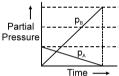
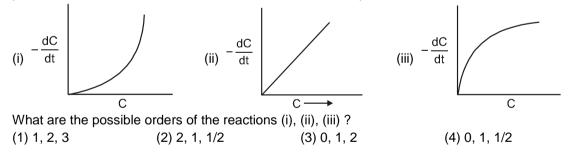
Self Practice Paper (SPP)

1.	In the formation of sulphur trioxide by the contact process $2SO_2(g) + O_2(g) 2SO_3(g)$ The rate of reaction							
	is expressed as $-\frac{d(O_2)}{dt} = 2.5 \times 10^{-4}$ mol L ⁻¹ sec ⁻¹ . The rate of disappearance of (SO ₂) will be –							
	(1) 5 × 10 ^{−4} mol L ^{−1} S ^{−−}	1		(2) – 2.25 × 10 ^{−4} r	mol L ⁻¹ S ⁻¹			
	(3) 3.75 × 10 ⁻⁴ mol L ⁻¹			(4) 50.0×10^{-4} mc				
2.	The energific rate const	ant of a first orda	r roootic	n dananda an tha :				
Ζ.	The specific rate const (1) Conc. of the reacta		rieaciic	(2) Conc. of the p				
	(3) Time			(4) Temperature				
•	If the note of the needs			antent the ender of				
3.	If the rate of the reacti (1) 0	on is equal to the (2) 1	rate co	(3) 2	(4) 3			
	(1)0	(2) 1		(3) 2	(4) 3			
4.		-		•	d of ten minutes. What fraction of the			
	substance will be left a		eaction					
	(1) 1/6 of initial concen(3) 1/12 of initial conce			(2) 1/64 of initial c(4) 1/32 of initial c				
				. ,				
5.					yields a straight line. $C_0 = initial$ conc.			
			ncentrat		at is the order of the reaction :			
	(1) 3	(2) zero		(3) 1	(4) 2			
6.	The rate constant of a	first order reactio	n is 4 \times	10 ⁻³ sec. At a reac	ctant concentration of 0.02 M. the rate			
	of reaction would be :		4					
	(1) 8 × 10 ⁻⁵ M sec ⁻¹	(2) 4 × 10 ^{−3} M s	Sec-1	(3) 2 × 10 ^{−1} M sec	c ⁻¹ (4) 4×10^{-1} M sec ⁻¹			
7.	In a first order reaction	the a/(a-x) was f	found to	be 8 after 10 minu	te. The rate constant is			
	(1) (2.303 × 3log2)/10	(2) (2.303 × 2lo	g3)/10	(3) 10 × 2.303 × 2	2log3 (4) $10 \times 2.303 \times 3 \log 2$			
8.	A first order reaction h	as a half life neri	ind of 6	93 sec At 0.10 m	ol lit-1 reactant concentration rate will			
0.	be :			5.0 500. / (0.10 m)				
	(1) 10 ⁻⁴ M sec ⁻¹	(2) 10 ⁻³ M sec ⁻¹	1	(3) 10 ⁻¹ M sec ⁻¹	(4) $6.93 \times 10^{-1} \text{ M sec}^{-1}$			
9.	Solact the rate law that	t corrosponding to	a tha da	to chown for the fol	llowing reaction A + B C			
5.	Exp.	[A]	[B]	Initial rat	5			
	1.	0.012	0.035	0.10				
	2.	0.024	0.070	1.6				
	3.	0.024	0.035	0.20				
	4. (1) Poto – K [P] ³	0.012	0.070	0.80	$A = K (A) = K (A)^{2} (D)^{2}$			
	(1) Rate = K [B] ³	(2) Rate = K[B] ⁴		(3) rate = K[A][B] ³	³ (4) Rate = $K[A]^2[B]^2$			
10.			eds at		the activation energy is 65 kJ?			
	(1) 2 times	(2) 5 times		(3) 11 times	(4) 16 times			


