Exercise-1

Marked Questions are for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

SECTION - A # NUCLEIC ACIDS

1.	DNA differs from RNA									
	(1) In the nature of sug	gar alone	(2)	In the nature of puri	nes alone					
	(3) In the nature of sug	ar and pyrimidines	(4)	None of the above						
2.	ATP is									
	(1) Adenosine D-ribose	e three phosphate	(2)	(2) Adenosine L-ribose three phosphate						
	(3) Adenine D-ribose th	rree phosphate	(4)	(4) Adenine L-ribose three phosphate						
3.	Thymine is a									
-	(1) Enzyme	(2) Vitamin	(3)	Pyrimidine	(4) Purine					
4		()	` ,	•						
4.	RNA contains (1 Hexose sugar (2) Deoxyribose sugar		(3)	Doytroso sugar	(4) Ribose sugar					
	(1 Tiexose sugai	(2) Deoxymbose sugar	(3)	Dexirose sugar	(4) Nibose sugai					
5.	In DNA guanine pairs w									
	(1) Cytosine (2) Thymine		(3)	Uracil	(4) Adenine					
6.	DNA strands are antipa	rallel because of the pre-	send							
	(1) H-bonds	(2) Peptide bonds	(3)	Disulfide bonds	(4) Phosphate-diester bonds					
7.	The base pairs of DNA	are correctly shown as								
7.	•	-	(3)	$A = T$ and $C \equiv G$	(4) $A \equiv T$ and $C \equiv G$					
_	(1) $A \equiv T$ and $C = G$ (2) $A = T$ and $C = G$									
8.	Purines are		(0)	D. H. dan						
	(1) Single ring compou		(2) Double ring compounds							
	(3) Straight chain comp	bourius	(4)	None of the above						
9.	Which of the following i	s capable of self replicati	on?							
	(1) An enzyme			A carbohydrate mol	ecule					
	(3) A water molecule		(4)	A nucleic acid						
10.	A nucleoside differs from	m a nucleotide in not hav	/ing							
	(1) Phosphate		(2)	Sugar						
	(3) Phosphate and sug	jar	(4)							
		SECTION - B	# E	NZYMES						
1.	All enzymes contain -									
	(1) Sugars	(2) Proteins	(3)	Fats	(4) Vitamins					
2.	Enzyme are best define	ed as								
	(1) Catalysts	(2) Bio-catalysts	(3)	Inorganic-catalysts	(4) Metallo-catalysts					
3.	Biological catalysts are	called								

	(1) Auxins	(2) Gibberellins	(3)	Enzymes	(4)	All the above
4.	Enzymes are the polym	ers of				
	(1) 6- carbon	(2) Fatty acids	(3)	Amino acids	(4)	Inorganic phosphate
5.	Which one of the follow	ing enzyme is not compo	osed	of simple proteins?		
	(1) Amylase	(2) Pepsin	(3)	Urease	(4)	Ribozyme
6.	The enzyme used for al	Icohol formation by ferme	entat	tion is		
0.	(1) Invertase	(2) Lipase		Amylase	(4)	Zymase
-	, ,			-		
7.	•	of two different enzymes		•		10
	(1) Formation of the pro(3) The Km value	oduci	٠, ,	The pH of optimum Molecular size of th		
			(4)	Molecular Size of the	e ei	izyine
8.	Which one of the follow	· ·				
	(1) Insulin	(2) Riboflavin	(3)	Griseofulvin	(4)	Lipase
9.	An enzyme can be synt	hesised by chemically bo	ondi	ng together molecule	s of	
	(1) Carbohydrates	(2) Amino acids	(3)	Lipases	(4)	CO ₂
40 >=	A diaborable was suct	in	.	a a made in a a contrata a man		
10.🖎		in organic substance w	nicn	combines with apo	enz	yme to make a functional
	enzyme is	(2) Coonzymo	(2)	Droop zymo	(4)	Holoenzyme
	(1) Hormone	(2) Coenzyme	(3)	Proenzyme	(4)	Holoenzyme
11.	Enzyme complex is call	ed				
	(1) Holoenzyme	(2) Apoenzyme	(3)	Coenzyme	(4)	Prosthetic group
12.	When coenzyme is com	nbined with apoenzyme,	it is	called		
	(1) Cofactor	,		Holoenzyme		
	(3) Substrate enzyme of	complex	٠, ,	Vitamin A		
13.	Non-protein part of an e	enzyme is known as				
10.	(1) Holoenzyme	(2) Apoenzyme	(3)	Co-fector	(4)	All the above
4.4	•				` '	
14.		nbines with non-protein p			•	
	(1) Co-enzyme	(2) Holoenzyme	(3)	Apoenzyme	(4)	Prosthetic group
15.	Systematic approach of the	f naming enzymes has b	een	recommended by the	ne C	commission on Enzymes of
	(1) International Union	of Physiology	(2)	International Union	of B	iochemistry
	(3) International Union	of Biotechnology	(4)	International Union	of G	Senetic Engineering
16.	Basically how many typ	es of enzymes have bee	n re	cognised by Internat	iona	I Union of Biochemistry?
	(1) 4	(2) 5	(3)	•	(4)	•
17.		of nomenclature which on				
17.	(1) Oxidoreductase	(2) Transferase		Hydrolase		Ligase
	•	. ,	(3)	i iyululas e	(4)	Ligase
18.	Enzyme which hydrolys					
	(1) Lactase	(2) Protease	(3)	Maltase	(4)	Amylase
19.	Which one is not an exa	ample for hydrolases?				
	(1) Dehydrogenase	(2) Protease	(3	Amylase	(4)	Esterase

