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 Marked Questions may have for Revision Questions. 
 

OBJECTIVE QUESTIONS 
 

 

Section (A) : Modulus Function  
 

A-1. Sum of the solutions of the equation ⏐x⏐ + 2 = 3 is  

 (1) 2   (2) 1   (3) 0   (4) None of these 
 

A-2. The number of real roots of the equation x2 + 3|x| + 2 = 0 is  

 (1) 0   (2) 2   (3) 3   (4) 4 
 

A-3. If 3|3 – x | = 7, then the product of all the possible values of x is  

 (1) 1/9    (2) 6   (3) 2/3    (4) 32/9  
 

A-4. Sum of solutions of the equation |x|2 – |x| + 4 = 2x2 – 3|x| + 1 is  

 (1) 3   (2) 6   (3) 0   (4) None of these 
 

A-5. For the equation |x2| + |x| – 6 = 0, the roots are   

 (1) real and equal  (2) real with sum 0 (3) real with sum – 1 (4) real with product 0  
 

A-6. Solutions of equation ||x – 1| – 2| = 1 are 

 (1) ±1, ±3  (2) ±2, ±1  (3) ±2, 0, 4  (4) ±2, 3, 1 
 

A-7. Solution of |4x + 3| + |3x – 4| = 12 is 

 (1) x = – ,    (2) x = – ,   (3) x = –  ,   (4) x = –  ,   
 

A-8. Number of real solutions of equation |x – 3| + 2|x + 1| = 4 is  

 (1) 0   (2) 1   (3) 2   (4) 3 
 

A-9. Number of solutions of equation ⏐x⏐ − 2 x + 5 = 0 is  

 (1) 1   (2) 0   (3) 2   (4) 3 
 

A-10. If {x ∈ R : |x – 2| = x2}, then values of x are  

 (1) – 1, 2   (2) 1, 2    (3) –1, – 2   (4) 1, – 2 
 

A-11. The number of solutions of |x + 2| = 2 (3 – x) is  

 (1) 1    (2) 2    (3) 3    (4) 0 
 

A-12. Number of solutions of the equation x|x| = 4 is 

 (1) 2   (2) 1   (3) 0   (4) None of these  
 

A-13. Solution of  the equation |x2 – 4x + 3| + x = 7 is  

 (1) – 1,4   (2)  1,4   (3) – 1,–4  (4) 1,–4 
 

A-14. The minimum value of f(x) = |x – 1| + |x – 2| + |x – 3| is equal to  

 (1) 1   (2) 2   (3) 3   (4) 0 
 

A-15. Solution of equation ⏐⏐x – 1⏐ – 2⏐ = ⏐x – 3⏐ is  
 (1) (–∞, 1]  (2) [1, ∞)  (3) (–∞, –1] ∪ [1, ∞) (4) {1, –1} 
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Section (B) : Modulus Inequalities 
 

B-1. Complete set of real 'x' satisfying |x – 3| ≥ 2 is 

 (1) (–∞, –5] ∪ [–1, ∞) (2) (–∞, –2] ∪ [2, ∞) (3) [1, 5]   (4) (–∞, 1] ∪ [5, ∞) 
 

B-2. Sum of integral solutions of inequality | |x – 2| – 3| ≤ 0 is 

 (1) 6   (2) –4   (3) 4   (4) –6 
 

B-3. Number of integral solutions of inequality |x + 3| > |2x – 1| is 

 (1) 3   (2) 4   (3) 5   (4) 2  
 

B-4. The complete set of real ' x ' satisfying ||x – 1| – 1| ≤ 1 is    

 (1) [0, 2]  (2) [− 1, 3]  (3) [− 1, 1]  (4) [1, 3] 
 

B-5. Complete solution of inequality ||3x – 9| + 2 | > 2 is  

 (1) (–∞, ∞)  (2) {3}   (3) R – {3}  (4) φ  
 

B-6. Complete solution of inequality  > 2 is  

 (1)  (–1, 0) ∪ (0, 3) (2)  (–∞, –1) ∪ (0, ∞) (3)  (–∞, –1) ∪  (3, ∞) (4)  (–∞, –1) 
 