11.	The energy of activation of a forward reaction is 50 Kcal. The energy of activation of its backwardreaction is (If reaction is exothermic)(1) Equal to 50 Kcal.(2) Greater than 50 Kcal.(3) Less than 50 Kcal.(4) Either greater or less than 50 Kcal.
12.	An exothermic reaction X $\stackrel{1}{\rightarrow}$ Y has an activation energy 30 KJ mol ⁻¹ . If energy change (ΔE) during the reaction is –20 KJ, then the activation energy for the reverse reaction is : (1) 10 KJ (2) 20 KJ (3) 50 KJ (4) –30 KJ
13.	For the reaction NO ₂ + CO \rightarrow CO ₂ + NO the experimental rate expression is $-\frac{dc}{dt} = k[NO_2]^2$ the
	number of molecules of CO involves in the slowest step will be : (1) 0 (2) 1 (3) 2 (4) 3
14.	The reaction, $X + 2Y + Z \rightarrow N$ occurs by the following mechanism (i) $X + Y \rightleftharpoons M$ very rapid equilibrium (ii) $M + Z \rightarrow O$ slow (iii) $O + Y \rightarrow 1$ N very fast What is the rate law for this reaction (1) Rate = k[Z] (2) Rate = k[X] [Y] ² [Z] (3) Rate = [N] (4) Rate = k[X] [Y] [Z]
15.	Following mechanism are given for the reaction $2A + B \stackrel{1}{\Rightarrow} D + E$ step -1 A + B $\stackrel{1}{\Rightarrow} C + D - (slow)$ step-2 A + C $\stackrel{1}{\Rightarrow} E - (fast)$ the rate constant experience for the reaction is $\stackrel{e}{\times}$ (1) r = K[A] ² [B] (2) r = K [A] [B] (3) r = K [A] ² (4) r = K[A][C]
16.	According to the mechanism a reaction proceeds via a single transtion state. Choose the correct options.(1) It is unimolecular reaction.(2) It is bimolecular reaction.(3) It is an elementry reaction.(4) It is a complex reaction.
17.	Rate of formation of SO ₃ in the following reaction $2SO_2 + O_2 \rightarrow 2SO_3$ is 100 g min ⁻¹ . Hence rate of disappearance of O ₂ is : (1) 50 g min ⁻¹ (2) 40 g min ⁻¹ (3) 200 g min ⁻¹ (4) 20 g min ⁻¹
18.	A reaction follows the given concentration (M)-time graph. Perdict the order of the reaction $ \begin{array}{c} 0.5 \\ 0.4 \\ 0.3 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \end{array} $
	Time/second (1) zero (2) 2 (3) -1 (4) 1
19.	For rate constant is numerically the same for three reactions of first, second and third order respectively. Which of the following is correct : (1) if $[A] = 1$ then $r_1 = r_2 = r_3$ (2) if $[A] < 1$ then $r_1 > r_2 > r_3$ (3) if $[A] > 1$ then $r_3 > r_2 > r_1$ (4) All