20.	In the cell digestive er (1) Lysosome	nzymes are mostly in (2) Cell wall	(3) Ribosome	(4) Chromosomes
21.	Enzyme concerned wi	ith transfer of electrons a	are (3) Transaminase	(4) Desmolase
22.	Esterase enzyme belo (1) Oxidoreductase	ongs to which of the follo	wing class (3) Hydrolases	(4) Transferases
23.	Which one belongs to (1) Amylase	hydrolase group? (2) Transaminase	(3) Citrate synthetase	(4) Enolase
24.	The strand turns at wh (1) 360°	nich angle in each step o	of ascent of DNA? (3) 36°	(4) None of these
		MISCELLANE	OUS QUESTIONS	
1.	Which sugar is preser (1) Pentose	nt in nucleic acid- (2) Hexose	(3) Fructose	(4) Glucose
2.	The two polynucleotid (1) Discontinuous	e chains in DNA are (2) Antiparallel	(3) Semiconservative	(4) Parallel
3.	The number of hydrog	gen bonds between ader (2) Three	nine and thymine in a DNA	A molecule is (4) Eight
4.	DNA multiplication is of (1) Translation	called (2) Replication	(3) Transduction	(4) Transcription
	Exercise-2	<u> </u>		
1.	The statement "All bio	logical catalysts are pro	teins" is no more valid bed	cause of the discovery of (FIBNO)
	(1) ribonuclease	(2) ribozymes	(3) lysozymes	(4) enzymes
2.	A unit composed of su	ugar and nitrogen base li (2) glycoside	nked by glycosidic bond i	s (2 nd NSO II L) (4) nucleotide
3.	(1) Zinc	combines with the acetyl	group, is formed in part f (2) Iron	
	(3) Vitamin A		(4) One of the vitamin	В
4.2	Water solubility of the (1) Deoxy-sugars (3) phosphate groups	DNA molecule is due to	(2) N-containing base(4) all of these	(4 nd NSEB)
5.#	The chemical structure	e shown in the figure is		(1st CBO)

- (1) a triphosphopeptide
- (2) a ribose sugar
- (3) deoxyadenosine triphosphate
- (4) the nitrogenous base, adenine

Exercise-3

9.

