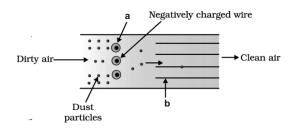
Exercise-1

Marked Questions are for Revision Questions.


ONLY ONE OPTION CORRECT TYPE

SECTION - A # TYPES OF POLLUTANTS, TYPES OF POLLUTION – AIR POLLUTION, ACID RAIN, OZONE DEPELATION, WATER POLLUTION

1.	Pollution can bring about (1) Biogeochemical cyc	•	(2) Abiotic environment	•		
	(3) Biotic environmemt	•	(4) All the above	•		
2.3	One of the following is the major reason for pollution in big cities					
	(1) Fossil fuels	(2) Acid rain	(3) Heat dispersion	(4) None		
3.≿	One of the following is (1) CO ₂	normally not an importar (2) SO ₂	nt atmospheric pollutant a	and remains constant (4) Hydrocarbon		
4.🖎	Carbon monoxide is a (1) Water	major pollutant of (2) Air	(3) Noise	(4) Soil		
5.≿⊾	Air pollution effects are (1) Leaves	e usually found on (2) Flowers	(3) Stems	(4) Roots		
6.	The carbondioxide con (1) 0.034%	itents in atmospheric air i (2) 0.34%	s about (3) 2.34%	(4) 6.5%		
7.১	Major pollutant present	t in the jet plane emission $(2) SO_2$	n is (3) SO ₃	(4) fluorocarbon		
8.æ	One of the most remarkable effect of SO ₂ and it (1) Cell wall destruction (3) Destruction of dictyosomes		its related transformed products on plants is (2) Plasmolysis (4) Chlorophyll destruction			
9.≿	Lead is pollutant (1) Soil	(2) Air	(3) Water	(4) Noise		
10.🖎	Pollutant responsible for (1) SO ₂	or causing phaeophytizat (2) NO _x	ion is (3) CO ₂	(4) Aeroallergens		
11.2	The classical smog wa	s first obseved in (2) Tokyo	(3) Paris	(4) New York		
12.	The term smog was co	nined by (2) Tansley	(3) Odum	(4) Clements		
13.১೩	Which of the following (1) Automobiles (3) Hydroelectric powe	does not cause atmosph	eric pollution (2) Nuclear power plants (4) Thermal power plants			

14.	Jet air lines produce fluoro-carbons in the form of						
	(1) Mist		(2) Fog				
	(3) Photochemical sm	og	(4) Aerosol				
15.১೩	Which of the following air pollutant is carcinogenic						
	(1) 3, 4 – Benzpyrene	(2) PAN	(3) Ethylene	(4) N ₂ O			
16.🖎	Photochemical smog is also called as						
	(1) California type smo	og	(2) Tokyo type smog				
	(3) Los Angeles type s	smog	(4) New York type sn	nog			
17.১೩	The Mathura refinery	smoke is thought to red	luce the shine of Tajmaha	al by			
	(1) Increasing U.V rad	liations	(2) Acid rain				
	(3) 3, 4 benzpyrene		(4) All of the these				
18.	The common refrigera	ant chlorofluoromethane	e (freon) and NO _x are ser	ious pollutants because			
	(1) Destroys haemoglobin		(2) Disrupts O ₃ layer				
	(3) It lowers atmosphe	eric temperature	(4) Prevents cloud co	(4) Prevents cloud condensation			
19.১	Some reliable indicators of air pollutants (SO ₂ and noxious gases) are						
	(1) Lichens and moss	es	(2) Ferns and Cycas				
	(3) 'Neem' tree and Ei	chhornia	(4) Green algae and	aquatic liverworts			
20.	Most hazardous metal pollutant of automobile exhaust is						
	(1) Hg	(2) Cd	(3) Pb	(4) Cu			
21.১%	Given bellow the following statements about catalytic converter						
	(a) It has expensive metals like platinum-palladium and rhodium as the catalysts.						
	(b) They convert unburnt hydrocarbons into carbon dioxide and water.						
	(c) They convert carbon monoxide and nitric oxide into carbon dioxide and nitrogen gas respectively.						
	(d) Motor vehicles equ	uipped with catalytic cor	nverter should use leaded	d petrol.			
	Select the correct stat	ements -					
	(1) a, b, c, d	(2) b, d	(3) a, c, d	(4) a, b, c			
22. 🖎	Acid rains are due to						
	(1) O ₃	(2) $SO_2 + NO_2$	(3) CO	(4) CO ₂			
23.🖎	The chemical that con	tributes to the destructi	on of ozone layer of the	earth's surface is			
	(1) Sulphur dioxide		(2) Mercury	(2) Mercury			
	(3) Chlorofluorocarbons		(4) Carbon monoxide				
24.🖎	'Ozone day' is observe	ed on					
	(1) Jaunary 30	(2) April 21	(3) September 16	(4) December 25			
25.৯	Most hazardous meta	I pollutant of automobile	e exhaust is				
	(1) Mercury	(2) Copper	(3) Cadmium	(4) Lead			

26.

Here 'a' & "b" are respectively

- (1) a discharge corona b collection plate grounded
- (2) a collection plate grounded b discharge corona
- (3) a particulate matter b- collection plant ground
- (4) a discharge corona b particulate matter
- 27. The loss of species in the tropical countries is mainly due to
 - (1) Pollution
- (2) Soil erosion
- (3) Deforestation
- (4) Urbanization
- 28. Increase skin cancer and higher mutation rates are generally the consequence of
 - (1) CO₂
- (2) Ozone depletion
- (3) Biomagnification
- (4) Acid rain
- 29. In coming years skin allergies and disorders will be more common due to
 - (1) Air pollution
- (2) Ozone depletion
- (3) Water pollution
- (4) Misuse of detergents

- 30. Rain is called acid rain when its pH is below
 - (1)7

- (2) 6.5
- (3)6

(4) 5.6

- 31. Which one causes photochemical smog
 - (1) O₃, PAN and NO₂
- (2) O₂, PAN and CO
- (3) HCN, NO and PAN (4) O₂, PAN and NO₂