20. For a reaction of the type $A + B \ge$ products, It is observed that doubling the concentration of A cause the reaction rate to be four times increased, but doubling the amount of B does not effect the rate. The equation is (1) Rate = K[A][B](2) Rate = K $[A]^2$ (3) Rate = K $[A]^{2}[B]$ (4) Rate = K $[A]^2[B]^2$ 21. The rate for the reaction RCI + NaOH (aq) 2 ROH + NaCI is given by rate = $K_1[RCI]$ The rate of the reaction is -(1) Doubled on doubling the concentration of NaOH (2) Halved on reducing the concentration of RCI to half (3) Decreased on increasing the temperature of reaction (4) Unaffected by increasing the temperature of the reaction 22. For the reaction 4A + B 2C + 2D The incorrect statement is : (1) The rate of disappearance of B is one fourth the rate of disappearance of A (2) The rate of appearance of C is half the rate of disappearance of B (3) The rate of formation of D is half the rate of consumption of A (4) The rates of formation of C and D are equal 23. In presence of HCI, sucrose gets hydrolysed into glucose and fructose. The concentration of sucrose was found to reduce from 0.4 M to 0.2 M in 1 hour and to 0.1 M in 2 hours. The order of the reaction is : (1) zero (2) one (3) two (4) None of these 24. Two substances A ($t_{1/2}$ = 5 min) and B ($t_{1/2}$ = 15 min) are taken in such a way that initially [A] = 4[B]. The time after which both the concentration will be equal is : (Assume that reaction is first order) (2) 15 min (1) 5 min (3) 20 min (4) concentration can never be equal For the reaction 2A + 3B -----> products, when A is in excess and on changing the concentration of B 25. from 0.1 M to 0.4 M, rate becomes doubled, Thus, order with respect to B would be : (1) 1(2) 2 (3) - 1(4) 0.526. From different sets of data of t_{1/2} at different initial concentration say 'a' for a given reaction, the product $\left[t_{1/2}\times a\right]$ is found to be constant. The order of reaction is : (1) 2(2) 1 (3) Zero (4) 3 27. Which of the following curves represent a Ist order reaction : (2) log (a – x) (1) log (a-x) (3) t_{1/2} (4) 1 & 3 both


- 28. The time elapsed of a certain reaction between 33% and 67% completion of a first order reaction is 30 minutes. What is the approximate time needed for 25% completion? (1) 150.5 minutes (2) 12.5 minutes (3) 180.5 minutes (4) 165.5 minutes
- A reaction 2A + B \xrightarrow{k} C + D is first order with respect to A and 2nd order with respect to B. Initial 29. conc. (t = 0) of A is C_0 while B is $2C_0$. If at t = 30 minutes the conc. of C is $C_0/4$ then rate expression at t = 30 minutes is : (2) $R = 27 C_0^3 k / 32$ (3) $R = 247 C_0^3 k / 64$ (4) $R = 49 k C_0^3 / 32$ (1) R = 7 C₀³ k/16
- In a certain gaseous reaction between X and Y, X + 3Y 2XY3 The initial rates are reported as follows -30.

[X]	[Y]	Rate	
0.1 M	0.1 M	0.002 Ms ⁻¹	
0.2 M	0.1 M	0.002 Ms ⁻¹	
0.3 M	0.2 M	0.008 Ms ⁻¹	
0.4 M	0.3 M	0.018 Ms ⁻¹	
The rate law is			
(1) r = K [X] [Y] ³	(2) $r = K[X]^0[Y]^2$	² (3) r = K [X] [Y]	(4) $r = [X]^0[Y]^3$

31. If for a reaction in which A(g) converts to B(g) the reaction carried out at const. V & T results into the following graph.

- (1) then the reaction must be $A(g) \rightarrow 3B(g)$ and is a first order reaction.
- (2) then the reaction must be $A(g) \rightarrow 3B(g)$ and is a second order reaction.
- (3) then the reaction must be $A(g) \rightarrow 3B(g)$ and is a zero order reaction.
- (4) then the reaction must be $A(g) \leftrightarrow 3B(g)$ and is a first order reaction.
- 32. In three different reactions, involving a single reactant in each case, a plot of rate of the reaction on the y-axis, versus concentration of the reactant on the x-axis, yields three different curves shown below.

- 33. Starting with equal concentration of reactants what will be the comparison of the initial rate of first order and second order reactions.
 - (1) first order has higher initial rate.
- (2) both will have equal inital rate
- (3) second order has higher initial rate.
- (4) nothing can be said.