(1) 3.4 nm (2) 2 nm (3) 0.34 nm (4) 20 nm 2. One of the similarities between DNA and RNA is that both (1) are polymers of nucleotides (2) are capable of replicating (3) have similar sugars (4) have similar pyrimidine bases 3. ATP is a (AIPMT-20 (1) nucleotide (2) nucleosome (3) nucleoside (4) purine 4.^ Enzymes enhance the rate of reaction by (1) forming a reactant-product complex (2) changing the equilibrium point of the reaction (3) combining with the product as soon as it is formed (4) lowering the activation energy of the reaction 5. Feedback inhibition of an enzymatic reaction is caused by (1) end product (2) substrate (3) enzyme (4) rise in temperature (1) Metallo flavoprotein (2) Fe containing porphyrin pigment (3) Glycoprotein (4) Lipid 7. Hydrolytic enzymes which act at low pH are called as (AIPMT-20 (1) proteases (2) α-amylases							
	PART	- I NEET / AIPMT Q	te helix in a B-form DNA is approximately (2) 2 nm (3) 0.34 nm (4) 20 nm (4) 20 nm (5) etween DNA and RNA is that both (6) cleotides (2) are capable of replicating (3) (4) have similar pyrimidine bases (6) (2) nucleosome (7) nucleosome (8) (4) have similar pyrimidine bases (7) (AIPMT-2000) (8) (2) nucleosome (9) nucleosome (10) nucleosome (11) nucleosome (12) nucleosome (13) nucleoside (14) purine (6) (AIPMT-2000) (15) reaction by (16) product complex (17) brought of the reaction (18) product as soon as it is formed (19) product as soon as it is formed (19) substrate (19) substrate (19) substrate (19) Fe containing porphyrin pigment (19) Lipid (19) ich act at low pH are called as (19) peroxidases (19) peroxidases (20) base-sugar-OH (19) (AIPMT-2005)				
1.	•				(AIPMT-2000)		
	(1) 3.4 nm	(2) 2 nm	(3) 0.34 nm	(4) 20 nm			
2.	One of the similaritie	es between DNA and RN	A is that both		(AIPMT-2000)		
	(1) are polymers of	nucleotides	(2) are capable of	replicating			
	(3) have similar sug	ars	(4) have similar py	rimidine bases			
3.	ATP is a				(AIPMT-2000)		
	(1) nucleotide	(2) nucleosome	(3) nucleoside	(4) purine			
4.^	Enzymes enhance the rate of reaction by (1) forming a reactant-product complex (2) changing the equilibrium point of the reaction (3) combining with the product as soon as it is formed (4) lowering the activation energy of the reaction Feedback inhibition of an enzymatic reaction is caused by						
5.			is caused by		(AIPMT-2000)		
	(1) end product	(2) substrate	(3) enzyme	(4) rise in ter	mperature		
6.	Cytochrome is				(AIPMT-2001)		
	(1) Metallo flavopro	tein	(2) Fe containing p	orphyrin pigment			
	(3) Glycoprotein		(4) Lipid				
7.	Hydrolytic enzymes	which act at low pH are	called as		(AIPMT-2002)		
	(1) proteases		(2) α -amylases				
	(3) hydrolases		(4) peroxidases				
8.	Nucleotides are build (1) base-sugar-photos(3) (base-sugar-photos	sphate	(2) base-sugar-OH	ł	-		

Which of the following statements regarding enzyme inhibition is correct?

(AIPMT-2005)

10.

11.

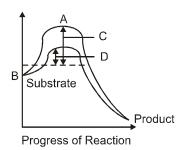
12.

13.

14.

15.

16.


17.

18.

						V					
(1) Competitive inhibiti protein	(1) Competitive inhibition is seen when a substrate competes with an enzyme for binding to an inhibitor protein										
(2) Competitive inhibition the enzyme	ion is seen when the su	bstra	ate and the inhibitor	con	npete for th	ne active site on					
(3) Non-competitive inl	(3) Non-competitive inhibition of an enzyme can be overcome by adding large amount of substrate(4) Non-competitive inhibitors often bind to the enzyme irreversibly										
Enzymes, vitamins and hormones can be classified into a single category of biological chemicals, because all of these (AIPMT-2005)											
(1) help in regulating metabolism(2) are exclusively synthesized in the body of a living organism(3) are conjugated proteins											
(4) enhance oxidative	metabolism										
The catalytic efficiency (1) formation of the pro (3) Km value	of two different enzymes oduct	(2)	be compared by the pH optimum value molecular size of th		nzyme	(AIPMT-2005)					
Telomerase is an enzyr	me which is a (2) RNA	(3)	simple protein	(4)	ribonucleo	(AIPMT-2005) protein					
An organic substance b	oound to an enzyme and	esse	ential for its activity is	s cal	led	(AIPMT-2006)					
(1) holoenzyme	(2) apoenzyme	(3)	isoenzyme	(4)	coenzyme						
·	a DNA molecule means th					(AIPMT-2006)					
(2) the phosphate grou(3) one strand turns clo					•)					
(4) one strands turns a	ıntı-clockwise										
One turn of the helix in (1) 0.34 nm	a B-form DNA is approxi (2) 3.4 nm		ely 2 nm	(4)	20 nm	(AIPMT-2006)					
The two polynucleotide	chains in DNA are					(AIPMT-2007)					
(1) parallel	(2) discontinuous	(3)	antiparallel	(4)	semicons	ervative					
·	of succinate in succinic d	-				(AIPMT-2008)					
(1) malonate	(2) oxaloacetate	(3)	α-ketoglutarate	(4)	malate						
In the DNA molecule (1) the total amount of	nuring nucleatides and n	\\/ri~	nidina nualaatidaa ia	not 1	alwaya aa	(AIPMT-2008)					
. ,	purine nucleotides and p ds which run parallel in th	•		iiUl d	aiways c qu	aı					

