Exercise-1

Marked Questions may have for Revision Questions.

E

OBJECTIVE QUESTIONS

Section (A) : Modulus Function

A-1.	Sum of the solutions of (1) 2	the equation $\Box x \Box + 2 = 3$ (2) 1	3 is (3) 0	(4) None of these
A-2.	The number of real roo (1) 0	ts of the equation x ² + 3 2 (2) 2	x + 2 = 0 is (3) 3	(4) 4
A-3.	If $3 3 - x = 7$, then the (1) 1/9	product of all the possib (2) 6	le values of x is (3) 2/3	(4) 32/9
A-4.	Sum of solutions of the (1) 3	equation $ x _2 - x + 4 = 2$ (2) 6	2x ₂ – 3 x + 1 is (3) 0	(4) None of these
A-5.	For the equation x ² + (1) real and equal	x - 6 = 0, the roots are (2) real with sum 0	(3) real with sum – 1	(4) real with product 0
A-6.	Solutions of equation (1) ±1, ±3	x – 1 – 2 = 1 are (2) ±2, ±1	(3) ±2, 0, 4	(4) ±2, 3, 1
A-7.	Solution of $ 4x + 3 + 3 $ (1) $x = -\frac{7}{3}, \frac{3}{7}$	x - 4 = 12 is (2) $x = -\frac{5}{2}, \frac{2}{5}$	(3) $x = -\frac{11}{7}, \frac{13}{7}$	(4) $x = -\frac{13}{7}, \frac{11}{7}$
A-8.	Number of real solution (1) 0	s of equation x – 3 + 2 : (2) 1	x + 1 = 4 is (3) 2	(4) 3
A-9.	Number of solutions of (1) 1	equation □x□ - 2 x + 5 = (2) 0	0 is (3) 2	(4) 3
A-10.	If $\{x \in R : x - 2 = x^2\}$, t (1) - 1, 2	hen values of x are (2) 1, 2	(3) –1, – 2	(4) 1, – 2
A-11.	The number of solution (1) 1	s of x + 2 = 2 (3 – x) is (2) 2	(3) 3	(4) 0
A-12.	Number of solutions of (1) 2	the equation x x = 4 is (2) 1	(3) 0	(4) None of these
A-13.	Solution of the equatio $(1) - 1,4$	n $ x^2 - 4x + 3 + x = 7$ is (2) 1,4	(3) – 1,–4	(4) 1,-4
A-14.	The minimum value of t	f(x) = x - 1 + x - 2 + x - 2 = x - 1 (2) 2	– 3 is equal to (3) 3	(4) 0
A-15.	Solution of equation \Box (1) (- ∞ , 1]	x – 1□ – 2□ = □x – 3□ is (2) [1, ∞)	(3) (–∞, –1] ∪ [1, ∞)	(4) {1, -1}

Section (B) : Modulus Inequalities

B-1.	Complete set of real 'x' (1) $(-\infty, -5] \cup [-1, \infty)$	(4) (–∞, 1] ∪ [5, ∞)								
B-2.	Sum of integral solution (1) 6	ns of inequality x – 2 – (2) –4	3 ≤ 0 is (3) 4	(4) –6						
B-3.	Number of integral solu (1) 3	itions of inequality x + 3 (2) 4	> 2x – 1 is (3) 5	(4) 2						
B-4.	The complete set of real 'x' satisfying $ x - 1 - 1 \le 1$ is (1) [0, 2] (2) [-1, 3] (3) [-1, 1] (4) [1, 3]									
B-5.	Complete solution of in (1) $(-\infty, \infty)$	equality 3x – 9 + 2 > 2 (2) {3}	2 is (3) R – {3}	(4) φ						
B-6.	Complete solution of in (1) $(-1, 0) \cup (0, 3)$	equality $\left 1 + \frac{3}{x} \right > 2$ is (2) $(-\infty, -1) \cup (0, \infty)$	(3) (-∞, -1) ∪ (3, ∞)	(4) (-∞, −1)						
B-7.	Number of integral solu (1) 6	tions of inequality 2x – 3 (2) 5	3 – x ≤ 3 is (3) 4	(4) 7						
Compr	Comprehension # 1 (B-8 to B-10)									
	Given an inequation questions :	$\left + \frac{3}{x} \right > 2$ whose solution	set is given by (a, 0) \cup (0, b), then answer the following						
B-8.	The value of a + b is (1) 1	(2) 2	(3) 3	(4) 4						
B-9.	If $x^3 - kx^2 + x + 2$ is divi (1) 0	(4) 4								
B-10.	If solution set for (x + 1) (1) 7) ² < (7x – 3) is (c, d), thei (2) 8	n (a + b + c + d) equals to (3) 9	o (4) 10						
B-11.	$ x-2 + x+1 \ge 3$, then c (1) [1, ∞)	his inequation is : (3) R	(4) [–2, 1]							
Sectio	on (C) : Irrational in	equalities								
C-1.	The set of values of x s	atisfying inequality $\sqrt{6}$	$\overline{x} > x - 1$ is							
	(1) (– ∞, 1]	(2) $\left[-\infty, \frac{1+\sqrt{21}}{2}\right]$	$(3) \left[-\infty, \frac{1-\sqrt{21}}{2} \right]$	(4) [1, ∞)						

