
 

HEAT TRANSFER 

 
1. INTRODUCTION 

 Heat is energy in transit which flows due to temperature difference; from a body at higher temperature to 

a body at lower temperature. This transfer of heat from one body to the other takes place through three 

processes. 

 (i) Conduction  (ii) Convection (iii) Radiation 
 

2. CONDUCTION  

 The process of transmission of heat energy in which heat is 
transferred from one particle of the medium to the other, but 
each particle of the medium stays at its own position is called 
conduction, for example if you hold an iron rod with one of its 
end on a fire for some time, the handle will get heated. The 
heat is transferred from the fire to the handle by conduction 
along the length of iron rod. The vibrational amplitude of 
atoms and electrons of the iron rod at the hot end takes on 
relatively higher values due to the higher temperature of their 
environment.  

 

 These increased vibrational amplitudes are transferred along the rod, from atom to atom during collision 

between adjacent atoms. In this way a region of rising temperature extends itself along the rod to your 

hand. 

 Consider a slab of face area A, Lateral thickness L, whose faces have temperatures TH and TC  

(TH > TC). 

 Now consider two cross sections in the slab at positions A and B separated by a lateral distance of dx. 

Let temperature of face A be T and that of face B be T + ΔT. Then experiments show that Q, the amount 

of heat crossing the area A of the slab at position x in time t is given by  

       .....(2.1) 

 Here K is a constant depending on the material of the slab and is named thermal conductivity of the 

material, and the quantity  is called temperature gradiant. The (–) sign in equation (2.1) shows heat 

flows from high to low temperature (ΔT is a –ve quantity) 
 

3. STEADY STATE  

 If the temperature of a cross-section at any position x in the above slab remains constant with time 

(remember, it does vary with position x), the slab is said to be in steady state. 

 Remember steady-state is distinct from thermal equilibrium for which temperature at any position (x) in 

the slab must be same.  

 For a conductor in steady state there is no absorption or emission of heat at any cross-section. (as 

temperature at each point remains constant with time). The left and right face are maintained at constant 

temperatures TH and TC respectively, and all other faces must be covered with adiabatic walls so that no 

heat escapes through them and same amount of heat flows through each cross-section in a given Interval 

of time. Hence Q1 = Q = Q2. Consequently the temperature gradient is constant throughout the slab. 

 Hence,   =  =  =  and   = –KA   

 ⇒   = KA      .... (3.1) 

 Here Q is the amount of heat flowing through a cross-section of slab at any position in a time interval of 

t. 



 

 

 
Example 1.  One face of an aluminium cube of edge 2 metre is maintained at 100ºC and the other end is 

maintained at 0ºC. All other surfaces are covered by adiabatic walls. Find the amount of heat 

flowing through the cube in 5 seconds. (thermal conductivity of aluminium is 209 W/m–ºC) 

Solution :  Heat will flow from the end at 100ºC to the end at 0ºC.  

   Area of cross-section perpendicular to direction of heat flow,  

     A = 4m2  

   then   = KA  

   Q =   = 209 KJ  Ans. 

 
 

4. THERMAL RESISTANCE TO CONDUCTION  

 If you are interested in insulating your house from cold weather or for that matter keeping the meal hot in 

your tiffin-box, you are more interested in poor heat conductors, rather than good conductors. For this 

reason, the concept of thermal resistance R has been introduced. 

 For a slab of cross-section A, Lateral thickness L and thermal conductivity K, 

  Resistance       .....(4.1) 

 In terms of R, the amount of heat flowing though a slab in steady-state (in time t) 

    

 If we name  as thermal current iT  

 then,      .....(4.2) 

 This is mathematically equivalent to OHM’s law, with temperature donning the role of electric potential. 

Hence results derived from OHM’s law are also valid for thermal conduction. 

 More over, for a slab in steady state we have seen earlier that the thermal current iL remains same at 

each cross-section. This is analogous to kirchoff’s current law in electricity, which can now be very 

conveniently applied to thermal conduction. 

 
Example 2.  Three identical rods of length 1m each, having cross-section area of 1cm2 each and made of  

Aluminium, copper and steel respectively are maintained at temperatures of 12ºC, 4ºC and 50ºC 

respectively at their separate ends. Find the temperature of their common junction.                                     

 
   [KCu = 400 W/m-K , KAl =  200 W/m-K  , Ksteel = 50 W/m-K ]  

 

 



 

Solution :  RAl =  =  =   

   Similarly Rsteel =  and   Rcopper =   

   Let temperature of common junction = T  

  then from Kirchoff;s Junction law.   

   iAl + isteel + iCu = 0    

   ⇒  +  +  = 0 

   ⇒ (T – 12) 200 + (T – 50) 50 + (T – 4) 400 = 0 

   ⇒ 4(T – 12) + (T – 50) + 8 (T – 4) = 0 

   ⇒ 13T = 48 + 50 + 32 = 130  

   ⇒ T = 10ºC Ans. 