B-7. Number of integral solutions of inequality |2x – 3| – |x| ≤ 3 is  

 (1) 6   (2) 5   (3) 4   (4) 7  
 

Comprehension # 1 (B-8 to B-10) 

 Given an inequation   > 2 whose solution set is given by (a, 0) ∪ (0, b), then answer the following 

questions : 
 

B-8. The value of |a + b| is  

 (1) 1   (2) 2   (3) 3   (4) 4 
 

B-9. If x3 – kx2 + x + 2 is divisible by x – a, then value of k is  

 (1) 0   (2) 1   (3) 3   (4) 4 
 

B-10. If solution set for (x + 1)2 < (7x – 3) is (c, d), then (a + b + c + d) equals to 

 (1) 7   (2) 8   (3) 9   (4) 10 
 

B-11. |x–2| + |x+1| ≥ 3, then complets solution set of this inequation is :   

 (1) [1, ∞)  (2) (–∞, –2]  (3) R   (4) [–2, 1] 
 

Section (C) : Irrational inequalities 
 

C-1. The set of values of x satisfying inequality   > x – 1 is 

 (1) (– ∞, 1]  (2)   (3)  (4) [1, ∞)  
 

C-2. The set of values of x satisfying inequlity  x + 3 <  

 (1)     (2) ∪  
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 (3)     (4)  
 

C-3. The set of values of x satisfying inequality  < 2x – 3   is 

 (1) (– ∞, 1]  (2) [1, ∞)    (3) [2, ∞)   (4) [3, ∞)  
 

C-4. Complete set of values of x satisfying the inequality  x – 3 <  is 

 (1) (– ∞, – 5] U [1, ∞) (2) (– 5, 3]   (3) [3, 5)  (4) (– 5, 3)  
 

C-5. The set of values of x satisfying inequlity 4 – x <   

 (1) (– ∞, – 5]   (2) (0, 2]   (3) [0, 2] ∪ (4,∞)  (4) x ∈ φ 
 

Section (D) : Transformation of curves 
 

D-1. The graph of |y| + x + 1 = 0 is 

 (1)    (2)    

 (3)      (4)  
 

D-2. If graph of y = (x – 1) (x – 2) is given by  

   
 Then the graph of |y| = |(|x| – 1) (|x| – 2)| 

 

  (1)   (2)   
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 (3)   (4)   

D-3. If graph of y = f(x) is  

  
 Then the graph of y = f (x + 1)  

 (1)      (2)  
 

 (3)       (4)   
 

D-4. The graphs of of the functions f1(x) = –|x + 2|, f2(x) = | | x – 1 | – 2|, f3(x)=|x + 2| + |x – 3|  

 (A)     (B)   

 (C)     (D)   

 The correct order of graphs of functions f1(x), f2(x), f3(x) is 

 (1) BCD  (2) ABC   (3) ACB  (4) ACD 
  

D-5. The graphs of of the functions f1(x) = n(x + 3), f2(x) = cos ,f3(x) = sin πx  

  (A)   (B)      
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 (C)  

 (D)  

 The correct order of graphs of functions f1(x), f2(x), f3(x) is 

 (1) BCD  (2) ABC   (3) ACB   (4) ACD 

Section (E) : Greatest Integer [⋅] Fractional part {⋅} and signum function 
  

E-1. The value of [e] – [– π]  where [.] denotes greatest integer function, is 

 (1) 5   (2) 6   (3) 7   (4) 8 
  

E-2. The set of solution of inequality – 5 ≤ [x + 1] < 2, where [.] denotes greatest integer function is  

 (1) [–6, 1)  (2) [–6, 2)  (3) [–7, 1)  (4) [–6, 3) 
  

E-3. The set of solution of inequality [x]2 + 5[x] – 6 < 0, where [.] denotes greatest integer function is  

 (1) [–2, 0)  (2) [–5, 2)  (3) [–5, 1)  (4) [–6, 5) 
 

  

E-4. The number of solutions of the equation {x}2 = – {x} is (where {.} denotes the fractional part function) 

 (1) 0   (2) 1   (3) 2   (4) infinite 
  

E-5. The number of solutions of the equation  2{x}2 – 5 {x} + 2 = 0 is (where {.} denotes the fractional part 

function) 

 (1) 0   (2) 1   (3) 2   (4) infinite 
  

E-6. The number of solution of the equation sgn(x2) = |x – 2| is 
 (1) 1   (2) 0   (3) 2   (4) 3 
  

E-7. The complete set of values of x satisfying the equation sgn x = |1–x| is 

 (1) x = 2  (2) x = 0  (3) x = – 1  (4) x ∈ φ 
  

 
 

 Marked Questions may have for Revision Questions. 
 

