Founder effect	(3)	Branching descent	(4)	Saltation			
33.	Cranial capacity was hi	ghest in (2) Neanderthal man	(3)	Java man	(4)	Peking man			

43.

(3)

(4)

37.

44.

(2)

(2)

38.

45.

(2)

(2)

39. (3)

40.

(3) **41.**

(1)

34.	Which one of to (1) Peking Ma		_	osest to t o-Magnor			an? Java Ape M	1an	(4)	African Ma	n	
35.	Evolution of m (1) Central Ar		eved to (2) Au		en place	in (3)	Asia		(4)	Africa		
36.	Primate closes (1) Lemur	st to huma		w World	Monkey	(3)	Gorilla		(4)	Tree Shrev	V	
37.	Which one of to (1) Peking Ma		_	the first t stralopith			and showe	ed biped		ovement? Cro-Magno	on Man	
38.	Direct ancestra (1) Neanderth			man wa o-Magnoi	•	•	Peking mar	1	(4)	Java man		
39.	Zoological nar		a man is (2) <i>H</i> o			(3)	Homo erec	tus	(4)	Australopit	hecus	
40.	Pre-historic ma		remonia (2) Jav	•	ed their (ones was- Neandertha		(4)	Cro-Magno	on man	
41.	Which amongs (1) Java Ape		_	nearest t stralopith			an? Neandertha	al man	(4)	Homo habi	ilis	
42.	Which is the m	•		estor of r s <i>tralopith</i>		(3)	Homo habil	lis	(4)	Homo nea	nderthal	lensis
43.	Which one is r (1) Opposable (2) Change of (3) Increased (4) Loss of tai	e thumb f diet from ability to d	hard nu	uts/roots	to soft fo	ood	munity beh	aviour				
44.	Which is corre (1) Neanderth (2) Homo ere (3) Cro-Magn (4) Australopi	nal man is <i>ctu</i> s is dire on Man w	ect ance as foun	estor of n d in Ethic	nan opia							
45.	Place of huma (1) Asia	n evolutio		stern Afri	ica	(3)	Sub-arctic I	Europe	(4)	Arabia		
	SPP A	nswe	ers									
1. 8. 15. 22. 29.	(4) 2. (4) 9. (2) 16. (1) 23. (1) 30.	(3) (4) (3) (2) (1)	3. 10. 17. 24. 31.	(1) (4) (1) (3) (4)	4. 11. 18. 25. 32.	(3) (1) (4) (3) (2)	5. 12. 19. 26. 33.	(4) (2) (2) (2) (1)	6. 13. 20. 27. 34.	(3) (1) (3) (4) (2)	7. 14. 21. 28. 35.	(1) (3) (4) (3) (4)

42. (1)