 

 

 

5. SLABS IN PARALLEL AND SERIES 

5.1 Slabs in series (in steady state) 
 Consider a composite slab consisting of two materials having different thickness L1 and L2, different cross-

sectional areas A1 and A2 and different thermal conductivities K1 and K2. The temperature at the outer 

surface at the ends are maintained at TH and TC, and all lateral surfaces are covered by an adiabatic 

coating. 

   
 Let temperature at the junction be T, since steady state has been achieved thermal current through each 

slab will be equal. Then thermal current through the first slab. 

  i =  =       or    TH – T = iR1    .....(5.1)  

 and that through the second slab, 

  i =  =   or T – TC = iR2    .....(5.2) 

 dding eqn. 5.1 and eqn 5.2  

  TH – TL = (R1 + R2) i or i =  

 Thus these two slabs are equivalent to a single slab of thermal resistance R1 + R2. If more than two slabs 

are joined in series and are allowed to attain steady state, then equivalent thermal resistance is given by 

  R = R1 + R2 + R3 + .......     .....(5.3) 

 

 



 

Example 3.  The figure shows the cross-section of the outer wall of a house built in a hill-resort to keep the 

house insulated from the freezing temperature of outside. The wall consists of teak wood of 

thickness L1 and brick of thickness (L2 = 5L1), sandwitching two layers of an unknown material 

with identical thermal conductivities and thickness. The thermal conductivity of teak wood is  

K1 and that of brick is (K2 = 5K). Heat conduction through the wall has reached a steady state 

with the temperature of three surfaces being known. (T1 = 25ºC, T2 = 20ºC and T5 = –20ºC). Find 

the interface temperature T4 and T3. 

 

Solution :  Let interface area be A. then thermal resistance of wood, R1 =  

   and that of brick wall R2 =  =  = R1  
   Let thermal resistance of the each sandwitched layer = R. Then the above wall can be visualised 

as a circuit 

 
   thermal current through each wall is same. 

   Hence  =  =  =  
   ⇒ 25 – 20 = T4 + 20  ⇒ T4 = –15ºC  Ans.  

   also, 20 – T3 = T3 – T4  ⇒ T3 =  = 2.5ºC    Ans.  
 

Example 4.  In example 3, K1 = 0.125 W/m–ºC, K2 = 5K1 = 0.625 W/m–ºC and thermal conductivity of the 

unknown material is K = 0.25 W/mºC. L1 = 4cm, L2 = 5L1 = 20cm and L = 10cm. If the house 

consists of a single room of total wall area of 100 m2, then find the power of the electric heater 

being used in the room. 

Solution :  R1 = R2 =  = 32 × 10–4 ºC/w  

   R =  = 40 × 10–4 ºC/w  

   the equivalent thermal resistance of the entire wall = R1 + R2 + 2R = 144 × 10–4 ºC/W 

   ∴ Net heat current, i.e. amount of heat flowing out of the house per second =  

   =  =  watt   = 3.12 Kwatt 

   Hence the heater must supply 3.12 kW to compensate for the outflow of heat. Ans. 
 

 



 

5.2 Slabs in parallel : 

   
 Consider two slabs held between the same heat reservoirs, their thermal conductivities K1 and K2 and 

cross-sectional areas A1 and A2   

 then R1 = , R2 =  

 thermal current through slab 1 ;   

 and that through slab 2 ;  

 Net heat current from the hot to cold reservoir i =  

 Comparing with i = , we get,   =  

 If more than two rods are joined in parallel, the equivalent thermal resistance is given by 

     = +  +  .....    .... (5.4) 

 
Example 5.  Figure shows a copper rod joined to a steel rod. The rods have equal length and equal  

cross-sectional area. The free end of the copper rod is kept at 0ºC and that of steel rod is kept at 

100ºC. Find the temperature of the junction of the rod. Conductivity of copper = 390 W/mºC. 

Conductivity of steel = 46 W/m ºC 

    

Solution :  Heat current in first rod (copper) =  

   Here θ is temperature of the junction and A &  are area and length of copper rod. 

   Heat current in second rod (steel) =  

   In series combination. heat current remains same. So, 

    =  

   – 390 θ = 46 θ – 4600  436 θ = 4600 

   θ = 10.6ºC 
 

Example 6.  An aluminium rod and a copper rod of equal length 1m and cross-sectional area 1cm2 are welded 
together as shown in the figure. One end is kept at a temperature of 20ºC and other at 60ºC. 