32. Match the columns

	Column-I		Column-II	
а	Nitrous oxide	i	Secondary pollutant from car exhausts	
b	Chlorofluoro - carbons	ii	Combustion of fossil fuels	
С	Methane	iii	Denitrification	
d	Ozone	iv	Refrigerators aerosols, sprays	
е	Carbon dioxide	٧	Cattle, rice fields, toilets	

(1) a-iii, b-iv, c-v, d-i, e-ii

(2) a-v, b-i, c-iii, d-iv, e-ii

(3) a-iv, b-v, c-i, d-ii, e-iii

- (4) a-i, b-iii, c-iv, d-v, e-ii
- 33. In cities like Bombay and Calcutta the major air pollutants are
 - (1) Ozone

(2) Carbon monoxide and oxides of Sulphur

(3) Hydrocarbons and not air

- (4) Algal spores and marsh gas
- 34. If water pollution continues at present rate, it will eventually
 - (1) Stop water cycle
 - (2) Prevent precipitation
 - (3) Make oxygen molecules unavailble to water plants
 - (4) Make nitrate molecules unavailable to water plants

35. Which of the following is the main factor of water pollution								
	(1) Smoke	(2) Industrial waste	(3) Detergent	(4) Ammonia				
36.≀≊⊾	What is B.O.D. (1) The amount of O ₂ utilised by organisms in water (2) The amount of O ₂ utilized by micro organisms for decomposition (3) The total amount of O ₂ present in water (4) All of the above							
37.≿	Biological treatment of water pollution is done with the help of (1) Phytoplanktons (2) Lichens (3) Fungi (4) None of the above							
38.≥⊾								
39.	Water blooms are form (1) Lemna	ned by (2) Hydrilla	(3) Water Hyacinth	(4) Planktonic algae				
40.	Water pollution (1) Increases oxygenation (2) Decreases turbidity (3) Inceases turbidity and deoxygenation (4) Increases photosynthesis							
41.🖎	The most common indi	icator organisms that rep	resents polluted water is					
	(1) E. coli	(2) S. typhi	(3) Vibrio	(4) Entamoeba				
42.2	As compared to tap wa (1) High	ater, the BOD of a water (2) Low	body polluted with sewag (3) Normal	e would be (4) Nil				
43.১৯		ation of heavy metals lik abiotic contents of enviror (2) > 5 g/cm ³	• '	opper, lead is harmful for living $(4) > 1g/cm^3$				
44.🖎	One of them is an indic	cator for water quality						
	(1) Escherichia coli	(2) Beggiatoa	(3) Cadothrix	(4) Azospirillum				
45.	Which of the following citizens group is responsible for the upkeep and safeguarding of marshes in the tour of Arcata situated along the northern cost of California? (1) CITES (2) ICRISAT (3) IUCN (4) FOAM							
46.	In the aquatic body the	concentration of DDT in	small fish					
	(1) 0.003 ppm	(2) 0.5ppm	(3) 0.04ppm	(4) 2ppm				
47.	~	ered heavy mortality of f	ishes within a few days. V	Which of the following				

	(ii) The c	roplands of th ake water turr	e village were sprayed were sprayed wed green and stinky.		nearby fields. tly reducing photosynthesis.
	(1) (i) and		(2) (i) and (ii)	(3) (ii) and (iii)	(4) (ii) and (iv)
48 .		low are four s any two stater		blanks. Select the optio	n, which correctly fills up the
		_	er took place on´ anniversary of the Bhop		observed as theday in
	(ii)	_ is a biodegr	adable pollutant while _	is a non-biodegra	adable pollutant.
	. ,	•	re released from a single is calledpollution.	•	pollution, but when it is over a
	` ,	is the world as	d's most problematic aqu	uatic weed, introduced in	India for its lovely flowers, also
	(1) (i) De	ecember 5, Na	ational pollution preventi	on (iv) <i>Parthenium</i> , terroi	r of Bengal.
	(2) (i) De	ecember 2, Bh	nopal gas tragedy (ii) DE	T, sewage	
	(3) (ii) S	ewage, DDT (iii) point source, diffuse	d source	
	(4) (iii) L	ine source, fix	ed source (iv) Eichhorn	ia, tiger of Bengal	
SE		Green hou	se effect, Internati	onal efforts to reduc	vaste, Global warming - ce pollution.
1.29	Select the	e correct option	on about ratio of green h	ouse gases	
	(1)	6% N,O 14% CH, 20% CFC	(2) 60% CH, 20% CO,	(3) 60% CO. 20% CFC	(4) 60% CO. 20% CH.
2.29	The envi	ronmental hav	oc created in		
	` '		Bhopal in 1986 Russia in 1990	(2) Ukraine in 1988 an(4) Ukraine in 1986 an	
3. <u>S</u> a.	Man mad	de radio active	e element Sr90 accumula	ites through	
	(1) Air	io radio dolivo	(2) Food web	(3) Water	(4) Contaminated soil
4.	•	te pollution is ultural fertilize	•	(2) Sedimentary rocks	
	. , •	age and phos	•	(4) Sewage and agricu	
5. <i>1</i> 28	Noise po	llution is meas	sured in		
	(1) Decib	els (db)	(2) Pikograms	(3) Micrograms	(4) None
6. <i>5</i> 9	Sewage	water is purific	ed for recycling by the a	ction of	
	(1) Proto	-	(2) Micro-organisms	(3) Plants and light	(4) Fish

