	Exercise	e-1			
		ONLY ONE OPTI		YPE	
Sect	tion (A) : Acid base	e Concepts			
1.	Which of the followir (1) Fused NaCl	ng is not a strong electroly (2) Acetic acid	rte ? (3) Perchloric acid (a	ıq.) (4) Sodium hydroxide (aq.)	
2.	Which of the followir (1) H_3PO_4	ng is the strongest acid? (2) H ₂ SO ₄	(3) HNO ₂	(4) CH ₃ COOH	
3.	Select Polyprotic Arr (1) H ₃ PO ₂	rhenius acids from the foll (2) H ₃ PO ₃	owing : (3) H ₃ BO ₃	(4) HCOOH	
4.	According to Bronste (1) Base	ed and Lowrry concept, w (2) Acid	ater is a/an: (3) Amphoteric	(4) Salt	
5.	Which of the followir (I) NaH ₂ PO ₃ (II) I (1) I and II only	ng salts of H ₃ PO ₃ exist(s) ⁻ Na ₂ HPO ₃ (III) Na ₃ PO ₃ (2) I, II and IIII	? (3) II and III only	(4) III only	
6.	An acid with molelcu and C ₇ H ₃ O ₃ Na ₃ . The	ular formula $C_7 H_6 O_3$ form e basicity of the acid is:	s three types of sodium	salts. i.e., $C_7H_5O_3Na$, $C_7H_4O_3Na_2$	
	(1) One	(2) Two	(3) Three	(4) Four	
7.	In a reaction, HCO ₃ ⁻ + H ₂ C Which two substanc (1) CO ₃ ⁻² & H ₃ O ⁺	$C \bigoplus CO_3^{-2} + H_3O^+$ es are Bronsted bases ? (2) HCO_3^- & H_3O^+	(3) HCO ₃ ⁻ & CO ₃ ⁻²	(4) CO ₃ ⁻² & H ₂ O	
8.	Consider various sp of HPO ₄ ²⁻ is :	ecies generated when H	₃ PO ₄ dissolved in water.	Among these, the conjugate acid	
	(1) H ₃ PO ₄	(2) H ₂ PO ₄ ⁻	(3) PO ₄ ³⁺	(4) H ₃ O ⁺	
9.	The following equilibrium is established when $HCIO_4$ is dissolved in weak acid HF. HF + $HCIO_4 \implies CIO_4^- + H_2F^+$ Which of the following is correct set of conjugate acid base pair ?				
	(1) HF and $HCIO_4$	(2) HF and CIO_4^-	(3) HF and H_2F^+	(4) HClO ₄ & H ₂ F ⁺	
10.	In the equilibrium $CH_3COOH + HF =$ (1) F ⁻ is the conjugant (2) F ⁻ is the conjugant (3) CH_3COOH is the (4) $CH_3COOH^+_3$ is the	$\Rightarrow CH_{3}COOH_{2}^{+} + F^{-}$ gate acid of CH_{3}COOH te base of HF e conjugate acid of CH_{3}CO ne conjugate base of CH (OOH² COOH		
11.	Boric acid H_3BO_3 is	a :	-		

	(1) Arrhenius acid	(2) Bronsted acid	(3) Lewis acid	(4) All of these		
12.	Which of the following o (1) Cl⁻	can act both as Bronsted (2) HCO_3^-	acid and Bronsted base (3) H ₃ O ⁺	? (4) OH⁻		
13.	Identify the amphoteric (I) H ₂ O (1) I, II	species from the followir (II) NH ₃ (2) III, IV	ng ? (III) H ₂ PO ₄ ⁻ (3) I, II, III	(IV) HCO ₃ - (4) I, II, III, IV		
14.	Which of the following is the strongest conjugate base? (1) CI ⁻ (2) CH ₃ COO ⁻ (3) SO ₄ (4) NO ₂ ⁻					
15.	Which of the reagents I (1) NH_3 (0.1 M)	isted below could be add (2) NH_4CI (0.1 M)	led to water to make 0.11 (3) both	M solution of NH_4^+ ? (4) none of these		
Section	Section (B) : Ostwald dilution law, Property of water, pH scale, Relation between K_a and K_b for conjugated acid and base					
1.	The degree of dissociation in a weak electrolyte (1) On increasing dilution (3) On decreasing dilution		increases : (2) On increasing pressure (4) None of these			
2.	At infinite dilution, the p (1) 1%	ercentage ionisation for (2) 20%	both strong and weak electrolytes is :(3) 50%(4) 100%			
3.	Ostwald's dilution law gives satisfactory results with the solution of which electrolyte ? (1) HCI (2) HNO ₃ (3) CH ₃ COOH (4) NaOH					
4.	Aniline is a very wead dissociation?	ak base. Which of the	e given aniline solution	will have highest degree of		
	(1) 1M aniline	(2) 0.1 M aniline	(3) 0.01 M aniline	(4) 0.02 M aniline		
5.	pH of human blood is 7 (1) 4× 10⁻ଃ	 .4. Then H⁺ concentration (2) 2 × 10⁻⁸ 	on will be: (3) 4 ×10⁻⁴	(4) 2 ×10 ⁻⁴		
6.	The concentration of H	₃ O⁺ ions in pure water is	a 10⁻ ⁶ mol dm⁻³. The corr	esponding concentration of OH-		
	(1)10 ⁻¹⁴ mol dm ⁻³	(2) 10 ⁻⁸ mol dm ⁻³	(3) 10 ⁻⁶ mol dm ⁻³	(4) 10 ⁻⁷ mol dm ⁻³		
7.	pH of pure water is 7 at 298K. If the solution is heated to 320K, which of the following statement is true?(1) pH will decrease(2) pOH will increase(3) pH will increase(4) pH will decrease and pOH will increase					
8.	The ionic product of wa (1) 1 ×10 ⁻²⁰	ter at 25°C is 10⁻¹⁴ . The (2) 1 ×10⁻¹²	e ionic product at 90°C v (3) 1 ×10 ⁻¹⁴	vill be : (4) 1 ×10 ⁻¹⁶		
9.	The values of dissocia strongest acid in water	ition constants of some	acids (at 25°C) are as	s follows. Indicate which is the		

(1) 1.4 × 10 ⁻²	(2) 1.6 × 10 ⁻⁴	(3) 4.4 × 10 ⁻¹⁰	(4) 4.3 × 10 ⁻⁷

10. For two acids A and B, $pK_a = 1.2$, $pK_b = 2.8$ respectively in value, then which is true ? (1) A and B both are equally acidic (2) A is stronger than B (3) B is stronger than A (4) Neither A nor B is strong 11. Select the correct statement : (2) If $[H^+] = \frac{1}{v} \times 10^{-x} \text{ M}$ then pH = x + log y (1) If $[H^+] = y \times 10^{-x}$ M then $pH = x - \log y$ (3) At 25°C, pH of a solution = $14 + \log [OH^{-}]$ (4) All of the above Section (C) : p^H Calculations : Solutions of Strong Acid, Strong Base and their mixture 1. The pH of M/10 HCl is : (1) 3(3) 2(4) 1 (2) 42. The pH of solution obtained by mixing 500 ml of 0.15 M H_2SO_4 with 500 ml of 0.1 M NaOH is : (1) 0(2)1(3) 2(4)7The pH value of 10⁻⁴ M NaOH solution is : 3. (1) 4(2) 10 (3) 6(4) between 6-7 What will be the pH of a solution formed by mixing 40 cm³ of 0.1 M HCl with 10 cm³ of 0.45 M NaOH ? 4. (2) 8 (1) 10 (3) 5 (4) 12 5. Which one has pH =12 ? (1) 0.01 M KOH (2) 1 M KOH (3) 1 M NaOH (4) 0.5 M Ca(OH), Given pH of a solution A is 3 and it is mixed with another solution B having pH 2 keeping the volume 6. same. If both are mixed, then resultant pH of the solution will be : (4) 3.5 (1) 3.2(2) 2.26(3) 3.4On adding 0.04 g solid NaOH to a 100 mL, $\frac{M}{200}$ Ba(OH)₂ solution, determine change in pH : 7. (1) 0(2) + 0.3(3) - 0.3(4) + 0.78. The pH value of 1.0 × 10⁻⁸ M HCl solution is less than 8 because (1) HCl is completely ionised at this concentration (2) The ionization of water is negligible (3) The ionization of water cannot be assumed negligible in comparison with this low concentration of HCI (4) The pH cannot be calculated at such a low concentration of HCI 9. The pH of 10⁻⁷ M NaOH is (1) 7.01 (3) Between 9 and 10 (4) Greater than 10 (2) Between 7 and 8 Section (D) : p^H Calculations : Weak Acid, Weak Base, Polyprotic acid 1. The pH of 0.1 M NH₄OH ($K_{b} = 1.8 \times 10^{-5}$) is : (3) 5.7(1) 1(2) 13(4) 11.12. The pH of 0.1M CH₂COOH (dissociation constant of acetic acid is 1.80 × 10⁻⁵ at 25^oC) will be : (1)5(2) 2.873(3)1(4) 0.18

3.	The concentration of a weak monoprotic acid is C moles L^{-1} and ionisation constant K_a . The pH o solution is :						
	(1) $\frac{1}{2} pK_a - \frac{1}{2} \log C$	(2) $(K_a \times C)^{1/2}$	(3) $\frac{1}{2} pK_a + \frac{1}{2} \log C$	(4) α.c			
4.	Pure water is kept in a pH will be :	vessel and it remains ex	xposed to atmospheric C	CO_{2} which is absorbed. Then its			
	(1) Greater than 7(3) 7		(2) Less than 7 (4) Depends on ionic pr	oduct of water			
5.	Find the percentage ionisation of 0.2 M acetic acid solution, whose dissociation constant is 1.8×10^{-5}						
	(1) 0.198	(2) 0.290	(3) 0.950	(4) None of these			
6.	The pH of a 0.1 M aque (1) 1%	eous solution of a weak a (2) 10%	acid (HA) is 3. What is its (3) 50%	degree of dissociation ? (4) 25%			
7.	0.02 M monobasic acid	dissociates 2%. Hence,	pH of the solution is :				
	(1) 0.3979	(2) 1.3979	(3) 1.699	(4) 3.3979			
8.	Concentration of CH_3C CH_3COOH is :	OO [–] is 0.001 M, when 0.	1 moles of CH ₃ COOH w	ere dissolved in 1L water. K_a of			
	(1) 2 × 10 ⁻⁵	(2) 10 ⁻⁵	(3) 10 ⁻⁶	(4) 2 × 10 ⁻⁴			
9.	For two weak acis A an	nd B, the ratio of their per	cent ionization is 4 : 9. T	he ratio of their K _a would be :			
	(1) 4 : 9	(2) 2 : 3	(3) 16 : 81	(4) 3 : 2			
10.	The ionisation constant of an acid, K_a , is the measure of strength of an acid. The K_a values of acetic acid, hypochlorous acid and formic acid are 1.74×10^{-5} , 3.0×10^{-8} and 1.8×10^{-4} respectively. Which of the following orders of pH of 0.1 mol dm ⁻³ solutions of these acids is correct? (1) acetic acid > hypochlorous acid > formic acid (2) hypochlorous acid > acetic acid > formic acid (3) formic acid > hypochlorous acid > acetic acid (4) formic acid > acetic acid > hypochlorous acid						
11.	For diprotic acid H ₂ S, w	which is the best way to re	epresent its ionisation in	water ?			
	(1) $H_2S \Longrightarrow 2H^+ + S^2$ (3) both	2-	(2) $H_2S \Longrightarrow H^+ + HS^-$ (4) none of these	⁻;HS⁻ ╤═ ੇ H⁺ + S²⁻			
12.	The ionisation constant	t of a tribasic acid is K ₋ .	If its first . second and th	ird ionisation constant are K.			
	K_{a_2} and K_{a_3} respectively	y then :	IZ.	a, ,			
	(1) $K_a = K_{a_1} \times K_{a_2} \times K_{a_3}$	3	(2) $K_a = \frac{K_{a_1}}{K_{a_2} \times K_{a_3}}$				
	(3) $K_{a_2} = \frac{K_{a_1} \times K_a}{K_{a_3}}$		(4) None of these				
13.	What will be the	pH of a 0.01 M	H ₃ PO ₄ solution hav	ing $[PO_4^{3-}] = 10^{-5} M$?			
	$\left[K_{a_1} = 10^{-4}, K_{a_2} = 10^{-6}, \right]$	$K_{a_3} = 10^{-8}$					

