Self Practice Paper (SPP) 1. Which of the following correctly explains the nature of boric acid in aqueous medium: (1) $H_3BO_3 \xrightarrow{H_2O} H_3O^+ + H_2BO_3^-$ (2) $H_3BO_3 \xrightarrow{2H_2O} 2H_3O^+ + HBO_3^2$ (3) $H_3BO_3 \xrightarrow{3H_2O} 3H_3O^+ + BO_3^{3-}$ (4) $H_3BO_3 \xrightarrow{H_2O} B(OH)_4 + H^+$ 2. Which of the following is correct? (1) $[H^+] = [OH^-] = \sqrt{K_w}$ in all aqueous solutions (2) $[H^+] [OH^-] = \sqrt{K_w}$ in all aqueous solutions (3) $[H^+]$ $[OH^-] = K_w$ in all aqueous solutions (4) Dissociation constant of water is $K_w = [H^+] [OH^-]$ The pH when 10⁻² M CH₂COOH solution is prepared in 10⁻³ M NaCl solutionis : 3. $(pK_{2}(CH_{2}COOH) = 4.7)$: (1) 2.35(3) 5.35(2) 3.35(4)74. For a binary weak electrolyte, the degree of dissociation is proportional to the : (2) Square root of dilution (1) Dilution (3) Concentration (4) Square root of concentration A 100 ml solution of a strong acid of pH =1 is mixed with a 100 ml solution of another strong acid of 5. pH = 2. The pH will be nearly : (log 5.5 = 0.74) (1) 1.74(2) 2.26 (3) 1.26 (4) 2.74Two weak acids HA and HB with K_{a_1} and K_{a_2} as their dissociation constants are mixed. Which of the 6. following is incorrect, if $K_{a_1} > K_{a_2}$? (1) $[H^+]$ from HA > $[H^+]$ from HB (2) α of HA > α of HB (4) [HA] > [HB] (3) [A⁻] > [B⁻] The pH of the solution obtanied by mixing 10 mL of 10⁻¹ M HCl and 10 mL of 10⁻¹ M NaOH is: 7. (2) 2(3)7(4) None of these (1) 88. V_1 ml of 0.1 M HNO₃ is mixed with V_2 ml of 0.1M Ca(OH)₂. The final solution : (1) is neutral if $V_1 = V_2$ (2) is acidic if $V_1 > V_2$ (4) is neutral $V_1 = 2V_2$ (3) is basic if $V_1 = 2V_2$ 9. The dissociation constant of two weak acids are K_{a_1} and K_{a_2} respectively. Their relative strength is : (2) $\left(\frac{K_{a_1}}{K_{a_1}}\right)^{1/2}$ (3) $\frac{K_{a_1}}{K_{a_1}}$ (4) $\left(\frac{K_{a_2}}{K_1}\right)^{1/2}$ (1) $\frac{K_{a_2}}{K_{a_1}}$ 10. Expression $pK_{h} = pK_{w} - pK_{a} - pK_{h}$ is not applicable to : (1) Ammonium acetate (2) Ammonium cyanide (3) Aniline acetate (4) Ammonium chloride The salt NaA of weak acid HA is dissolved to form its 0.01 M solution. If the degree of hydrolysis is 11. 0.01, the K_a of HA at 25°C is : (1) 10-6 (3) 10-8 (4) 10-10 (2) 10-4 12. The pK_a of acetic acid is 4.74, which implies that : (1) pH of 1 M acetic acid is 4.74 (2) at pH 4.74, the dissociation of acetic acid is maximum (3) at pH 4.74, half of the acetic acid molecules are dissociated in the solution (4) at pH 4.74, the dissociation of acetic acid is minimum. In a titration experiment, 50.0 mL of 0.1 M HCI is being titrated against 0.1 M NaOH. The pH of the 13. solution on addition of 49.9 mL of NaOH is approximately : (1)7.0(2) 6.0(3) 4.0(4) 3.0