Name of pollutant

Source

1.১	Given below the following table, select the incorrect option							
		MISCELLANE	EOUS QUESTIONS					
	(3) Lead and Tin		, ,	(4) Lead and strontium				
	(1) Mercury and Lea		(2) Mercury and Cadmium					
17.	Minamata and itai-ita	ai are caused by the poll	ution of:					
	(1) Air	(2) Soil	(3) Noise	(4) Water				
16.১೩	Green muffler is rela	ted to pollution of						
	(3) 37% for plains an	nd 63% for hills	(4) 23% for plains and	(4) 23% for plains and 77% for hills				
	(1) 20% for plains an	nd 80% for hills	(2) 33% for plains and	(2) 33% for plains and 67% for hills				
15.≿⊾	The percentage of fo	orest cover recommende	d by the National forest p	olicy (1988) is –				
	(3) $CH_4 > CFC > N_2C$	O > CO ₂	(4) $CO_2 > CH_4 > CFC$	(4) $CO_2 > CH_4 > CFC > N_2O$				
	(1) $CO_2 > N_2O > CFO$		` ,	(2) CFC > CO_2 > CH_4 > N_2O				
	effect	_						
14.>	Arrange CFC, CH ₄ ,	N ₂ O and CO ₂ in decre	easing order according to	their contribution in green house				
	(1) Incineration	(2) Recycling	(3) Pyrolysis	(4) Sanitary dumping				
	as			•				
13.১೩	The controlled aerobic combustion of wastes inside chambers at temperature of 900-1300°C is known							
	` ,	• •	eaction of primary pollutan y a previously useful chen					
		(2) Production of useful ecological effect by a previously useful chemical(3) Formation of secondary polutants from reaction of primary pollutants						
	,	e to bomb explosion						
12.	Ecological blacklash	(or Ecological explosion	n) is					
	(1) Iodine –127	(2) Strontium –90	(3) Cesium –137	(4) None of these				
11.১	Bone cancer is caus	·						
	(3) Mitigate climatic	cnange	(4) Implement Agend	a 21				
	(1) To reduce green	_	(2) Limit the production					
10.১	Montreal Protocol wa							
	(1) Soil and water	(2) Air and soil	(3) Crops and air	(4) Air and water				
9.3		crops results in the poll						
	. , .		, ,	(¬) Doin (2) & (0)				
<i>E</i> 5.8	(1) Air pollution	se of fertilizers causes (2) Soil pollution	(3) Water pollution	(4) Both (2) & (3)				
0 >=	The indiceriminate	on of fartilizara course						
	(1) Biopollutants	(2) Ionosphere	(3) Nuclear blast	(4) Deforestation				
7.	One of the following is not a threat to life							

Effect

	(1)	SO ₂		Combustion of	fossil fuel	Photo chemical smog		
	(2)	PAN		HC + Nitrogen oxides in Sunlight		Blockin	g of PS-II in plants	
	(2)	NO		Sunlight Nitrogenous fer	tilizare and	Acid ra	in	
	(3)	NO _X		Automobile exh		Acid ia	111	
	(4)	CO ₂		Burning of fossi		Global	warming	
	(¬)	00 2		Durning or 1000	11 1001	Ciobai	warring	
2.3		the wrong statem						
	` '	one in upper part st of the forests h		•				
	` '	en house effect i		•				
	` '	rophication is a n		•		3		
3.29.	Carbon	n monoxide kills b	necause i	it destrovs				
0.63		emoglobin		tochrome	(3) Cytochrome)	(4) Both 1 and 2	
	. ,	_	. , ,		. , ,		()	
4.8		oncentration reco		•			(4) 20, 70 ppm	
	(1) 0.3	– 0.7 ppm	(2) 1.3 -	- 3.1 ppm	(3) 13–31 ppm		(4) 30–70 ppm	
5.2		g of teeth is due	•		•	ter		
	(1) Mer	cury	(2) Fluo	rine	(3) Boron		(4) Chlorine	
6.8	NEERI	is						
	(1) National Environmental enginnering Research Institute							
	` '	ional Ecological						
	` '	ional Ethological ional Eugenics a		_				
	. ,	-		gical rescaron	montato.			
7. 🖎		ne gas producing			(0) 0 (1.1.1		(1) 0	
	(1) Wh	eat field	(2) Pado	dy field	(3) Cotton field		(4) Groundnut field	
8. S	Treatm	ent of polluted w	ater is ca	arried out with th	e help of			
	(1) Lich	nens	(2) Funç	gi	(3) Ferns		(4) Phytoplankton	
9.3	DDT ha	as been a major	pollutant	because it:				
	(1) Kills aquatic animals				(2) Kills pests			
	(3) Destroys many valuable species (4) Is nondegradable							
10.১೩	Affinity	of CO for haemo	oglobin a	s compared to C	D ₂ is			
	(1) Two	times	(2) Twe	nty times	(3) 100 times		(4) 300 times	
11.১	Hav fev	ver is caused by						
	(1) Hep		(2) Den	gue	(3) Allergy		(4) Helper T-cells	
12.১೩		s occurs due to	, ,	-	. ,		•	
	(1) Acid	d rain			(2) Ozone deple	etion		
	(3) Inha	alation of aerosol	ls		(4) Inhalation of	f SO ₂		

- 13. Which can be used for clearing water body
 - (1) Chlorella
- (2) Eichhornia
- (3) Cyanobacteria
- (4) Chlamydomonas

- 14.2 Pollutant emitted by paddy fields is
 - (1) CO₂
- (2) CH₄
- (3) CO
- (4) H₂O₂

- 15. Noise becomes uncomfortable above
 - (1) 180 dB
- (2) 140 dB
- (3) 100 dB
- (4) 80 dB

- **16.** Occurrence of water blooms in a lake indicates
 - (1) Excessive nutrient availability
- (2) Nutrient deficiency

(3) Oxygen deficiency

- (4) Absence of herbivores
- 17.2 Chernobyl nuclear tragedy occurred in
 - (1) April 26, 1986
- (2) August 6, 1945
- (3) August 9, 1945
- (4) December 3, 1984

- 18. Insecticides usually act upon
 - (1) Muscular system
- (2) Digestive system
- (3) Nervous system
- (4) circulatory system
- 19. Lead concentration in blood is considered alarming, if it is
 - (1) 4-6 µg/100 ml
- (2) 10 µg/100ml
- (3) 20 µg/100 ml
- (4) 30µg/100ml