PART - I : OBJECTIVE QUESTIONS 
 

1. If  |x2 – 2x – 8| + |x2 + x – 2| = 3 | x + 2|, then the set of all real values of x is 

 (1) [1, 4]  ∪ {–2}  (2) [1, 4]  (3) [–2, 1]  ∪ [4,∞) (4) (–∞, –2] ∪ [1, 4] 

 

2. If |x3 – 9x2 + 26x –24| is a prime number then number of possible integral value of x is  

 (1) 1   (2) 2   (3) 0   (4) 3 
 

3. Number of integers satisfying the equation |x2 + 5x| + |x – x2| = |6x| is  
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 (1) 3   (2) 5    (3) 7   (4) 9  
 

4. Maximum value of f(x) = |x + 1| – 2|x – 1| is   

 (1) 3   (2) 2   (3) 1   (4) 0 
 

5. Number of roots of equation ||x| – 2| – 2| = 0 and y =  equals to  

 (1) 1   (2) 2   (3) 3    (4) 4 
 

6. Complete solution of inequality  ≤ 1 is  

 (1) [–4, –1]  [1, 4]     (2) (–∞, –4]  (–2, 1]  (2, ∞) 

 (3) (–∞, –2)  [–1, 2)  [4, ∞)   (4) (–∞, –4]  [–1, 1]  [4, ∞) 

 

7. Number of positive integer solutions of  inequality | 2x – 3 | + | x + 5 | ≤ | x – 8 | is 

 (1) 7   (2) 2   (3) 1   (4) 2 

8. Complete solution of inequality  > 1 is 

 (1) (–∞, –2) ∪ (–1, ∞) (2) (–∞, –1) ∪ (2, 5) (3) (–2, –1)  (4) (–5, –2) ∪ (–1, ∞) 

 

9. Solve the inequality (|x| – 3) (|x| – 5) < 0 

 (1) (3,5)   (2) (–5,–3)  (3) (–5,–3) ∩ (3,5) (4) (–5,–3) ∪ (3,5)  

 

10. Complete solution of inequality (|x – 1| – 3) (|x + 2| – 5) < 0 is   

 (1) (–∞, –7) ∪ (–2, 3) ∪ (4, ∞)   (2) (–∞, –4) ∪ (–3, 2) ∪ (7, ∞) 

 (3) (–4, –3) ∪ (2, 7)    (4) (– 7, – 2) ∪ (3, 4) 

 

11. Find the number of all the integral solutions of the inequality  ≤ 0  

 (1) 1   (2) 2   (3) 3   (4) 4 

 

12. Complete set of solution of inequation  – > 1 is [a, b) (where a, b∈ R)  then a + b is equal to  

 (1) 4     (2) 3    (3) 2   (4) 1 

 

13. Complete set of solution of a inequation  +  > 1 

 (1) x ∈ (2 – ,1) (2) x ∈ (1,2 + ) (3) x ∈ (2 – ,2 + ) (4) x ∈ (2 – ,∞) 

 

14. The graphs of functions  f1(x) = , f2(x) = , f3(x) = 23 – x and f4(x) = e{x}  

where { . } denote the fracitonal part function are given (not in order) as : 
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 (1)       (2)  
 

 (3)     (4)  
 

 The correct order of graphs of functions f1(x), f2(x), f3(x) and f4(x) is    

 (1) ABCD  (2) ACBD  (3) CBDA  (4) ADCB 
 

15. Let graph of y = f(x) is   

  

 and graph of y = g(x) is  

 

  