	(1) 3	(2) 4	(3) 5	(4) 6	
14.	K_a for a weak acid HA dissolved in 1L of 0.01M	A is 1.44 × 10 ^{- 5} . What 1 HCl solution ?	is the concentration of	A^- when 0.01 mole of HA is	
	(1) 0.01 M	(2) 1.2 × 10 ^{−3} M	(3) 1.44 × 10 ^{–5} M	(4) 0.012 M	
Sectio	on (E) : Salt Hydroly	vsis			
1.	The reverse process of	neutralisation is :			
	(1) Hydrolysis	(2) Decomposition	(3) Dehydration	(4) Synthesis	
2.	When a salt 'X' is disso 'X' is made up of :	olved in water at pH = 7	, the resulting solution b	ecomes alkaline in nature. Salt	
	(1) strong acid and stron(3) weak acid and stron	ng base g base	(2) weak acid and weak(4) strong acid and wea	i base k base	
3.	The salt that when adde (1) Na_2CO_3	ed to water will not chang (2) NaCI	je its pH is : (3) KCN	(4) NH ₄ CI	
4.	The most acidic aqueou (1) CH ₃ COONa	is solution is : (2) Na ₂ CO ₃	(3) NH₄CI	(4) Na ₂ HPO ₄	
5.	The pH a 0.01 M solution of ammonium acetate can be changed by changing :(1) the temperature(2) the volume of solution(3) the concentration(4) the pressure on solution				
6.	Which of the following s (1) Na ₃ PO ₄	alts undergo anionic hyd (2) NaCl	lrolysis ? (3) NH ₄ Cl	(4) FeSO ₄	
7.	The aqueous solution of (1) NaClO	f which of the following s (2) NaClO ₂	alt has the lowest pH ? (3) NaClO ₃	(4) NaClO ₄	
8.	Select the correct combination : (1) The aqueous solution of each Na_3BO_3 and Na_3PO_4 – Acidic nature (2) The aqueous solution of each Na_3BO_3 and CH_3COONa – basic nature (3) The aqueous solutions of each CH_3COONa and $NaCN$ – acidic nature (4) The aqueous solutions of each Na_3PO_4 and NH_4CI – acidic nature				
9.	What is the pH of an aq	ueous solution of ammo	nium acetate (K _a = K _b = ⁻	1.8 × 10 ⁻⁵) ?	
	(1) > 7	(2) 7.0	(3) < 7.0	(4) Zero	
10.	If $pK_b > pK_a$ then the so	lution of the salt of weak	acid and weak base will	be –	
	(1) Neutral	(2) Acidic	(3) Basic	(4) Amphoteric	
11.	$pOH = 7 - 0.5 \ pK_a + 0.5$	$5\mathrm{pK}_\mathrm{b}$ is true for which pa	ir of cation and anion?		
	(1) $C_6H_5NH_3^+$, CH_3COC)-	(2) Na⁺, CN⁻		
12.	(3) Al ³⁺ , Cl ⁻ The hydrolysis constant salt is :	t of 0.5 M ammonium be	(4) NH ₄ ⁺ , NO ₃ [−] nzoate is 6.25 × 10 ⁻⁶ . TI	ne percentage hydrolysis of the	
	(1) 0.25	(2) 0.177	(3) 0.125	(4) 0.50	

13.	A solution of 0.10 M Na (1) 1.6 × 10 ⁻⁴	aZ has pH = 8.90. The K _a (2) 1.6 × 10 ⁻⁵	of HZ is : (3) 6.3 × 10 ⁻¹⁰	(4) 6.3 × 10 ⁻¹¹		
14.	The pH of 0.01 M sodiu	um acetate solution is : [k	$K_a(CH_3COOH)] = 2 \times 10^{-1}$	5		
	(1) 7.25	(2) 6.5	(3) 8.05	(4) 8.35		
Section	on (F) : Buffer Solu	tions				
1.	pH of circulating blood (1) $H_2PO_4^{-}/HPO_4^{2-}$	is maintained around 7.4 (2) CO_2 / HCO_3^-	by the action of buffer s (3) NH_4CI/NH_4OH	ystem of : (4) CH₃COO⁻/CH₃COONa.		
2.	Which of the following does not act as a buffer solution ?(1) Sodium acetate and acetic acid(2) Boric acid and borax(3) Na_3PO_4 and Na_2HPO_4 (4) Sodium acetate and sodium citrate					
3.	Addition of sodium acetate solution to acetic acid cause the following change (1) pH increases (2) pH decreases (3) pH remains unchanged (4) pH becomes 7					
4.	Buffer solutions have constant acidity and alkalinity because : (1) these give unionised acid or base on reaction with added acid or alkali. (2) acids and alkalies in these solution are shielded from attack by other ions. (3) they have large excess of H ⁺ or OH ⁻ ions. (4) they have fixed value of pH					
5.	In which of the following respective volume ratios should 0.1 M NH_4OH solution & 0.1 M HCl solution be mixed, so that the resulting solution behaves like a buffer solution ? (1) 1 : 1 (2) 2 : 1 (3) 1 : 2 (4) No such volume ratio is possible					
6.	Which may be added to one litre of water to act a buffer: (1) One mole of CH_3COOH and one mole of HCI(2) One mole of NH_4OH and one mole of NaOH (3) One mole of NH ₄ CI and one mole of HCI (4) One mole of CH ₂ COOH and 0.5 mole of NaOH					
7.	Which of these mixtures constitute buffer solutions ? Mixture 1 : 25 mL of 0.10 M HNO ₃ and 25 mL of 0.10 M NaNO ₃ Mixture 2 : 25 mL of 0.10 M (COOH) ₂ and 25 mL of 0.10 M NaOH (1)1 only (2) 2 only (3) both 1 and 2 (4) neither 1 nor 2					
8.	Calculate the pH of a solution made by mixing 150 cm ³ of 0.10 M CH ₃ COONa and 250 cm ³ of 0.10 M CH ₃ COOH. [K _a of CH ₃ COOH = 1.8×10^{-5}] (1) 237 (2) 4.52 (3) 4.74 (4) 4.97					
9.	A buffer solution is pr sufficient amount of wa (1) 1.97	epared by mixing 0.050 ter to give 500 mL of sol (2) 2.17	moles of a weak acid ution (K _a for HA is 4.5 × ² (3) 2.74	HA and 0.20 moles of NaA in 10 ⁻⁴). The pH of this solution is : (4) 3.95		
10.	A buffer solution with process of NH_4CI that sh	oH 9 is to be prepared to one litr	by mixing NH_4CI and NH_6CI and NH_6CI and NH_6CI . [K _b =	H_4OH . Calculate the number of 1.8 $ imes$ 10 ⁻⁵]		
	(1) 3.4	(2) 2.6	(3) 1.5	(4) 1.8		
11.	Which of the given solu	itions have pOH = pK _b (N	νH ₃) ?			

	(1) 10 ml of 0.1 M HCl (3) 50 ml of 0.2 M HCl	+ 10 ml of 0.2 M NH ₃ + 20 ml of 1M NH ₃	(2) 10 ml of 0.1 M HCl (4) all of these	+ 20 ml of 0.1 M NH ₃		
12.	$K_{\rm b}$ of aniline is 10 ⁻¹⁰ . A solution containing equal moles of aniline and anilinium chloride will be :					
	(1) basic	(2) neutral	(3) acidic	(4) can't be predicted		
13.	The ionization constant to prepare a buffer with (1) 1 : 10	t of a certain weak acid is pH = 5 using this acid a (2) 10 · 1	s 10^{-4} . What should be the nd one of the salts ?	ne [salt] to [acid] ratio if we have		
	(1) 1.10	(2) 10.1	(0) 0 : +	(-) 0		
14.	In a mixing of acetic increased ten times. The	acid and sodium acetat nen the pH of the solutior	e the ratio of concentra	tion of the salts to the acid is		
	(1) Increases by one	(2) Decreases by one	(3) Decrease ten fold	(4) Increase ten fold		
Section (G) : Acid base Titration and Indicator						
1.	Which indicator will be	suitable for the titration of	f acetic acid vs NaOH ?			
	(1) methyl orange [pK _{in}	= 3.7]	(2) bromocresol green	$[pK_{in} = 4.7]$		
	(3) chlorophenol red [p	K _{in} = 6.1]	(4) phenolphthalein [pk	$x_{in} = 9.6$]		
2.	The pH indicators are :(2) Salts of weak acids and weak bases(3) Either weak acids or weak bases(4) Either strong acids or strong bases					
2	The all reaso of moth	l red indicator in .	.,			
3.	(1) 4.2 to 6.3	(2) 8.3 to 10.0	(3) 8.0 to 9.6	(4) 6.8 to 8.4		
4.	What is the pH of the s ($K_a = 1.8 \times 10^{-5}$)	solution at half neutraliza	tion in the titration of 0.1	M CH ₃ COOH and 0.1 M KOH :		
	(1) 4.75	(2) 1	(3) 13	(4) Zero		
5.	A 0.200 g sample of be of the Ba(OH) ₂ solution $[C_6H_5COOH,Molar Mas]$	enzoic acid, C_6H_5COOH , is required to reach the as = 122.1 g mol ⁻¹]	is titrated with a 0.120 M equivalence point ?	Ba(OH) ₂ solution. What volume		
	(1) 6.82 mL	(2) 13.6 mL	(3) 17.6 mL	(4) 35.2 mL		
6.	0.1 dm ³ of 0.1 M acetient the pH of the solution v	c acid is titrated against vill be : ($pK_a = 4.74$)	0.1 M NaOH. When 50	cm ³ of 0.1 M NaOH are added,		
	(1) 2.37	(2) 4.74	(3) 1.34	(4) 5.74		
Section	on (H) : Solubility p	roduct and solubil	ity calculation			
1.	Which is the correct rep	presentation of the solub	ility product constant of A	Ag ₂ CrO ₄ ?		
	(1) $[Ag^+]^2 [CrO_4^{-2}]$	(2) [Ag ⁺] [CrO ₄ ⁻²]	(3) $[2Ag^+][CrO_4^{-2}]$	(4) $[2Ag^+]^2 [CrO_4^{-2}]$		
2.	If the solubility of calciu	Im fluoride in pure water	is x mol/L, Its solubility p	roduct is :		
	(1) √2x	(2) 2x ²	(3) 4x ³	(4) x ²		
3.	The solubility of PbCl, is:					