CHEMISTRY FOR NEET

14.	Consider various species generated when $H_{3}PO_{4}$ dissolved in water. Among these, the conjugate ac of HPO_{4}^{2} is							
	(1) $H_{3}PO_{4}$	(2) H ₂ PO ₄ ⁻	(3) PO ₄ ³⁻	(4) H ₃ O⁺				
15.	What volume of 2M we that $pOH = pK_b$? (1) 10ml (3) 25ml	eak base should be adde	ed to 10ml of 5M solution of its salt with strong acid, so (2) 50 ml (4) The information provided is insufficient to answer					
16.	The pOH of a basic buffer (e.g. NH_4OH/NH_4CI is 5. If the concentration of the salt is tripled whereas that of base remains same, what is the new value of pOH ? (Given log 3 \approx 0.48) (1) 4.52 (2) 5.48 (3) 6.48 (4) 3.52 What fraction of indicator is in acidic form at pH of 5 if the pK of the indicator is 4.7 ?							
17.	What fraction of indicate	or is in acidic form at pH	of 5 if the pK_a of the indic	cator is 4.7 ?				
	(1) $\frac{2}{3}$	(2) $\frac{1}{3}$	(3) $\frac{1}{2}$	(4) $\frac{1}{11}$				
18.	To a 200 ml of 0.1 M weak acid HA solution 90 ml of 0.1 M solution of NaOH be added. Now, what volume of 0.1 M NaOH be added into above solution so that pH of resulting solution be 5 ? $[(K_a(HA) = 10^{-5}]$ (1) 2 ml (2) 20 ml (3) 10 ml (4) 15 ml							
19.	In a saturated solution (1) 1.08 × 10^{-12}	of Mg(OH) ₂ , the concen (2) 1.08 × 10 ⁻¹⁰	tration of OH⁻ is 6 × 10⁻⁴ (3) 8.64 × 10⁻¹⁰	M. The K _{sp} of Mg(OH)₂ is : (4) 9.6 × 10⁻³				
20.	Let the solubilities of AgCl in pure water, 0.01 M CaCl ₂ , 0.01 M NaCl & 0.05 M AgNO ₃ be S ₁ , S ₂ , S ₃ & S ₄ respectively. What is the correct order of these quantities. Neglect any complexation. (1) S ₁ > S ₂ > S ₃ > S ₄ (2) S ₁ > S ₂ = S ₃ > S ₄ (3) S ₁ > S ₃ > S ₂ > S ₄ (4) S ₄ > S ₂ > S ₃ > S ₄							
21.	Let the solubilities of AgCl in pure water, 0.01 M CaCl ₂ , 0.01 M NaCl & 0.05 M AgNO ₃ be S ₁ , S ₂ , S ₃ & S respectively. What is the correct order of these quantities. Neglect any complexation. (1) $S_1 > S_2 > S_3 > S_4$ (2) $S_1 > S_2 = S_3 > S_4$ (3) $S_1 > S_3 > S_2 > S_4$ (4) $S_4 > S_2 > S_3 > S_1$ Which indicator will be most suitable for the titration of acetic acid vs NaOH? (1) methyl orange [pK _{in} = 3.7] (2) bromocresol green [pK _{in} = 4.7] (3) chlorophenol red [pK _{in} = 6.1] (4) phenolphthalein [pK _{in} = 9.6] SrCO ₃ (K _{sp} = 10 ⁻¹⁰) and ZnCO ₃ (K _{sp} = 1.5 × 10 ⁻¹¹) are dissolved together in a solution. The ratio of [Sr ²⁺]/[Zn ²⁺] in the solution is :							
22.	SrCO ₃ (K _{sp} = 10 ⁻¹⁰) and ZnCO ₃ (K _{sp} = 1.5 × 10 ⁻¹¹) are dissolved together in a solution. The ratio o [Sr ²⁺]/[Zn ²⁺] in the solution is :							
	(1) $\frac{10}{3}$	(2) $\frac{3}{10}$	(3) $\frac{20}{3}$	(4) $\frac{3}{20}$				
23.	Which of the following is (1) MnS ($K_{SP} = 8 \times 10^{-37}$ (3) Bi ₂ S ₃ ($K_{SP} = 1.0 \times 10^{-37}$	s most soluble in water : 7)) ⁻⁷⁰)	: (2) ZnS (K _{SP} = 7 × 10 ⁻¹⁶) (4) Ag ₂ S (K _{SP} = 6 × 10 ⁻⁵¹)					
24.	(3) BI_2S_3 ($K_{SP} = 1.0 \times 10^{-6}$) (4) Ag_2S ($K_{SP} = 6 \times 10^{-6}$) The pH a 0.01 M solution of ammonium acetate can be changed by changing : (1) the temperature (2) the volume of solution (3) the concentration (4) the pressure on solution							
25.	Which of these mixtures constitute buffer solution ?Mixture 1 : 25 mL of 0.10 M HNO3 and 25 mL of 0.10 M NaNO3Mixture 2 : 25 mL of 0.10 M HC2H3O2 and 25 mL of 0.10 M NaOH(1)1 only(2) 2 only(3) both 1 and 2(4) neither 1 nor 2							
26.	A solution of 0.10 M Na (1) 1.6 × 10 ⁻⁴	aZ has pH = 8.90. The K _a (2) 1.6 × 10 ⁻⁵	of HZ is : (3) 6.3 × 10 ⁻¹⁰	(4) 6.3 × 10 ⁻¹¹				
27.	Which one is a Lewis a (1) CIF_3	cid ? (2) H ₂ O	(3) NH ₃	(4) None of these				

