Self Practice Paper (SPP)

- 1. 1 mole of N_2 and 2 moles of H_2 are allowed to react in a 1 dm³ vessel. At equilibrium, 0.8 mole of NH_3 is formed. The concentration of H_2 in the vessel is :
 - (1) 0.6 mole (2) 0.8 mole (3) 0.2 mole (4) 0.4 mole For the following mechanism , P + Q $\frac{K_{A}}{K_{C}}$ PQ $\frac{K_{C}}{K_{C}}$ R at equilibrium $\frac{[R]}{[P] \quad [O]}$ is :

2. For the following mechanism , P + Q $\underset{K_{B}}{\overset{K}{\longrightarrow}}$ PQ $\underset{K_{D}}{\overset{K_{D}}{\longleftarrow}}$ R at equilibrium $\frac{[N]}{[P]}$ [k represents rate constant]

(1)
$$\frac{K_A \cdot K_B}{K_C \cdot K_D}$$
 (2) $\frac{K_A \cdot K_D}{K_B \cdot K_C}$ (3) $\frac{K_B \cdot K_D}{K_A \cdot K_C}$ (4) $\frac{K_A \cdot K_C}{K_B \cdot K_D}$

- **3.** Select the reaction for which the equilibrium constant is written as $[MX_3]^2 = K_{eq.}[MX_2]^2 [X_2]$
 - (1) $MX_3 \longrightarrow MX_2 + \frac{1}{2}X_2$ (2) $2MX_3 \longrightarrow 2MX_2 + X_2$ (3) $2MX_2 + X_2 \longrightarrow 2MX_3$ (4) $MX_2 + \frac{1}{2}X_2 \longrightarrow MX_3$.

4. What should be the value of K_c for the reaction $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$. If the amount are $SO_3 = 48g$, $SO_2 = 12.8$ and $O_2 = 9.6$ at equilibrium and the volume of the container is one litre ? (1) 64 (2) 0.30 (3) 42 (4) 8.5

5. If 0.5 mole H_2 is reacted with 0.5 mole I_2 in a ten-litre container at 444°C and at same temperature value of equilibrium constant K_c is 49, the ratio of [HI] and $[I_2]$ will be :

(1) 7 (2)
$$\frac{1}{7}$$
 (3) $\sqrt{\frac{1}{7}}$ (4) 49

6. 4.5 moles each of hydrogen and iodine heated in a sealed ten litre vessel. At equilibrium 3 moles of HI were found. The equilibrium constant for $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is :

- (1) 1 (2) 10 (3) 5 (4) 0.33
- 7. In a 20 litre vessel initially each have 1 1 mole CO, $H_2O \rightleftharpoons CO_2$ is present, then for the equilibrium of $CO + H_2O \rightleftharpoons CO_2 + H_2$ following is true :
 - (1) H_2 , more then 1 mole(2) CO, H_2O , H_2 less then 1 mole(3) $CO_2 \& H_2O$ both more than 1 mole(4) All of these

8. At 1000 K, the value of K_p for the reaction : A(g) + 2B(g) \rightleftharpoons 3C(g) + D(g) is 0.05 atmosphere. The value of K_c in terms of R would be : (1) 20000 R (2) 0.02 R (3) 5 × 10⁻⁵ R (4) 5 × 10⁻⁵ × R⁻¹

9. In which of the following reactions is K_p < K_c?

(1) CO(g) + Cl₂(g) ⇒ COCl₂ (g)
(2) CH₄(g) + H₂O(g) ⇒ CO(g) + 3H₂(g)
(3) 2BrCl(g) ⇒ Cl₂(g) + Br₂(g)
(4) l₂(g) ⇒ 2I(g)

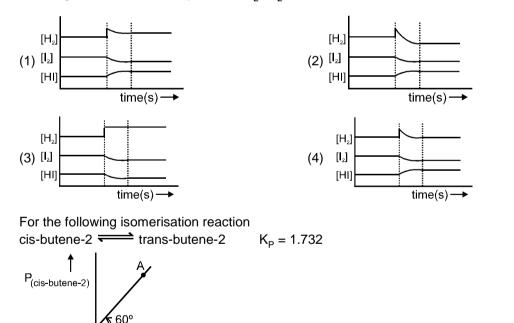
10. K for the synthesis of HI is 50. K for dissociation of HI is