ιy

	(1) $\sqrt{K_{sp}}$	(2) ${}^{3}\sqrt{K_{sp}}$	$(3) \sqrt[3]{\frac{K_{sp}}{4}}$	(4) $\sqrt{8K_{sp}}$
4.	The aqueous solution of ions:	of which of the following	sulphides would contain	maximum concentration of S ²⁻
	(1) MnS (K _{sp} = $1.1 \times 10^{\circ}$) ⁻²¹)	(2) ZnS (K _{sp} = 1.1×10^{-10}	-23)
	(3) PbS (K _{sp} = 1.1×10	⁻³⁵)	(4) CuS (K _{sp} = $1.1 \times 10^{\circ}$	-30)
5.	The solubility product c	of Ag_2CrO_4 is 32×10^{-12} . W	/hat is the concentration	of CrO_4^{2-} ions in that solution
	(1) 2 × 10 ⁻⁴ M	(2) 16 × 10 ^{-₄} M	(3) 8×10 ⁻⁴ M	(4) 8×10 ⁻ 8 M
6.	The solubility of BaSO BaSO $_{4}$ = 233)	, in water is 2.33 × 10 ⁻³ (g / litre. Its solubility proc	duct will be (molecular weight of
	(1) 1×10⁻⁵	(2) 1×10 ⁻¹⁰	(3) 1×10 ⁻¹⁵	(4) 1×10 ⁻²⁰
7.	K _{sp} of AgCl is 1.8 × approximetaly ?	10 ⁻¹¹ . The minimum vol	ume of water required	to dissove 1.9 mg of AgCI is
	(1) 10L	(2) 2L	(3) 1L	(4) 20L
8.	If the K_{sp} of CaF_2 at 25 ^o	$^{\rm PC}$ is 1.6 × 10 ⁻¹⁰ , then the	e number of moles of the	salt must be dissolved in 2.0 L
	of water at 25°C to form (1) 2.6 × 10 ⁻² mol	n a saturated solution is : (2) 1.3 × 10 ⁻³ mol	(3) 6.8 × 10 ^{-₄} mol	(4) 3.4 × 10 ⁻⁴ mol
9.	Solubility of BaF_2 in a s	solution of Ba(NO ₃) ₂ will b	be represented by the co	ncentration term:
	(1) [Ba ²⁺]	(2) [F ⁻]	(3) 1/2[F ⁻]	(4) 2[NO ₃ ⁻]
10.	The solubility of CaF_2 ($K_{sp} = 3.4 \times 10^{-11}$) in 0.00	05 M solution of BaF_2 is :	
	(1) 3.4 × 10 ⁻¹⁹ M	(2) 1.36 × 10 ⁻⁶ M	(3) 3.4 × 10 ⁻⁷ M	(4) 1.36 × 10 ^{−7} M
11.	$\rm K_{sp}$ of AgCl is 1 \times 10 ⁻¹⁰	. Its solubility in 0.1 M KM	NO ₃ will be :	
	(1) 10 ⁻⁵ moles/litre	(2) > 10^{-5} moles/litre	$(3) < 10^{-5}$ moles/litre	(4) None of these
12.	Solubility of AgCI will b	e minimum in :		
	(1) 0.001M AgNO ₃	(2) Pure water	(3) 0.01 M CaCl ₂	(4) 0.01 M NaCl
13.	The necessary condition	on for saturated solution i	s :	
	(1) Product of ionic unit = Solubility p	concentrations raised product	to power their numbe	r produced from one formula
	(2) Products of ioni unit < solubility p	c concentrations raised roducts	l to power their numbe	r produced from one formula
	(3) Product of ionic unit > solubility p	c concentrations raised product	to power their numbe	r produced from one formula
	(4) None of the above	/e		
14.	Which one of the follow	ving is most soluble ?		
	(1) CuS ($K_{sp} = 8 \times 10^{-37}$)		(2) MnS (K _{sp} = 7×10 ⁻¹⁶)	
	(3) Bi_2S_3 (K _{sp} = 1×10 ⁻⁷⁰)	(4) Ag_2S ($K_{sp} = 6 \times 10^{-51}$)	
15.	If each of the following	salts has $K_{sp} = 1 \times 10^{-9}$, w	which of them is the least	soluble in water ?

IONIC EQUILIBRIUM

	(1) XY	(2) XY ₂	(3) X ₂ Y	(4) X ₃ Y
16.	Equal volumes of two s (1) 0.02 M $CaCl_2 + 0.00$ (3) 0.2 M $CaCl_2 + 0.004$	olutions are mixed. The 4 M Na ₂ SO ₄ 4 M Na ₂ SO ₄	one in which CaSO ₄ (K _{sp} (2) 0.002 M CaCl ₂ + 0.0 (4) 0.2 M CaCl ₂ + 0.00	$_{9}$ = 2.4 × 10 ⁻⁵) is precipitated is : 04 M Na ₂ SO ₄ 04 M Na ₂ SO ₄ .
17.	If K _{sp} (AgCl) is 10 ⁻¹⁰ , th (1) [Ag ⁺] = 10 ⁻¹⁰ , [Cl ⁻] = (3) [Ag ⁺] = 10 ⁻⁶ M [Cl ⁻]	nen which of the solution = 1M = 10 ^{–5} M	are saturated with AgCl (2) [Ag ⁺] = 10 ⁻¹¹ , [Cl ⁻] = (4) [Ag ⁺] = 10 ⁻² M, [Cl ⁻]	? = 1M = 10 ^{-8.5} M
18.	K_{sp} of AgBr is 5 × 10 ⁻¹³ (1) 0.1 M AgNO ₃ and 5 (3) 2 × 10 ⁻⁶ M AgNO ₃ a	. Precipitation of AgBr w × 10 ^{–12} M NaBr and 4 × 10 ^{–8} M NaBr	vill take place in a solutio (2) 5 × 10 ⁻¹² M AgNO ₃ (4) 2 × 10 ⁻⁶ M AgNO ₃ a	n having : and 0.1 M NaBr and 4 × 10 ^{–6} M NaBr
	Exercise -	2		
1.	The conjugate base of $(1) [AI(H_2O)_3(OH)_2]^+$	[AI(H₂O)₃(OH)₃] is : (2) [AI(H₂O)₃(OH)₂O] [_]	(3) [AI(H₂O)₃(OH)₃] [_]	(4) [AI(H₂O)₂(OH)₄] [−]
2.	Following specis are cla (i) $H_2PO_2^-$ (ii) H_2P (v) HPO_4^{2-} (vi) NH which is correct match: (1) Acidic – (vi), (vii)	assified into acid, base a O_3^- (iii) $H_2PO_4^-$ $_4^+$ (vii) CF (2) Basic – (i), (iv)	nd amphiprotic species c (iv) HPO ₃ ^{2–} I ₃ COOH ₂ + (3) Amphiprotic – (ii), (iii)	on the basis of protonic concept , (v) (4) All are correct
3.	Which of the following of (1) $H_3BO_3 \xrightarrow{H_2O} H_3C$ (3) $H_3BO_3 \xrightarrow{3H_2O} 3H_3$	correctly explains the nat $P^{+} + H_2 BO_3^{-}$ $O^{+} + BO_3^{3-}$	ure of boric acid in aque (2) $H_3BO_3 \xrightarrow{2H_2O} 2H_3$ (4) $H_3BO_3 \xrightarrow{H_2O} B(C)$	bus medium ? ${}_{3}O^{+} + HBO_{3}^{2-}$ DH) $_{4}^{-} + H^{+}$
4.	For an acid solution, at $(1) > 10^{-7} \mathrm{M}$	25°C the [OH⁻] is: (2) < 10 ^{_7} M	(3) 10 ⁻¹⁴ M	(4) 10 ⁻⁷ M
5.	In pure HCOOH liquid, 27°C (K = [HCOOH ₂ ⁺] [1 (1) 10 ⁻³	concentration of HCOO- HCOO-]) ? (2) 10 ³	$= 10^{-3}$ M at 27°C. What (3) 10 ⁶	is the self ionisation constant at $(4) \ 10^{-6}$
6.	K_{a1} , K_{a2} and K_{a3} values correct :	for H ₃ PO ₄ are 10 ⁻³ , 10 ⁻⁸	and 10 ⁻¹² respectively. If	$K_{\rm w}$ (H ₂ O) = 10 ⁻¹⁴ , then which is
	(1) Dissociation constant (3) K_b of $H_2PO_4^- 10^{-11}$	nt of HPO_4^{2-} is 10^{-12}	(2) K_b of HPO ₄ ^{2–} 10 ^{–6} (4) All are correct	
7.	Which of the following solutions are not correct (1) 0.001 M HNO ₃ ; (pH = 3) (3) 10^{-8} M NaOH ; (pH = 7.02)		y matches with its pH : (2) 0.005 M H_2SO_4 ; (pl (4) 0.0008 M Ba(OH) ₂ ;	H = 2) (pH = 11)
8.	Which solution has pH (1) 10^{-6} M CH ₃ COOH s (3) 10^{-6} M H ⁺ solution	exactly equal to 6 at 25% olution	C ? (2) 10 ⁻⁸ M NaOH soluti (4) 5 × 10 ⁻⁷ M H ₂ CO ₃ s	on olution

