Self Practice Paper (SPP)

1.	when a salt is heated with the salt is: (1) a sulphite	with dilute H_2SO_4 and KI (2) a carbonate	MnO_4 solution, the pink α	colour of KMnO ₄ is discharged, (4) a bicarbonate			
2.	Solution of a salt in dilute H_2SO_4 or acetic acid produces deep blue colour with starch iodide solution. The salt contains:						
	(1) Br ⁻	(2) I ⁻	(3) NO ₃ ⁻	(4) NO ₂ ⁻			
3.	A test tube containing a nitrate and another containing a bromide and MnO ₂ are treated with concentrated H ₂ SO ₄ . The reddish brown fumes evolved are passed through water. The water will be coloured by:						
	(1) the nitrate	(2) the bromide	(3) both	(4) none of the two			
4.	Which of the following c (1) N_2O	ombines with Fe(II) ions (2) NO	to form a brown complex (3) N_2O_3	x? (4) N ₂ O ₄			
5.	Colourless salt (A) + dil. (1) K ₂ SO ₃	H_2SO_4 or $CH_3COOH + I$ (2) Na_2CO_3	$(1 \longrightarrow blue colour with s)$ (3) NH_4NO_2	tarch. (A) can be (4) NH ₄ Cl			
6.	There are four test tubes containing dilute HCl, BaCl ₂ , CdCl ₂ and KNO ₃ solutions. Which of the following reagents will help in the identification of BaCl ₂ ?						
	(1) NaOH	(2) K ₂ CrO ₄	(3) AgNO ₃	(4) both (2) and (3)			
7.	Which one of the following (1) Cr ³⁺	ng ions does not give bo (2) Cu ²⁺	orax bead test ? (3) Mn ²⁺	(4) Zn ²⁺			
8.	A brick red colour is imp (1) Ca salt	parted to Bunsen flame b (2) Sr salt	y a : (3) Na salt	(4) Co salt			
9.	test?	Which one of the following metal salts produces a blue coloured bead in cobalt nitrate charcoal cavity test?					
	(1) Zn ²⁺	(2) Mg ²⁺	(3) Sn ²⁺	(4) Al ³⁺			
10.	BaCl ₂ solution gives a white precipitate with a solution of a salt, which dissolves in dilute hydrochloric acid with the evolution of colourless, pungent smelling gas. The gas as well as the salt both are used as bleaching agent in the textile industries. The salt contains:						
	(1) sulphite	(2) sulphide	(3) acetate	(4) carbonate			
11.	with the compound cont	KMnO ₄ is decolourised raining the following acid		of any gas. This may happen			
	(1) SO_3^{2-}	(2) NO ₂	(3) S ²⁻	(4) All of these			
12.	(1) NO gas is liberated a	nen KI is added to acidified solution of sodium nitrite: NO gas is liberated and I ₂ is set free (2) N ₂ gas is liberated and HI is produced N ₂ O gas is liberated and HOI is produced					
13.	Zinc pieces are added to (1) turn lead acetate part (3) give white precipitate		0 ₃ ²⁻ . Gas liberated can : (2) turn lime water milky (4) None of these	,			