- 10.
 K for the synthesis of HI is 50.
 K for dissociation of HI is

 (1) 50
 (2) 5
 (3) 0.2
 (4) 0.02
- **11.** The equilibrium constant of the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be

CHEMICAL EQUILIBRIUM

•				•				
	(1) 16	(2) 32	(3) 64	(4) 128				
12.	- 0	$DH + H_2O \implies CH_3CO$ ant may change when d	O ⁻ + H ₃ O ⁺ (2) CH ₃ COOH is added (4) Mixture is heated					
13.	acetic acid and alcoho (1) 1 mole of ethyl ace	l are heated in the prese	$H_5(I) + H_2O(I)$ In the above reaction, one mole of each of ince of little conc. H_2SO_4 . On equilibrium being attained (2) 2 mole of ethyl acetate are formed (4) 2/3 moles of ethyl acetate is formed					
14.	In the following reaction started only with A_8 , $2A_8(g) \rightleftharpoons 2A_3(g) + 3A_2(g) + A_4(g)$ mole fraction of A_2 is found to 0.36 at a total pressure of 100 atm at equilibrium. The mole fraction of $A_8(g)$ at equilibrium is : (1) 0.28 (2) 0.72 (3) 0.18 (4) None of these							
15.		sociation of 4 moles of 1 a 2NO \implies N ₂ + O ₂ is :	NO is take place. If its de	gree of dissociation is 10%. The				
	(1) $\frac{1}{(18)^2}$	(2) $\frac{1}{(8)^2}$	(3) $\frac{1}{16}$	(4) $\frac{1}{32}$				
16.	For the given reaction at constant pressure , n A (g) \implies A _n (g)							
	Initial moles	1 0						
	Moles at equilibrium	$1 - \alpha \qquad \alpha/n$ on between initial density	/ (d.) & final density (d.) o	f the system is				
	$(1) \left[\frac{n-1}{n} \right] \left[\frac{d_f - d_i}{d_f} \right]$		(2) $\frac{n}{n-1} \frac{\left[d_{f} - d_{i} \right]}{d_{f}} = \alpha$					
	$(3) \left[\frac{n-1}{n} \right] \left[\frac{d_i - d_f}{d_i} \right]$	=α	$(4) \ \frac{1}{(n-1)} \left[\frac{d_i - d_f}{d_i} \right] = \alpha$					
17.	On decomposition of NH ₄ HS, the following equilibrium is established : NH ₄ HS(s) \iff NH ₃ (g) + H ₂ S (g) If the total pressure is P atm, then the equilibrium constant K _P is equal to							
	(1) P atm	(2) P^2 atm ²	(3) $P^2 / 4 \text{ atm}^2$					
18.	At room temperature, the equilibrium constant for the reaction $P + Q \implies R + S$ was calculated to be 4.32. At 425°C the equilibrium constant became 1.24×10^{-2} . This indicates that the reaction (1) is exothermic (2) is endothermic (3) is difficult to predict (4) no relation between ΔH and K							
19.	Calculate ΔG° for conversion of oxygen to ozone 3/2 $O_2(g) \longrightarrow O_3(g)$ at 298 K, if K _p for this							
13.	conversion is 2.47 \times 1 (1) 163 kJ mol ⁻¹	0 ⁻²⁹	(3) 1.63 kJ mol ⁻¹					
				Page 49				