9. The pH of 1L NaOH solution can be changed from 13 to 12 by :

	(1) Diluting it to 10L(3) Removing 0.9 mole of OH⁻		(2) Adding 0.1 mole of NaOH(4) Removing 0.01 mole of OH⁻		
10.	Which would decrease the pH of 25cm ³ of a 0.01M solution of hydrochloric acid ? (1) The addition of 25cm ³ of 0.005 M hydrochloric acid (2) The addition of 25 cm ³ of 0.02 M hydrochloric acid (3) The addition of magnesium metal (4) None of these				
11.	10 ⁻⁶ M HCI is diluted to (1) 6.0	o 100 times. Its pH is : (2) 8.0	(3) 6.95	(4) 9.5	
12.	The hydrogen ion conc	entration of 0.1 M solution	on of CH ₃ COOH, which is	s 30% dissociated, is :	
	(1) 0.03	(2) 3.0	(3) 0.3	(4) 30.0	
13.	 The pK_a of acetic acid is 4.74, which implies that : (1) pH of 1 N acetic acid is 4.74. (2) at pH 4.74, the dissociation of acetic acid is maximum. (3) at pH 4.74, half of the acetic acid molecules are dissociated in the solution. (4) at pH 4.74, the dissociation of acetic acid is minimum. 				
14.	Equal volumes of 0.1 N which of the following i	A aniline solution (K _b = 1 s correct ?	0 ⁻¹⁰) is mixed with 0.1M	NH_3 solution ($K_b = 10^{-6}$). Then,	
	(1) $\alpha_{\text{aniline}} > \alpha_{\text{NH3}}$		(2) $\alpha_{\text{aniline}} = \alpha_{\text{NH3}}$		
	(3) $\alpha_{\rm NH3}$ > $\alpha_{\rm aniline}$		(4) Can't be predicted f	rom the given information.	
15.	The dissociation const relative strength of the	ant of two acids HA ₁ and acids will be approximate	d HA₂ are 3.14 × 10 ^{₋₄} ar ely :	nd 1.96 × 10⁻⁵ respectively. The	
	(1) 1 : 4	(2) 4 : 1	(3) 1 : 16	(4) 16 : 1	
16	The K _a of monobasic acid A, B and C are 10^{-6} , 10^{-8} and 10^{-10} respectively. The concentrations of A, B and C are respectively. 0.1M, 0.01 M and 0.001 M. Which of the following is correct for pOH of A, B & C? (1) pOH (A) < pOH (B) < pOH (C) (2) pOH (A) > pOH (B) > pOH (C) (3) pOH (A) = pOH (B) = pOH (C) (4) pOH (C) < pOH (A) < pOH (B)				
10.	The K_a of monobasic ac C are respectively. 0.1M (1) pOH (A) < pOH (B) (3) pOH (A) = pOH (B)	cid A, B and C are 10 ^{–6} , 1 1, 0.01 M and 0.001 M. Wi < pOH (C) = pOH (C)	0 ⁻⁸ and 10 ⁻¹⁰ respectively hich of the following is cor (2) pOH (A) > pOH (B) (4) pOH (C) < pOH (A)	y. The concentrations of A, B and rect for pOH of A, B & C ? > pOH (C) < pOH (B)	

18. A diprotic, Carbonic acid has following the K_a values.

	H_2CO_3	+ H ₂ O =		- H ₃ O⁺,	$K_{a1} = 4.3 \times 10$	-7		
	HCO ₃ -	+ H ₂ O =	$ \longrightarrow CO_3^{-2} +$	∙ H ₃ O⁺,	$K_{a2} = 4.8 \times 10$	-11		
	What is the con (1) 4.3 × 10⁻ ⁷	icentrati	on of carbona (2) 4.8 × 10	ate ion in sa -11 M	aturated solution (3) 4.6 × 10^{-11}	n of H₂CO ' M	₀ that is 0.037 M ? (4) 3.8 × 10-9 M	
19.	How many of th Na ₂ SO ₄	ne follow Ca(O⊦	ving are acidic I)Cl	salts ? Pb(Oł	H)CI	NaHSC	D_4	
	NaHSO ₃	Na ₂ SC) ₃	Na ₂ S		BiOCI	NaH ₂ PO	4
	(1) 2		(2) 3		(3) 6		(4) 8	
20.	The salt of whic	ch of the	e following fou	r weak aci	ds will be most l	hydrolyse	d ?	
	(1) HA ; K _a = 1	× 10 ⁻⁶	(2) HB ; K _a =	= 2 × 10 ⁻⁶	(3) HC ; $K_a =$	3 × 10 ^{–8}	(4) HD ; $K_a = 4 \times$	10 ⁻¹⁰
21.	The pH of 0.1 M solution of the following salts (1) NaCl < $NH_4Cl < NaCN < HCl$ (3) NaCN < $NH_4Cl < NaCl < HCl$		ving salts i	increases in the order: (2) HCI < NH ₄ CI < NaCI < NaCN (4) HCI < NaCI < NaCN < NH ₄ CI				
22.	The pH of NaA (1) K _a (HA) > K _a	> pH of (HB)	NaB solution (2) K _a (HB) >	. Then the • K _a (HA)	correct relation (3) K _b (A ⁻) > K	is: (B [–])	(4) 2 & 3 both	
23.	% hydrolysis of	0.1 M (CH₃COONH₄,	when K _a =	= K _b = 1.8 × 10 ⁻⁵	⁵ is :		
	(1) 0.55		(2) 7.63	ŭ	(3) 0.55 × 10⁻	-2	(4) 7.63×10^{-3}	
24.	What is the effect of pH on the solubility of $M(CN)_2$ (neglect hydrolysis of M^{2+} ion) ?							
	(1) pH decreases, solubility decreases.(3) pH decreases, solubility increases.		es. s.	(2) pH increases, solubility increases.(4) no dependence on pH of solution.				
25.	Which of the fol (1) NaOH	llowing	compound for (2) K ₂ CO ₃	ms an aqu	eous solution w (3) BaCl ₂	hich is ac	idic when compare (4) Al ₂ (SO ₄) ₃	ed with water
26.	Which of the fo	llowina	solutions can	not act as a	a buffer ?			
	(1) NaH ₂ PO ₄ +	H ₃ PO ₄			(2) CH ₃ COOF	+ CH₃CC	DONa	
	(3) HCl + NH_4C	1			(4) H ₃ PO ₄ +Na	a ₂ HPO ₄		
27.	Which of the fol (1) 0.1 mol dm [_]	llowing [∙] ³ NH₄Oł	will produce a H and 0.1 mol	buffer solı dm⁻³ HCl	ution when mixe	ed in equa	l volumes?	

- (2) 0.05 mol dm $^{-3}$ NH $_4OH$ and 0.1 mol dm $^{-3}$ HCl
- (3) 0.1 mol dm⁻³ NH₄OH and 0.05 mol dm⁻³ HCl (4) 0.1 mol dm⁻³ CH₄COONa and 0.1 mol dm⁻³ NaOH
- 28.
 - A solution contain equal moles of CH_3COOH and CH_3COONa . The pH will change significantly if :
 - (1) small amount of CH_3 COONa is added without changing volume.
 - (2) small amount of CH_3COOH is added without changing volume.
 - (3) the solution is diluted
 - (4) moles of HCl equal to moles of CH_3COONa are added.

29.	K_a for HCN is 5 x 10 ⁻¹⁰ . For maintaining a constant pH of 9, the volume of 5 M KCN solution required to					
	(1) 4 mL	(2) 8 mL	(3) 2 mL	(4) 10 mL		
30.	50 mL of 2M acetic ac of: $(K_a = 10^{-5})$	id mixed with 10 mL of 7	IM sodium acetate solut	ion will have an approximate pH		
	(1) 4	(2) 5	(3) 6	(4) 7		
31.	Which of the following (1) 0.1 M CH ₃ COOH 8 (3) 0.1 M CH ₃ COOH 8	solutions has minimum k 6 0.1 M CH ₃ COONa 6 0.2 CH ₃ COONa	ouffer capacity ? (2) 0.01 M CH ₃ COOH & 0.01 M CH ₃ COONa (4) 0.001 M CH₂COOH & 0.001 M CH₂COONa			
32.	The amount of sodium hydrogen carbonate, NaHCO ₃ , in an antacid tablet is to be determined dissolving the tablet in water and then titrating the resulting solution with hydrochloric acid. Wh indicator is the most appropriate for this titration ? Acid K_a H_2CO_3 2.5 × 10 ⁻⁴ HCO_3 2.4 × 10 ⁻⁸ (1) methyl orange, $pK_{in} = 3.7$ (2) bromothymol blue, $pK_{in} = 7.0$ (3) phenolphthalein, $pK_{in} = 9.3$ (4) alizarin yellow, $pK_{in} = 12.5$					
33.	 Why are strong acids generally used as standard solutions in acid-base titrations (1) The pH at the equivalence point will always be 7 (2) They can be used to titrate both strong and weak bases (3) Strong acids form more stable solutions than weak acids (4) The salts of strong acids do not bydrolysed 					
34.	The total number of dif	fferent kind of buffers obt	ained during the titration	of H_3PO_4 with NaOH are:		
	(1) 3	(2) 1	(3) 2	(4) Zero		
35.	A 50 ml sample of neutralization. If the pl then pK _a of HA is :	weak monobasic acid H = 5 when 100 ml of sa	HA requires 100 mI o ame NaOH is added to 1	of 0.25 M NaOH for complete 00 ml of original sample of HA.,		
	(1) 5	(2) 5.5	(3) 6	(4) 9		
36.	The solubility product AgCl?	of AgCl is 10 ⁻¹⁰ . What v	volume of water (in L) is	required to dissolve 2.87 mg of		
	(1) 1L	(2) 2L	(3) 4L	(4) 10L		
37.	The solubility of CaF_2	$(K_{sp} = 3.4 \times 10^{-11}) \text{ in } 0.1$	M solution of NaF would	be:		
	(1) 3.4 × 10 ⁻¹² M	(2) 3.4 × 10 ⁻¹⁰ M	(3) 3.4 × 10 ⁻⁹ M	(4) 3.4 × 10 ^{−13} M.		
38.	Which of the following (1) Add hydrochloric ac (2) Add a solution of P (3) Add a solution of P (4) None of the above	would increase the solut cid $b(NO_3)_2$ $b(CH_3COO)_2$ – the solubility of a comp	bility of Pb (OH) ₂ :	stant temperature.		