 

Calculate the amount of heat taken out per second from the hot end. Thermal conductivity of 
aluminum is 200 W/mºC and of copper is 390 W/mºC. 

 

Solution :  Heat current through the = .(60 – 20) 

   Heat current through the copper rod  = .(60 – 20) 
   Total heat = 200 × 10–4 × 40 + 390 × 10–4 × 40 = 590 × 40 × 10–4 = 2.36 Joule 
 

Example 7.  The three rods shown in the figure (1) have identical geometrical dimensions. Heat flows from 
the hot end at the rate of 40W in arrangement (1). Find the rate of heat flow when the rods are 
joined in arrangement (2). Thermal conductivity of aluminum and copper are 200 W/mºC and 400 
W/mºC respectively. 

      
                          (1)                   (2) 
Solution :  (a)  In the arrangement (1), the three rods are joined in series. The rate of flow of heat, 

     = =  
    But, R  = R1 + R2 + R3  [In series] 

    ∴  40 = , 40 =  

     40 = ,  =   = 200 per m 
   (b) In figure (2) two rods all in parallel and resultant of both is in series with the first rod  

    ∴   =   But R = R1 +  

     =  = =  = 75W 
 

Example 8.  A metal rod of length 20cm and diameter 2 cm is covered with a non conducting substance. One 
of its ends is maintained at 100ºC while the other end is put at 0ºC. It is found that 25 g of ice 
melts in 5 min. Calculate the coefficient of thermal conductivity of the metal. Latent heat of ice = 
80 cal gram–1 

Solution :  Here, length of the rod,  Δx = 20 cm = 20 × 10– 2 m 
   Diameter = 2cm, 
   Radius = r = 1 cm = 10– 2 m 
   Area of cross section  a = πr2

 = π(10–2)2 = π × 10–4 sq. m 

   ΔT = 100 – 0 = 100ºC 
   Mass of ice melted, m = 25g 
   As L = 80 cal/ g  
   ∴ Heat conducted, ΔQ = mL = 25 × 80 = 2000 cal = 2000 × 4.2 J 

   Δt = 5 min = 300 s 

   From  = KA  K =  = 1.78Js–1m–1ºC–1 

Example 9.  Two thin concentric shells made from copper with radius r1 and r2 (r2 > r1) have a material of 

thermal conductivity K filled between them. The inner and outer spheres are maintained at 



 

temperatures TH and TC respectively by keeping a heater of power P at the centre of the two 

spheres. Find the value of P. 

Solution :  Heat flowing per second through each cross-section of the sphere 

= P = i. 

   Thermal resistance of the spherical shell of radius x and thickness 

dx,      

   dR =  ⇒ R =  =   

   thermal current  i = P =  = . Ans. 

 

  

 
GROWTH OF ICE ON PONDS 

 When atmospheric temperature falls below 0°C the water in the lake will start freezing. Let at any time t, 

the thickness of ice in the lake be y and atmospheric temperature is –θ°C. The temperature of water in 

contact with the lower surface of ice will be 0ºC. 

 the area of the lake = A  

 heat escaping through ice in time dt is  

 Now due to escaping of this heat if dy thickness of water in contact with lower surface of ice freezes, 

   dQ2 = mL = ρ(dy A)L [as m = ρV = ρA dy] 

 But as dQ1 = dQ2, the rate of growth of ice will be  

 and so time taken by ice to grow a thickness y,   

 It is clear that time taken to double and triple the thickness will be in the ratio t1 : t2 : t3 : : 1² : 2² : 3², i.e., 

t1 : t2 : t3 : : 1 : 4 : 9 and the time intervals to change thickness from 0 to y, from y to 2y and so on will be 

in the ratio Δt1 : Δt2 : Δt3 : : (12 – 02) : (22 – 12) : (32 – 22), i.e., Δt1 : Δt2 : Δt3 : : 1 : 3 : 5. 

 Can you now see how the following facts can be explained by thermal conduction ? 

 (a) In winter, iron chairs appears to be colder than the wooden chairs. 

 (b) Ice is covered in gunny bags to prevent melting. 

 (c) Woolen clothes are warmer.   

 (d) We feel warmer in a fur coat. 

 (e) Two thin blankets are warmer than a single blanket of double the thickness. 

 (f) Birds often swell their feathers in winter.  

 (g) A new quilt is warmer than old one.  

 (h) Kettles are provided with wooden handles. 

 (i) Eskimo's make double walled ice houses. 

 (j) Thermos flask is made double walled. 
 