QUALITATIVE ANALYSIS

14.				which produces (i) turbidity with ion indicates the presence of : (4) NO ₂ -		
15.	Ammonium molybdate test is used for the estimation of :					
	$(1) PO_4^{3-}$	(2) NO ₃	(3) SO_3^{2-}	(4) SO_4^{2-}		
16.	A colorless gas is dissolved in water and the resulting solution turns red litmus blue; the gas may have been which one of the following?					
	(1) HCI	(2) H ₂ S	(3) SO ₂	(4) NH ₃		
17.	NaCl, NaBr, NaI mixture on adding conc. H ₂ SO ₄ gives gases, respectively:					
	(1) HCl, HBr, HI	(2) HCl, Br_2 , I_2	(3) Cl2, Br2, I2	(4) None of these		
18.	Which of the following pair of acid radicals can be distinguished by using dil. H ₂ SO ₄ ?					
	(I) $C_2O_4^{2-}$ and NO_3^{-} (1) I and II	(II) NO_3^- and NO_2^- (2) II only	(III) CI ⁻ and Br ⁻ (3) II and IV	(IV) HCO_3^- and CO_3^{2-} (4) III and IV		
19.	Identify the compound which turns black with ammonia solution. (1) Lead chloride (2) Mercurous chloride (3) Mercuric chloride (4) Silver chloride					
20.	A white crystalline substance dissolves in water. On passing H_2S in this solution, a black precipitate is obtained. The black precipitate dissolves completely in hot HNO_3 . On adding a few drops of concentrated H_2SO_4 , a white precipitate is obtained which is soluble in ammonium acetate. The white precipitate is that of : (1) $BaSO_4$ (2) $SrSO_4$ (3) $PbSO_4$ (4) Ag_2SO_4					
21.	The composition of gold	len snangles is	·	- '		
	(1) PbCrO ₄	(2) Pbl ₂	(3) As ₂ S ₃	(4) BaCrO ₄		
22.	In which of the following solvents, AgBr will have the highest solubility? (1) 10^{-3} M NaBr (2) 10^{-3} M NH ₄ OH (3) Pure water (4) 10^{-3} M HBr					
23.	Which one among the following pairs of ions can not be separated by H2S in presence of dilute					
	hydrochloric acid? (1) Cd ²⁺ , Sn ²⁺	(2) Al ³⁺ , Hg ²⁺	(3) Zn ²⁺ , Cu ²⁺	(4) Ni ²⁺ , Bi ³⁺		
24.	Which of the following is not precipitated as sulphide by passing H ₂ S in the presence of concentrated HCI?					
	(1) Copper	(2) Arsenic	(3) Cadmium	(4) Lead		
25.	Which of the following metal cation is reduced from its higher oxidation state (+2) to (+7 solution and excess of KCN solution ?					
	(1) Zn ²⁺	(2) Hg ²⁺	(3) Cu ²⁺	(4) None		
26.	Which of the following reagents gives a yellow precipitate with a hot faintly acidic solution of Bi³+ ions? (1) Ammonia solution (excess). (2) Freshly prepared 10% solution of pyrogallol. (3) Potassium iodide solution. (4) Freshly prepared 0.125 M alkaline sodium tetrahydroxidostannate (II) solution.					
27.	Which of the following of (1) Cr(OH) ₃	compounds on reaction w (2) Zn(OH) ₂	vith NaOH and Na ₂ O ₂ giv (3) Al(OH) ₃	es yellow colour solution? (4) Fe(OH) ₃		

28.