39.	The solubility Fe(OH) ₃ will be maximum in :									
	(1) 0.1 M Ca(OH) ₂	(2) 0.2 M HCI	(3) 0.2M NaOH	(4) 0.2 M H ₂ SO	D ₄					
40.	The pH of a solution p log = $(2 \times (2.5)^{1/3}) 0.43$	repared by adding 1 mo 3) :	le of Mg(OH) ₂ in 1L wat	er is (K _{sp} Mg(O	$H)_2 = 1 \times 10^{-11},$					
	(1) 9	(2) 3.87	(3) 10.43	(4) 5						
41.	Solubility of As_2S_3 in 10 ($K_{sp}As_2S_3 = 16 \times 10^{-27}$) ^{–3} M Na₂S solution, assu)	ming no hydrolysis of ca	tionic or anionic	part is :					
	(1) 10 ⁻¹⁰ M	(2) 2 × 10 ^{−9} M	(3) 10 ⁻⁹ M	(4) 2 × 10⁻° M						
42.	The solubility product of If S_1 and S_2 are their so	of Ag_2CO_3 and $FeCO_3$ in blubilities in water respec	water at 25ºC are 4 × 10 tively when dissolved se	$^{-12}$ and 2.5 × 10 parately, then S) ^{–11} respectively. ₁ /S ₂ is :					
	(1) 2 : 1	(2) 20 : 1	(3) 1 : 2	(4) 1 : 20						
43.	How many millimoles of NaOH should be added to 1L of 0.1M FeCl ₃ solution to just start the precipitation of Fe(OH) ₃ ? K_{sp} [Fe(OH) ₃] = 8 × 10 ⁻¹³ .									
	(1) 2	(2) 4	(3) 0.2	(4) 0.4						
44.	$K_{sp} (SnS) = 10^{-25}$									
	To a solution containing 0.01M Sn ²⁺ and 0.2 M Zn ²⁺ , S ²⁻ is added gradually without changing the									
	volume of solution. Wh	ich of the following is cor	rect?							
	 (1) SnS precipitates firs (2) both precipitate teach 	st	(2) ZnS precipitates first							
			(4) No precipitation takes place							
45.	The solubility product c solutions of :	of AgCl is 1.8 × 10 ^{−10} . Pre	ecipitation of AgCI will oc	cur only when e	qual volumes of					
	(1) 10 ⁻⁴ M Ag ⁺ and 10 ⁻⁴	^I M Cl ⁻ are mixed	(2) 10^{-7} M Ag ⁺ and 10^{-7} M Cl ⁻ are mixed							
	(3) 10 ⁻⁵ M Ag⁺ and 10 ⁻	⁵ M Cl [–] are mixed	(4) 2 × 10 ⁻⁵ M Ag ⁺ and	2 × 10 ^{−5} M Cl [–] a	are mixed.					
	Evercice.	3								
	LAUIUI3U	· U								
	PART - I : NEE	T / AIPMT QUES	TIONS (PREVIOU	JS 15 YEA	RS)					
1.	Ionisation constant of (initial concentration of (CH_3COOH is 1.7 x 10 ⁻⁵ a CH ₃ COOH molecules.	and concentration of H ⁺ id	ons is 3.4 × 10⁻	⁴ , Then, find out [AIPMT-2001]					
	(1) 3.4 ×10 ⁻⁴	(2) 3.4 × 10 ⁻³	(3) 6.8 × 10 ⁻⁴	(4) 6.8 × 10 ⁻³						
•			.							

2.Solubility of a M_2S type salt is 3.5×10^{-16} , then find out its solubility product :[AIPMT-2001](1) 1.7×10^{-6} (2) 1.7×10^{-16} (3) 1.7×10^{-18} (4) 1.7×10^{-12}

3. Solubility of MX_2 type electrolytes is 0.5×10^{-4} mol/L, then find out K_{sp} of electrolytes. **[AIPMT-2002]** (1) 5×10^{-12} (2) 25×10^{-10} (3) 1×10^{-13} (4) 5×10^{-13}

4.	Solution of 0.1 N NH_4C (1) 9.25	^{K_b} of NH ₄ OH. [AIPM (4) 8.25	T-2002]				
5.	Which of the following (1) CH ₃ COOK	has highest pH ? (2) Na ₂ CO ₃	(3) NH ₄ Cl	[AIPM (4) NaNO ₃	T-2002]		
6.	The solubility product of	of a sparingly soluble salt	t AX ₂ is 3.2 × 10 ^{−11} . Its so	olubility (in mol/L) is [AIPM]	T-2003]		
	(1) 5.6 × 10 ⁻⁶	(2) 3.1 × 10 ⁻⁴	(3) 2 × 10 ⁻⁴	(2) 4 × 10 ⁻⁴	-		
7.	The solubility product of at 25°C is approximate	of AgI at 25°C is 1.0 × 10 ly (in mol ^{–1})	10 ⁻¹⁶ mol ² L ⁻² . The solubility of AgI in 10 ⁻⁴ N solution of KI [AIPMT 03]				
	(1) 1.0 × 10 ⁻¹⁶	(2) 1.0 × 10 ⁻¹²	(3) 1.0 × 10 ⁻¹⁰	(4) 1.0 × 10 ⁻⁸			
8.	The rapid change of p detection. pH of the so (In ⁻) forms of the indica	H near the stoichiometri plution is related to ratio ator by the expression	c point of an acid-base of concentration of con	titration is the basis of lugate acid (H In) and [AIF	indicator the base PMT 04]		
	(1) log $\frac{[ln^-]}{[Hln]} = pK_{ln} - p$	bH	(2) log $\frac{[Hln]}{[ln^-]} = pK_{ln} + p$	н			
	(3) log $\frac{[Hln]}{[ln^-]} = pH - pH$	< _{In}	(4) log $\frac{[ln^-]}{[Hln]} = pH - pH$	< _{in}			
9.	What is the correct rel sulphide (pH ₂), sodium	ationship between the p selenide (pH ₃), and sod	Hs of isomolar solutions ium telluride (pH ₄) ?	of sodium oxide (pH ₁) [AIPM), sodium T-2005]		
	(1) pH ₁ >pH ₂ pH ₃ >pH ₄	(2) pH ₁ <ph<sub>2<ph<sub>3<ph<sub>4</ph<sub></ph<sub></ph<sub>	(3) pH ₁ <ph<sub>2<ph<sub>3pH₄</ph<sub></ph<sub>	(4) pH ₁ >pH ₂ >pH ₃ >pH	4		
10.	Which of the following (1) HNO ₂ and NaNO ₂	pairs constitutes a buffer (2) NaOH and NaCl	er ? [AIPMT-2006] (3) HNO_3 and NH_4NO_3 (4) HCI and KCI				
11.	The hydrogen ion conc	centration of a 10 ⁻⁸ M HC	aqueous solution at 29	8 K (K _w = –10 ^{–14}) is [Al	PMT 06]		
	(1) 9.525×10^{-8} M	(2) 1.0 × 10 ⁻⁸ M	(3) 1.0×10^{-6} M	(4) 1.0525×10^{-7} M			
12.	Calculate the pOH of a (1) 7.00	solution at 25°C that co (2) 4.00	ntains 1 × 10 ^{–10} M of hyd (3) 9.00	ronium ions. [AIPN (4) 1.00	IT-2007]		
13.	A weak acid, HA, has percentage of the acid	a K_a of 1.00 × 10 ⁻⁵ . If 0. dissociated at equilibriur	100 mol of the acid is di n is closest to	ssolved in one litre of w [AIF]	vater, the PMT 07]		
	(1) 0.100%	(2) 99.0%	(3) 1.00%	(4) 99.9%			
14.	Equal volumes of three concentration in the mi	e acid solutions of pH 3 xture ?	,4 and 5 are mixed in a	vessel. What will be th [Al	ne H⁺ ion PMT 08]		
	(1) 1.11 × 10 ⁻⁴ M	(2) 3.7×10^{-4}	(3) 3.7 × 10 ⁻³	(4) 1.11 × 10 ^{−3}			
15.	Solubility product cons 3.2 \times 10 ⁻¹⁴ and 2.7 \times	stants (K _{sp}) of salts of ty 10 ^{–15} respectively. Solut	vpes MX, MX ₂ at M ₃ X a pility (mol dm ⁻³) of the s	t temperature T are 4. alts at temperature T a ال م ا	0 × 10 ^{−8} , are order. PMT 081		
	(1) MX > MX ₂ > M ₃ X	(2) $M_3X > MX_2 > MX$	(3) MX ₂ > M ₃ X > MX	(4) MX > $M_3X > MX_2$			

16.	. The ionisation constant of ammonium hydroxide is 1.77 × 10 ⁻⁵ at 298 K. Hydroly ammonium chloride is :							
	(1) 5.65 x 10 ⁻¹⁰	(2) 6.50x 10 ⁻¹²	(3) 5.65 x 10 ⁻¹³	(4) 5.65 x 10 ⁻¹²				
17.	What is the [OH ⁻] in t M Ba(OH) ₂ ?	he final solution prepared	l by mixing 20.0 mL of 0	.050 M HCl with 30.0 mL [AIPM]	. of 0.10 [-2009]			
	(1) 0.10 M	(2) 0.40 M	(3) 0.0050 M	(4) 0.12 M				
18.	If pH of a saturated so 2010]	plution of Ba(OH) $_2$ is 12, t	he value of its $K_{_{\rm SP}}$ is:	[AIP	MT-			
	(1) 4.00 × 10 ^{−6} M ³	(2) 4.00 × 10 ⁻⁷ M ³	(3) 5.00 × 10 ⁻⁶ M ³	(4) 5.00 × 10 ⁻⁷ M ³				
19.	What is [H ⁺] in mol/L CH ₃ COOH = 1.8×10	1 0.10 M in CH ₃ COOH 1 [AIPM]	?(K _a for [-2010]					
	(1) 3.5 × 10 ⁻⁴	(2) 1.1 × 10⁻⁵	(3) 1.8 × 10 ^{-₄}	(4) 9.0 × 10 ⁻⁶				
20.	In a buffer solution co solution is:	ontaining equal concentra	tion of B⁻ and HB, the k	ς _₀ for B⁻ is 10⁻¹⁰. The pH ([AIPM]	of buffer [-2010]			
	(1) 10	(2) 7	(3) 6	(4) 4				
21.	In qualitative analysis chloride salts. A solu added to this solution be at equilibrium ? (K	, the metals of Group I c tion initially contains Ag⁺ until the Cl⁻ concentratio _{sp} for AgCl = 1.8 × 10 ⁻¹⁰ , P	an be separated from ot and Pb ²⁺ at a concentr in is 0.10 M. What will th K_{sp} for PbCl ₂ = 1.7 × 10 ⁻⁵	her ions by precipitating ation of 0.10 M. Aqueou e concentrations of Ag ⁺ a .) [AIPM]	them as s HCI is and Pb ²⁺ [-2011]			
	(1) $[Ag^+] = 1.8 \times 10^{-7}$ (3) $[Ag^+] = 1.8 \times 10^{-9}$ l	M ; [Pb ²⁺] = 1.7 × 10 ⁻⁶ M M ; [Pb ²⁺] = 1.7 × 10 ⁻³ M	(2) $[Ag^+] = 1.8 \times 10^{-11}$ (4) $[Ag^+] = 1.8 \times 10^{-11}$	M ; [Pb ²⁺] = 8.5 × 10 ⁻⁵ M M ; [Pb ²⁺] = 8.5 × 10 ⁻⁴ M				
22.	A buffer solution is pr is 0.20 M. If the equil 2.7 = 0.433).	epared in which the conc brium constant, $K_{\rm b}$ for NH	centration of NH_3 is 0.30 H ₃ equals 1.8 × 10 ⁻⁵ , whe	M and the concentration at is the pH of this solutio [AIPMT]	of NH₄⁺ on ? (log -2011]			
	(1) 9.08	(2) 9.43	(3) 11.72	(4) 8.73	-			
23.	pH of a saturated solu	ution of Ba(OH) ₂ is 12. Th	e value of solubility prod	uct (K _{SP}) of Ba(OH) ₂ is :	/			
	(1) 3 3 × 10-7	(2) 5 0 × 10- ⁷	(3) / 0 v 10-6	[AIPM] (4) 5 0 x 10-6	-2012]			
	(1) 0.0 × 10	(2) 3.0 × 10	(0) 4.0 × 10	(+) 3.0 × 10				
24.	Equimolar solutions record the highest pH	of the following substand value?	ces were prepared sep	arately. Which one of th [AIPM]	nese wil [-2012]			
	(1) $BaCl_2$	(2) AICI ₃	(3) LiCl	(4) BeCl ₂				
25.	Buffer solutions have	constant acidity and alka	linity because :	[AIPM ⁻	Г-2012]			
	(1) these give unionis	ed acid or base on reaction	on with added acid or all	kali.				
	(2) acids and alkalies	in these solution are shie	lded from attack by othe	r ions.				
	(3) they have large ex(4) they have fixed values	cess of H⁺ or OH⁻ ions lue of pH.						
• -		···· •· •· ··						
26.	Which is the stronges	t acid in the following :		(4) H SO	T 2013]			
		(2) 110104	(0) H ₂ OO ₃					