- 20. Environmental Protection act was passed in
 - (1) 1986
- (2)1981
- (3) 1974
- (4) 1968

- **21.** Which is correctly matched?
 - i. Arsenic poisoning Black foot disease.
 - ii. Secondary Effluent treatment Biological process.
 - iii. Pyrolysis Solid soil waste disposal
 - iv. Tubifex Water pollution indicator
 - v. Biomagnification Degradable pollutants
 - (1) i, ii, iii, v
- (2) i, iii, iv, v
- (3) ii, iii, iv, v
- (4) i, ii, iii, iv
- 22. Match the columns and find out the correct combination

I		II		
а	DDT	i	CO, CO ₂	
b	PAN	ii	Smog	
С	Acid rain	iii	Biological magnification	
d	Global warming	iv	SO ₂	

(1) a-iv, b-iii, c-ii, d-i

(2) a-i, b-iii, c-ii, d-iv

(3) a-ii, b-iii, c-iv, d-i

- (4) a-iii, b-ii, c-iv, d-i
- 23. High amount of Esherichia coli in water is an indicator of
 - (1) Hardness of water

(2) Industrial pollution

(3) Sewage pollution

(4) Presence of chlorine in water

24.	Effect of pollution is	observed first on						
	(1) Food crops	(2) Green vegetation	(3) Micro-orgar	nisms (4) Herbivore	S			
25. 🖎	Which one is emplo	yed for clearing oil spillage						
	(1) Escherichia coil		(2) Streptococo	cus				
	(3) Bacillus thuringie	ensis	(4) Pseudomor	nas				
26. 🖎	Ozone hole enhanc	es						
	(1) UV radiations re	aching earth	(2) Number of	cataracts				
	(3) Skin cancers		(4) All the above	ve .				
27.2	Bhopal tragedy was	cuased by						
	(1) IAA	(2) LIC	(3) MIC	(4) LPG				
28. 🖎	In Kyoto protocol, th	ne major nations agreed to	reduce emission	of green house gases b	ру			
	(1) 2008	(2) 2010	(3) 2012	(4) 2018				
29. 🖎	During daytime sou	nd level in silent zone is						
	(1) 20 dB	(2) 40 dB	(3) 50 dB	(4) 90 dB				
30.≿	The pesticide most	persistent in the soil is						
	(1) DDT	(2) BHC	(3) Dieldrin	(4) Baygon				
31.≿⊾	Respiratory disorde	rs occur due to automobile	exhaust hecause	of the release of				
J1.63	(1) CO	(2) NO ₂	(3) CO ₂	(4) O ₃				
	. ,	. ,	(3) 002	(4) 03				
32.🖎	•	black due to action of						
	(1) H ₂ S	(2) NH ₃	(3) CH ₄	(4) CO ₂				
33.🖎	Water pollution is ca	Water pollution is caused due to						
	(1) sewage and other	er wastes	(2) industrial ef	(2) industrial effluents				
	(3) agricultural disch	(3) agricultural discharges		(4) All of the above				
	Exercise	R-2						
		<u> </u>						
1.2		ng are biomagnified at diffe	erent levels of food	d chain?	(NSEB- 2013)			
	i. Heavy metal							
	ii. Aerosol							
	iii. DDT							
	iv. Green house gas		(2) i and iii	(4) ii and iii				
2 >	(1) i and ii	(2) i and iv	(3) i and iii	(4) ii and iii	and It was found			
2.১	that the diversity in	ores A and B were compa dex of A was better than the he following can be true?						
	(1) Eutrophication h(3) Habitat loss cou	as occured at A ld be a problem at A	. ,	ion has occured at B ecies are present at B				
3.29.	•	ce in eutrophication are lis of aquatic vegetation	ted below:		[NSEB-2014]			

- ii. Depletion of dissolved O_2
- iii. Bacteria feed on dead vegetation
- iv. Aquatic ecosystem becomes rich in phosphates

The correct order in which these events occur is:

(1) i, iv, iii, ii

(2) iv, i, iii, ii

(3) i, ii, iii, iv

(4) iv, iii, ii, i

Exercise-3

PART - I: NEET / AIPMT QUESTION (PREVIOUS YEARS)

1.29.	Use of lichens in case (1) treatment of pollutar (3) Promote pollution	•	(2) Bioindicators of pollution(4) Lichens have no relation with pollutio		(AIPMT 1999) on
2.3	A secondary pollutant is (1) CO	s (2) CO ₂	(3) PAN	(4) Aerosol	(AIPMT 1999)
3.29.	DDT is (1) Biodegradable pollu (3) Not a pollutant	utant	(2) Nondegradable poll (4) An antibiotic	lutant	(AIPMT 1999)
4. 🖎 5. 🖎	Intensity of sound in no (1) 10 – 20 dB Maximum green house (1) India	(2) 30 – 60 dB	(3) 70–90 dB (3) U.S.A.	(4) 120–150 dE	(AIPMT 2001) 3 (AIPMT 2002)
6.2	Green house effect is of (1) X-rays	, ,	(3) Green rays	(4) Infra-red ray	(AIPMT 2002)
7.2	Polluted waters do not (1) Stone fly Larvae		(3) Water Hyacinth	(4) cyanobacte	(AIPMT 2002) ria
8. 9.≿	Melanin protects us from (1) X-rays Fluoride pollution mainle (1) Brain	(2) Infra red rays	(3) Visible rays(3) Teeth	(4) UV rays (4) Kidney	(AIPMT 2002) (AIPMT 2003)
10.১%	Bhopal gas tragedy of (1) DDT	1984 took place because (2) Ammonia	e methyl isocyanate reac (3) CO ₂	ted with (4) Water	(AIPMT 2004)
11.🖎	Which one of the follow (1) Fossil fuel burning - (3) Solar energy - Gree	Release of CO ₂	(2) Nuclear power - Ra (4) Biomass burning - F		(AIPMT 2005)
12.79.	Identify the correctly matched pair (1) Basel convention - Biodiversity conservation (2) Kyoto protocol - Climate change (3) Montreal protocol - Global warming (4) Ramsar convention - Ground water pollution				
13.2	Which one of the follow (1) Chlorine	ving is not used for disinf (2) Ozone	ection of drinking water? (3) Chloramine	(4) Phenyl	(AIPMT 2005)