	(1) sky blue	(2) brown	(3) prussian blue	(4) white			
29.	CrO ₄ ²⁻ + H ⁺ + H ₂ O ₂ —ether X + H ₂ O Identify the correct statement with respect to X. (1) It is an acid anhydride of chromic acid. (2) It is a red colour compound which can be extracted easily into the etherial phase. (3) It is chromium peroxide which produces blue colouration in etheral layer on gentle shaking. (4) It is Cr ₂ O ₃ which is used as a green pigment.						
30.	- ·	nite precipitate of Mn(OH ur due to the formation of (2) Mn ₂ O ₇	:	and concentrated ${\rm HNO_3}$ gives (4) ${\rm PbMnO_4}$			
31.	Precipitate of Zn(OH) ₂ is soluble in : (1) excess of sodium hydroxide (3) solutions of ammonium salts		(2) excess of ammonia solution (4) all of these				
32.	Select the correct statement with respect to Ca²+ ions. (1) K₂CrO₄ gives white precipitate in the presence of acetic acid. (2) Potassium hexacyanidoferrate (II) solution gives white precipitate. (3) It gives lilac colour in Bunsen flame. (4) Prolonged passage of carbon dioxide gas through its aqueous solution produces white precipitate.						
33.	solution. The mixture co	ould be :	, ,	dilute HCl to form a colourless (4) Mn(NO ₃) ₂ and MgSO ₄			
34.	Which of the following of in alkaline solution? (1) Zn ⁺²	cation does not give red of (2) Ni ⁺²	colour precipitate/solution (3) Fe ²⁺	with dimethylglyoxime (DMG) (4) both (1) and (3)			
35.	Potassium chromate K ₂ (1) Pb ⁺²	CrO ₄ is NOT used to ider (2) Ba ⁺²	ntify. (3) Ag [®]	(4) Ca ⁺²			
36.	Aq. (1) + $K_2CrO_4 \longrightarrow$ A is :	$(2) \xrightarrow{\text{aq. NH}_3} (3)$ (Red ppt.) (Black)					
	(1) AgNO ₃	(2) Pb(NO ₃) ₂	(3) Hg ₂ (NO ₃) ₂	(4) Ca(NO ₃) ₂			
37.	Chromyl chloride vapou	urs are dissolved in wate	r and acetic acid and ba	rium acetate solution is added,			
	then: (1) the solution will rem (3) a yellow solution wil		* *	2) the solution will become dark green. 4) a yellow precipitate will be obtained.			
38.	A metal salt solution gives a yellow precipitate with silver nitrate. The precipitate dissolves in dilute nitric acid as well as in dilute ammonia solution. The solution contains: (1) bromide ions (2) iodide ions (3) phosphate ions (4) chromate ions						
39.	Which of the following will not give positive chromyl chloride test? (1) Copper chloride, CuCl ₂ . (2) Mercuric chloride, HgCl ₂ . (3) Zinc chloride, ZnCl ₂ . (4) Anilinium chloride C ₆ H ₅ NH ₃ Cl.			- 2			
40.	A solution containing Solution (1) Fe ³⁺ and Co ²⁺ only (3) Fe ³⁺ , Cu ²⁺ , Co ²⁺ and		test one or more out of : I (2) Co ²⁺ , Cu ²⁺ , Ag ⁺ and I (4) all	Fe ³⁺ , Co ²⁺ , Cu ²⁺ , Ag ⁺ and Hg ²⁺ . Hg ²⁺			

 $\text{FeCl}_3 + \text{K}_3[\text{Fe}(\text{CN})_6] + \text{H}_2\text{O}_2 \longrightarrow \text{Precipitate}$. The colour of the precipitate is :

41. Statement-1: In a mixture containing Br⁻ and I⁻, violet colour (of I₂) appears first in chloroform layer, when chlorine gas is passed through the mixture dissolved in water.

Statement-2: The order of the strength of reducing properties is as follows I⁻ >Br⁻ > Cl⁻ > F⁻.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (3) Statement-1 is True, Statement-2 is False.
- (4) Statement-1 is False, Statement-2 is True.
- (5) Both Statements are False.
- **42. Statement-1**: PbCl₂ and AgCl precipitates can be separated by ammonia solution.

Statement-2: PbCl, precipitate is soluble in hot water and concentrated potassium chloride solution.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (3) Statement-1 is True, Statement-2 is False.
- (4) Statement-1 is False, Statement-2 is True.
- (5) Both Statements are False.
- **43. Statement-1**: Hg₂Cl₂ is blackened by NH₃ due to the formation of iodide of Millon's base.

Statement-2: Hg²⁺ ions give deep-bule crystalline precipitate with cobalt(II) thiocyanate.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (3) Statement-1 is True, Statement-2 is False.
- (4) Statement-1 is False, Statement-2 is True.
- (5) Both Statements are False.
- **Statement-1**: Cu²⁺ and Cd²⁺ ions react with KCN solution (in excess) forming the colourless soluble complexes.