27.	Which of the following	[AIPMT 2014]								
	(1) KCI	(2) NaCl	(3) Na ₂ CO ₃	(4) CuSO ₄						
28.	The K_{sp} of Ag_2CrO_4 , A Which one of the follow equal moles of NaCl, N (1) AgCl	AgCI, AgBr and AgI are wing salts will precipitate NaBr, Nal and Na ₂ CrO ₄ ? (2) AgBr	respectively, 1.1×10^{-12} , last if AgNO ₃ solution is (3) Ag ₂ CrO ₄	1.8×10 ⁻¹⁰ , 5.0×10 ⁻¹³ , 8.3×10 ⁻¹⁷ . added to the solution containing [AIPMT 2015] (4) AgI						
29.	 MY and NY₃, two nearly insoluble salts, have the same K_{sp} values of 6.2 x 10⁻¹³ at room temperature, which statements would be true in regard to MY and NY₃? [NEET 2016] (1) The addition of the salt of KY to solution of MY and NY₃ will have no effect on their solubilities. (2) The molar solubilities of MY and NY₃ in water are identical. (3) The molar solubility of MY in water is less than that of NY₃. (4) The salts MY and NY₃ are more soluble in 0.5 M KY than in pure water. 									
30.	The percentage of pyridine (C_5H_5N) that forms pyridinium ion ($C_5H_5N^+H$) in a 0.10 M aqueous pyridine solution (K_5 for $C_5H_5N = 1.7 \times 10^{-9}$) is [NEET-2 2016 (1) 1.6 % (2) 0.0060 % (3) 0.013 % (4) 0.77 %									
31.	The solubility of AgCI(s) with solubility product '	1.6 × 10 ⁻¹⁰ is in 0.1 M Na	CI solution would be						
	(1) Zero	(2) 1.26 × 10⁻⁵ M	(3) 1.6 × 10⁻⁰ M	[NEET-2 2016] (4) 1.6 × 10 ^{−11} M						
32.	Concentration of the A Ag ₂ C ₂ O ₄ is : (1) 2.42 × 10^{-8}	g ⁺ ions in a saturated sol (2) 2.66 × 10^{-12}	ution of Ag ₂ C ₂ O ₄ is 2.2× ⁻ (3) 4.5 × 10 ⁻¹¹	10 ⁻⁴ molL ⁻¹ . Solubility product of [NEET- 2017] (4) 5.3 × 10 ⁻¹²						
33.	Following solutions were prepared by mixing different volume of NaOH and HCl of different concentration ?									
	a. 60 mL $\frac{M}{10}$ HCl + 40	mL $rac{M}{10}$ NaOH								
	b. 55 mL $\frac{M}{10}$ HCl + 45	mL								
	c. 75 mL $\frac{M}{5}$ HCl + 25 r	nL								
	d. 100 mL $\frac{M}{10}$ HCl + 10	00 mL								
	pH of which one of the	m will be equal to 1?								
	(1) b	(2) c	(3) d	(4) a						
34.	The solubility of BaSO be : (Given molar mas (1) 1.08 × 10 ⁻¹⁰ mol ² L	⁴ in water is 2.42 × 10 ⁻³ s of BaSO₄ = 233 g mol ⁻⁷ -2	gL ^{_1} at 298 K. The value) (2) 1.08 × 10 ^{_8} mol ² L ^{_2}	of its solubility product (K _{sp}) will [NEET- 2018]						
	(3) 1.08 × 10 ⁻¹⁴ mol ² L	-2	(4) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$							

35. Which will make basic buffer?

[NEET-1- 2019]

	 (1) 100 mL of 0.1 M HCI + 100 mL of 0.1 M NaOH (2) 50 mL of 0.1 M NaOH + 25 mL of 0.1 M CH₃COOH (3) 100 mL of 0.1 M CH₃COOH + 100 mL of 0.1 M NaOH (4) 100 mL of 0.1 M HCI + 200 mL of 0.1 M NH₄OH 									
36.	pH of a saturated so (1) 05. × 10 ^{−10}	lution of Ca(OH)₂ is 9. T (2) 0.5 × 10 ^{−15}	he solubility product (K _{sp}) (3) 0.25 × 10 ⁻¹⁰	of Ca(OH) ₂ is [NEET-1- 2019] (4) 0.125 ×10 ⁻¹⁵						
37.	Conjugate base for E (1) H₃O⁺ and H₂F⁺, ro (3) H₃O⁺ and F⁻, resp	Bronsted acids H₂O and espectiveely pectively	HF are : (2) OH [_] and H ₂ F ⁺ , re (4) OH [_] and F [_] , resp	[NEET-1- 2019] spectively ectively						
38.	The pH of 0.01 M Na (1) 7.01	aOH (aq) solution will be (2) 2	9 - (3) 12	[NEET-2- 2019] (4) 9						
39.	Which of the followin (1) HCO_3^-	ng cannot act both as Br (2) NH ₃	onsted acid and as Brons (3) HCl	ted base ? [NEET-2- 2019] (4) HSO ₄						
40.	The molar solubility of CaF2 (Ksp = 5.3×10^{-11}) in 0.1 M solution of NaF will be - [NEET-2- 2019](1) 5.3×10^{-11} mol L ⁻¹ (2) 5.3×10^{-8} mol L ⁻¹ (3) 5.3×10^{-9} mol L ⁻¹ (4) 5.3×10^{-10} 1 mol L ⁻¹									
	PART - II	: AIIMS QUEST	IONS (PREVIOUS	S 15 YEARS)						
1.	At 25°C the pH of a s [pK _a value of CH ₃ CC	solution containing 0.10 OOH = 4.57]	M sodium acetate and 0.	03 M acetic acid is : [AIIMS 2002]						
2.	(1) 3.24 At 80°C (H ₂ O ⁺) of dis	(2) 4.59 stilled water is 10 ⁻⁶ mol/	L. At the same temperatu	re the value of K is :						
	(1) 1 × 10 ⁻³	(2) 1 × 10 ⁻⁶	(3) 1 × 10 ⁻⁹	w [AIIMS 2002] (4) 1 × 10 ^{−12}						
3.	The solubility of AgC [K _{sp} AgCl = 1.8×10^{-10} (1) 1.8×10^{-11} M	⁻¹⁰] (2) 9 × 10 ⁻¹⁰ M	(3) 6.5 × 10 ^{−12} M	[AIIMS 2002] (4) 5.6 × 10 ⁻¹¹ M						
4.	Which one of the foll (1) 0.8 M $H_2S + 0.8N$ (3) 3M $H_2CO_3 + 3M$	owing is not a buffer so / KHS KHCO ₃	lution ? (2) 2M C ₆ H ₅ NH ₂ + 2l (4) 0.05 M KClO ₄ + 0	[AIIMS 2003] M C ₆ H ₅ H ₃ Br [–] 0.05M HClO ₄						
5.	In which of the follow (1) Acetic acid versu (3) Hydrochloric acid	ving acid-base titration, s ammonia l versus ammonia	pH is greater than 8 at the (2) Acetic acid versu (4) Hydrochloric acid	H is greater than 8 at the equivalence point ? [AIIMS 03] (2) Acetic acid versus sodium hydroxide (4) Hydrochloric acid versus sodium hydroxide						
6	Assortion - Addition of silver ions to a mixture of aqueous addium ablaride and addium bramide									

6. Assertion : Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution will first precipitate AgBr rather than AgCl.

	Reason : K _{sp} of AgCl < (1) If both Assertion an (2) If both Assertion an (3) If Assertion is true b (4) If both Assertion an	lanation of Assert explanation of Ass	[AIIMS 2004] ion. ertion.						
7.	When 10 ml of 0.1 M $(pK_b = 5.0)$, the equival	l acetic acid (pK _a = 5.0 lence point occurs at pH) is titrated against 10	ml of 0.1 M amr	nonia solution [AIIMS 05]				
	(1) 5.0	(2) 6.0	(3) 7.0	(4) 9.0					
8.	40 ml of 0.1 M ammo ammonia solution is 4.7	nia is mixed with 20 ml 74)	of 0.1 M HCl. What is	the pH of the mi	xture? (pK _b of [AIIMS 06]				
	(1) 4.74	(2) 2.26	(3) 9.26	(4) 5.00					
9.	The solubility product of salt is	of As ₂ O ₃ is 10.8 × 10 ^{−9} . I	It is 50% dissociated in s	saturated solution.	The solubility [AIIMS 2007]				
	(1) 10 ⁻²	(2) 2 × 10 ⁻²	(3) 5 × 10 ⁻³	(4) 5.4 × 10 ⁻⁹					
10.	I F^{-1} ion, the prec	ipitate of CaF ₂							
	Reason : If K _{sp} is great	ter than ionic product, a p	precipitate will develop.		[AIIMS 2007]				
	 (1) If both Assertion and Reason are true and Reason is the correct explanation of Assertion. (2) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion. (3) If Assertion is true but Reason is false. (4) If both Assertion and Reason are false. 								
11.	On adding 0.1 M solution	on each of [Ag+], [Ba ²⁺],	[Ca ²⁺] in a Na ₂ SO ₄ soluti	on, species first p	recipitated is				
	$[K_{sp} BaSO_4 = 10^{-11}, K_{sp}$ (1) Ag_2SO_4	_p CaSO ₄ = 10 ⁻⁶ , K _{sp} Ag ₂ (2) BaSO ₄	$[SO_4 = 10^{-5}]$ (3) CaSO ₄	(4) All of these	[AIIMS 2008]				
(2) If both Assertion and Reason are true but Reason is not the correct explanation of Ass (3) If Assertion is true but Reason is false. (4) If both Assertion and Reason are false. 11. On adding 0.1 M solution each of [Ag ⁺], [Ba ²⁺], [Ca ²⁺] in a Na ₂ SO ₄ solution, species first p [K _{sp} BaSO ₄ = 10 ⁻¹¹ , K _{sp} CaSO ₄ = 10 ⁻⁶ , K _{sp} Ag ₂ SO ₄ = 10 ⁻⁵] (1) Ag ₂ SO ₄ (2) BaSO ₄ (3) CaSO ₄ (4) All of these 12. If the dissociation constant of 5×10^{-4} M aqueous solution of diethylamine is 2.5×10^{-5} , i (1) 8 (2) 3.95 (3) 10.05 (4) 2 13. The number of hydroxyl ions in 100 mL of a solution having pH 10 is : (1) 1×10^4 (2) 3.012×10^4 (3) 6.02×10^{18} (4) 6.023×10^{15}		s pH value is : [AIIMS 2009]							
	(1) 8	(2) 3.95	(3) 10.05	(4) 2					
13.	The number of hydroxy (1) 1×10^4	/l ions in 100 mL of a sol (2) 3.012 × 10 ⁴	ution having pH 10 is : (3) 6.02 × 10 ¹⁸	(4) 6.023 × 10 ¹⁹	[AIIMS 2009]				
14.	The solubility product having formula M ₂ X is	of a salt having formula twice the molar solubility	M_2X_3 is 2.2 × 10 ⁻²⁰ . If of M_2X_3 , the solubility pr	the solubility of a oduct of M_2X is :	n another salt [AIIMS 2009]				
	(1) 3 × 10 ⁻¹²	(2) 9.16 × 10 ⁻⁵	(3) 4.58 × 10 ^{−5}	(4) 2.76 × 10 ⁻¹⁸					
15.	The pH of the mixture of	obtained when equal volu	umes of N/10 NaOH and	N/20 HCl are mix	ed, is : [AIIMS 2010]				
	(1) 1.6	(2) 12.4	(3) 13.4	(4) 10.8					
16.	25 mL, 0.2 M Ca(OH) ₂	is neutralised by 10 mL o	of 1 M HCI. Then pH of re	esulting solution is	3:				