20. For the reaction, $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) = 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(\ell)$, $\Delta \text{H} = \text{positive}$. At equilibrium which factor will not effect the concentration of NH₂ is : (1) change in pressure (2) change in volume (3) catalyst (4) None of these 21. The effect of adding krypton (Kr) gas on position of equilibrium, keeping the volume of the system constant is (1) If $\Delta n = 0$, backward reaction is favoured. (2) If, $\Delta n = +ve$, forward reaction is favoured (3) If $\Delta n = -ve$, forward reaction is favoured (4) No effect watever be the value of Δn 22. Le-Chatelier's principle is applicable only to a (1) System in equilibrium (2) Irreversible reaction (3) Homogeneous reaction (4) Heterogeneous reaction 23. Two solid compounds X and Y dissociates at a certain temperature as follows $X(s) \equiv A(g) + 2B(g)$; $K_{o1} = 9 \times 10^{-3} atm^{3}$ Y(s) = 2B(g) + C(g); $K_{02} = 4.5 \times 10^{-3} \text{ atm}^{-3}$ The total pressure of gases over a mixture of X and Y is :

(1) 4.5 atm (2) 0.45 atm (3) 0.6 atm (4) None of these

24. The value of ΔG^{0} for the phosphorylation of glucose in glycolysis is 15 kJ/mole. Find the value of K_c at 300 K.

(1)
$$e^{6}$$
 (2) $10^{-\frac{6}{2.303}}$ (3) $\frac{1}{2^{-6}}$ (4) $10^{\frac{2.303}{6}}$

25. $H_2 \& I_2$ are inequilibrium with HI in a closed container if H_2 is added in the container than which of the following is correct at new equilibrium $H_2 + I_2 \rightleftharpoons 2HI$

 $P_{(trans-butene-2)}$ Which of the following statement is true at point 'A' ?
(1) Q > K_P
(2) Q < K_P
(3) Q = K = 1
(4)
In the reaction

(4) Q = K = 1.732

27. In the reaction

26.

 $PCl_{5}(g) = PCl_{3}(g) + Cl_{2}(g)$

a graph in plotted to show the variation of rate of forward and backward reactions against time. Which of the following is correct ?

	Rate forward									
		Time								
	Q > K									
	(1) 3	2 1								
	(2) 1	2 3								
	(3) 2 (4) 2									
	()									
28.	-									
	(1) introducing chlorine	gas at constant volume	(2) introducing an inert							
	(3) increasing the volume of the container (4) introducing PCI_5 at constant volume									
29.	-	Which of the following affects the value of equilibrium constant of a reaction ?								
	(1) Change in tempera		(2) Addtion of catalyst							
	(3) Change in concentr	(3) Change in concentration of the reactants (4) Change in pressure								
30.	If a reaction vessel at 400°C is charged with equimolar mixture of CO and steam such that $P_{CO} = P_{H_2O} =$									
		Time Q = K Q < K 2 1 2 3 3 1 1 3 $Cl_{s}(g) \longrightarrow PCl_{s}(g) + Cl_{2}(g)$ tion at constant temperature is favoured by trine gas at constant volume (2) introducing an inert gas at constant pressure olume of the container (4) introducing PCl _s at constant volume ng affects the value of equilibrium constant of a reaction ? erature (2) Addition of catalyst entration of the reactants (4) Change in pressure at 400°C is charged with equimolar mixture of CO and steam such that $P_{CO} = P_{t_{2}O} =$ hat partial pressure of H ₂ at equilibrium $O_2 + H_2 Kp = 9$ (2) 0.4 bar (3) 0.2 bar (4) 0.1 bar the A \longrightarrow B, the system will be known in equilibrium when anges to B ers to B ing is not a general characteristic of equilibria involving physical processes ? properties of the system remain constant. processes stop at equilibrium. torcesses stop at equilibrium. torcesses stop at equilibrium. torcesses occur at the same rate and there is dynamic but stable condition. the form the reaction : N ₂ (g) + O ₂ (g) \longrightarrow 2NO(g) at 2000 K is 4 × 10 ⁴ In presence uilibrium is established ten times faster at the same temperature. What is the value ant in presence of catalyst : - (2) 4 × 10 ⁻⁴ (3) 4 × 10 ⁴ (4) None of N ₂ O ₄ and 2 × 10 ⁻³ mol of NO ₂ are present in 2 litre solution. The equilibrium								
	$CO_{if} + H_2O \rightleftharpoons CO_2$									
	(1) 0.3 bar	(2) 0.4 bar	(3) 0.2 bar	(4) 0.1 bar						
31.	 In chemical reaction A B, the system will be known in equilibrium when (1) A completely changes to B (2) 50% of A changes to B (3) The rates of change of A to B and B to A on both the sides are same (4) Only 10% of A changes to B 									
32.	 Which of the following is not a general characteristic of equilibria involving physical processes ? (1) Equilibrium is possible only in a closed system at a given temperature. (2) All measurable properties of the system remain constant. (3) All the physical processes stop at equilibrium. (4) The opposing processes occur at the same rate and there is dynamic but stable condition. 									
33.	of a catalyst the equilit	prium is established ten in presence of catalyst :	times faster at the same -	temperature. What is the value						
34.	established, 0.2 mol o	decomposition of N_2O_4 to NO_2 is carried out at 280 K in chloroform. When equilibrium has been blished, 0.2 mol of N_2O_4 and 2 × 10 ⁻³ mol of NO_2 are present in 2 litre solution. The equilibrium tant for reaction $N_2O_4 \implies 2NO_2$ is								
35.				1 mole of 'C' are placed in a 2 L constant (K _c) for the reaction is (4) 0.66 lit/mol						