Statement-2: Of these colourless soluble complexes only cadmium complex gives yellow precipitate with H_aS gas in slightly acidic medium.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (3) Statement-1 is True, Statement-2 is False.
- (4) Statement-1 is False, Statement-2 is True.
- (5) Both Statements are False.
- **45. Statement-1**: Borax bead test can be used for the identification of coloured cations of transition metals.

Statement-2: They give different coloured beads with glassy transparent borax bead (NaBO₂ + B₂O₂).

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (3) Statement-1 is True, Statement-2 is False.
- (4) Statement-1 is False, Statement-2 is True.
- (5) Both Statements are False.

SPP Answers

- **1**. (1) **2**. (4) **3**. (2) **4**. (2) **5**. (3) **6**. (2) **7**. (4)
- **8**. (1) **9**. (4) **10**. (1) **11**. (4) **12**. (1) **13**. (1) **14**. (3)
- **15.** (1) **16.** (4) **17.** (2) **18.** (2) **19.** (2) **20.** (3) **21.** (2)
- **22.** (2) **23.** (1) **24.** (3) **25.** (3) **26.** (2) **27.** (1) **28.** (3)
- **29.** (3) **30.** (1) **31.** (4) **32.** (2) **33.** (2) **34.** (1) **35.** (4)
- **36.** (3) **37.** (4) **38.** (3) **39.** (2) **40.** (4) **41.** (1) **42.** (2)
- **43.** (4) **44.** (2) **45.** (1)

SPP Solutions

1. SO₃²⁻ reduces KMnO₄ to colourless Mn²⁺

$$5SO_3^{2-} + 2MnO_4^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O_4^{-}$$

2. Nitrite ion liberates I₂ from potassium iodide turning starch blue.

$$2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO^+ + 4CH_3COO^- + 2H_2O$$

 I_2 + starch \longrightarrow blue colour

- 3. NO_3^- gives NO_2 with concentrated H_2SO_4 which on passing through water form colourless $HNO_3(\ell)$ and $HNO_2(\ell)$. $Br^- + MnO_2$ on heating with concentrated H_2SO_4 gives Br_2 gas which on passing through water imparts it a reddish brown colour.
- 4. Fe²⁺ + NO + 5H₂O \longrightarrow [Fe(H₂O)₅NO] ²⁺ (brown complex)
- 5. $2NO_2^- + 3I^- + 4CH_3COOH \longrightarrow I_3^- + 2NO \uparrow + 4CH_3COO^- + 2H_2O.$ $I_3^- + \text{starch} \longrightarrow \text{blue colouration.}$
- **6.** Ba²⁺ + CrO₄²⁻ \longrightarrow BaCrO₄ \downarrow (yellow); Ag⁺ + Cl⁻ \longrightarrow AgCl \downarrow (white).
- 7. Zn²⁺ is colourless and borax bead test is given by coloured ions such as Cu²⁺, Mn²⁺, Fe³⁺ etc.
- **8.** Ca salts impart brick red colour to the flame.
- **9.** Al₂O₃.CoO formed in the test is blue in colour. It is called as thenard's blue.
- **10.** Ba²⁺ + SO₃²⁻ \longrightarrow BaSO₃ ↓ (white) BaSO₃ + 2HCl \longrightarrow BaCl₂ + SO₂(colourless pungent smelling gas) + H₂O SO₃²⁻ and SO₂ both act as bleaching agent.
- 11. (1) $5SO_3^{2-} + 2MnO_4^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$ (2) $2MnO_4^{-} + 5NO_2^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 5NO_3^{-} + 3H_2O$ (3) $2MnO_4^{-} + H_2S + 6H^+ \longrightarrow 2Mn^{2+} + 5S \downarrow + 8H_2O$
- **12.** $NO_2^- + 2I^- + 4CH_3COOH \rightarrow I_2^- + 2NO^+ + 4CH_3COO^- + 2H_2O$

13.
$$SO_3^{2-} + Zn + 8H^+ \longrightarrow H_2S \uparrow + 3Zn^{2+} + 3H_2O$$

 $Pb^{2+} + S^{2-} \longrightarrow PbS \downarrow (black)$
 $Ag^+ + S^{2-} \longrightarrow Ag_*S \downarrow (black)$