14.১	Limit of BOD prescribe waste waters into nature		Control Board for discha	arge of industria	(AIPMT 2006)
	(1) < 3.0 ppm	(2) < 10 ppm	(3) < 30 ppm	(4) < 100 ppm	(
15.১೩	Montreal protocol which was passed in year	ch calls for appropriate	action to protect the ozo	one layer from h	numan activities (AIPMT 2006)
	(1) 1985	(2) 1986	(3) 1987	(4) 1988	
16.🖎	Blue-baby syndrome re	esults from			(AIPMT 2006)
	(1) Excess of ODS	1	(2) Excess of chlorides		
	(3) Excess of dissolved	o oxygen	(4) Methaemoglobin		
17.১	Photochemical smog d	loes not contain	(2) Ozono		(AIPMT 2006)
	(1) PAN(3) Nitrogen dioxide		(2) Ozone (4) CO ₂		
	., -				
18.			emical oxygen demand) ouent (SE) have been arra		
	(1) SE < PE < S < DE	(2) PE < S < SE < DE	(3) S < DE < PE < SE	(4) SE < S , PE	E < DE
19.১	In coal fired power plar	nts, electrostatic precipita	ators are fitted to control	emission of :	(AIPMT 2007)
	(1) NO _x	(2) CO	(3) SPM	(4) SO ₂	
20.🖎	Which is correct				(AIPMT 2007)
	(2) Cyanobacteria, Ana	abaena and Nostoc are n	oheric nitrogen in root noo nobilizers of phosphates vithout chemical fertilizers	and plant nutrition	on in soil
	(4) Excessive use of ch	nemical fertilizers may le	ad to eutrophication of no	earby water bodi	es
21.	Which is not a bioindica	ator of water pollution			(AIPMT 2007)
	(1) Blood worms	(2) Stone flies	(3) Sewage fungus	(4) Sludge wor	ms.
22.১	Which one of the follow contribute to the total g		ge of the two (out of the	, -	house gases to (AIPMT 2008)
	(1) N ₂ O 6%, CO ₂ 86 %		(2) Methane 20%, N ₂ O		
	(3) CO ₂ 40%, CFC 30%		(4) CFCs 14%, methar	ie 20%	
23. 🖎		ainable Development (20	,	(4) Consider	(AIPMT 2008)
	(1) Argentina	(2) Brazil	(3) South Africa	(4) Sweden	
24.	•	ollution Control Board (Cresponsible for greatest h	CPCB) which particulate s	size in diameter (in micrometres) (AIPMT 2008)
	(1) 1.0 or less	(2) 5·2-2·5	(3) 2·5 or less	(4) 1.5 or less	(AIFWI 2008)
	· /	` '	` '	()	
25. 🖎	Montreal Protocol aims		(0) D. I. (1)		(AIPMT 2009)
	(1) Control of CO₂ emis(3) Biodiversity conservations		(2) Reduction of ozone(4) Control of water po		ances
00.5	. ,			iidioii	(AIDMT 0000)
26.≿	Chipko movement was (1) Wet Lands	launched for the protect (2) Grasslands	ion of (3) Forests	(4) Livestock	(AIPMT 2009)
07.5-	. ,	,	. ,	` '	
27.≿	The two gases making	nignest relative contribu	tion to the greenhouses	yases are.	(AIPMT 2010)
	(1) CH₄ and N₂O	(2) CFC _S and N₂O	(3) CO ₂ and N ₂ O	(4) CO ₂ and C	` ,

28.2	dB is a standard abbre (1) A particular pollutar (3) Certain pesticides	viation used for the quan	ntitative expression of (2) The dominant Bacill (4) The density of bacte		
29.১	Eutrophication is often (1) Deserts	seen in (2) Fresh water lakes	(3) Ocean	(All (4) Mountains	PMT Pre 2011)
30.≥	(1) IPCC= Internationa(2) UNEP = United Nat(3) EPA = Environment	I Panel for Climate Chan tions Environmental Polic tal Pollution Agency	•	·	PMT Pre 2011)
31.2	Which one of following (1) CO ₂ and O ₃	pairs of gases are the m (2) CO ₂ and CO	najor cause of "Greenhou (3) CFCs and SO ₂	se effect" (All (4) CO ₂ and N	
32.5	"Good ozone " is found (1) Mesosphere	I in the : (2) Troposphere	(3) Stratosphere	(AIPN (4) Ionospher	/IT mains - 2011) re
33.2	(1) Most of the forests(2) Ozone in upper par(3) Greenhouse effect	ng is a wrong statment? have been lost in tropica t of atmosphere is harmf is a natural phenomenor natural phenomenon in f	ul to animals. n.	(A	IPMT Pre 2012)
34.2	(1) estimating the amortion(2) working out the efficient(3) measuring the activities	•	sewage water.	d on a commer	IPMT Pre 2012)
35.🖎	The Air Prevention and (1) 1981	Control of Pollution Act (2) 1985	came into force in: (3) 1990	(4) 1975	(NEET- 2013)
36.≿	Kyoto Protocol was end (1) CoP - 5	dorsed at : (2) CoP - 6	(3) CoP - 4	(4) CoP - 3	(NEET- 2013)
37.≿⊾	Global warming can be controlled by: (1) Reducing reforestation, increasing the use of fossil fuel. (2) Increasing deforestation, slowing down the growth of human population (3) Increasing deforestation, reducing efficiency of energy usage. (4) Reducing deforestation, cutting down use of fossil fuel.				
38.≿⊾	(1) Gases like sulphur(2) Particulate matter of(3) Gases like ozone a	of the size 5 micrometer of	or above		(AIPMT-2014)
39.≿	The zone of atmospher (1) lonosphere	re in which the ozone lay (2) Mesosphere	ver is found (3) Stratosphere	(4) Troposph	(AIPMT-2014) ere
40.2	A location with luxuriar (1) Trees are very heal (3) Location is highly p	thy	e trees indicates that the (2) Trees are heavily in (4) Location is not pollu	fested	(AIPMT-2014)