- 28. pK_a values of two acids A and B are 4 and 5. The strengths of these two acids are related as :
 - (1) Acid A is $\sqrt{10}$ times stronger than acid B
 - (2) Strength of acid A : strengtha of acid B = 4 : 5
 - (3) The strengths of the two acids cannot be compared
 - (4) Acid B is 10 times stronger than acid A
- **29.** Which equilibrium can be described as an acid-base reaction using the Lewis acid-base definition but not using the Bronsted-Lowry definition?

(1) $2NH_3 + H_2SO_4 \implies 2NH_4^+ + SO_4^{2-}$

$$(2) \operatorname{NH}_3 + \operatorname{CH}_3 \operatorname{COOH} \Longrightarrow \operatorname{NH}_4^+ + \operatorname{CH}_3 \operatorname{COO}^-$$

$$(3) H_2O + CH_3COOH = H_3O^+ + CH_3COO$$

- (4) $[Cu(H_2O)_4]^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+} + 4H_2O$
- **30.** The hydride ion H⁻ is stronger base than its hydroxide ion OH⁻. Which of the following reaction will occur if sodium hydride (NaH) is dissolved in water? (1) H⁻ (ag) + H₂O \rightarrow H₂O⁻ (2) H⁻ (ag) + H₂O (I) \rightarrow OH⁻ +H₂

(3)
$$H^- + H_2O \rightarrow No$$
 reaction (4) None of these

31. A precipitate of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) will be obtained when equal volume of the following are mixed (1) 10^{-4} M Ca²⁺ and 10^{-4} M F⁻ (2) 10^{-2} M Ca²⁺ and 10^{-3} M F⁻

(3) 10 ⁻⁵ M Ca ²⁺ and 10 ⁻³ M F ⁻	(4) 10 ⁻³ M Ca ²⁺ and 10 ⁻⁵ M F ⁻
(5) 10 ° W Ca ⁻¹ and 10 ° W F	(4) 10 ° W Ca ⁻ and 10 ° W F

32. The degree of hydrolysis of a salt of weak acid and weak base in its 0.1 M solution is found to be 50%. If the molarity of the solution is 0.2 M, the percentage hydrolysis of the salt should be :
(1) 50%
(2) 35%
(3) 75%
(4) 100%

33. pK_a of acetic acid is 4.74. The concentration of CH_3COOH solution is 0.01 M. The pH of the solution is: (1) 3.37 (2) 4.37 (3) 4.74 (4) 0.474

- **34.** If the solubility products of AgCl and AgBr are 1.2×10^{-10} and 3.5×10^{-13} respectively, then the relation between the solubilities (denoted by the symbol 'S') of these salts can correctly be represented as : (1) S of AgBr is less than that of AgCl (2) S of AgBr is greater than that of AgCl
 - (3) S of AgBr is equal to that of AgCl (4) S of AgBr is 10⁶ times greater than that of AgCl
- **35.** For a weak acid HX, $K_a = 10^{-4}$. The degree of dissociation of 10^{-4} M HX is : $(\sqrt{5} = 2.24)$
 - (1) 1 (2) 0.62 (3) 0.91 (4) 0

36. If each of the following salts has solubility product Ksp = 1×10^{-9} , which of them is least soluble in water ? (1) XY (2) X₂Y (3) XY₂ (4) X₃Y