14.
$$SO_3^{2-} + Ba(OH)_2 \longrightarrow BaSO_3 \downarrow \text{ (white)} + 2OH^-.$$

 $3SO_2 + Cr_2O_7^{2-} + 2H^+ \longrightarrow 2Cr^{3+} \text{ (green colour solution)} + 3SO_4^{2-} + H_2O.$

- 16. NH₃ is basic
- 17. HBr and HI are strong reducing agents and are oxidized by H₂SO₄ to Br₂ and I₂, respectively.

$$\textbf{18.} \qquad \text{(I)} \quad \begin{cases} \rightarrow C_2 O_4^{2^-} + 2 H^+ \xrightarrow{\quad \text{dil.H}_2 S O_4} \rightarrow \text{No vapors or gas is evolved} \\ \rightarrow \text{NO}_3^- : \text{No reaction with dil.H}_2 S O_4 \end{cases}$$

$$(II) \begin{cases} \rightarrow NO_3^- : No \ reaction \ with \ dil. \ H_2SO_4 \\ \rightarrow NO_2^- + H^+ \xrightarrow{\quad dil. H_2SO_4 \quad} HNO_2 \end{cases} \xrightarrow{\quad disproportionation \quad} HNO_3 + NO^{\uparrow} \xrightarrow{\quad atm.air \quad} NO_2^{\uparrow}$$

Hence, distincition is posssible.

- (III) Both Cl- and Br- have no reaction with dil. H₂SO₄.
- (IV) Both HCO₃⁻ and CO₃²⁻ produce CO₂ ↑ which evolves with efferverscences.

19.
$$Hg_2Cl_2 + 2NH_3 \longrightarrow Hg \stackrel{Cl}{\underbrace{\hspace{1cm}}_{NH_2}} \downarrow \text{(white)} + Hg \downarrow \text{(black)} + NH_4Cl}$$

Black

20. The white precipitate obtained with H₂SO₄ is that of PbSO₄. The white crystalline substance may be that of Pb(NO₃)₂.

Pb²⁺ + S²⁻
$$\longrightarrow$$
 PbS \downarrow (black); 3PbS \downarrow + 8HNO₃ \longrightarrow 3Pb²⁺ + 6NO₃⁻ + 3S \downarrow + 2NO + 4H₂O Pb²⁺ + SO₄²⁻ \longrightarrow PbSO₄ \downarrow (white)
PbSO₄ + 2CH₃COONH₄ \longrightarrow (NH₄)₂[Pb(CH₃COO)₄] + (NH₄)₂SO₄

BaS and SrS precipitates are not black in colour. Ag₂SO₄ is white precipitate but does not dissolve in ammonium acetate.

- **21.** Pbl₂ is yellow (known as golden spangles).
- **22.** AgBr has the highest solubility in 10⁻³ M NH₄OH AgBr dissolves in all other solvents poorly.
- 23. Both Cd²⁺ and Sn²⁺ are precipitated as yellow sulphides in the presence of dilute HCl.
- 24. Cd²+ + H₂S → CdS↓ + 2H+, reaction is reversible; if the concentration of strong acid in the solution is above 0.5 M, precipitation is incomplete. Concentrated acid dissolves the precipitate for the same reason.

