Exercise-1 🗎

Marked questions may have for revision questions.

OBJECTIVE QUESTIONS

Section (A) : Equation vs Identities and Roots of the quadratic equation

A-1.	Number of values of 'p' for which the equation $(p_2 - 3p + 2)x_2 - (p_2 - 5p + 4)x + p - p_2 = 0$ possess more than two roots, is:			
	(1) 0	(2) 1	(3) 2	(4) 4
A-2.	The roots of the equat $(1) \pm 1$	ion $(x + 2)_2 = 4 (x + 1) - 7$ (2) ± i	1 are - (3) 1,2	(4) -1, -2
	(1) - 1	(2) - 1	(0) 1, 2	(1) 1, 2
A-3.	If α , β are roots of eq. (1) 16	uation $x_2 + 6x + λ = 0$ and (2) -8	d 3α + 2β = – 20, then λ i (3) – 16	s equal to (4) 8
A-4.	Roots of equation \sqrt{x} (1) 4	= x – 2 are (2) 1,4	(3) 1	(4) -1,4
A-5.	If α , β are the roots then $(\alpha - \gamma) \cdot (\alpha - \delta)$		$+ px + q = 0$ and y, δ	are the roots of $x_2 + px - r = 0$,
	(1) q + r		(3) $-(q + r)$	(4) - (p + q + r)
				-
		equation $px_2 + qx - r = 0$	$\frac{\alpha}{\beta^2} + \cdot$	$\frac{\beta}{\alpha^2}$
A-6.				
	$\frac{p}{qr^2}$	(2) $-\frac{q}{pr^2}$ (3pr + q ₂)	$\frac{q}{pr^2}$	$\frac{q}{pr^2}$
	$(1) - q^{2}$ (3pr + q ₂)	$(2) - P^{1}$ (3pr + q ₂)	$(3) - P' (3pr - q_2)$	(4) ^{pr} (3pr + q)
A-7.	If α , β are roots of the	equation 2x2 – 35 x + 2 =	= 0, then the value of (2 α	– 35) $_3$. (2 eta – 35) $_3$ is equal to-
	(1) 1	(2) 8	(3) 64	(4) - 64
A-8.	If difference of roots of	f the equation x ₂ – px + q	$= 0$ is 1, then $p_2 + 4q_2$ ec	quals –
	(1) 2q + 3	(2) (1 − 2q) ₂		(4) 2q-3
			1	1)
A-9.	If a and B are the root	of $ax_2 + bx + c = 0$, then	the value of $\left\{\frac{1}{a\alpha + b} + \frac{1}{a\beta}\right\}$	$\frac{1}{3+b}$ is .
	a	b	C	b
	(1) bc	(2) ca	(3) ab	(4) - ^{ac}
A-10.			-	re α_2 + 2 and β_2 + 2 will be
	(1) $4x_2 + 49 x - 118 = 0$ (3) $4x_2 - 49x + 118 = 0$		(2) $4x_2 - 49x - 118 = 0$ (4) $4x_2 + 49x + 118 = 0$	