34.	The decomposition of N_2O into $N_2 \& O_2$ in presence of gaseous argon follow second order kinetics with						
	$k = (5.0 \times 10^{11} \text{ L mol}^{-1}$ is	s ⁻¹) e ^{-41570 K} T (K stands f	or Kelvin units). The en	ergy of activation of the reaction			
35.		and $O_{_3}$ (g) is first-order i		(4) 345446.70 J			
	2 NO ₂	$(g) + O_3 (g) \longrightarrow N_2O_5$	$(g) + O_2(g)$				
	The reaction can take p						
	$I: NO_2 + O_3 \xrightarrow{slow} N$						
	$NO_3 + NO_2 \xrightarrow{fast} I$	2 0					
	II : $O_3 \xrightarrow{k_a \text{ fast}} O_2 + [O_3 + [O_3$						
	$NO_2 + O \xrightarrow{slow} N$	5					
	$NO_3 + NO_2 \xrightarrow{fast} NO_2$	2 0					
	Select correct mechani		(2) both L and $\mathbf{H}(4)$ No.	no of L and II			
	(1) I only	(2) II only	(3) both I and II (4) Not				
36.	-	or enzyme-catalyzed read	tion is given by the follo	wing set of equations			
	E + S	ES	∧	\wedge			
	(enzyme) (reacta ES	int) (intermediate-		(4)			
	دع (intermediate-1)	(intermediate-2	P. E.) (3)			
	EP		-/ [(2	1			
	(intermediate-2)	(enzyme)	(product)	n coodinate>			
			-	rgy diagram is shown in the fig.			
		g sets of identifications is	s correct ? (Assume tha	t the temperature and pressure			
	are constant). (1)	(2)	(3)	(4)			
	(1) E + P.	EP	ES	E + S			
	(2) ES	Activated complex	EP	Activated complex			
	(3) EP	Activated complex	ES	Activated complex			
	(4) E + S	ES	EP	E + P			
37.	For the reaction , $N_2(g$	$) + 3H_2(g) \longrightarrow 2NH_2(g)$	3(g) under certain condi	tions of temperature and partial			
	pressure of the reacta	ints, the rate of formation	on of NH ₃ is 0.001 mol	e h^{-1} . What will be the rate of			
	consumption of H ₂ ?						
	(1) 0.001 mole h ⁻¹	(2) 0.0015 mole h ⁻¹	(3) 0.0066 mole h ⁻¹	(4) 0.002mole h ⁻¹			
38.	•	drolysis of ethyl acetate i					
	(1) 2	(2) 0	(3) 1	(4) –1			
39.	If half life $t_{1/2} = \frac{1}{ka}$; th	en what will be order ?					
	(1) 2	(2) 2	(3) 0	(4) –2			

40.	Half life period of a first order reaction is given By						
	(1) $\frac{a}{2K}$	(2) 1/aK	(3) $\frac{\log 2}{K}$	(4) $\frac{\ln 2}{K}$			
41.	Summation of molect (1) a whole number	llarity and order of React (2) a positive number	ion may be : (3) a negative number	(4) All of these			
42.	All radioactive decom _l (1) 2 nd order	oostion reactions are : (2) 1 st order	(3) 0 order	(4) 3 order			
43.	The reaction of hydrogen and iodine monochloride is given as $H_2(g) + 2ICI(g) \longrightarrow 2HCI(g) + I_2(g)$ The reaction is of first order with respect to $H_2(g)$ and ICI(g), following mechanisms were proposed Mechanism A $H_2(g) + 2ICI(g) \ 2HCI(g) + I_2(g)$ Mechanism B $H_2(g) + ICI(g) \longrightarrow 2HCI(g) + HI(g)$; slow $HI(g) + ICI(g) \longrightarrow HCI(g) + I_2(g)$; fast						
		2 (0)	sistent with the given infor (3) Neither A nor B	rmation about the reaction ? (4) A only			
44.	$CH_3COCH_3(aq) + Br_2(aq)$	aq) $CH_{3}COCH_{2}Br (aq) +$ re obtained for given rea rations, M [Br ₂] 0.05 0.10 0.10 0.05 ance of Br ₂ , M s ⁻¹ ? the rate equation is H ₃] [H ⁺]		с . СН ₃][Br ₂]			
45.	2 0 1	(solution) $\longrightarrow 2NO_2$ (s O_5 with rate constant 6.2	-	value of rate of reaction when			
	[N ₂ O ₅] = 1.25 mole L ⁻	1 ?					
	(1) 5.15 × 10 ⁻⁵ mole L (3) 7.75 × 10 ⁻⁴ mole L		(2) 6.35 × 10 ^{−3} mole L [−] (4) 3.85 × 10 ^{−4} mole L [−]				