25.
$$2Cu^{2+} + 4I^{-} \longrightarrow Cu_{2}I_{2} \downarrow + I_{2}$$

 $Cu^{2+} + 3CN^{-} \longrightarrow CuCN \downarrow + (CN)_{2}$

- **26.** (1) $Bi^{3+} + 3NH_4OH \longrightarrow Bi(OH)_3 \downarrow$ (white) + $3NH_4^+$
 - (2) $Bi^{3+} + C_6H_3(OH)_3 \longrightarrow Bi(C_6H_3O_3) \downarrow \text{ (yellow)} + 3H^+$
 - (3) $Bi^{3+} + 3I^- \longrightarrow BiI_3 \downarrow$ (black); $BiI_3 + I^- \longrightarrow [BiI_4]^-$ (orange solution)
 - (4) $Bi^{3+} + 3OH^{-} \longrightarrow Bi(OH)_{3} \downarrow$ (white) ; $2Bi(OH)_{3} \downarrow + 3[Sn(OH)_{4}]^{2-} \longrightarrow 2Bi \downarrow$ (black) + $3[Sn(OH)_{6}]^{2-}$
- 27. $3\text{Na}_2\text{O}_2 + 2\text{Cr}(\text{OH})_3 \xrightarrow{\Delta} 2\text{NaOH} + 2\text{H}_2\text{O} + 2\text{Na}_2\text{CrO}_4 \text{ (yellow)}$
- 28. On adding H_2O_2 in alkaline medium or $SnCl_2$ solution in acidic medium, the $[Fe(CN)_6]^{3-}$ part of the compound is reduced and prussian blue is precipitated.
- **29.** $\text{CrO}_4^{2-} + 2\text{H}^+ + 2\text{H}_2\text{O}_2 \longrightarrow \text{CrO}_5$ (chromium peroxide) $+ 3\text{H}_2\text{O}$ It in etheral layer develops blue colouration.
- 30. $Mn(OH)_2 + 2HNO_3 \longrightarrow Mn(NO_3)_2 + 2H_2O$. $2Mn(NO_3)_2 + 5PbO_2 + 6HNO_3 \longrightarrow 2HMnO_4$ (red – violet or purple colour) + $5Pb(NO_3)_2 + 2H_2O$.
- 31. (1) $Zn(OH)_2 \downarrow + 2OH^- \rightleftharpoons [Zn(OH)_4]^{2-}$
 - (2) and (3) $Zn(OH)_2 \downarrow + 4NH_3 \rightleftharpoons [Zn(NH_3)_4]^{2+} + 2OH^{-1}$ or NH_4^+
- 32. (1) No precipitate with K_2CrO_4 in acetic acid as its k_{so} is high.
 - (2) $Ca^{2+} + 2K^{+} + [Fe(CN)_{e}]^{4-} \longrightarrow K_{2}Ca[Fe(CN)_{e}] \downarrow \text{ (white)}$
 - (3) It imparts brick red colour to Bunsen flame.
 - (4) Ca(HCO₃)₂ is formed which is water soluble.
- 33. (2) BaCO₃ + ZnS mixture dissolves in HCl but is insoluble in water. Further the solution in HCl will be colourless due to the formation of soluble BaCl₂ and ZnCl₂.
- **34.** Ni²⁺ and Fe²⁺ both on reaction with alkaline solution of dimethyl glyoxime give red precipitate and red solution respectively but not zinc.
- 35. (1) $Pb^{+2} + CrO_4^{-2} \longrightarrow PbCrO_4$ (yellow ppt)
 - (2) $Ba^{+2} + CrO_4^{-2} \longrightarrow BaCrO_4$ (Yellow ppt)
 - (3) $Ag^{\oplus} + CrO_4^{-2} \longrightarrow Ag_2CrO_4$ (Brick like red ppt)
 - (4) $Ca^{+2} + CrO_4^{-2} \longrightarrow CaCrO_4$ (soluble)
- $\textbf{36.} \qquad \text{Hg}_2(\text{NO}_3)_2 + \text{ K}_2\text{CrO}_4 \longrightarrow \text{Hg}_2\text{CrO}_4 \xrightarrow{\text{aq. NH}_3} \text{Hg}(\text{NH}_2)\text{I} + \text{Hg} \\ \text{(Red ppt.)} \qquad \qquad \text{(Black)}$
- 37. $CrO_2Cl_2 + 2H_2O \longrightarrow H_2CrO_4 + 2HCl$ $H_2CrO_4 + (CH_3COO)_2Ba \longrightarrow BaCrO_4 \downarrow (Yellow) + 2CH_3COOH$
- **38.** Ag₃PO₄ is yellow precipitate which is soluble both in dilute ammonia solution and dilute HNO₃.

