Self Practice Paper (SPP) | | The equation of state of some gases can be expressed as $\left(p + \frac{a}{V^2}\right)$ (V-b) = RT Here P is the pressu | | | | |-----|---|---|--|--| | 1. | The equation of state of V is the volume, T is the (1) ML ⁵ T ⁻² | of some gases can be expended a solute temperature and (2) ML ⁻¹ T ⁻² | pressed as \ V \ (V-
and a,b,R are constants.
(3) M ⁰ L ³ T ⁰ | b) = RT Here P is the pressure,
The dimensions of 'a' are
(4) M ⁰ L ⁶ T ⁰ | | 2. | If V denotes the potential difference across the plates of a capacitor of capacitance C, the dimensions | | | | | | CV ² are (1) Not expressible in N (3) M ² LT ⁻¹ | ЛLT | (2) MLT ⁻²
(4) ML ² T ⁻² | | | 3. | In the relation ; $\frac{\alpha}{\beta}e^{-\frac{\alpha Z}{k\theta}}$ P = $\frac{\alpha}{\beta}$ P is pressure, Z is dist | ance, k is Boltzman cons | stant and θ is the tempe | rature. The dimensions of β will | | | be:
(1) [M ₀ L ₂ T ₀] | (2) [ML ₂ T] | (3) [ML ₀ T ₋₁] | (4) [M ₀ L ₂ T ₋₁] | | 4. | The equation $p + \frac{a}{V^2}$ (1) Dyne $\times cm_5$ | (V - b) consent. The un
(2) Dyne ×cm₄ | nits of a are :
(3) Dyne/cm₃ | (4) Dyne/cm₂ | | 5. | | to gravity is 10ms ⁻² and to
numerical value of the acc
(2)72,000 | | ne are changed in kilometer and (4)129600 | | 6. | If the dimensions of le
constant, speed of light | | 6 ^x C ^y h ^z ; where G,c and lespectively, then | n are the universal gravitational | | 7. | of the same dimension
covers the upper face
is applied perpendicular | ns and of low modulus
of B. The lower face of I | of rigidity η such that the sis rigidly held on a hores of A. After the force | ly onto another cubical block B ne lower face of A completely izontal surface. A small force F is withdrawn block A executes $\sqrt{\frac{M}{\eta L}}$ | | 8. | The velocity v of a pardimensions of a, b and (1) LT ₋₂ , L and T | | by $v = at + \frac{c}{t+c}$, where (3) LT ₂ , LT and L | a, b and c are constants. The $(4) L, LT$ and L_2 | | 9. | | 3 ± 0.003 g, radius 0.5 measurement of its dens (2) 2 | _ | h 6 + 0.06 cm. The maximum (4) 4 | | 10. | The SI unit of universal (1) Watt K ⁻¹ mol ⁻¹ | gas constant (R) is
(2) Newton K ⁻¹ mol ⁻¹ | (3) Joule K ⁻¹ mol ⁻¹ | (4) Erg K ⁻¹ mo <i>l</i> ⁻¹ | | | | | | | ## SPP Answers - (1) 2. (4) 1. (4)3. 4. (2) 5. (1) - 6. (4) 7. (4)8. (1) 9. (4)10. (3) ## **SPP Solutions** - 1. Fact - 2. Fact 3. $$\begin{bmatrix} \frac{\alpha Z}{k\theta} \end{bmatrix}_{= [M_0 L_0 T_0]} \Rightarrow [\alpha] = \begin{bmatrix} \frac{k\theta}{Z} \end{bmatrix}$$ Further, $[P] = \begin{bmatrix} \frac{\alpha}{\beta} \end{bmatrix} \Rightarrow [\beta] = \begin{bmatrix} \frac{\alpha}{Z} \end{bmatrix} = \begin{bmatrix} \frac{k\theta}{Z} \end{bmatrix}$ Dimensions of kθ are that of energy. Hence, $$[\beta] = \begin{bmatrix} \frac{\mathsf{ML}^2\mathsf{T}^{-2}}{\mathsf{LML}^{-1}\mathsf{T}^{-2}} \end{bmatrix} = [\mathsf{M}_0\mathsf{L}_2\mathsf{T}_0]$$ Therefore, the correct option is (A). 5. $$n_2 = n_1 \frac{\left[\frac{L_1}{L2}\right]^{-1} \left[\frac{L_1}{L2}\right]^{-2}}{10} = 10 \frac{\left[\frac{meter}{km}\right]^{-1} \left[\frac{sec}{hr}\right]^{-2}}{10} = 129600$$ $$n_2 = 10 \frac{\left[\frac{m}{10^3 m}\right]^{-1} \left[\frac{sec}{3600 sec}\right]^{-2}}{10} = 129600$$ Length ∝ G^xc^yh^z 6. $L = [M^{-1}L^3 T^{-2}]^x [LT^{-1}]^y [ML^2T^{-1}]^z$ By comparing the power of M.L and T in both sides we get-x+z=0, 3x + y+2z=1 and -2x-y-z=0By solving above three equations we get $$x = \frac{1}{2}, y = -\frac{3}{2}, z = \frac{1}{2}$$ By substituting the dimensions of mass [M], length [L] and coefficient of rigidity [ML-1T-2] we get 7. $T=2\pi^{-\sqrt{\eta}L}$ is the right formula for time period of oscillations $$V = at + \frac{b}{t + c}$$ dim of t = dim of c $$[C] = [T]$$ 8. dim of at = dim of v $$a = [LT_{-2}]$$ $$dim f V = dim of \frac{b}{t}$$ $$b = \pm T_{-1} \times T = [L]$$ \therefore Percentage error = ρ ×100 = 0.04 ×100 = 4 % **10.** Fact