- **36.** The equilibrium constant of the reaction $SO_2(g) + \frac{1}{2} O_2(g) \longrightarrow SO_3(g)$ is 4×10^{-3} atm^{-1/2}. The equilibrium constant of the reaction $2SO_3(g) \longrightarrow 2SO_2(g) + O_2(g)$ would be : (1) 250 atm (2) 6.25×10^3 atm (3) 0.25×10^4 atm (4) 6.25×10^4 atm
- **37.** Find out InK_{eq} for the formation of NO₂ from NO and O₂ at 298 K

$$NO_{(g)} + \frac{1}{2}O_{2} \implies NO_{2}g$$
Given: $AG_{1}^{c} (NO_{2}) = 52.0 \text{ KJ/mole}$
 $\Delta G_{1}^{c} (NO) = 87.0 \text{ KJ/mole}$
 $\Delta G_{1}^{c} (NO) = 87.0 \text{ KJ/mole}$
 $\Delta G_{1}^{c} (O_{2}) = 0 \text{ KJ/mole}$
 $(1) \frac{35 \times 10^{3}}{8.314 \times 298}$ $(2) - \frac{35 \times 10^{3}}{8.314 \times 298}$ $(3) \frac{35 \times 10^{3}}{2.033 \times 8.314 \times 298}$ $(4) \frac{35 \times 10^{3}}{2.298}$
38. Which statement for equilibrium constant is true for the reaction A + B \rightleftharpoons C
 $(1) \text{ Not changes with temperature}$ $(2) \text{ Changes when catalyst is added}$
 $(3) \text{ Increases with temperature}$ $(4) \text{ Changes when catalyst is added}$
 $(3) \text{ Increases with temperature}$ $(4) \text{ Changes when catalyst is added}$
 $(3) \text{ Increases with temperature}$ $(4) \text{ Changes when catalyst is added}$
 $(3) \text{ Increases with temperature}$ $(4) \text{ Changes when catalyst is added}$
 $(3) \text{ Increases with temperature}$ $(4) \text{ Changes when catalyst is added}$
 $(3) \text{ Increases with temperature}$ $(4) \text{ Changes with temperature}^{7}$
 $(1) 53.3\%$ $(2) 106.6\%$ $(3) 26.7\%$ $(4) \text{ none}$
40. Pure ammonia is placed in a vessel at a temperature where its dissociation constant (α) is appreciable. At equilibrium :
 $(1) \text{ K}_{0} \text{ does not change significantly with pressure.}$
 $(3) \text{ concentration of hydrogen is less than that of nitrogen$
41. In a container equilibrium $N_{Q_{1}}(g) \implies 2NO_{2}(g)$
is attained at 25°°C. The total equilibrium pressure in container is 380 torr. If equilibrium constant of above equilibrium is 0.667 atm, then degree of dissociation of N_{2}O_{4} at the temperature will be :
 $(1) \frac{1}{3}$ $(2) \frac{1}{2}$ $(3) \frac{2}{3}$ $(4) \frac{1}{4}$
42. In which of the following system, doubling the volume of the container cause as hift to the right $(1) H_{2}(0) + C_{1}(0) \rightleftharpoons 2 2NC_{1}(0)$
 $(3) N_{0}(g) + 3H_{2}(g) \rightleftharpoons 2 NC_{2}(g) + 14.6 kcal the increase in temperature would (1) \Delta G^{\alpha} = -RT \ln 2$
44. For the equilibrium $N_{0}O_{2}(g) \Rightarrow N_{2}O_{2}(g) + 14.6 kcal the increase in temperature would (1) \Delta G^{\alpha} = -RT \ln 2$
45. Given the following reaction at equilibrium $N_{0}(2) (2) + N_{2}O$