the atmosphere due t	radiation through (AIPMT-2015)			
(1) Reduced Immune	System	(2) Damage to eyes		
(3) Increased liver ca	ncer	(4) Increased skin ca	ancer	
(1) water is highly po (2) water is less pollu	(AIPMT-2015)			
Rachel Carson's fam	ous book "Silent Spring" is	related to:		(AIPMT-2015)
(1) Noise pollution		(2) Population explos	sion	
(3) Ecosystem manag	gement	(4) Pesticide pollution	n	
Depletion of which ga	as in the atmosphere can I	ead to an increased inc	cidence of skin c	ancers: (NEET-1-2016)
(1) Methane	(2) Nitrous oxide	(3) Ozone	(4) Ammonia	a
Joint Forest Manager	ment Concept was introdu	ced in India during:		(NEET-1-2016)
(1) 1990s	(2) 1960s	(3) 1970s	(4) 1980s	
(1) Warm blooded na	ture	•	(NEET-1-2016)	
Biochemical Oxygen effluents from	Demand (BOD) may not	be good index for po	ollution for water	bodies receiving (NEET-2-2016)
(1) sugar industry	(2) domestic sewage	(3) dairy industry	(4) petroleun	n industry
The highest DDT con	ncentration in aquatic food (2) phytoplankton	chain shall occur in (3) seagull	(4) crab	(NEET-2-2016)
(1) Herpes and influe		(NEET-2-2016)		
Which one of the follo	owing statements in not value	lid for aerosols		(NEET-2017)
	High value of BOD (E (1) water is highly po (2) water is less pollu (3) consumption of or (4) water is pure Rachel Carson's fam (1) Noise pollution (3) Ecosystem mana Depletion of which ga (1) Methane Joint Forest Manager (1) 1990s Which one of the folk (1) Warm blooded na (3) Breathing using lu Biochemical Oxygen effluents from (1) sugar industry The highest DDT cor (1) eel Which of the following (1) Herpes and influe	 (1) water is highly polluted (2) water is less polluted (3) consumption of organic matter in the water (4) water is pure Rachel Carson's famous book "Silent Spring" is (1) Noise pollution (3) Ecosystem management Depletion of which gas in the atmosphere can I (1) Methane (2) Nitrous oxide Joint Forest Management Concept was introdu (1) 1990s (2) 1960s Which one of the following characteristics is no (1) Warm blooded nature (3) Breathing using lungs Biochemical Oxygen Demand (BOD) may not effluents from (1) sugar industry (2) domestic sewage The highest DDT concentration in aquatic food (1) eel (2) phytoplankton 	High value of BOD (Biochemical Oxygen Demand) indicates that: (1) water is highly polluted (2) water is less polluted (3) consumption of organic matter in the water is higher by the microb (4) water is pure Rachel Carson's famous book "Silent Spring" is related to: (1) Noise pollution (2) Population explos (3) Ecosystem management (4) Pesticide pollution Depletion of which gas in the atmosphere can lead to an increased inc. (1) Methane (2) Nitrous oxide (3) Ozone Joint Forest Management Concept was introduced in India during: (1) 1990s (2) 1960s (3) 1970s Which one of the following characteristics is not shared by birds and recommend (1) Warm blooded nature (2) Ossified endoskee (3) Breathing using lungs (4) Viviparity Biochemical Oxygen Demand (BOD) may not be good index for prefiluents from (1) sugar industry (2) domestic sewage (3) dairy industry The highest DDT concentration in aquatic food chain shall occur in (1) eel (2) phytoplankton (3) seagull Which of the following sets of diseases is caused by bacteria? (1) Herpes and influenza (2) Cholera and tetal	High value of BOD (Biochemical Oxygen Demand) indicates that: (1) water is highly polluted (2) water is less polluted (3) consumption of organic matter in the water is higher by the microbes (4) water is pure Rachel Carson's famous book "Silent Spring" is related to: (1) Noise pollution (2) Population explosion (3) Ecosystem management (4) Pesticide pollution Depletion of which gas in the atmosphere can lead to an increased incidence of skin of the following characteristics is not shared by birds and mammals? (1) Methane (2) 1960s (3) 1970s (4) 1980s Which one of the following characteristics is not shared by birds and mammals? (1) Warm blooded nature (2) Ossified endoskeleton (3) Breathing using lungs (4) Viviparity Biochemical Oxygen Demand (BOD) may not be good index for pollution for water effluents from (1) sugar industry (2) domestic sewage (3) dairy industry (4) petroleum The highest DDT concentration in aquatic food chain shall occur in (1) eel (2) phytoplankton (3) seagull (4) crab Which of the following sets of diseases is caused by bacteria? (1) Herpes and influenza (2) Cholera and tetanus

51. Match the items given in Column I with those in Column II and select the *correct* option given below: (NEET-2018)

Column I			Column II		
a.	a. Eutrophication		UV-B radiation		
b.	Sanitary landfill	ii.	Deforestation		
C.	Snow blindness	iii.	Nutrient enrichment		
d.	Jhum cultivation	iv.	Waste disposal		