[AIIMS 2011]

	(1) 1.37	(2) 9	(3) 12	(4) 7					
17.	The pH of blood does	not appreciably change	by a small addition of a	acid or a base b	ecause blood : [AIIMS 2012]				
	(1) contains serum prote(3) can be easily coagul	ein which acts as buffer ated	(2) contains iron as a pa (4) is body fluid	art of the molecu	le				
18.	An aqueous solution of of 0.1 N NaOH required (1) 20 ml	6.3 g of oxalic acid dihyto completely neutralise(2) 40 ml	drate (H ₂ C ₂ O ₄ .2H ₂ O) is r a 10 ml of this solution is (3) 10 ml	made up to 250 (4) 4 ml	ml. The volume [AIIMS 2013]				
19.	Assertion : Mixture of (CH_3COOH and CH_3COC	ONH ₄ is an example of ac	cidic buffer.	[AIIMS 2014]				
	Reason : Acidic buffer ((1) If both Assertion and (2) If both Assertion and (3) If Assertion is true bo (4) If both Assertion and	contains equimolar mixtu I Reason are true and R I Reason are true but Re ut Reason is false. I Reason are false.	ure of weak acid and its s eason is the correct expl eason is not the correct e	alt with weak ba anation of Asser explanation of As	ise. tion. sertion.				
20.	Calculate the degree of $[K_a \text{ of HCN} = 4.99 \times 10^{-1} (1) 8.2$	hydrolysis and pH of 0.0 9 , K _b for NH ₄ OH = 1.77 (2) 3.2	02M ammonium cyanide × 10 ⁻⁵] (3) 9.3	(NH₄CN) at 298 (4) 3.9	K. [AIIMS 2015]				
21.	Assertion (A) : pH value of HCl solution is less than that of acetic acid of the some concentration. Reason (R) : In equimolar solution, the number of titrable protons present in HCl is less than that present in acetic acid. [AIIMS 2016] (1) If both Assertion and Reason are true and Reason is the correct explanation of Assertion								
	(2) If both Assertion and(3) If Assertion is true be(4) If both Assertion and	l Reason are true but Re ut Reason is false. I Reason are false.	eason is not the correct e	explanation of As	sertion.				
22.	pH of solution of a stro solution to 100 times ?	ng acid is 5.0. What wil	I be the pH of solution of	bbtained after di	luting the given [AIIMS 2017]				
	(1) 5.8	(2) 6.7	(3) 9.3	(4) 13					
23.	Assertion (A) : Buffer s	olution are composed of	f strong acids and strong	bases.	[AIIMS 2017]				
	(1) If both Assertion and(2) If both Assertion and(3) If Assertion is true be(4) If both Assertion and	I Reason are true and R I Reason are true but Re ut Reason is false. I Reason are false.	eason is the correct expl	anation of Asser	tion. sertion.				
24.	Assertion (A) : The ion Reason (R) : H ₂ S is a w (1) If both Assertion and (2) If both Assertion and (3) If Assertion is true bu (4) If both Assertion and	ization of hydrogen sulp veak acid. I Reason are true and R I Reason are true but Re ut Reason is false. I Reason are false.	hide in water is low in the eason is the correct expl eason is not the correct e	e presence of HC anation of Asser explanation of As	CI [AIIMS 2017] tion. esertion.				
25.	When NH₃(0.1 M) 50 m (1) 9.25	mix with HCI (0.1 M) 10 (2) 10) ml then what is pH of re (3) 9.85	esultant solution (4) 4.15	(Pk _b = 4.75) [AIIMS 2018]				

26.	 When CH₃COOCH₃ + HCl is titrated with NaOH then at neutral point the colour of becomes colourless from pink due to : (1) due to formation of CH₃OH (2) due to formation of CH₃COOH which act as a weak acid. (3) Phenophalein vaporizes. (4) due to presence of HCl 								
27.	Sulubility of a sparing concentration of 0.00 (1) $x^2 \times 10^{-6}$	gly soluble salt XB₂ in v)1M? (2) 4x³ × 10 ⁶	water is x. What will be i (3) 4x ³ × 10 ⁻⁶	ts solubility in a solut (4) $4x^3 \times 10^3$	ion of yB having [AIIMS 2018]				
28.	Assertion : Na_2SO_3 solution give basic solution in litmus solution Reason : It react with water and H_2SO_3 form (1) If both assertion and reason are true and reason is the correct explanation of assertion (2) If both assertion and reason are true but reason is not the correct explanation of assertion (3) If assertion is true but reason is false. (4) If both assertion and reason are false.								
	PART - III : JE	E (MAIN) / AIEE	E PROBLEMS (PREVIOUS YE	EARS)				
1.	Species acting as bo (1) HSO₄⁻	th bronsted acid and b (2) Na_2CO_3	ase is : (3) NH ₂	(4) OH⁻	[AIEEE-2002]				
2.	1 M NaCl and 1 M H (1) not a buffer soluti (3) a buffer solution v	[AIEEE-2002]							
3.	The solubility of Mg($OH)_2$ is s moles/litre. The	ne solubility product und	er the same conditio	n is :				
	(1) 4s ³	(2) 3s ⁴	(3) 4s ²	(4) s ³	[AIEEE-2002]				
4.	Which one of the foll (1) The conjugate ba (2) $pH + pOH = 14$ for (3) The pH of 1 × 10 ^o (4) 96, 500 coulomb of copper at the cath	owing statements is no ase of $H_2PO_4^-$ is HPO_4^{2-} or all aqueous solutions -8 M HCl is 8. s of electricity when pa ode.	t true ? at 25ºC. assed through a CuSO₄	solution deposits 1	[AIEEE-2003] gram equivalent				
5.	When rain is accomp	panied by a thunderstor	m, the collected rain wa	ter will have a pH va	Ilue : [AIEEE-2003]				
	 (1) slightly lower that (2) slightly higher that (3) uninfluenced by c (4) which depends o 	n that of rain water with an that when the thunde occurrence of thundersi n the amount of dust in	out thunderstorm erstorm is not there torm air.						
6.	The solubility in wate	er of a sparingly solubl	e salt AB_2 is 1.0 × 10 ⁻⁵	mol L-1. Its solubility	product will be :				
	(1) 4 × 10 ⁻¹⁵	(2) 4 × 10 ⁻¹⁰	(3) 1 × 10 ⁻¹⁵	(4) 1 × 10 ⁻¹⁰					
7.	The conjugate base (1) PO ₄ ³⁻	of H ₂ PO ₄ ⁻ is : (2) P ₂ O ₅	(3) H ₃ PO ₄	(4) HPO ₄ ²⁻	[AIEEE-2004]				
8.	The molar solubility is $K_{sp.}$ s is given in te	(in mol L ⁻¹) of a sparing erms of $K_{_{\rm sp}}$ by the relation	ly soluble salt MX_4 is s. on :	The corresponding s	solubility product [AIEEE-2004]				

IONIC EQUILIBRIUM

	(1) s = $(K_{sp}/128)^{1/4}$	(2) s = $(128K_{sp})^{1/4}$	(3) s = $(256K_{sp})^{1/5}$	(4) s = ($K_{sp}/256$) ^{1/5}						
9.	What is the conjugate b (1) O_2	ase of OH⁻? (2) H₂O	(3) O⁻	[AIEEE-2005] (4) O ²⁻						
10.	Hydrogen ion concentra (1) 3.98 × 10 ⁸	ation in mol/L in a solutio (2) 3.88 × 10 ⁶	n of pH = 5.4 will be : (3) 3.68 × 10 ⁻⁶	[AIEEE-2005] (4) 3.98 × 10 ⁻⁶						
11.	The solubility product of M ²⁺ ions in the saturated (1) 2.0 × 10 ⁻⁶ M	f a salt having general fo d aqueous solution of the (2) 1.0 × 10 ⁻⁴ M	ormula MX ₂ , in water is : e salt is : (3) 1.6 × 10 ⁻⁴ M	: 4 × 10 ⁻¹² . The concentration of [AIEEE-2005] (4) 4.0 × 10 ⁻¹⁰ M						
12.	The first and second di The overall dissociation (1) 5.0 \times 10 ⁻¹⁵	issociation constants of a constant of the acid will (2) 0.2 × 10 ⁵	an acid H ₂ A are 1.0 × 10 be (3) 5.0 × 10 ⁻⁵	0 ⁻⁵ and 5.0 × 10 ⁻¹⁰ respectively. [AIEEE-2007, 3/120] (4) 5.0 × 10 ¹⁵						
13.	The pK _a of a weak acid the acid is ionized, is : (1) 9.5	d (HA) is 4.5. The pOH o (2) 7.0	of an aqueous buffered s	solution of HA, in which 50% of [AIEEE-2007, 3/120] (4) 2.5						
14.	In a saturated solution of the sparingly soluble strong electrolyte $AgIO_3$ (Molecular mass = 283), the equilibrium which sets in is : $AgIO_3(s) \longrightarrow Ag^+(aq) + IO_3^-(aq)$									
	If the solubility product AgIO ₃ contained in 100 (1) 1.0×10^{-7} g	constant K_{sp} of AgIO ₃ at mL of its saturated solut (2) 1.0 × 10 ⁻⁴ g	t a given temperature is tion? (3) 28.3 × 10 ⁻² g	 1.0 × 10⁻⁸, what is the mass of [AIEEE-2007, 3/120] (4) 2.83 × 10⁻³ g 						
15.	The pK _a of a weak acial solution of the correspondent (1) 4.79	d, HA, is 4.80. The pK _b anding salt, BA, will be : (2) 7.01	of a weak base, BOH, (3) 9.22	is 4.78. The pH of an aqueous [AIEEE-2008, 3/105] (4) 9.58						
16.	Solid Ba(NO ₃) ₂ is gradu a precipitate begin to for (1) 5.1 × 10 ⁻⁵ M	hally dissolved in 1.0 × 10 form ? (K_{sp} for BaCO ₃ = 5. (2) 8.1 × 10 ⁻⁸ M	0 ⁻⁴ M Na₂CO₃ solution. A 1 × 10 ⁻⁹) (3) 8.1 × 10 ⁻⁷ M	t what concentration of Ba ²⁺ will [AIEEE-2009, 4/144] (4) 4.1 × 10 ⁻⁵ M						
17.	Three reactions involvin (i) $H_3PO_4 + H_2O \rightarrow H_3O$ (ii) $H_2PO_4^- + H_2O \rightarrow HP$ (iii) $H_2PO_4^- + OH^- \rightarrow H_3$ In which of the above, of (1) (ii) only	ng $H_2PO_4^-$ are given belo + + $H_2PO_4^-$ $PO_4^{2^-} + H_3O^+$ $PO_4 + O^{2^-}$ does $H_2PO_4^-$ act as an act (2) (i) and (ii)	w : sid ? (3) (iii) only	[AIEEE-2010, 4/144] (4) (i) only						
18.	In aqueous solution the $K_1 = 4.2 \times 10^{-7}$ Select the correct state (1) The concentration of	ionization constants for and $K_2 = 4.8 \times 10^{-11}$ ment for a saturated 0.03 f CO ₃ ²⁻ is 0.034 M.	carbonic acid are 34 M solution of the carb	[AIEEE-2010, 4/144] onic acid.						
19.	(2) The concentration o (3) The concentration o (4) The concentration o Solubility product of silv as 120 g mol ⁻¹) to be ac is : (1) 1.2×10^{-10} g	t CO ₃ ^{2–} is greater than th f H ⁺ and HCO ₃ [–] are appro- f H ⁺ is double that of CO ver bromide is 5.0×10^{-13} dded to 1 litre of 0.05 M (2) 1.2×10^{-9} g	at of HCO ₃ ⁻ . oximately equal. ^{3²⁻. ³. The quantity of potass solution of silver nitrate t (3) 6.2 × 10⁻⁵ g}	ium bromide (molar mass taken to start the precipitation of AgBr [AIEEE-2010, 4/144] (4) 5.0 × 10 ⁻⁸ g						