6. CONVECTION 

 When heat is transferred from one point to the other through actual movement of heated particles, the 

process of heat transfer is called convection. In liquids and gases, some heat may be transported through 

conduction. But most of the transfer of heat in them occurs through the process of convection. Convection 

occurs through the aid of earth’s gravity. Normally the portion of fluid at greater temperature is less dense, 

while that at lower temperature is denser. Hence hot fluids rises up white colder fluid sink down, 

accounting to convection. In the absence of gravity convection would not be possible. 

 Also, the anamalous behaviour of water (its density increases with temperature in the range 0-4ºC) give 
rise to interesting consequences vis-a-vis the process of convection. One of these interesting 
consequences is the presence of aquatic life in temperate and polar waters. The other is the rain cycle. 



 

 Can you now see how the following facts can be explained by thermal convection ? 
 (a) Oceans freeze top-down and not bottom up. (this fact is singularly responsible for presence of 

acquatic life is temperate and polar waters.) 
 (b) The temperature in the bottom of deep oceans is invariably 4ºC, whether it is winter or summer. 
 (c) You cannot illuminate the interior of a lift in free fall or an artificial satellite of earth with a candle. 
 (d) You can Illuminate your room with a candle. 
 

7. RADIATION : 
 The process of the transfer of heat from one place to another place without heating the intervening 

medium is called radiation. The term radiation used here is another word for electromagnetic waves. 
These waves are formed due to the superposition of electric and magnetic fields perpendicular to each 
other and carry energy. 

 Properties of Radiation: 
 (a) All objects emit radiations simply because their temperature is above alsolute zero, and all objects 

absorb some of the radiation that falls on them from other objects. 
 (b) Maxwell on the basis of his electromagnetic theory proved that all radiations are electromagnetic 

waves and their sources are vibrations of charged particles in atoms and molecules. 
 (c) More radiations are emitted at higher temperature of a body and lesser at lower temperature. 
 (d) The wavelength corresponding to maximum emission of radiations shifts from longer wavelength to 

shorter wavelength as the temperature increases. Due to this the colour of a body appears to be 
changing. Radiations from a body at NTP has predominantly infrared waves. 

 (e) Thermal radiations travels with the speed of light and move in a straight line. 
 (f) Radiations are electromagnetic waves and can also travel through vacuum. 
 (g) Similar to light, thermal radiations can be reflected, refracted, diffracted and polarized. 

 (h) Radiation from a point source obeys inverse square law (intensity α ). 
 (i) Infrared radiations are detected by pyrometer 
 

8. PREVOST THEORY OF HEAT EXCHANGE : 
 According to this theory, all bodies radiate thermal radiation at all temperatures. The amount of thermal 

radiation radiated per unit time depends on the nature of the emitting surface, its area and its temperature. 
The rate is faster at higher temperatures. Besides, a body also absorbs part of the thermal radiation 
emitted by the surrounding bodies when this radiation falls on it. If a body radiates more than what it 
absorbs, its temperature falls. If a body radiates less than what it absorbs, its temperature rises. And if 
the temperature of a body is equal to the temperature of its surroundings it radiates at the same rate as 
it absorbs.  

 Rate of incidence does not depends on  
 (i) Temperature of the body (ii)   Nature of the body 
 

9. PERFECTLY BLACK BODY AND BLACK BODY RADIATION (FERY'S BLACK 

BODY)  
 A perfectly black body is one which absorbs all the heat 

radiations of whatever wavelength, incident on it. It neither 
reflects nor transmits any of the incident radiation and therefore 
appears black whatever be the colour of the incident radiation. 

 In actual practice, no natural object possesses strictly the 
properties of a perfectly black body. But the lamp-black and 
platinum black are good approximation of black body. They 
absorb about 99 % of the incident radiation. The most simple 
and commonly used black body was designed by Fery.  

 
 It consists of an enclosure with a small opening which is painted black from inside. The opeining acts as 

a perfect black body. Any radiation that falls on the opening goes inside and has very little chance of 

escaping the enclosure before getting absorbed through multiple reflections. The cone opposite to the 

opening ensures that no radiation is reflected back directly. 

 
 

10. ABSORPTION, REFLECTION AND EMISSION OF RADIATIONS  



 

 Q = Qr + Qt + Qa 

  
 1 = r + t + a   

 where  r = reflecting power ,  a = absorptive power   

 and t    = transmission power. 

 (i)  r = 0, t = 0, a = 1, perfect black body 

 (ii)  r = 1, t = 0, a = 0, perfect reflector 

 (iii) r = 0, t = 1, a = 0, perfect transmitter 

 

 

10.1 Absorptive power :  
 In particular, absorptive power of a body can be defined as the fraction of incident radiation that is 

absorbed by the body.  

  a =  
 As all the raditions incident on a black body are absorbed, a = 1 for a black body. 
 