	SP	SPP Answers											
1.	(1)	2.	(4)	3.	(1)	4.	(2)	5.	(4)	6.	(1)	7.	(1)
8.	(2)	9.	(3)	10.	(3)	11.	(2)	12.	(3)	13.	(1)	14.	(4)
15.	(2)	16.	(3)	17.	(4)	18.	(4)	19.	(4)	20.	(2)	21.	(2)
22.	(2)	23.	(2)	24.	(2)	25.	(4)	26.	(1)	27.	(4)	28.	(2)
29.	(4)	30.	(2)	31.	(3)	32.	(2)	33.	(4)	34.	(4)	35.	(3)
36.	(4)	37.	(2)	38.	(3)	39.	(2)	40.	(4)	41.	(4)	42.	(2)
43.	(1)	44.	(1)	45.	(3)								

SPP Solutions \equiv

1. $\frac{-d[O_2]}{dt} - \frac{1}{2} \frac{d[O_2]}{dt} + \frac{1}{2} \frac{d[SO_3]}{dt} = 2.5 \times 10^{-4} \text{ Ms}^{-1}$ $\frac{d[SO_2]}{dt} = 5 \times 10^{-4} \text{ MSe}^{-1}, \text{ so } \text{R} = \frac{2.5 \times 10^{-4}}{2} = 1.25 \times 10^{-4} \text{ MSe}^{-1}$ $\frac{d[\text{NH}_2]}{dt} = 3 \times 1.25 \times 10^{-4} = 3.75 \times 10^{-4} \text{ MSe}^{-1}$

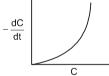
3.
$$R = k [A]^m$$
 if $M = 0 \Rightarrow R = K$

4.
$$t_{1/2} = 10$$
 No. of Half life $= \frac{60}{10} = 6$ half life $C_t = \frac{C_o}{(2)^n} = \frac{C_o}{(2)^6} = \left(\frac{C_o}{64}\right)^{1/2}$

5.
$$\left[\frac{C_0 - C}{C}\right]$$
 For second order reaction $\frac{1}{C} = \frac{1}{C_0} + kt$
 $\frac{1}{C} - \frac{1}{C_0} = kt$ $\left(\frac{C_0 - C}{C}\right)$
 $\left[\frac{C_0 - C}{C}\right] = (KC_0)t$ So reaction is second order
6. $R = K [A]$
 $R = 4 \times 10^{-3} \times 0.02$
 $= 8 \times 10^{-5} \text{ MSt}^{-1}\text{s}$
7. $K = \frac{2.303}{t} \log \frac{a}{a - x} = \frac{2.303}{10} \log 8 = \frac{2.303}{10} \times \log 2^3 = \frac{2.303 \times 3 \log 2}{10} \text{ min}^{-1}$
8. $t_{1/2} = \frac{0.693}{k}$; $k = \frac{0.693}{69.3} = 10^{-2} \text{ sec}$
 $R = k[A]$
 $R = 10^{-2} \times 0.1 \text{ Msec}^{-1} = 10^{-3} \text{ Msec}^{-1}$