C-2. The set of values of x satisfying inequlity $x + 3 < \sqrt{2-x}$

$$\left(\frac{-7-\sqrt{21}}{2}-3\right)$$
(2) $\left(\frac{-7-\sqrt{21}}{2}-3\right)_{U}\left(\frac{-7+\sqrt{21}}{2},2\right)$

D-2. If graph of y = (x - 1) (x - 2) is given by

Then the graph of |y| = |(|x| - 1) (|x| - 2)|

PART - I : OBJECTIVE QUESTIONS

1.	If $ x_2 - 2x - 8 + x_2 + x - 2 = 3 x + 2 $, then the set of all real values of x is							
	(1) [1, 4] ∪ {–2}	(2) [1, 4]	(3) [−2, 1] ∪ [4,∞)	(4) (-∞, -2] ∪ [1, 4]				
2.	If x ₃ – 9x ₂ + 26x –	24 is a prime numb	per then number of possible	e integral value of x is				
	(1) 1	(2) 2	(3) 0	(4) 3				
3.	Number of integers	Number of integers satisfying the equation $ x^2 + 5x + x - x^2 = 6x $ is						

	(1) 3	(2) 5	(3) 7	(4) 9				
4.	Maximum value of f(x	x = x + 1 - 2 x - 1 is	(2) 1	(4) 0				
	(1) 3	(2) 2	(3) 1	(4) 0				
			<u> x +2</u>					
5.	Number of roots of ec	x - 2 - 2 = 0 a	nd $y = 2$ equals to					
	(1) 1	(2) 2	(3) 3	(4) 4				
		<u>3x</u>						
6.	Complete solution of	inequality $ X^2 - 4 \le 1$ is		• · ·				
	(1) [-4, -1] [1, 4]	(1 m)	$(2) (-\infty, -4] (-2, 1] (2)$	2,∞) 1.∞)				
	$(3)(-\infty, -2)(-1, 2)[$	4, ~)	$(4) (-\infty, -4] [-1, 1] [4]$	(+) (, -+] [, -] [+,)				
7.	Number of positive integer solutions of inequality $ 2x - 3 + x + 5 \le x - 8 $ is							
	(1) 7	(2) 2	(3) 1	(4) 2				
		x+3 +x						
8.	Complete solution of	inequality x+2 > 1	is					
	(1) (-∞, -2) ∪ (-1, ∞)	(2) (–∞, –1) ∪ (2, 5)	(3) (-2, -1)	(4) (−5, −2) ∪ (−1, ∞)				
9.	Solve the inequality (x - 3) $(x - 5) < 0$						
	(1) (3,5)	(2) (-5,-3)	(3) (–5,–3) ∩ (3,5)	(4) (−5,−3) ∪ (3,5)				
10	Complete colution of	inconcline (by 1) 2) (by						
10.	(1) (m - 7) + (-2 - 3)	(x - 1 - 3)	$(2) (-\infty, -4) \cup (-3, 2) \cup (7, \infty)$					
	$(1) (-\infty, -7) \cup (-2, 3)$	0 (4, ~)	$(2) (-\infty, -4) \cup (-3, 2)$ $(4) (-7, -2) \cup (3, 4)$	0 (7, ~)				
	$(3)(-4,-3) \cup (2,7)$		(4) (-7, -2) 0 (3, 4)					
			(-2 - 0)($\sqrt{2}$				
			$\frac{(x^2+2)(x)}{(x^4+2)(x)}$	$\frac{(x^2 - 16)}{(x^2 - 0)}$				
11.	Find the number of al	Il the integral solutions of	the inequality $(x + 2)$	$(x - 3) \leq 0$				
	(1) 1	(2) 2	(3) 3	(4) 4				
			—					
12.	Complete set of solut	ion of inequation $\sqrt{X+5}$	$-\sqrt{X} > 1$ is [a, b) (where	a, $b \in R$) then a + b is equal to				
	(1) 4	(2) 3	(3) 2	(4) 1				
13.	Complete set of solut	ion of a inequation $\sqrt{2\sqrt{2}}$	$(x-1)_{+}\sqrt{x-1} > 1$					
	(1) $x \in (2 - \sqrt{3} 1)$	(2) $x \in (12 + \sqrt{3})$	(3) $x \in (2 - \sqrt{3} + \sqrt{3})$	$(4) x \in (2 - \sqrt{3} \infty)$				
	(), ~ (- , ')			, (), ~ (- , ,)				
		∫ 1, if	$\mathbf{x} \leq 0$					
		$\frac{1}{2}x^{2}+1$, if	0 < x < 2					
14.	The graphs of function	ons $f_1(x) = \begin{bmatrix} 5, & \text{if} \end{bmatrix}$	$x \ge 2$, $f_2(x) = \log_{1/2}(x)$	$(x-3)$, $f_3(x) = 2^{3-x}$ and $f_4(x) = e^{\{x\}}$				
	where { . } denote the	fracitonal part function a	are given (not in order) as	S:				