10.2 Emissive power : 
 Energy radiated per unit time per unit area along the normal to the area is known as emissive power.  

 E =  
 (Notice that unlike absorptive power, emissive power is not a dimensionless quantity). 
 

10.3 Spectral Emissive power (Eλ) :   

 Emissive power per unit wavelength range at wavelength λ is known as spectral emissive power, Eλ. If 

 E is the total emissive power and Eλ is spectral emissive power, they are related as follows, 

   and   
 

10.4 Emissivity: 

 e =  =  
 

11. KIRCHOFF'S LAW: 
 The ratio of the emissive power to the absorptive power for the radiation of a given wavelength is same 

for all substances at the same temperature and is equal to the emissive power of a perfectly black body 
for the same wavelength and temperature.   

    
 Hence we can conclude that good emitters are also good absorbers.  
 

 APPLICATIONS OF KIRCHHOFF'S LAW 
 If a body emits strongly the radiation of a particular wavelength, it must also absorb the same radiation 

strongly. 
 (1) Let a piece of china with some dark painting on it be first heated to nerly 1300 K and then examined 

in dark room. It will be observed that the dark paintings appear much brighter than the white portion. 
This is because the paintings being better absorbers also emit much more light. 

 (2)  The silvered surface of a thermos flask does not absorb much heat from outside. This stops ice from 
melting quickly. Also, the silvered surface does not radiate much heat from inside. This prevents hot 
liquids from becoming cold quickly. 

 (3)  A red glass appears red at room temperature. This is because it absorbs green light strongly. 
However, if it is heated in a furnace, it glows with green light. This is because it emits green light 
strongly at a higher temperature. 

 (4)  When white light is passed through sodium vapours and the spectrum of transmitted light is seen, we 

find two dark lines in the yellow region. These dark lines are due to absorption of radiation by sodium 

vapours which it emits when heated. 



 

 Fraunhofer lines are dark lines in the spectrum of the sun. When white light emitted from the central core 

of the sun (photosphere) passes through its atmosphere (chromosphere) radiations of those wavelengths 

will be absorbed by the gases present there which they usually emit (as a good emitter is a good absorber) 

resulting in dark lines in the spectrum of sun. 

 At the time of solar eclipse direct light rays emitted from photosphere cannot reach on the earth and only 

rays from chromosphere are able to reach on the earth surface. At that time we observe bright fraunhofer 

lines.   

      

12. NATURE OF THERMAL RADIATIONS :  (WIEN'S DISPLACEMENT LAW) 

 From the energy distribution curve of black body radiation, the following conclusions can be drawn :

             

 (a) Higher the temperature of a body, higher is the area under the curve  i.e. more amount of energy is 

emitted by the body at higher temperature.  

 (b) The energy emitted by the body at different temperatures is not uniform. For both long and short 

wavelengths, the energy emitted is very small. 

 (c) For a given temperature, there is a particular wavelength (λm) for which the energy emitted (Eλ) is 

maximum. 

 (d) With an increase in the temperature of the black body, the maxima of the curves shift  towards shorter 

wavelengths.  

  From the study of energy distribution of black body radiation discussed as above, it was established 

experimentally that the wavelength (λm) corresponding to maximum intensity of emission decreases 

inversely with increase in the temperature of the black body.   i.e. 

     λm ∝     or   λm T = b 

  This is called Wien's displacement law.   

  Here b = 0.282 cm-K, is the Wien’s constant. 
 

 
Example 10. Solar radiation is found to have an intensity maximum near the wavelength range of 470 nm. 

Assuming the surface of sun to be perfectly absorbing (a = 1), calculate the temperature of solar 

surface. 



 

Solution :  Since a =1, sun can be assumed to be emitting as a black body from Wien’s law for a black body  

    λm . T = b  

   ⇒ T =  =  ~ 6125 K. Ans.  

  
13. STEFAN-BOLTZMANN’S LAW : 

 According to this law, the amount of radiation emitted per unit time from an area A of a black body at 

absolute temperature T is directly proportional to the fourth power of the temperature.  

  u = σAT4        ..... (13.1) 

 where σ is Stefan's constant  = 5.67 x 10-8 W/m2 k4   

 A body which is not a black body absorbs and hence emit less radiation then that given by equation  (3.1). 

 For such a body,        .....(13.2) 

 where  e = emissivity (which is equal to absorptive power) which lies between 0 to 1   

 With the surroundings of temperature T0 , net energy radiated by an area A per unit time.. 

     ....(13.3) 

 
Example 11. A black body at 2000K emits radiation with λm = 1250 nm. If for the radiation coming from the star 

SIRUS λm is 71 nm, then the temperature of this star is ....... 

