Self Practice Paper (SPP)

	The equation of state of some gases can be expressed as $\left(p + \frac{a}{V^2}\right)$ (V-b) = RT Here P is the pressu			
1.	The equation of state of V is the volume, T is the (1) ML ⁵ T ⁻²	of some gases can be expended a solute temperature and (2) ML ⁻¹ T ⁻²	pressed as \ V \ (V- and a,b,R are constants. (3) M ⁰ L ³ T ⁰	b) = RT Here P is the pressure, The dimensions of 'a' are (4) M ⁰ L ⁶ T ⁰
2.	If V denotes the potential difference across the plates of a capacitor of capacitance C, the dimensions			
	CV ² are (1) Not expressible in N (3) M ² LT ⁻¹	ЛLT	(2) MLT ⁻² (4) ML ² T ⁻²	
3.	In the relation ; $\frac{\alpha}{\beta}e^{-\frac{\alpha Z}{k\theta}}$ P = $\frac{\alpha}{\beta}$ P is pressure, Z is dist	ance, k is Boltzman cons	stant and θ is the tempe	rature. The dimensions of β will
	be: (1) [M ₀ L ₂ T ₀]	(2) [ML ₂ T]	(3) [ML ₀ T ₋₁]	(4) [M ₀ L ₂ T ₋₁]
4.	The equation $p + \frac{a}{V^2}$ (1) Dyne $\times cm_5$	(V - b) consent. The un (2) Dyne ×cm₄	nits of a are : (3) Dyne/cm₃	(4) Dyne/cm₂
5.		to gravity is 10ms ⁻² and to numerical value of the acc (2)72,000		ne are changed in kilometer and (4)129600
6.	If the dimensions of le constant, speed of light		6 ^x C ^y h ^z ; where G,c and lespectively, then	n are the universal gravitational
7.	of the same dimension covers the upper face is applied perpendicular	ns and of low modulus of B. The lower face of I	of rigidity η such that the sis rigidly held on a hores of A. After the force	ly onto another cubical block B ne lower face of A completely izontal surface. A small force F is withdrawn block A executes $\sqrt{\frac{M}{\eta L}}$
8.	The velocity v of a pardimensions of a, b and (1) LT ₋₂ , L and T		by $v = at + \frac{c}{t+c}$, where (3) LT ₂ , LT and L	a, b and c are constants. The $(4) L, LT$ and L_2
9.		3 ± 0.003 g, radius 0.5 measurement of its dens (2) 2	_	h 6 + 0.06 cm. The maximum (4) 4
10.	The SI unit of universal (1) Watt K ⁻¹ mol ⁻¹	gas constant (R) is (2) Newton K ⁻¹ mol ⁻¹	(3) Joule K ⁻¹ mol ⁻¹	(4) Erg K ⁻¹ mo <i>l</i> ⁻¹

SPP Answers

- (1) 2. (4) 1. (4)3. 4. (2) 5. (1)
- 6. (4) 7. (4)8. (1) 9. (4)10. (3)

SPP Solutions

- 1. Fact
- 2. Fact

3.
$$\begin{bmatrix} \frac{\alpha Z}{k\theta} \end{bmatrix}_{= [M_0 L_0 T_0]} \Rightarrow [\alpha] = \begin{bmatrix} \frac{k\theta}{Z} \end{bmatrix}$$
Further, $[P] = \begin{bmatrix} \frac{\alpha}{\beta} \end{bmatrix} \Rightarrow [\beta] = \begin{bmatrix} \frac{\alpha}{Z} \end{bmatrix} = \begin{bmatrix} \frac{k\theta}{Z} \end{bmatrix}$

Dimensions of kθ are that of energy. Hence,

$$[\beta] = \begin{bmatrix} \frac{\mathsf{ML}^2\mathsf{T}^{-2}}{\mathsf{LML}^{-1}\mathsf{T}^{-2}} \end{bmatrix} = [\mathsf{M}_0\mathsf{L}_2\mathsf{T}_0]$$

Therefore, the correct option is (A).

5.
$$n_2 = n_1 \frac{\left[\frac{L_1}{L2}\right]^{-1} \left[\frac{L_1}{L2}\right]^{-2}}{10} = 10 \frac{\left[\frac{meter}{km}\right]^{-1} \left[\frac{sec}{hr}\right]^{-2}}{10} = 129600$$

$$n_2 = 10 \frac{\left[\frac{m}{10^3 m}\right]^{-1} \left[\frac{sec}{3600 sec}\right]^{-2}}{10} = 129600$$

Length ∝ G^xc^yh^z 6.

 $L = [M^{-1}L^3 T^{-2}]^x [LT^{-1}]^y [ML^2T^{-1}]^z$

By comparing the power of M.L and T in both sides we get-x+z=0, 3x + y+2z=1 and -2x-y-z=0By solving above three equations we get

$$x = \frac{1}{2}, y = -\frac{3}{2}, z = \frac{1}{2}$$

By substituting the dimensions of mass [M], length [L] and coefficient of rigidity [ML-1T-2] we get 7.

 $T=2\pi^{-\sqrt{\eta}L}$ is the right formula for time period of oscillations

$$V = at + \frac{b}{t + c}$$

dim of t = dim of c

$$[C] = [T]$$

8.

dim of at = dim of v

$$a = [LT_{-2}]$$

$$dim f V = dim of \frac{b}{t}$$
$$b = \pm T_{-1} \times T = [L]$$

 \therefore Percentage error = ρ ×100 = 0.04 ×100 = 4 %

10. Fact