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- A-1. **Statement -1 :** If |x - 2| + |x - 7| = |2x - 9|, then $x \le 2$ or $x \ge 7$ **Statement -2 :** |x - a| + |x - b| = b - a has infinitely many solution, for a < b.
- Statement -1 : The solution of inequality $\frac{|x-3|}{|x-3|} + 5 > x$ is $(-\infty, 6)$ A-2 **Statement -2 :** |x| = -x if $x \le 0$.

Section (B) : MATCH THE COLUMN

1. If y = f(x) has following graph, then match the column.

(B)
$$y = f(|x|)$$

(C) y = f(-|x|)

(p)

(q)

(r)

(s)

(D) y = |f(|x|)|

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

1.

The equation $|x - 2|^{10x^2 - 1} = |x - 2|^{3x}$, where $x \neq 2$ has :

- (1) two positive & two negative solutions
- (2) four real solutions
- (3) three positive & one negative solutions
- (4) three real solutions .

2. The simultaneous equations y = x + 2 |x| and y = 4 + x - |x| have the solution set given by

(1) $\left(\frac{4}{3},\frac{4}{3}\right)$ $\left(\frac{4}{3},4\right)$ $(3)\left(-\frac{4}{3},\frac{4}{3}\right)$ (2) $\left(4,\frac{4}{3}\right)$

- 3. Consider f(x) = ||x 1| |x + 2|| = P.
 - (1) If P = 0 then f(x) has exactly one solution
 (3) If P = 3 then f(x) has infinite solution

(2) If P =1 then f(x) has exactly 2 solution(4) If P = 4 then f(x) has no solution

	AI	1SW	ers										
						EXER	CISE	- 1					
Secti	on (A)	:											
A-1.	(3)	A-2.	(1)	A-3.	(4)	A-4	(3)	A-5.	(2)	A-6.	(3)	A-7.	(3)
A-8.	(2)	A-9.	(1)	A-10.	(4)	A-11.	(1)	A-12.	(2)	A-13.	(1)	A-14.	(2)
A-15.	(2)												
Section (B) :													
B-1.	(4)	B-2.	(3)	B-3.	(2)	B-4.	(2)	B-5.	(3)	B-6.	(1)	B-7.	(4)
B-8.	(2)	B-9.	(1)	B-10.	(1)	B-11.	(3)						
Section (C) :													
C-1.	(2)	C-2.	(2)	C-3.	(4)	C-4.	(1)	C-5.	(4)				
Secti	Section (D) :												
D-1.	(4)	D-2.	(4)	D-3.	(1)	D-4.	(3)	D-5.	(4)				
Secti	on (E)	:											
E-1.	(2)	E-2.	(1)	E-3.	(3)	E-4.	(4)	E-5.	(4)	E-6.	(3)	E-7.	(1)
						EXER	CISE	- 2					
						PAF	ΥТ- Ι						
1.	(1)	2.	(3)	3.	(3)	4.	(2)	5.	(3)	6.	(4)	7.	(3)
8.	(4)	9.	(4)	10.	(4)	11.	(2)	12.	(1)	13.	(4)	14.	(4)
15.	(1)	16.	(3)	17.	(4)	18.	(1)						
PART - II													
A-1.	(1)	A-2	(3)										
Secti	on (B)	:											
1.	(A) →	(r),	(B) →	(p),	(C) –	→ (q),	(D) →	(s)					
Section (C) :													
1.	(2,3)	2.	(3,4)	3.	(1,2,3	3,4)							