Solution :  Using wien's displacement law 

     =   

   ∴  T2 =  ⇒ T2 = 35211 K 
 

Example 12. At 1600 K maximum radiation is emitted at a wavelength of 2µm. Then the corresponding 

wavelength at 2000 K will be - 

Solution :  Using T1 =  T2  ∴   =  

   ∴ =  ⇒  = 1.6 µm 
 

Example 13. If the temperature of a body is increased by 50%, then the increase in the amount of radiation 

emitted by it will be  

Solution :   Percentage increase in the amount of radiations emitted  

   ∴  × 100 =  × 100 

   ⇒  × 100 = [(1.5)4 – 1] × 10  × 100 = 400% 

 

Example 14. A blackened platinum wire of length 5cm and perimeter 0.02 cm is maintained at a temperature 
of 300K. Then at what rate the wire is losing its energy ? (Take σ = 57 × 10–8 units) 

Solution :  The rate of radiation heat loss is  = eAσT4 (watts) 
   for blackened surface e = 1 

   and A = (2πr) = Perimeter × length 

   ∴ A = 0.02 × 5 × 10–4 Thus 



 

   ∴  = 0.02 × 5 × 10–4 × 5.7 × 10–8 × (300)4 ⇒  = 46.2W 
 

Example 15. A body of emissivity (e = 0.75), surface area of 300 cm2 and temperature 227ºC is kept in a room 
at temperature 27ºC. Calculate the initial value of net power emitted by the body. 

   Using equation.  (13.3)   P = eσA (T4 – T0
4)  

   = (0.75) (5.67 × 10–8 W/m2 –k4) (300 × 10–4 m2) × {(500 K)4 – (300 K)4}    
   =  69.4 Watt.  Ans.  
 

Example 16. A hot black body emits the energy at the rate of 16 J m–2 s–1 and its most intense radiation 
corresponds to 20,000 Å. When the temperature of this body is further increased and its most 
intense radiation corresponds to 10,000 Å, then find the value of energy radiated in Jm–2 s–1 .  

Solution :  Wein's displacement law is : 

   λm .T = b i.e.   T ∝  

   Here, λm becomes half. 
   ∴  Temperature doubles. 

   Also   E = σT4     ⇒       ⇒   E2 = .E1 = (2)4.16 
   = 16.16 = 256 J m–2 s–1   Ans.  

 
14. NEWTON'S LAW OF COOLING :  
 For small temperature difference between a body and its surrounding, the rate of cooling of the body is 

directly proportional to the temperature difference and the surface area exposed. 

 , where θ and θ0 are temperature corresponding to object and surroundings.   

 From above expression ,    ......(14.1) 
 This expression represents Newton's law of cooling. It can be derived directly from stefan’s law, which 

gives,  

   k =  A     ...... (14.2) 

 Now      ⇒   =   

 where θi  = initial temperature of object and  
   θf = final temperature of object. 

 ⇒   = –kt  ⇒ (θf − θ0) = (θi – θ0) e–kt  

 ⇒  θf = θ0 + (θi – θ0) e –kt        .....(14.3) 

 

 

14.1 Limitations of Newton's Law of Cooling: 
 (a) The difference in temperature between the body and surroundings must be small  

 (b) The loss of heat from the body should be by radiation only.  

 (c) The temperature of surroundings must remain constant during the cooling of the body. 
 

 

14.2 Approximate method for applying Newton’s law of cooling  
 Sometime when we need only approximate values from Newton’s law, we can assume a constant rate of 

cooling, which is equal to the rate of cooling corresponding to the average temperature of the body during 

the interval. 

   = –k(<θ> – θ0)    .....(14.4) 

 If θi & θf be initial and final temperature of the body then,  



 

  <θ> =       .....(14.5) 

 Remember equation (14.5) is only an approximation and equation (14.1) must be used for exact values. 

 Comparision of specific heat of two liquids using Newton's law of cooling :  

 If equal volume of two liquids of densities and specific heats ρ1 , s1 and ρ2 , s2 respectively are filled in 

calorimeters having same surface area and finish, cool from same initial temperature θ1 to same final 

temperature θ2 with same temperature of surroundings, i.e., θ0, in time intervals t1 and t2 respectively and 

water equivalent of calorimeter is w. According to Newton's law of cooling  

     

   ,       

  or     

  If water equivalent of calorimeter w is negligible then  

  So,  or  (v1 = v2, volume are equal) with the help of this eqn. we can find specific 

heat of liquid. 