- (3) the proportion of adenine in relation to thymine varies with the organism
- (4) there are two strands which run antiparallel-one in 5' \rightarrow 3' direction and other in 3' \rightarrow 5'
- 19.# The figure given below shows the conversion of a substrate into product by an enzyme. In which one of the four option (1-4) the components of reaction labelled as A, B, C and D are identitied correctly.

(AIPMT Mains 2010)

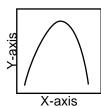
	Α	В	С	D
(1)	Activation energy with enzyme	Transition state	Activation energy without enzyme	Potential Energy
(2)	Potential energy	Transition state	Activation energy with enzyme	Activation energy with enzyme
(3)	Transition state	Potential energy	Activation energy without enzyme	Activation energy with enzyme
(4)	Potential enegy	Transition state	Activation energy with enzyme	Activation energy without enzyme

- 20. Three of the following statements about enzymes are correct and one is wrong, which one is wrong
 - (1) Most enzymes are proteins but some are lipids

(AIPMT Mains 2010)

- (2) Enzymes require optimum pH for maximal activity
- (3) Enzymes are denatured at high temperatures but in certain exceptional organisms they are effective even at temperatures 80°- 90°C
- (4) Enzymes are highly specific
- 21.# In curve of enzyme catalyzed reaction, the value of velocity of enzyme reaction at point A will be (AIPMT Mains 2010)

- (1) $\frac{1}{2}V_{\text{max}}$ and velocity may increase by increasing tempreture
- (2) $\frac{1}{2}V_{max}$ and velocity may increase by increasing substrate
- (3) $\frac{1}{2}V_{\text{max}}$ and velocity may increase by increasing by catalyst
- (4) $\frac{1}{2}V_{max}$ and velocity remain constant even changing any factor in to the medium.
- 22. Which one of the following enzymes carries out the initial step in the digestion of milk in humans?


(AIPMT Pre 2011)

- (1) Pepsin
- (2) Rennin
- (3) Lipase
- (4) Trypsin

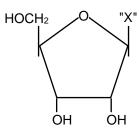
- 23. Which of the following is the best evidence for the 'Lock- and-key model' of enzyme action?
 - (1) all isolated enzymes have been identified as proteins

(AIPMT-2011)

- (2) compounds similar in structure to the substrate inhibit the reaction
- (3) enzymes are found in living organisms and speed up certain reactions
- (4) enzymes determine the direction of reaction
- 24.# The curve given below shows enzymatic activity with relation to three conditions pH, temperature and substrate concentration. (AIPMT Pre 2011)

What do the two axises (x and y) represent?

X – axis


(1) Enzymatic activity

PH

(2) Temperature enzyme activity
 (3) Substrate concentration, enzymatic activity
 (4 Enzymatic activity temperature

25.# Given below is the diagrammatic representation of one of the categories of small molecular weight organic compounds in the living tissues. Identify the category shown and the one blank component "X" in it.

[AIPMT Pre 2012]

	Category	Component
(1)	Cholesterol	Guanine
(2)	Amino acid	NH_2
(3)	Nucleotide	Adenine
(4)	Nucleoside	Uracil

26. Select the option which is not correct with respect to enzyme action:

(AIPMT 2014)

- (1) Substrate binds with enzyme at its active site.
- (2) Addition of lot of succinate does not reverse the inhibition of succinic dehydrogenase by malonate
- (3) A non- competitive inhibitor binds the enzyme at a site distinct from that which binds the substrate
- (4) Malonate is a competitive inhibitor of succinic dehydrogenase
- 27. DNA is **not** present in

(AIPMT-2015)

- (1) Ribosomes
- (2) Nucleus
- (3) Mitochondria
- (4) Chloroplast

28. Which one of the following statements is incorrect?

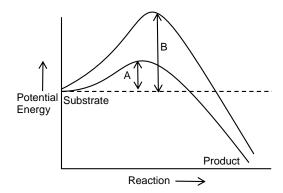
(AIPMT 2015)

(1) In competitive inhibition, the inhibitor molecule is not chemically changed by the enzyme.