	SP	ΡΑ	nsv	vers									
1. 8. 15. 22. 29. 36. 43.	(2) (4) (1) (1) (1) (4) (1)	2. 9. 16. 23. 30. 37. 44.	 (4) (1) (2) (2) (1) (1) (2) 	3. 10. 17. 24. 31. 38. 45.	(3) (4) (3) (2) (3) (4) (2)	4. 11. 18. 25. 32. 39.	 (2) (3) (1) (1) (3) (1) 	5. 12. 19. 26. 33. 40.	 (1) (4) (1) (4) (3) (1) 	6. 13. 20. 27. 34. 41.	 (1) (4) (3) (1) (3) (2) 	7. 14. 21. 28. 35. 42.	 (2) (1) (4) (1) (2) (4)
1.	SP t = 0 t = eq	N_{2} 1 mo 1-x x = 0 mole	+ 3H ₂ le 2 mc 2–3x	0.6		0.8							
2.	$ \frac{K_A}{K_B} = \frac{[PQ]}{[P] [Q]} \qquad \dots (i) $ $ \frac{K_C}{K_D} = \frac{[R]}{[PQ]} \qquad \dots (ii) $ On multiply equation (i) and (ii) we get $ \frac{K_A \cdot K_C}{K_B \cdot K_D} = \frac{[R]}{[P] [Q]} $												
4.	$K_{c} = \frac{1}{[SO_{3}]}$ $[SO_{2}]$ $[O_{2}] = \frac{1}{[O_{2}]}$	$[SO_3]^{2}$ $[SO_2]^{2}[CO_2]^{2}[CO_2]^{2}[CO_2]^{2}[CO_2]^{2}$ $= \frac{48}{80 \times 1}$ $= \frac{128}{64 \times 1}$ $= \frac{9.6}{32 \times 1}$	2 D ₂] ī ī	$= 2SO_3(g)$ $= \frac{9.6}{32} = 0$	Conc (Whe (Whe	ere 80 is ere 64 is	n in gram molecula molecula molecula	ar weigh ar weigh	t of SO ₃) t of SO ₂))			
5.	H ₂ (g) K _c =	+ l ₂ (g) = [HI] ² [H ₂][l ₂]	04) (, 2H	32)	= [I ₂]	2 ^{]²} = √49 =	7						