 
Example 17. A body at temperature 40ºC is kept in a surrounding of constant temperature 20ºC. It is observed 

that its temperature falls to 35ºC in 10 minutes. Find how much more time will it take for the body 

to attain a temperature of 30ºC. 

Solution :  from equation  (14.3.) 

    Δθf = Δθi e–kt  

   for the interval in which temperature falls from 40 to 35º C. 

   (35 – 20) = (40 – 20) e–k. 10  

   ⇒ e–10 k =   ⇒ K =  

   for the next interval 

   (30 – 20) = (35 – 20)e–kt   

   ⇒ e–10k =  ⇒ kt = n    

   ⇒  = n ⇒ t = 10  minute = 14.096 min  Ans. 



 

   Alternative : (by approximate method) 

   for the interval in which temperature falls from 40 to 35ºC  

   <θ> =  = 37.5ºC 

   from equation (14.4)  = –k(<θ> – θ0)   

   ⇒  = –K(37.5ºC – 20ºC)     ⇒ K =  

   for the interval in which temperature falls from 35ºC to 30ºC   

   <θ> =  = 32.5ºC  

   from equation (14.4) 

    = – K(32.5ºC – 20ºC) 

   ⇒ required time, t =  = 14 min Ans.  
 

Example 18. Two liquids of same volume are cooled under same conditions from 65ºC to 50ºC. Time taken 

are 200sec and 480 sec. If ratio of their specific heats is 2 : 3 then find the ratio of their densities. 

(neglect the water equivalent of calorimeter) 

Solution :  From Newton's law of cooling  (θ1 – θ2) =  (θ1 – θ2) here w1 = w2 = 0 

    =  ⇒ =  

   ⇒   =  =  ×  =  

 

Example 19. A calorimeter of water equivalent 5 × 10–3 kg contains 25 × 10–3 kg of water. It takes 3 minutes 

to cool from 28°C to 21°C. When the same calorimeter is filled with 30 × 10–3 kg of turpentine oil 

then it takes 2 minutes to cool from 28°C to 21°C. Find out the specific heat of turpentine oil. 

Solution :   Rwater = Rturpentine  

   or   

    , 20 = 30 s2 + 5   
   ∴  specific heat of turpentine s2 = 1/2 = 0.5 kcal/kg/°C  
 

 

Example 20. A man, the surface area of whose skin is 2m², is sitting in a room where the air temperature is 

20°C. If his skin temperature is 28°C, find the rate at which his body loses heat. The emissivity 

of his skin = 0.97. 

Solution :  Absolute room temperature (T0) = 20 + 273 = 293 K 

   Absolute skin temperature (T) = 28 + 273 = 301 K 

   Rate of heat loss = σ e A (T4 – T4
0)  

   = 5.67 × 10–8 × 0.97 × 2 × {(301)4 – (293)4} = 92.2 W 
 



 

Example 21. Compare the rate of loss of heat from a metal sphere of the temperatue 827°C, with the rate of 

loss of heat from the same sphere at 427 °C, if the temperature of surroundings is 27°C. 

Solution :  Given : T1 = 827 °C = 1100 K, T2 = 427 °C = 700 K and T0 = 27 °C = 300 K 

   According to Steafan's law of radiation,  = σ Ae (T4 – T0
4) 

   ∴  = 6.276  

   or  
 

Example 22. Two spheres of the same material have radii 6 cm and 9 cm respectively. They are heated to the 

same temperature and allowed to cool in the same enclosure. Compare their initial rates of 

emission of heat and initial rates of fall of temperature. 

Solution :  Given : r1 = 6 cm r2 = 9 cm, ∴  

   According to Stefan's law of radiation, the rate of emission of heat by an ordinary body, 

   Rh =  = σAeT4 or Rh ∝ r² (A = 4πr²) ∴  

    [Rate of fall of temp. RFT ,  =  or   or  ] 

   ∴ Initial rates of emission of heat are in the ratio 4 : 9 and initial rates of fall of temperature 

  are in the ratio 3 : 2. 
 

Example 23. The filament of an evacuated light bulb has a length 10 cm, diameter 0.2 mm and emissivity 

  0.2, calculate the power it radiates at 2000 K. (σ = 5.67 × 10–8 W/m² K4) 

Solution :   = 10 cm = 0.1 m,  d = 0.2 mm,   r = 0.1 mm = 1 × 10–4 m,   

   e = 0.2,    T = 2000 K,   σ = 5.67 × 10–8 W/m² K4 

   According to stefan's law of radiation, rate of emission of heat for an ordinary body (filament),  

   E = σAeT4 = σ(2 π r ) eT4 = 5.67 × 10–8 × 2 × 3.14 × 1 × 10–4 × 0.1 × 0.2 × (2000)4 = 11.4 W 

   ∴ Power radiated by the filament = 11.4 W  [A = 2πr]  

 

Example 24. The energy radiated from a black body at a temperature of 727°C is E. By what factor the 

  radiated energy shall increase if the temperature is raised to 2227°C? 