- (2) The competitive inhibitor does not affect the rate of breakdown of the enzyme-substrate complex.
- (3) The presence of the competitive inhibitor decreases the Km of the enzyme for the substrate.
- (4) A competitive inhibitor reacts reversibly with /the enzyme to form an enzyme-inhibitor complex.
- 29. In sea urchin DNA, which is double stranded, 17% of the bases were shown to be cytosine. The percentages of the other three bases expected to be present in this DNA are: (AIPMT 2015)
 - (1) G 17%, A 16.5%, T32.5%
 - (2) G 17%, A 33%, T 33%
 - (3) G8.5%, A50%, T24.5%
 - (4) G 34%, A 24.5%, T 24.5%
- **30.** Which one of the following is not applicable to RNA?

(AIPMT 2015)

- (1) 5' phosphoryl and 3' hydroxyl ends
- (2) Heterocyclic nitrogenous bases


(3) Chargaff's rule

- (4) Complementary base pairing
- **31.** Which of the following biomolecules does have phosphodiester bond?

(AIPMT 2015)

- (1) Monosaccharides in a polysaccharide
- (2) Amino acids in a polypeptide
- (3) Nucleotides in a Nucleic acid
- (4) Fatty acids in a diglyceride
- **32.** Which of the following describes the given graph correctly?

(NEET-2-2016)

- (1) Exothermic reaction with energy A in absence of enzyme and B in presence of enzyme
- (2) Endothermic reaction with energy A in presence of enzyme and B in absence of enzyme
- (3) Exothermic reaction with energy A in presence of enzyme and B in absence of enzyme
- (4) Endothermic reaction with energy A in absence of enzyme and B in presence of enzyme.
- **33.** Which one of the following statements is correct with reference to enzymes?

(NEET-2017)

- (1) Apoenzyme = Holoenzyme + Coenzyme
- (2) Holoenzyme = Apoenzyme + Coenzyme
- (3) Coenzyme = Apoenzyme + Holoenzyme
- (4) Holoenzyme = Coenzyme + Co-factor
- **34.** Which of the following are not polymeric?

(NEET-2017)

- (1) nucleic acids
- (2) proteins
- (3) polysaccharides (4) Lipids
- **35.** Consider the following statements:

(NEET-1-2019)

- (A) Coenzyme or metal ion that is tightly bound to enzyme protein is called prosthetic group,
- (B) A complete catalytic active cnzyme with its bound prosthetic group is called apoenzyme. Select the correct option.
- (1) (A) is false but (B) is true

(2) Both (A) and (B) are true

(3) (A) is true but (B) is false

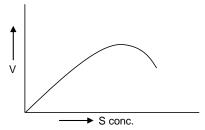
- (4) Both (A) and (B) are false
- 36. Purines found both in DNA and RNA are

(NEET-1-2019)

(1) Cytosine and thymine

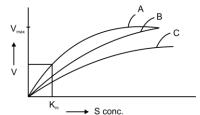
(2) Adenine and thymine

(3) Adenine and guanine


- (4) Guanine and cytosine
- **37.** Prosthetic groups differ from co-enzymes in that,

(NEET-2-2019)

- (1) they require metal ions for their activity.
- (2) they (prosthetic groups) are tightly bound to apoenzymes.
- (3) their association with apoenzymes is transient.
- (4) they can serve as co-factors in a number of enzyme-catalyzed reactions.


PART - II AIIMS QUESTION (PREVIOUS YEARS)

1. The given graph shows the effect of substrate concentration on the rate of reaction of the enzyme green-gram-phosphatase (AIIMS-2005)

What does the graph indicate?