6. $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$ t = 0 4.5 4.5 0 t = teq. 4.5 - x 4.5 - x2x put x = 1.5 4.5 – 1.5 4.5 – 1.5 $2 \times 1.5 = 3$ \downarrow \downarrow \downarrow 3 3 3 $K_c = \frac{(3)^2}{3 \times 3} = 1$ $Co + H_2O \implies CO_2 + H_2$ 7. 1 1 t = 0 1 t = teg 1 - x 1 - x 1 + x xat equilibrium, only CO_2 has (1 + x) moles. 8. $K_{p} = K_{c} (RT)^{\Delta n}, \Delta n = 4 - 3 = 1$ $0.05 = K_c R \times 1000$ $K_{c} = 5 \times 10^{-5} \times R^{-1}$ $2 A_3 + 3 A_2 + A_4$ 14. $2A_{s}$ 0 t = 0 2 0 0 $t = t_{ea} - 2\alpha$ 2α 3α α $n_{\tau} = 2 + 4\alpha$ given mole fraction of A_2 is = 0.36. $0.36 = \frac{3\alpha}{2+4\alpha}$ $\alpha = 0.46$ Mole fraction of A₈ = $\frac{2-2\alpha}{2+4\alpha} = \frac{2-2 \times 0.46}{2+4 \times 0.46} = 0.28$ $2NO \implies N_2 + O_2 \qquad \alpha = 10\%$ 15. .2 .2 4 – .4 t = 0 0.2 0.2 3.6 $\Delta n = 0$, $\therefore K_{p} = K_{c}, \qquad K_{c} = \frac{(.2/V)^{2}}{(3.6/V)^{2}} = \frac{4}{36 \times 36}$ Total moles at equilibrium = $1 - \alpha + \alpha/n = 1 + \left| \frac{1}{n} - 1 \right| \alpha$ 16. So using $\frac{d_i}{d_i} = 1 + \left[\frac{1}{n} - 1\right]\alpha$. $P_{NH_3} = P_{H_2S} = \frac{P}{2}$ Hence $K_p = P_{NH_3} \times P_{H_2S} = \frac{P}{2} \times \frac{P}{2} = \frac{P^2}{4}$ 17.

- At room temperature, K = 4.32
 and at 425°C, equilibrium constant become 1.24 x 10⁻⁴ i.e. it is decreases with increase in temperature.
 So, it is exothermic reaction.
- **20.** Catalyst can't disturb the state of the equilibrium.
- **23.** Let x is partial pressure of A and y is partial pressure of C when both equilibrium simultaneously established in a vessel

24.
$$\Delta G^{\circ} = -RT \ln K_{eq}$$
 $\ln K_{eq} = -6$
 $15000 = -\frac{25}{3} \times 300 \ln K_{eq}$ $K_{eq} = e^{-6}$
 $\ln K_{eq} = -\frac{15000}{2500} = 6$

28. According to
$$K_{P} = \frac{P_{PCI_{3}}(g) \times P_{CI_{2}}(g)}{P_{PCI_{5}}(g)} = \frac{(n_{PCI_{3}}(g))_{eq.} \times (n_{CI_{2}}(g))_{eq.}}{V \times (n_{PCI_{5}}(g))_{eq.}}$$

and on adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.

30.
$$CO + H_2O \implies CO_2 + H_2$$

 $0.4 \quad 0.4$
 $0.4 - x \quad 0.4 - x \quad x \quad x$
 $\frac{x}{0.4 - x} = 3$
 $1.2 - 3x = x$
 $1.2 = 4x$
 $x = \frac{1.2}{4} = 0.3$
 $x = 0.3$

33. 4×10^4 , Since Equilibrium const. is temp. dependent only.

37. NO +
$$\frac{1}{2}O_2 \rightleftharpoons NO_2$$

 $\Delta G^{\circ}_{R \times H} = 52 - 87 = -35 \text{ kJ}$
 $\Delta G^{\circ} = -RTInK_{eq}$
 $\ln K_{eq} = \frac{35000}{8.314 \times 298}$.

39.
$$\alpha = \frac{D-d}{d} = \frac{46-30}{30} = 0.533 = 53.3\%$$

40. K_{P} depends only on temperature so α will change on changing pressure and $P_{H_2} > P_{N_2}$.

41.
$$K_{p} = 0.667 \text{ atm} = \frac{2}{3} \text{ atm} = \frac{4\alpha^{2}}{1-\alpha^{2}} \cdot P = \frac{4\alpha^{2}}{1-\alpha^{2}} \cdot \frac{1}{2}$$
so,
$$\frac{4\alpha^{2}}{1-\alpha^{2}} = \frac{4}{3} \qquad \Rightarrow \qquad 3\alpha^{2} = 1-\alpha^{2}$$
so,
$$\alpha^{2} = \frac{1}{4} \qquad \Rightarrow \qquad \alpha = \frac{1}{2}$$

43. (i) $\Delta G^0 = 0$

Justification : $\Delta G^{0} = -RT InK$ At the stage of half completion of reaction [A] = [B], Therefore, K = 1. Thus, $\Delta G^{0} = 0$