Solution :   

 
Problem 1.  An ice box made of 1.5 cm thick styrofoam has dimensions 60 cm × 30cm. It contains ice at 0ºC 

and is kept in a room at 40ºC. Find the rate at which the ice is melting. Latent heat of fusion of 

ice = 3.36 × 105 J/kg. and thermal conductivity of stryrofoam = 0.4 W/m-ºC. 

Solution :  The total surface area of the walls 

   = 2(60 cm × 60 cm + 60 cm × 30 cm + 60 cm × 30 cm) = 1.44 m2 

   The thickness of the wall = 1.5 cm = 0.015m 



 

   The rate of heat flow into the box is  

    =  =  = 154 W. 

   The rate at which the ice melts is   = 0.46 g/s 
 

 

Problem  2.  A black body emits 10 watts per cm2 at 327ºC. The sun radiates 105 watt per cm2. Then what is 

the temperature of the sun ? 

Solution :     =  

   ∴   =  

   ∴   Tsun = 6000 K 
 

Problem  3.  A bulb made of tungsten filament of surface are a 0.5 cm2 is heated to a temperature 3000k when 

operated at 220V. The emissivity of the filament is e = 0.35 and take σ = 5.7 × 10–8 mks units. 

Then the wattage of the bulb is .....(calculate) 

Solution :  The emissive power watt/m2 is E = eσT4 

   Therefore the power of the bulb is P = E x area (Watts) 

   ∴ P = eσT4A  

   ∴ P = 0.35 × 0.5 × 10–4 × 5, 7 × 10–8 × (3000)4  ⇒ P = 80.8 W 
 

Problem  4.  In the above example, if the temperature of the filament falls to 2000k due to a drop of mains 

voltage, then what will be the wattage of the bulb ? 

Solution :  Now the power of the bulb will be such that 

    =  Thus P2 = P1 ×  

   ∴  P2 = 80.8 ×  ⇒  P2 = 15.96 
 

Problem  5.  A liquid takes 30 seconds to cool from 95ºC to 90ºC and 70 seconds to cool from 55 to 50ºC. 

Find the room temperature and the time it will take to cool from 50ºC to 45ºC 

Solution :  From the first data 

    = k    .........(1) 

   From the second data 

    = k    .........(2) 

   Dividing (1) and (2) we get 

    =   ⇒  θ0 = 22.5º ..........(3) 

   Let the time taken in cooling from 50ºC to 45ºC is t, then  

    = k     ..........(4) 

   Using θ0 = 22.5ºC, and dividing (1) by (2) we get 

    =  ⇒ t = 84 sec 



 
 

Problem 6.  A blackened metal disc is held normal to the sun rays, Both of its surfaces are exposed to 

atmosphere if the distance of earth from sun is 216 times the radius of sun and the temperature 

of sun is 6000K, the temperature of the disc in steady state will be  

Solution :  In the steady state the heat received from sun will be equal to heat radiated out. Heat received 

from sun will be on one side only and it will radiate from both sides. 

   ∴  A  σT4 = 2AσT4,   

   ∴ T′ =  =  = 343 K 

   ∴ T′ = 70ºC 
 

Problem 7.  Behaving like a black body sun emits maximum radiation at wavelength 0.48µm. The mean 

radius of the sun is 6.96 × 108m. stefan's constant is 5.67 × 10–8wm–2k–4 and wien's constant is 

0.293 cm-k. The loss of mass per second by the emission of radiation from sun is - 

Solution :  Using wien's law  

   T =  =  = 6104 K 

   Energy given out by sun per second = AσT4 =4π (6.96 × 108)2 × 5.67 × 10–8 (6104)4  

   ⇒ 49.285 × 1025J 

   Loss of mass per second m =  =  ⇒ m = 5.4 × 109 kg/s 
 

Problem 8.  50g of water and an equal volume of alcohol (relative density 0.8) are placed one after the other 

in the same calorimeter. They are found to cool from 60ºC to 50ºC in 2 minutes and 1 minute 

respectively if the water equivalent of the calorimeter is 2g then what is the specific heat of the 

alcohol ? 

Solution :  Given tw = 2min, talco = 1 min 

   mw = 50g, malco = 50 × 0.8 = 40g 

   Sw = 1 in cgs units, w = 2g 

   Therefore, Salco =   ⇒ Salco = ⇒ Salco =  

   Salco = 0.6 cgs units = 0.6 cal/gºC 