- **37.** Which solution has the highest pH ? (1) 0.01 M CaCl₂ (2) 0.01 M KNO₂ (3) 0.01 M CH₃COOH (4) 0.01 M CH₃COCH₃
- **38.** The concentration of $[H^+]$ and concentration of $[OH^-]$ in a 0.1 aqueous solution of 2% ionised weak acid is : [lonic product of water = 1×10^{-14}] (1) 2×10^{-3} M and 5×10^{-12} M (2) 1×10^{3} M and 3×10^{-11} M (3) 0.02×10^{-3} M and 5×10^{-11} M (4) 3×10^{-2} M and 4×10^{-13} M

CHEMISTRY FOR NEET

39.	The pH of pure water or neutral solution at 50°C is($pK_w = 13.26$ at 50°C)							
	(1) 7.0	(2) 7.13	(3) 6.0	(4) 6.63				
40.	The Bronsted acids in the reversible reaction are are $HCO_3^-(aq.) + OH^-(aq.) \longrightarrow CO_3^{2-}(aq.) + H_2O$							
	(1) OH ⁻ and CO_3^{2-}	(2) OH ⁻ and H_2O	(3) HCO_3^- and H_2O	(4) HCO ₃ ⁻ and CO ₃ ²⁻				
41.	Increasing order of aci (1) $CH_3COOH < H_2SO_3$ (3) $H_2CO_3 < CH_3COOH$	dic character would be: $_{4} < H_{2}CO_{3}$ $H < H_{2}SO_{4}$	(2) $CH_3COOH < H_2CO_3 < H_2SO_4$ (4) $H_2SO_4 < H_2CO_3 < CH_3COOH$					
42.	Which of the following (I) NaH₂PO₃ (II) Na (1) I and II only	salt/s of H ₃ PO ₃ exists ? ₂ HPO ₃ (III) Na ₃ PO ₃ (2) I, II and IIII	(3) II and III only	(4) III only				
43.	The solubility product of that can dissolve 4 mg	of Ag_2CrO_4 is 1.9×10^{-12} . of Ag_2CrO_4 is about : (2) 1000 ml	The minimum volume of	water in mL from below options				
				(+) 500 mL				
44.	(1) Na_2CO_3	(2) NaCl	ge its pH is: (3) KCN	(4) NH ₄ CI.				
45.	Carbonic acid, H_2CO_3 , is a diprotic acid for which $K_{a_1} = 4.2 \times 10^{-7}$, and $K_{a_2} = 4.7 \times 10^{-11}$. The solution							
	which will have a pH closest to 9 is –							
	(1) 0.1 WI $\Pi_2 \cup U_3$		(2) 0.1 IVI $Na_2 CO_3$					
	(3) U.T IVI NAHCU ₃		(4) 0.1 M NAHCO ₃ + 0.1 M Na ₂ CO ₃					

	SPP Answers												
1.	(4)	2.	(3)	3.	(2)	4.	(2)	5.	(3)	6.	(4)	7.	(3)
8.	(4)	9.	(2)	10.	(4)	11.	(3)	12.	(3)	13.	(3)	14.	(2)
15.	(3)	16.	(2)	17.	(2)	18.	(3)	19.	(2)	20.	(3)	21.	(4)
22.	(3)	23.	(2)	24.	(1)	25.	(4)	26.	(2)	27.	(1)	28.	(1)
29.	(4)	30.	(2)	31.	(2)	32.	(1)	33.	(1)	34.	(1)	35.	(2)
36.	(1)	37.	(2)	38.	(1)	39.	(4)	40.	(3)	41.	(3)	42.	(1)
43.	(3)	44.	(2)	45.	(3)								

SPP Solutions

- $\begin{array}{ll} \textbf{H}_3 BO_3 \text{ is weak, Lewis monobasic acid and shows the given equilibrium.} \\ \textbf{H}_3 BO_3 + \textbf{H}_2 O \stackrel{\longrightarrow}{=} B(OH)_4^- + H^+ \end{array}$
- 3. Solution will behave as an aqueous solution of weak monobasic acid.

$$pH = \frac{1}{2} (pK_a - \log C) = \frac{1}{2} (4.7 + 2) = 3.35$$

4. $\alpha \propto \sqrt{\frac{1}{C}}$ $\alpha \propto \sqrt{\frac{V}{n}}$ where n = number of moles of solute ; V = volume. $\alpha \propto \sqrt{V}$