- (1) The rate of enzyme reaction is directly proportional to the substrate concentration
- (2) Presence of an enzyme inhibitor in the reaction mixture
- (3) Formation of an enzyme-substrate complex
- (4) at higher substrate concentration the pH increases
- 2. The figure given below shows three velocity substrate concentration curves for an enzyme reaction, What do the curves a, b, and c depict respectively? (AIIMS-2006)

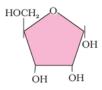
- (1) a-normal enzyme reaction, b-competitive inhibition, c-non-competitive inhibition,
- (2) a-enzyme with an allosteric modulator added, b-normal enzyme activity, c-competitive inhibition
- (3) a-enzyme with an allosteric stimulator, b-competitive inhibitior added, c-normal enzyme reaction
- (4) a-normal enzyme reaction, b-non-competitive inhibitor added, c-allosteric inhibitor added

3. An example of competitive inhibition of an enzyme is the inhibition of

(AIIMS-2007)

- (1) succinic dehydrogenase by malonic acid
- (2) cytochrome oxidase by cyanide
- (3) hexokinase by glucose-6-phosphate
- (4) carbonic anhydrase by carbon dioxide.
- Enzymes, vitamins and hormones can be classified into a single category of biological chemicals because of all of these

 (AIIMS-2008)
 - (1) enhance oxidative metabolism
 - (2) are conjugated proteins
 - (3) are exclusively synthesised in the body of a living organism as at present
 - (4) help in regulating metabolism.
- 5. If T = 40%, C = 10% then G = ? in a pollen cell


(AIIMS-2011)

- (1) 40%
- (2) 10%
- (3) 91%
- (4) 20%
- Select the option having correct matching of structure and sequence of the molecules given below –
 (AIIMS-III-2018)

В

C

D

- Α
- (1) A Uracil, B Glucose, C Ribose, D Adenine
- (2) A Adenine, B Glucose, C Uracil, D Ribose
- (3) A Uracil, B Ribose, C Glucose, D Adenine
- (4) A Adenine, B Uracil, C Ribose, D Glucose

	An	swe	rs										
						EXER	CISE -	· 1					
						SEC	ΓΙΟΝ - A	1					
1.	(3)	2.	(3)	3.	(3)	4.	(4)	5.	(1)	6.	(1)	7.	(3)
8.	(2)	9.	(4)	10.	(1)								
						SEC	ΓΙΟΝ - E	3					
1.	(2)	2.	(2)	3.	(3)	4.	(3)	5.	(4)	6.	(4)	7.	(3)
8.	(4)	9.	(2)	10.	(2)	11.	(1)	12.	(2)	13.	(3)	14.	(3)
15.	(2)	16.	(3)	17.	(1)	18.	(4)	19.	(1)	20.	(1)	21.	(2)
22.	(3)	23.	(1)	24.	(3)								
					Misc	ellaned	วนร Qเ	estion	S				
1.	(1)	2.	(2)	3.	(1)	4.	(2)						
						EXER	CISE -	- 2					
1.	(2)	2.	(3)	3.	(4)	4.	(3)	5.	(3)				
							CISE -	· 3					
						PA	ART- I						
1.	(1)	2.	(1)	3.	(1)	4.	(4)	5.	(1)	6.	(2)	7.	(3)
8.	(1)	9.	(2)	10.	(1)	11.	(3)	12.	(4)	13.	(4)	14.	(2)
15.	(2)	16.	(3)	17.	(1)	18.	(4)	19.	(3)	20.	(1)	21.	(2)
22.	(2)	23.	(2)	24.	(2)	25.	(4)	26.	(2)	27.	(1)	28.	(3)
29.	(2)	30.	(3)	31.	(3)	32.	(3)	33.	(2)	34.	(4)	35.	(4)
36.	(3)	37.	(2)										
						PA	RT- II						
1.	(4)	2.	(1)	3.	(1)	4.	(4)	5.	(2)	6.	(1)		

Self Practice Paper (SPP)