20.	At 25°C, the solubility p the form of $Mg(OH)_2$ fro (1) 9	roduct of Mg(OH m a solution of 0. (2) 10	l) ₂ is 1.0 .001 M I	0 × 10 ⁻¹¹ . At what pH, wi Mg²⁺ ions ? (3) 11	II Mg ²⁺ ions start precipitating in [AIEEE-2010, 4/144] (4) 8	
21.	What is the best descrip (1) Oxide ion accepts sl (2) Oxide ion donates a (3) Oxidation number of (4) Oxidation number of	otion of the chang naring in a pair of pair of electrons oxygen increase sodium decreas	ge that c f electro es es	occurs when Na ₂ O(s) is o ns	lissolved in water ? [AIEEE-2011]	
22.	The pH of a 0.1 molar s	olution of the acid	d HQ is	3. The value of the ioniz	ation constant, K _a of the acid is [AIEEE-2012, 4/120]	
	(1) 3 × 10⁻¹	(2) 1 ×10⁻³		(3) 1 × 10 ⁻⁵	(4) 1 × 10 ⁻⁷	
23.	How many litres of wate an aqueous solution wit (1) 0.1 L	er must be addeo h pH of 2 ? (2) 0.9 L	d to 1 lit	tre an aqueous solution	of HCl with a pH of 1 to create [JEE(Main) 2013, 4/120] (4) 9.0 L	
24.	pK _a of a weak acid (HA salt (AB) solution is : (1) 6.9	and pK _b of a w (2) 7.0	eak bas	se (BOH) are 3.2 and 3.	4, respectively. The pH of their [JEE(Main) 2017, 4/120] (4) 7.2	
25.	Which of the following s (1) FeCl ₃	alts is the most basic in (2) Pb(CH ₃ COO) ₂		aqueous solution ? (3) Al(CN)₃	[JEE(Main) 2018, 4/120] (4) CH ₃ COOK	
26.	An alkali is titrated aga combination? Base (1) Weak	inst an acid with Acid Strong	l orange as indictor, whi bint to pinkish red	ich of the following is a correct [JEE(Main) 2018, 4/120]		
	(2) Strong(3) Weak(4) Strong	Strong Strong	Colourl Pinkish	ess to pink red to yellow		
27.	An aqueous solution of Na ₂ SO ₄ is added, BaSO BaSO ₄ is 1×10^{-10} . What (1) 1.1 $\times 10^{-9}$ M	ontains an unkno 04 just begins to p at is the original o (2) 1.0 × 10 ⁻¹⁰ M	own cor precipita concenti 1	ncentration of Ba ²⁺ . Wh ate. The final volume is 5 ration of Ba ²⁺ . (3) 5 × 10 ⁻⁹ M	en 50 mL of a 1 M solution of 00 mL. The solubility product of [JEE(Main) 2018, 4/120] (4) 2 × 10 ⁻⁹ M	
28.	An aqueous solution contains 0.10 M H ₂ S and 0.20 M HCl. If the equilibrium constant for the formation of HS ⁻ from H ₂ S is 1.0×10^{-7} and that of S ²⁻ from HS ⁻ ions is 1.2×10^{-13} then the concentration of S ² ions in aqueous solution is : [JEE(Main) 2018, 4/120]					
29.	20 mL of 0.1 M H ₂ SO ₄ mixture is : (pK _b of NH ₄ 0 (1) 9.0	solution is adde OH = 4.7) (2) 5.2	d to 30	mL of 0.2 M NH₄OH so (3) 9.4	Dution. The pH of the resultant [JEE(Main) 2019, 4/120] (4) 5.0	
30.	If K _{sp} of Ag ₂ CO ₃ is 8 × 1 (1) 8 × 10 ⁻¹⁰ M	0 ^{–12} , the molar so (2) 8 × 10 ^{–12} M	olubility	of Ag₂CO₃ in 0.1 M AgN (3) 8 × 10 ⁻¹³ M	O ₃ is : [JEE(Main) 2019, 4/120] (4) 8 × 10 ⁻¹¹ M	

	Answers												
					E	XERC	ISE -	1					
SECTI	ON (A)												
1.	(2)	2.	(2)	3.	(2)	4.	(3)	5.	(1)	6.	(3)	7.	(4)
8.	(2)	9.	(3)	10.	(2)	11.	(3)	12.	(2)	13.	(4)	14.	(2)
15.	(2)												
SECTI	ON (B)												
1.	(1)	2.	(4)	3.	(3)	4.	(3)	5.	(1)	6.	(3)	7.	(1)
8.	(2)	9.	(1)	10.	(2)	11.	(4)						
SECTI	ON (C)												
1.	(4)	2.	(2)	3.	(2)	4.	(4)	5.	(1)	6.	(2)	7.	(2)
8.	(3)	9.	(2)										
SECTI	ON (D)												
1.	(4)	2.	(2)	3.	(1)	4.	(2)	5.	(3)	6.	(1)	7.	(4)
8.	(2)	9.	(3)	10.	(2)	11.	(2)	12.	(1)	13.	(3)	14.	(3)
SECTI	ON (E)												
1.	(1)	2.	(3)	3.	(2)	4.	(3)	5.	(1)	6.	(1)	7.	(4)
8.	(2)	9.	(2)	10.	(2)	11.	(1)	12.	(1)	13.	(2)	14.	(4)
SECTI	ON (F)												
1.	(2)	2.	(4)	3.	(1)	4.	(1)	5.	(2)	6.	(4)	7.	(4)
8.	(2)	9.	(4)	10.	(4)	11.	(4)	12.	(3)	13.	(2)	14.	(1)
SECTI	ON (G)												
1.	(4)	2.	(3)	3.	(1)	4.	(1)	5.	(1)	6.	(2)		
SECTI	ON (H)												
1.	(1)	2.	(3)	3.	(3)	4.	(1)	5.	(1)	6.	(2)	7.	(3)
8.	(3)	9.	(3)	10.	(3)	11.	(1)	12.	(3)	13.	(1)	14.	(2)
15.	(1)	16.	(3)	17.	(1)	18.	(4)						

)					
						EVER	CISE	- 2					
1.	(4)	2.	(4)	3.	(4)	4.	(2)	5.	(4)	6.	(4)	7.	(4)
8.	(3)	9.	(1)	10.	(2)	11.	(3)	12.	(1)	13.	(3)	14.	(3)
15.	(2)	16.	(2)	17.	(2)	18.	(2)	19.	(2)	20.	(4)	21.	(2)
22.	(4)	23.	(1)	24.	(3)	25.	(4)	26.	(3)	27.	(3)	28.	(4)
29.	(3)	30.	(1)	31.	(4)	32.	(1)	33.	(2)	34.	(1)	35.	(1)
36.	(2)	37.	(3)	38.	(1)	39.	(4)	40.	(3)	41.	(2)	42.	(2)
43.	(3)	44.	(2)	45.	(1)								
	EXERCISE - 3												
	PART-I												
1.	(4)	2.	(2)	3.	(4)	4.	(2)	5.	(2)	6.	(3)	7.	(2)
8.	(4)	9.	(4)	10.	(1)	11.	(4)	12.	(2)	13.	(3)	14.	(2)
15.	(4)	16.	(1)	17.	(1)	18.	(4)	19.	(4)	20.	(4)	21.	(3)
22.	(2)	23.	(2)	24.	(1)	25.	(1)	26.	(2)	27.	(3)	28.	(3)
29.	(3)	30.	(3)	31.	(3)	32.	(4)	33.	(2)	34.	(1)	35.	(4)
36.	(2)	37.	(4)	38.	(3)	39.	(3)	40.	(3)				
						PA	RT-II						
1.	(3)	2.	(4)	3.	(2)	4.	(4)	5.	(2)	6.	(3)	7.	(3)
8.	(3)	9.	(2)	10.	(4)	11.	(2)	12.	(3)	13.	(3)	14.	(1)
15.	(2)	16.	(4)	17.	(1)	18.	(2)	19.	(4)	20.	(3)	21.	(3)
22.	(2)	23.	(2)	24.	(2)	25.	(3)	26.	(2)	27.	(2)	28.	(2)
						PA	RT-III						
1.	(1)	2.	(1)	3.	(1)	4.	(3)	5.	(1)	6.	(1)	7.	(4)
8.	(4)	9.	(4)	10.	(4)	11.	(2)	12.	(1)	13.	(1)	14.	(4)
15.	(2)	16.	(1)	17.	(1)	18.	(3)	19.	(2)	20.	(2)	21.	(2)
22.	(3)	23.	(4)	24.	(1)	25.	(4)	26.	(1)	27.	(1)	28.	(4)
29.	(1)	30.	(1)										