 The graph of y = |f(x) + g(x)| is same as  

 (1) y = |f(x)| + |g(x)|  (2) y = 2|x|  (3) y = |x|  (4) y = 2 
 

16. Let f(n) = , where [.] denotes the greatest integer function, then the value of   is  

 (1) 101   (2) 102   (3) 104   (4) 103 
 

17. The set of solution of inequality [x]2 = – [x], where [.] denotes greatest integer function is  

 (1) {–1, 0}  (2) [–1, 0)  (3) [0, 2)  (4) [–1, 1) 
 

18. The set of all values of x for which   ≥  0 is (where {.} denotes the fractional part function) 

 (1)  ∪ {3} (2) (2, 3)  (3)    (4)  U  

 

PART - II : MISCELLANEOUS QUESTIONS 
 

Section (A) : ASSERTION/REASONING 
 

DIRECTIONS : 
 

 Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct. 
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 (1) Both the statements are true. 

 (2) Statement-Ι is true, but Statement-ΙΙ is false. 

 (3) Statement-Ι is false, but Statement-ΙΙ is true.    

 (4) Both the statements are false. 

 

A-1. Statement -1 :  If |x – 2| + |x – 7| = |2x – 9|, then x ≤ 2 or x ≥ 7   

 Statement -2 : |x – a| + |x – b|  = b – a has infinitely many solution, for a < b. 

 

A-2 Statement -1 :    The solution of inequality + 5 > x is (–∞, 6) 

 Statement -2 :   :  |x| = – x if x ≤ 0. 

 

 

Section (B) : MATCH THE COLUMN  

1. If y = f(x) has following graph, then match the column. 

     

 (A) y = |f(x)|    (p)   

 (B) y = f(|x|)    (q)    

 (C) y = f(– |x|)    (r)    

 

 (D) y = | f ( |x| ) |    (s)    

 

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT 
 

1. The equation  = , where x ≠ 2 has :  

 (1)  two positive & two negative solutions (2)  four real solutions 

 (3)  three positive & one negative solutions (4)  three real solutions . 

 

2. The simultaneous equations y = x + 2 |x| and y = 4 + x – |x|  have the solution set given by 

 (1)    (2)    (3)   (4)  
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3. Consider f(x) = ||x –1| – |x + 2|| = P.  

 (1) If P = 0 then f(x) has exactly one solution (2) If P =1 then f(x) has exactly 2 solution 

 (3) If P = 3 then f(x) has infinite solution  (4) If P = 4 then f(x) has no solution 
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EXERCISE - 1 
 

 

Section (A) :  
  

A-1. (3) A-2. (1)  A-3. (4) A-4 (3) A-5. (2) A-6. (3) A-7. (3) 
 

A-8. (2) A-9. (1) A-10. (4) A-11. (1) A-12. (2) A-13. (1)  A-14. (2) 
 

A-15. (2) 
 

Section (B) :  

B-1. (4) B-2. (3) B-3. (2) B-4. (2) B-5. (3) B-6. (1) B-7. (4) 
 

B-8. (2) B-9. (1) B-10. (1) B-11. (3) 

 

Section (C) : 
 

C-1. (2) C-2. (2) C-3. (4) C-4. (1) C-5. (4)  

 

Section (D) :   
 

D-1. (4) D-2. (4) D-3. (1) D-4. (3) D-5. (4) 

 

Section (E) :  
 

E-1. (2) E-2. (1) E-3. (3) E-4. (4) E-5. (4) E-6. (3) E-7. (1) 
 

 

EXERCISE - 2 
 

 

PART - I 
 

1. (1) 2. (3) 3. (3) 4. (2) 5. (3) 6. (4) 7. (3) 
 

8. (4) 9. (4) 10. (4) 11. (2) 12. (1) 13. (4) 14. (4) 
 

15. (1) 16. (3) 17. (4) 18. (1) 
 

PART - II 
 
A-1.  (1) A-2  (3) 
 

Section (B) :  
 

1.  (A) → (r),  (B) → (p),  (C) → (q),  (D) → (s) 

 

Section (C) :  
 

 

1. (2,3) 2. (3,4) 3. (1,2,3,4)  
 