1.	Which of the following (1) Protein	(2) Lipid	(3) Carbohydrate	(4) Water							
2.	Honey contains the hy		. ,	()							
۷.	(1) Lactose	(2) Maltose	(3) Insulin	(4) Cellulose							
3.	Which is odd, among	. ,	. ,	. ,							
J.	(1) Chitin-Carbohydra	_	(2) Pectin-protein								
	(3) Steroid-lipid		(4) Wax-lipid								
4	In human baing, galag	otogo io most ossilv sv	voilabla								
4.	In human being, galact (1) By the conversion	•	(2) By the conversio	n of fructose							
	(3) By the hydrolysis	•	(4) By the hydrolysis								
_	Which of the following is not a mucopolysaccharide-										
5.	-	is not a mucopolysac		hata							
	(1) Heparin		(2) Chondroitin sulp	nate							
	(3) Hyaluronic acid		(4) Inulin								
6.	<u> </u>	cose level of an adult i	in the post absorptive state is-								
	(1) 40-60 mg/100 ml		(2) 80-100 mg/100 r								
	(3) 120-130 mg/100 r	nl	(4) 160-180 mg/100	ml							
7.	Which one is not a pro	otein?									
	(1) Cytochrome	(2) Myoglobin	(3) Fibrinogen	(4) urea							
8.	Histones are-										
	(1) Nucleic acids		(2) Nitrogen bases of	of DNA							
	(3) Proteins of eukary	/otes	(4) Proteins of proka	aryotes							
9.	Carbohydrate metabo	lism is controlled by									
	(1) Paratharmone	(2) Insulin	(3) Glucose	(4) Vitamin B ₁₂							
40	,	ataatian anainat diaaa	, ,	, ,							
10.		_	ses in our body is carried t								
	(1) Vitamins	(2) Hormones	(3) Proteins	(4) Lipids							
11.	The process of protein	າ synthesis is also call	ed-								
	(1) Translation		(2) Tranduction								
	(3) Translation & tran	duction	(4) Transcription - T	ranslation							
12.	Amino acids have net	charge zero at-									
	(1) Every pH	(2) No pH	(3) A specific pH	(4) None of these							
13.	In many proteins, the	hydrogen bonding pro	duces a regular coiled arra	angment called-							
13.		(2) β-helix	(3) both								

	(1) Polysaccharide, glu(3) Sulphate	ucose	(2) Glucose, protein(4) All of the above					
15.	(1) hydrogen, carboxyl	e of groups present on all, amino and R-group c, carboxyl and R-group	(2)	ir valency of $lpha$ -carbo hydrogen, alcoholic None of the above				
16.	The unwanted amino a converted into- (1) Ammonia	acid abstracted from the (2) Urea		ues are either used Ammonium salts	·	by the tissue or in the liver		
17.	The similarity between (1) Double stranded (*3) Polymers of nucleo	DNA and RNA is that bo	(2)	re Having similar suga Having similar pyrir		nes		
18.	Which of the cell organ (1) Mitochondria and n (3) Nucleus and chloro		(2)	onucleic acid Chloroplast and mit Lysosome and dicty				
19.	During anaerobic diges left undergraded (1) Hemicellulose	stion of organic waste, su		as in producing bioga Cellulose		hich one of the following is		
20.	RNA is absent in (1) Plasmalemma	(2) Cytoplasm	(3)	Chromosomes	(4)	Ribosomes		
21.	Which of the following i (1) Alanine	s the simplest amino acid (2) Asparagine		Glycine	(4)	Tyrosine		
22.	(3) combining with the	•	orm	ed				
23.	Antibodies in our body (1) Steroids	are complex (2) prostaglandins	(3)	Glycoproteins	(4)	Lipoproteins		
24.	Which is odd, among the (1) Adenosine (2) Thymidine (3) Guanine (4) Cytidine	ne following? - Adenylic acid - Thymidylic acid - Guanylic acid - Cytidylic acid						

25.	Select the option which is not correct with respect to enzyme action: (1) Substrate binds with enzyme at its active site. (2) Addition of lot of succinate does not reverse the inhibition of succinic dehydrogenase by malonate (3) A non- competitive inhibitor binds the enzyme at a site distinct from that which binds the substrate (4) Malonate is a competitive inhibitor of succinic dehydrogenase									
26.	Enzyme inhibitor which (1) Allosteric inhibitor (3) Non competitive in		cture of substrate, that is: (2) Competitive inhibitor (4) All of the above							
27.	At the time of cotton so (1) Diastase	eeds germination, the store (2) Maltase	ored food is diges (3) Lipase	sted by (4) Amylase						
28.	(2) there are two strar(3) the proportion of a	nds which run parallel in denine in relation to thy	the 5' \rightarrow 3' direction with the 5' \rightarrow 3' direction with the same shadow and the same shadow are shadow as a second shadow as a second shadow as a second shadow are shadow as a second shadow as a secon							
29.	Substrate of amylase (1) Protein	enzyme is (2) Fat	(3) Starch	(4) Sucrose						
30.	Most enzymes consist (1) Enzyme and subst (3) Apoenzyme and e		re (2) Enzyme and coenzyme (4) Apoenzyme and prosthetic group							
31.	Enzyme which catalyz (1) Dehydrogenase	e transfer of group, othe (2) Lyases	er than hydrogen. (3) Transferas	se (4) Isomerase						
32.	released, respectively (1) Catabolic pathway	known as and anabolic pathway and catabolic pathway	onsumed and de	egradative pathway in which ene	rgy is					
33.	Which one of the follow (1) Maltose (3) Lactose	ving is a non-reducing c	arbohydrate? (2) Sucrose (4) Ribose 5-p	phosphate						
34.	Enzymes catalysing th (1) Lyases	e linking together of two (2) Isomerase	compounds, the							
35.	The enzyme responsib	ole for atmospheric nitrog	gen fixation is (3) Oxygenas	e (4) Carboxylase						