5.
$$H^{+} = \frac{0.1 \times 100 + 0.01 \times 100}{200} = \frac{11}{200}$$
$$pH = 2 - 0.74 = 1.26$$

- 6. Weak acid will greater K_a will dissociate more.
- 7. Meq. of HCI = $10 \times 10^{-1} = 1$ Meq. of NaOH = = $10 \times 10^{-1} = 1$ Thus both are neutralised and 1 Meq. of NaCI (a salt of strong acid and strong base) which does not hydrolyse and thus pH = 7.
- 8. Millimole of $H^+ = V_1 \times 0.1 \times 1$ Millimole of $OH^- = V_2 \times 0.1 \times 2$, If we put $V_1 = 2V_2$ The final solution will be neutral i.e. Millimole of $H^+ = 2V_2 \times 0.1$ = Millimole of OH^-

9. HA \rightleftharpoons H⁺ + A⁻ C C(1- α) C α C α $\alpha = \sqrt{\frac{K_a}{C}}$ \Rightarrow [H⁺] = C $\alpha = \sqrt{K_a.C}$ Strength of acid \propto [H⁺] $\propto \sqrt{K_a}$.

10. $pK_{h} = pK_{w} - pK_{a} - pK_{b}$ is valid for salt of weak acid and weak base.

11.
$$h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{K_W}{K_h \times (0.01)}} = \sqrt{\frac{10^{-14}}{K_h \times (0.01)}} = 10^{-14} = \frac{10^{-14}}{K_h \times 10^{-2}} \Rightarrow K_h = 10^{-4}.$$
12. At pH = pK_h (CH_hCOOH) = [CH_hCOOF]
13.
$$[H^1] = \frac{50 \times 0.1 - 49.9 \times 0.1}{99.9} = 10^{-4} M$$

$$\therefore pH = 4$$
15.
$$pOH = pK_h + \log \frac{[salt]}{[base]}$$

$$\Rightarrow \frac{2 \times V}{V + 10} = \frac{10 \times 5}{V + 10}$$

$$\Rightarrow V = 25 m.$$
16.
$$pOH = pK_h + \log \frac{[salt]}{[base]} = 5$$

$$pOH = pK_h + \log \frac{[salt]}{[base]} = 10^{-4} M$$

$$\Rightarrow V = 25 m.$$
17.
$$pH = pK_h + \log \frac{[salt]}{[base]} = 5$$

$$pOH = pK_h + \log \frac{[salt]}{[base]} = 5 = 10^{-14} M$$

$$\Rightarrow 0.3 = \log \frac{[ln^{-1}]}{[HIn]} \Rightarrow 5 = 4.7 + \log \frac{[ln^{-1}]}{[HIn]}$$

$$\Rightarrow 0.3 = \log \frac{[ln^{-1}]}{[HIn]} \Rightarrow \log 2 = \log \frac{[ln^{-1}]}{[HIn]}$$

$$\Rightarrow 2 = \frac{[ln^{-1}]}{[HIn]} \Rightarrow \log 2 = \log \frac{[ln^{-1}]}{[HIn]}$$

$$\Rightarrow 2 = \frac{[ln^{-1}]}{[ln^{-1}]} \Rightarrow Hin \implies H^+ + ln^-$$

$$Fraction = \frac{Hin}{ln^- + Hin} = \frac{1}{3}$$
18.
$$HA + NAOH \longrightarrow NAA + H_2O$$

$$1 = 0 20 9 0 0 0$$

$$1 = 50\% 10 10 10 10$$

$$10 mI NAOH is required.$$
19.
$$Mg(OH)_{\mathcal{E}} \implies Mg^{2^2} + 2OH^-$$

$$S = 3 \times 10^{-4}$$

$$K_w = 4S^{3-4} 4 (3 \times 10^{-1})^{3-4} 4 \times 27 \times 10^{-12} = 1.08 \times 10^{-10}.$$
20. (1) in pure water S = (K_w)^{\frac{1}{2}}
$$(2) in 0.01 M CACl_{2}$$

$$CaCl_{3} \longrightarrow Ca^{-2} + 2Cl^{-1}$$

$$X (x + 0.02) = 0.02$$

$$x = \left(\frac{K_{w_{0}}}{0.02}\right)$$

22.