	а	b	С	d
(1)	ii	i	iii	iv
(2)	i	ii	iv	iii
(3)	iii	iv	i	ii
(4)	i	iii	iv	ii

EVNIRONMENTAL ISSUES

52.	Which of the following is (1) CO	s a secondary pollutant? (2) O ₃	(3) SO ₂	(4) CO ₂	(NEET-2018)
53.	World Ozone Day is cel (1) 5 th June	ebrated on (2) 22 nd April	(3) 16 th September	(4) 21st April	(NEET-2018)
54.	In stratosphere, which of molecular oxygen?	of the following elements	acts as a catalyst in deg	radation of ozo	ne and release (NEET-2018)
	(1) Carbon	(2) Oxygen.	(3) Fe	(4) CI	
55		er Antarctic ice-cover		vaste?	(NEET-1-2019)
56.	Which of the following p (1) Carbon dioxide and (3) Oxygen and Nitroge		esponsible for green hou (2) Ozone and Ammoni (4) Nitrogen and Sulphu	a	ET-1-2019)
57.	Polyblend, a fine powde	er of recycled modified pl	astic, has proved to be a		for: Г- 1-2019)
	(1) making tubes and pi(3) use as a fertilizer	pes	(2) making plastic sacks(4) construction of roads	3	,
58.	Which of the following p	protocols did aim reducing	g emission of chlorofluor		tmosphere? Γ-1-2019)
	(1) Geneva Protocol(3) Kyoto Protocol		(2) Montreal Protocol(4) Gothenburg Protocol	•	,
59.	(1) Tropospheric ozone(2) Stratospheric ozone(3)Tropospheric ozone		iations.	(NEET	Г-2-2019)
60.	Which of the following is (1) Burning in the abser (3) Polyblend	s an innovative remedy fonce of oxygen	or plastic waste ? (2) Burrying 500 m deep (4) Electrostatic precipit	o below soil sur	Г -2-2019) face
61.	If an agricultural field is	liberally, irrigated for a p	rolonged period of time,		e a problem of : Г-2-2019)
	(1) Metal toxicity	(2) Alkalinity	(3) Acidity	(4) Salinity	

PART - II : AIIMS QUESTION (PREVIOUS YEARS)

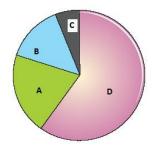
1.29.	A person has impaired nervous system and contaminated water. The metal is : (1) Mercury (2) Calcium	sign of madness due to continued intake of met (AIIMS 2000) (3) Manganese (4) Lead	
2.为	Fertilisers added to fresh water will cause (1) Death of plants (3) Increase in aquatic animals	(2) Decrease in fish population (4) Eutrophication	2)
3.≿⊾	BOD is measure of (1) Industrial waste being poured in water body (3) CO combined with haemoglobin	(2) Extent of pollution with organic compounds (4) O ₂ required by green plants during night	3)
4.🖎	Drinking mineral water with low levels (~ 0.02 pp		
	(1) Cause cancer of intestine(3) Cause leukaemia	(2) Pesticide accumulation in the body (4) Produce immunity against mosquito	3)
5.29.	Nitrogen oxides formed during emission from particles which lead to (1) Dry acid deposition (3) Wet acid deposition	automobiles and power plants are a source of fine a (AIIMS 200 (2) Photochemical smog (4) Industrial smog	
6.≥	Which one of the following statements pertaining (1) DDT is nonbiodegradable pollutant (2) Excess fluoride in drinking water causes oste (3) Excess cadmium in drinking water may cause (4) Methyl mercury in water may cause "itai itai"	eoporosis se black foot disease	5)
7.🔈	Formation of nonfunctional methaemoglobin cau (1) Excess of arsenic in drinking water (2) Excess of nitrate in drinking water (3) Deficiency of iron in food (4) Increased methane content in atmosphere	uses blue baby syndrome. This is due to (AIIMS-2009	5)
8.24	Which one of the following is an environment ref (1) Black lung disease is found mainly in worke (2) Blue-baby disease is due to heavy use of ni (3) Non-Hodgkin's lymphoma is found mainly pesticides (4) Skin cancer occurs mainly in people expose	ers of stone quarries and crushers itrogenous fertilizers y in worker involved in manufacture of neem-base	·
9.১	Montreal Protocol refers to (1) Substances that deplete ozone layer (2) Persistent organic pollutants (3) Global warming and climate change (4) Biosafety of genetically modified organisms	(AIIMS-200	
10 🛰	A sewage treatment process in which a portion	on of the decomposer bacteria present in the waste	ic

(2) Tertiary treatment

(4) Cyclic treatment

recycled into the beginning of the process, is called.

(1) Primary treatment


(3) Activated sludge treatment

(AIIMS-2007)

11.29.	A lake with an inflow of domestic sewage rich in organic waste may result in (1) An increased production of fishes due to lot of nutrients (2) Death of fishes due to lack of oxygen (3) Drying of the lake very soon due to algal bloom (4) Increased population of aquatic food web organisms								
12.29	In almost all Indian met	c pollutant (s) is/ard							
	(1) Oxides of sulphur (3) Suspended particula	ate matter (SPM)	(2) Carbon dioxide an(4) Oxides of nitrogen		(AIIMS-2008) e				
13.১೩	Rain is called acid-rain (1) 7	when its pH is below (2) 6.5	(3) 6	(4) 5.6	(AIIMS-2009)				
14.১	In the environment, ozo (1) Harmful effects	one is known for its (2) Useful effects	(3) Both (1) and (2)	(4) Inert nature	(AIIMS-2013)				
15.2	(3) Its gene pool will be	will become scarce e safe for man and dom			(AIIMS-2013)				
16.29.	(2) The greater the BO(3) The lesser the BOD	D of waste water, more D of waste water, less is of waste water, more is	s its polluting potential.		(AIIMS 2013)				
17.2	 (4) The lesser the BOD of waste water, less is its polluting potential. Which one of the following pairs is mismatched? (1) Fossil fuel burning – release of CO₂ (2) Nuclear power – radioactive wastes (3) Solar energy – green house effect (4) Biomass burning – release of CO₂ 								
18.29.	Plants do not get benef (1) N ₂ in air	fit from (2) O₂ in air	(3) CO ₂ in air	(4) O₃ in air	(AIIMS 2014)				
19.১	Photochemical smog for (1) ozone, peroxyacyl r (2) smoke, peroxyacyl (3) hydrocarbons, SO ₂ (4) hydrocarbons, ozon	nitrate and NO ₂ nitrate and SO ₂ and CO ₂	ropolitan cities mainly co	onsists of	(AIIMS 2014)				
20.	One green house gas respectively identified a (1) N ₂ O and CO ₂ (3) Methane and CO ₂		I global warming and ar (2) CFCs and N₂O (4) Methane and CFC		6%. These are (AIIMS 2016)				
21	Which one option is ecosystem?	incorrectly matched	regarding biological m	agnification of DI	DT in aquatic (AIIMS-2017)				