36.		•			ss of ev xygen ai	•	ig organ	nism is (compose	ed of jus	st six ele	ements	including
	. , .	hosphor		•			(2) sulphur and magnesium						
	(3) n	nagnesiu	ım and s	sodium			(4) c	alcium a	and phos	phorus			
37.	Enzy oxyge		ich catal	lyse join	ing of ca	arbon-o	kygen, c	arbon-s	ulphar, c	carbon-ni	itrogen	and pho	sphorus-
	(1) L	igases		(2) L	yases		(3) Is	someras	e	(4) H	lydrolase	es	
38.	The p	orotein p	art of en	zyme is	known a	as							
	(1) H	łoloenzy	me	(2) A	Apoenzyr	me	(3) Is	soenzym	ne	(4) A	II of the	above	
39.	DNA	nucleoti	otides of two strands are attached b										
	(1) H	Hydroger	bonds				(2) V	an der \	Naals bo	ond			
	(3) C	Covalent	bond				(4) E	ectrova	lent bon	d			
40.	DNA	contains	nitroge	n bases									
	(1) A	GTC		(2) A	AGCU		(3) C	CTAU		(4) G	AUT		
41.	Enzymes that catalyze the linking together of t						wo com	ponents	are				
				someras		(3) Lyases (4) Trans				ransfera	ases		
42.	Which of the following molecules moves regula				arly from	n the nuc	cleus to t	he cyton	lasm?				
		(1) Glycogen (2) RNA				(3) E				holester	ol		
43.	Which of the following statements is NOT CO						RRECT?	•					
			_		zymes aı								
	(2) C	Competit	ive inhib	ition of e	enzyme i	s irrever	sible						
	(3) E	nzymes	have or	ne or mo	re active	sites to	interact	with the	e substra	te			
	(4) F	roenzyn	nes have	e to be a	ctivated	by prote	eolytic er	nzyme					
44.	The I	oss of th	e secon	dary, tei	rtiary and	d quater	nary stru	cture of	an enzy	me bring	gs about		
	(1) lo	ss of its	catalytic	activity			(2) T	hermos	tability				
	(3) Ir	ncrease	in water	solubilit	У		(4) L	oss in li _l	pid solub	oility			
45 .	Form	ation of	m-RNA	from DN	IA is call	ed							
	(1) T	ransduc	tion	(2) T	ransforn	nation	(3) T	ranslatio	on	(4) T	ranscrip	tion	
	SF	PA	nsw	ers/									
1.	(4)	2.	(2)	3.	(2)	4.	(4)	5.	(4)	6.	(3)	7.	(4)
8.	(3)	9.	(2)	10.	(3)	11.	(1)	12.	(3)	13.	(1)	14.	(3)
15.	(1)	16.	(2)	17.	(3)	18.	(4)	19.	(4)	20. 27	(1)	21.	(3)
22. 29.	(4) (3)	23. 30.	(3) (4)	24. 31.	(3) (3)	25. 32.	(2) (2)	26. 33.	(2) (2)	27. 34.	(4) (4)	28. 35.	(4) (1)
2 5 . 36.	(4)	30. 37.	(1)	38.	(2)	32. 39.	(2) (1)	33. 40.	(2) (1)	34. 41.	(1)	42.	(2)
42	(2)	44	(1)	45	(4)	50.	(')	.0.	(')	•••	(')		(-)