$$HPO_4^{2-} + 3Ag^+ \longrightarrow Ag_3PO_4 \downarrow + H^+$$

$$Ag_3PO_4 + 2H^+ \longrightarrow H_2PO_4^- \downarrow + 3Ag^+; Ag_3PO_4 \downarrow + 6NH_3 \longrightarrow 3[Ag(NH_3)_2]^+ + PO_4^{3-}$$

Pale yellow precipitate of AgBr is not soluble in dilute HNO_3 ; bright yellow precipitate of AgI is not soluble in both; Ag_2CrO_4 is obtained as red precipitate.

- **39.** HgCl₂ fails to give positive chromyl chloride test because of its covalent nature i.e., it does not dissociate to give Cl⁻.
- **40.** CoCl₂ + 4NH₄SCN $\xrightarrow{\text{ether}}$ (NH₄)₂[Co(SCN)₄] (blue colour in ethereal layer) + 2NH₄Cl.

$$Cu^{2+} + 3SCN^{-} \longrightarrow CuSCN \downarrow \text{ (white)} + (SCN)_2$$
.

FeCl₃ + 3NH₄SCN
$$\xrightarrow{\text{ether}}$$
 Fe(SCN)₃ (blood red colour) + 3NH₄Cl.

$$Ag^+ + SCN^- \longrightarrow AgSCN \downarrow \text{ (white)}.$$

$$Co^{2+} + 4SCN^{-} + Hq^{2+} \longrightarrow Co[Hq(SCN)_4] \downarrow (deep blue).$$

41. As I⁻ is stronger reducing agent than Br⁻ so it will oxidised prior to Br⁻ liberating iodine gas according to the following reaction,

$$2\mathsf{I}^{\scriptscriptstyle{-}} + \mathsf{CI}_{\scriptscriptstyle{2}} \longrightarrow \mathsf{I}_{\scriptscriptstyle{2}} + 2\mathsf{CI}^{\scriptscriptstyle{-}}; \ 2 \ \mathsf{Br}^{\scriptscriptstyle{-}} + \mathsf{CI}_{\scriptscriptstyle{2}} \longrightarrow \mathsf{Br}_{\scriptscriptstyle{2}} + 2\mathsf{CI}^{\scriptscriptstyle{-}}$$

42. Statement-1: AgCl + $2NH_3 \longrightarrow [Ag(NH_3)_2]Cl$ (soluble complex)

$$Pb^{2+} + 2NH_3 + 2H_2O \longrightarrow Pb(OH)_2 \downarrow \text{ (white)} + 2NH_4^+$$

Statement-2: PbCl₂ \downarrow + 2Cl⁻ \longrightarrow [PbCl₄]²⁻ [soluble complex]; PbCl₂ is also soluble in hot water.

43. Statement-1 : $Hg_2Cl_2 + 2NH_3 \longrightarrow Hg < \frac{NH_2}{Cl} + Hg + NH_4Cl$

Statement-2:
$$Hg^{2+} + Co^{2+} + 4SCN^{-} \longrightarrow Co[Hg(SCN)_4] \downarrow$$

(deep-blue)

44. Statement-1: $Cu^{2+} + 4CN^{-} \longrightarrow [Cu(CN)_{4}]^{3-}$ (colourless)

$$Cd^{2+} + 4CN^{-} \longrightarrow [Cd(CN)_{a}]^{2-}$$
 (colourless)

Statement-2: Cd²⁺ complex is less stable, therefore, it reacts with H₂S forming yellow precipitate of CdS.

Where as $[Cu(CN)_4]^{3-}$ is more stable and thus is unaffected by H₂S gas.

45. Coloured cations of transition metals form different colour metaborates with borax bead.