(1) Small fish - 0.5 ppm
(2) Large fish - 2ppm
(3) Fish-eating birds - 25 ppm
(4) Zooplankton - 0.003 ppm

- 22._ Which of the following is not related with electrostatic preciptator and scrubber (AIIMS-I-2018)
 - (1) 99 % particulate matter is removed by it
- (2) SO₂
- (3) Vapours containing mercury
- (4) Oxides of nitrogen
- Which one of the following options correctly designate the per cent contribution of gases (A, B, C and D) responsible of global warming? (AIIMS-II-2018)

	Α	В	С	D
(1)	CH ₄ (20%)	CFCs (14%)	N ₂ O (6%)	CO ₂ (60%)
(2)	CFCs (20%)	CO ₂ (14%)	N ₂ O (6%)	CH ₄ (60%)
(3)	N ₂ O (20%)	CH ₄ (14%)	CFCs (6%)	CO ₂ (60%)
(4)	CH ₄ (20%)	N ₂ O (14%)	CFCs (6%)	CO ₂ (60%)

24._ Bio magnification refers to:

(AIIMS-III-2018)

- (1) Breeding of crops that are rich in minerals and vitamins, good proteins and healthier fats for human health
- (2) Increase in concentration of the toxicant at successive trophic levels.
- (3) Exploring at molecular, Genetic and species level diversity for the products of economic importance
- (4) Decomposition of organic waste in water by the action of microbes
- 25._ Lichens are best indicator of -

(AIIMS-III-2018)

- (1) Air pollution
- (2) Water pollution
- (3) Soil pollution
- (4) Noise pollution

26._ Fishes in eutrophic lake is died due to

(AIIMS-IV-2018)

- (1) Oxygen
- (2) Nutrient enrichment (3) CO₂
- (4) None
- **27.** Which gases are responsible for increasing the temperature of atmosphere?

(AIIMS-IV-2019)

- (1) CO, NO₂, H₂S
- (2) CO₂, CO, NO
- (3) CH₄, CO₂, N₂O
- (4) NO₂, H₂S, CO₂

Answers													
						EXER	CISE -	1					
SECTION - A													
1. 8. 15. 22. 29. 36. 43.	(4) (4) (1) (2) (2) (2) (2)	2. 9. 16. 23. 30. 37. 44.	(1) (2) (3) (3) (4) (1) (1)	3. 10. 17. 24. 31. 38. 45.	(1) (1) (2) (3) (1) (4) (4)	4. 11. 18. 25. 32. 39. 46.	(2) (1) (2) (4) (1) (4) (2)	5. 12. 19. 26. 33. 40.	(1) (1) (1) (1) (2) (3) (2)	6. 13. 20. 27. 34. 41.	(1) (3) (3) (3) (3) (1) (3)	7. 14. 21. 28. 35. 42.	(4) (4) (4) (2) (2) (1)
SEC1	TION - B												
1. 8. 15.	(4) (4) (2)	2. 9. 16.	(4) (1) (3)	3. 10. 17.	(2) (2) (2)	4. 11.	(4) (2)	5. 12.	(1) (4)	6. 13.	(2) (1)	7. 14.	(2) (4)
				M	ISCEL	LANE	DUS Q	UESTI	ONS				
1. 8. 15. 22. 29.	(1) (4) (4) (4) (3)	2. 9. 16. 23. 30.	(1) (4) (1) (3) (3)	3. 10. 17. 24. 31.	(1) (4) (1) (2) (1)	4. 11. 18. 25. 32.	(3) (3) (3) (4) (1)	5. 12. 19. 26. 33.	(2) (3) (4) (4) (4)	6. 13. 20. 27.	(1) (2) (1) (3)	7. 14. 21. 28.	(2) (2) (4) (3)
							OIOL						
1.	(3)	2.	(2)	3.	(2)								
							CISE -	3					
1. 8. 15. 22. 29. 36. 43. 50.	(2) (4) (3) (4) (2) (4) (4) (3) (4)	2. 9. 16. 23. 30. 37. 44. 51.	(3) (3) (4) (3) (4) (4) (3) (3) (2)	3. 10. 17. 24. 31. 38. 45. 52.	(2) (4) (3) (4) (1) (4) (2) (4)	4. 11. 18. 25. 32. 39. 46. 53. 60.	(2) (3) (2) (2) (2) (3) (3) (4) (3) (3)	5. 12. 19. 26. 33. 40. 47. 54. 61.	(3) (2) (3) (3) (2) (4) (4) (4) (4)	6. 13. 20. 27. 34. 41. 48. 55	(4) (4) (4) (4) (1) (3) (3) (1)	7. 14. 21. 28. 35. 42. 49. 56.	(1) (3) (2) (1) (1) (1) (2) (1)
1. 8. 15. 22.	(4) (2) (3) (3)	2. 9. 16. 23.	(4) (1) (1) (1)	3. 10. 17. 24.	(2) (3) (3) (2)	PA 4. 11. 18. 25.	(2) (2) (2) (4) (1)	5. 12. 19. 26.	(2) (2) (1) (1)	6. 13. 20. 27.	(1) (4) (2) (3)	7. 14. 21.	(2) (3) (4)