9.	$\begin{array}{l} A+B \to C \\ R=K \ [A]^m \ [B]^n \\ \text{compere exp. (1) (3)} \\ & \frac{0.2}{0.1} = [2]^m \ m=1 \\ \text{compere exp. (2) \& (3)} \\ & \frac{1.6}{0.2} = \left(\frac{0.07}{0.035}\right)^n \ n=3 \\ R=k \ A] \ [B]^3 \end{array}$		
10.	$\log\left(\frac{K_{2}}{K_{1}}\right) = \frac{E_{a}}{2.303R} \frac{(T_{2} - T_{1})}{T_{1}T_{2}} = \frac{65 \times 10}{2.3032}$	$\frac{0^3 \times (298 - 273)}{\times 8.3 \times 298 \times 273}$	
	calculation we find $\frac{K_2}{K_1} = 11$		
11.	$\Delta H = Eaf - Eab < 0$ (for exothermic) 50 - Eab < 0 So Eab > 50		
12.	– 20 = 30 - Eab Eab = 50.		
14.	Rate = k_1 [M] [Z]		(1)
	from equation (1) $K_{eq} = \frac{[M]}{[x][y]}$.	$M = k_{eq} [x] [y]$	(2)
	put the value of M from (2) to (1) Rate = k_1 keq [x] [y] [z]	Rate = k [x] [y] [z]	
17.	$\frac{d}{dt}[SO_3] = 100 \text{ gram} / \min = \frac{100}{80} \text{ mole}$	/ min = 1.25 mole/min	
	$\frac{-1}{2} \frac{d}{dt} [SO_2] = \frac{-d}{dt} [O_2] = \frac{1}{2} \frac{d}{dt} [SO_3]$		
	$\frac{-d}{dt}[O_2] = \frac{1.25}{2} \text{ mole/min} = \frac{1.25}{2} \times 32$	gram/min = 20 gram/min	
18.	Half life of the reaction is constant. Hen	ice first order.	
19.	Rate law for	lind order	Illed ordor
		Ind order $R_2 = K[A]^2$	IIIrd order R ₃ = K[A] ³
	than we can say $[A] = 1$ $r_1 = r_2 = r_3$	[A] < 1 then $r_1 > r_2 > r_3$ y [A] > 1 then $r_3 > r_2 > r_1$	
20.	Rate wrt A is 2 and wrt B is zero.		
21.	Rate wrt RCI is 1.		
22.	$4A + B 2C + 2D -\frac{1}{4} \frac{d[A]}{dt} = -\frac{d[B]}{dt} = +\frac{1}{2} = \frac{1}{2} \frac{d[D]}{dt}$		
23.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
24.	<u>A</u> : a $\xrightarrow{5\min}$ 2a $\xrightarrow{5\min}$ a	$\underline{-5min}$ a/2	

<u>B</u>: a $\xrightarrow{5\text{min}}$ a/2 So time is 15 mintes.


25. A is in excess, so Rate will be independent of change in concentration. $R = k [B]^n$

 $R = R 4^{n} [B]^{n}$ $n = \frac{1}{2}$.

26. For zero order $t_{1/2} = \frac{a_0}{2k}$, so $t_{1/2} \times a_0 = \frac{a^2}{2k}$ is not a constant. For 1st order $t_{1/2}$ is constant so $t_{1/2} \times a_0$ is not constant. For 2nd order $t_{1/2} = \frac{1}{a_0 k}$ so $t_{1/2} \times c_0 = k$ is constant. 28. $t_1 = \frac{2.303}{k} \log \left(\frac{100}{67}\right) \implies t_2 = \frac{2.303}{k} \log \left(\frac{100}{33}\right)$ $(t_2 - t_1) = \frac{2.303}{k} \left[\log \frac{100}{33} \times \frac{67}{100}\right] \implies (t_2 - t_1) \frac{2.303}{k} \times 0.30 = 30$ $k = \frac{2.303}{30} \times \frac{30}{100} = 2.303 \times 10^2 \implies t = \frac{2.303}{2.303 \times 10^{-2}} \log \left(\frac{100}{75}\right)$ $t = 100 [\log 4 - \log 3] = 100 [.6020 \times 0.4771] = 12.49 = 12.5 minute$