(3)
$$Y = \left(\frac{K_{sp}}{0.01}\right)$$

(4)
$$Z = \left(\frac{K_{sp}}{0.05}\right)$$

So
$$S_1 > S_3 > S_2 > S_4$$

SrCO₃ \rightleftharpoons Sr² + CO₃²⁻
S₁ S₁+S₂
ZnCO₃ \rightleftharpoons Zn²⁺ + CO₃²⁻
S₂ S₁+S₂
S = S_1 + S_2

$$\Rightarrow \qquad \frac{S_1 \times (S_1 + S_2) = 10^{-10}}{S_2 \times (S_1 + S_2) = 1.5 \times 10^{-11}} = \frac{10}{1.5} = \frac{100}{15} = \frac{20}{3}$$

- **23.** Find solubility for each separately by $S^2 = K_{SP}$ for MnS and ZnS, $108S^5 = K_{SP}$ for Bi_2S_3 and $4S^3 = K_{SP}$ for Ag_2S .
- **24.** pH of salt solution of weak acid & weak base dipends only upon K_w, K_a & K_b values, which are only dependent upon temperature.
- **25.** 1st solution will behave as solution of strong acid & 2nd solution will behave as salt of WA & SB.
- 26. NaZ is a salt of weak acid & strong base.

$$pH = 7 + \frac{1}{2} pK_{a} + \frac{1}{2} logC$$

$$8.9 = 7 + \frac{1}{2} pK_{a} + \frac{1}{2} log(0.1)$$

$$8.9 - 7 + 0.5 = \frac{1}{2} pK_{a}.$$

$$pK_{a} = 4.8$$

$$-log K_{a} = 4.8$$

$$log K_{a} = -4.8 = \overline{5}.2$$

$$K_{a} = 1.6 \times 10^{-5}$$

- 27. Because it has vacant d-orbital on central atom.
- 28. $pK_a \text{ of acid } A = 4 \text{ ; } pK_a \text{ of acid } B = 5$ We know that $pK_a = -\log K_a$ \therefore Acid A $K_a = 10^{-4}$ Acid B $K_a = 10^{-5}$ relative strength $= \sqrt{\frac{Ka_1}{Ka_2}} = \sqrt{10}$

Hence A is $\sqrt{10}$ times stronger than B.

29. It involves gain and loss of electron pair (Lewis concept).

30.
$$H^{-}_{(aq.)} + H_2 O_{(l)} \rightarrow OH^{-} + H_2$$

31.
$$[Ca^{2+}] [F^{-}]^2 = \left[\frac{10^{-2} \times V}{2V}\right] \times \left[\frac{10^{-3} \times V}{2V}\right]^2 = 1.25 \times 10^{-9} (>K_{sp})$$

CHEMISTRY FOR NEET

- 32. The degree of hydrolysis of a salt of weak acid and weak base is independent of concentration of salt.
- 38. Given that Concentration of solution =.1 Degree of ionisation = $2\% = \frac{2}{100} = 0.2$ lonic product of water = 1×10^{-14} Concentration of $[H^+]$ = Concentration of solution x degree of ionisation = $.1 \times .02 = 2 \times 10^{-3} \text{ M}$ [H⁺] $= \frac{1 \times 10^{-14}}{2 \times 10^{-3}} = 0.5 \times 10^{-11} = 5 \times 10^{-12} \text{ M}.$ $[H^+][OH^-] = 10^{-13.26}$

$$\therefore [H^+] = [OH^-], \therefore [H^+]^2 = 10^{-13.26}$$
$$[H^+] = 10^{\frac{-13.26}{2}}$$
$$pH = 6.63.$$

- 40. HCO₃⁻ and H₂O
- Decreasing order of acidic character is H₂SO₄ >CH₃COOH >H₂CO₃ 41.
- 42. H₃PO₃ is dibasic so NaH₂PO₃ & Na₂HPO₃ both exist.

43.
$$Ag_2CrO_4 \implies 2Ag^+ + CrO_4^{2-}$$

 $K_{sp} = (2S)^2 S$
 $S = 7.8 \times 10^{-5} \text{ mol/L} = 7.8 \times 10^{-5} \times 332 = 0.026 \text{ g/L} = 26 \text{ mg/L}$
So, miniumum volume that can dissolve 4mg salt = $\frac{4}{26}L$ = 154 mL

45.
$$pH = \frac{pK_{a_1} + pK_{a_2}}{2} \approx 8.5$$
 (closest to 9) (amphoteric species HCO_3^{-})