29.
$$2A + B \xrightarrow{k} C + D$$

 $r = K [A]^{1} [B]^{2}$
 $r_{o} = K (C_{o})^{1} (2C_{o})^{2}$
 $= 4 K (C_{o})^{3}$
.....(1)
 $2A + B C + D$
 $t = 0 C_{0} 2C_{0}$
 $0 0$
 $(C_{0} - 2x) (2C_{0} - x)$
 x
 x
 $x = \left(\frac{C_{o}}{4}\right)$
 $[A] = C_{o} - \frac{C_{o}}{2} = \frac{C_{o}}{2}$
 $[B] = 2C_{o} - \frac{C_{o}}{4} = \frac{7C_{o}}{4}$
 $r = K \left(\frac{C_{o}}{2}\right) \left(\frac{7C_{o}}{7}\right)^{2} = \frac{49K(C_{o})^{3}}{32}$

- **31.** From the given graph it is clear that the concentration decrease linearly with time then zero order Reaction and $A \rightarrow 3B$ type.
- **32.** it is a parabolic graph of $y = x^2$

So This is the graph of second order

$$y^{2} = x \qquad y = (x) \frac{1}{2}$$

$$-\frac{dC}{dt} = K \frac{-dC}{dt} \quad \text{So reaction is } \left(\frac{1}{2}\right) \text{ order.}$$

33. For first order : rate = $k_{\parallel} [C]^1$ For second order : rate = $k_{\parallel} [C]^2$ Compression depends on the value of k, and k,

34. E_a = 41570 × R = 41570 × 8.31 = 345446.70 J 35. For Rxn rate determining step is slowest step Then in 1st mechanism Rate = $k [NO_2] [O_2]$(i) But in 2nd mechanism $O_3 \xrightarrow{k_a \text{ fast}} O_2 + [O]$(1) $NO_2 + O \xrightarrow{slow} NO_2$(2) $NO_3 + NO_2 \xrightarrow{fast} N_2O_5$(3) Then for Rxn (1) $\frac{k_{a}}{k_{L}} = \frac{[O_{2}] \ [O]}{[O_{3}]} = k_{eq}$(4) by Rxn (2) Rate = k $\frac{k_{eq} [O_3]}{[O_2]}$ [NO₂] [O](ii) put value of [O] from (4) to (ii) Rate = $k \times [NO_2]$ $Rate = \frac{k_1 [NO_2] [O_3]}{[O_2]}$ 37. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ $\frac{-d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt} \implies \frac{-d[H_2]}{dt} = \frac{3}{2}\frac{d[NH_3]}{dt} = \frac{3}{2} \times 0.001 = 0.0015 \text{ mole } h^{-1}$ 39. $t_{1/2} \propto a^{1-n}$ here $t_{1/2} \propto a^{-1}$ $-1 = 1 - n \Rightarrow n = 2$ 43. rate of reaction always depends on slow step. $H_2(g) + ICI(g) \longrightarrow HCI(g) + I_2(g)$ is first order reaction with respect to H_2 and I_2 . Thus the mechanism B will be more consistent with the given information. 44. Let the order of reaction wrt CH₃COCH₃. Br₂ and H⁺ are x,y and z respectively. Thus, Rate (r) = $[CH_3COCH_3]^x[Br_3]^y[H^+]^z$ $5.7 \times 10^{-5} = (0.30)^{\times} (0.05)^{y} (0.05)^{z}$ (i) $5.7 \times 10^{-5} = (0.30)^{\times} (0.10)^{y} (0.05)^{z}$ (ii) $1.2 \times 10^{-4} = (0.30)^{x} (0.10)^{y} (0.10)^{z}$ (iii) $3.1 \times 10^{-4} = (0.40)^x (0.05)^y (0.20)^z$ (iv) From Eqs. (i) and (ii) y = 0From Eqs. (ii) and (iii) $z \approx 1$ From Eqs.(i) and (iv) $x \approx 1$

Thus, rate law \propto [CH₃COCH₃]¹[Br₂]⁰[H⁺]¹ = k = [CH₃COCH₃][H⁺]