(3) $4x_2 - 49x + 118 = 0$ (4) $4x_2 + 49x + 118 = 0$

				$\alpha - 1 \qquad \beta - 1$
A-11.	If α and β are roots of	$x_2 - 2x + 3 = 0$, then the	equation whose roots are	$\frac{\alpha-1}{\alpha+1}$ and $\frac{\beta-1}{\beta+1}$ will be
A-12.		(2) $3x_2 + 2x + 1 = 0$ ion (b - c) $x_2 + (c - a) x + (c - a) = 0$		(4) $x_2 - 3x + 1 = 0$
		(2) $\frac{a-b}{b-c}$, 1		<u>c – a</u>
	(1) ^{b-c} ,1	(2) ^{b - c} , 1	(3) ^{a – b} , 1	(4) ^{a – b} , 1
	The equation $x - \frac{2}{x - x}$	$\frac{2}{1}$ $\frac{2}{1}$		
A-13.	(1) No root	(2) One root	(3) Two equal root	(4) Infinitely many roots
A-14.		$x_2 - bx + c = 0$ are two s	successive integers, then	b ₂ – 4c equals
	(1) 1	(2) 2	(3) 3	(4) 4
			then $\frac{1}{\alpha^3} + \frac{1}{\beta^3} =$	
A-15.	If α and β are roots of	equation $x_2 + 2x + 4 = 0$,	
	(1) 0	(2) $\frac{1}{2}$	$(3) \frac{1}{3}$	$(4) \frac{1}{4}$
A-16.				d β is 4, then α & β are the roots
	of the quadratic equat			
	$(1) 4x_2 - 12x - 7 = 0$		$(2) 4x_2 - 12x + 7 = 0$	
	$(3) 4x_2 - 12x + 25 = 0$		$(4) \ 4x_2 + 12x + 7 = 0$	
Secti	on (B) : Theory of	Equation		
B-1		$-5x_2 + 2x + 7 = 0$ are α ,		
	(1) 29	(2) 21	(3) – 21	(4) – 29
B-2.	If roots of equation 2x	$4 - 3x_3 + 2x_2 - 7x - 1 = 0$	are a B y and S then ya	alue of $\frac{\sum \frac{\alpha+1}{\alpha}}{\alpha}$ is equal to
D-2.		$4 - 3x_3 + 2x_2 - 7x - 1 = 0$		
	(1) –3	(2) 3	(3) $\frac{11}{2}$	(4) –11
B-3		of equation $x_4 + x_2 - 12 =$		(4) 0
	(1) 4	(2) 2	(3) 0	(4) 3
B-4.	If two roots of the equation $(1) pr = q$	ation x₃ − px₂ + qx − r = 0 (2) qr = p	are equal in magnitude (3) pq = r	but opposite in sign, then: (4) p ₂ q ₂ = r
B-5.		of the equation $x_3 + px_2$	+ qx + r = 0, then the value	ue of
	$\left(\alpha - \frac{1}{\beta\gamma}\right) \left(\beta - \frac{1}{\gamma\alpha}\right) \left(\gamma $	$\left(\frac{1}{\alpha\beta}\right)$ is		
	(1) $\frac{(r+1)^3}{r^2}$	$\frac{(r+1)^2}{2}$	$(3) - \frac{(r+1)^2}{r^3}$	$(4) - \frac{(r+1)^3}{r^2}$
	(1) ^r ²	(2) – r ²	(3) – r ³	(4) – r ²

B-6.	If $f(x) = 2x_3 + mx_2 - 13$ (1) 5, 30	8x + n and 2 and 3 are ro (2) -5, 30	ots of the equations f(x) = (3) –5, –30	= 0, then values of m and n are- (4) 5, - 30		
B-7.		f the equation $(x_2 + 2)_2 + (2)_2 + (3)_2 +$		(4) 2		
	(1) 1 ± i	(2) 2 ± i	(3) -1 ± i	$(4) - 2 \pm 1$		
Secti	ion (C) : Nature of I	roots				
C-1.	If the roots of $x_2 - 2x$ -	- 16a = 0 are real, then				
	<u>1</u>	(2) a ≥ ¹ / ₈				
	(1) a≥ 4	(2) a ≥ ⁸	(3) a≥– ¹⁶	(4) $a \le -\frac{1}{16}$		
C-2.	If a, b, c are integers a	and $b_2 = 4(ac + 5d_2), d \in$	N, then roots of the equa	ation $ax_2 + bx + c = 0$ are		
	(1) Irrational		(2) Rational & differen	t		
	(3) Complex conjugate	9	(4) Rational & equal			
C-3.	If the roots of the equ	uation $ax_2 + x + b = 0 be$	e real and unequal wher	e a, $b \in R$, then the roots of the		
	equation $x_2 - 4 \sqrt{ab} x$	+ 1 = 0 will be				
	(1) Rational	(2) Irrational	(3) Real	(4) Imaginary		
		:	3 + 5i			
C-4.	If one root of the equa	tion $2x_2 - 6x + c = 0$ is	2, then the value of	c will be –		
	(1) 7	(2) –7	(3) 17	(4) –17		
			1			
C-5.	The quadratic equatio	n with rational coefficient	t whose one root is $\overline{2+}$	√5 _{, is}		
	(1) $x_2 - 4x - 1 = 0$		(2) $\sqrt{2} x_2 - 4x + 1 = 0$			
	(3) $x_2 + 4x - 1 = 0$		(4) $x_2 + 4x + 1 = 0$			
C-6.	If roots of equation x2	+ a2 = 8x + 6a are real th	nen 'a' belongs to the inte	rval		
	(1) [-8,2]	(2) [2,8]	(3) [-2,8]	(4) [-8,-2]		
C-7.	If the product of the ro	oots of the equation $x_2 - x_2$	3x + k + 5 = 0 is 7, then	the roots are real for k =		
	(1) 2	(2) 3	(3) – 2	(4) φ		
Secti	Section (D) : Graphs and range of quadratic expression					
D-1.	Which of the followi	ng graph represents th	he expression f(x) = a	a x₂ + b x + c (a ≠ 0) when		
	a > 0, b < 0 & c < 0 ?					
	\ /	\uparrow	\mathbf{n}	Ť		
	\rightarrow	\rightarrow				
	(1)	(2)	(3)	(4) / \		
D-2.	The expression $v = ax$	(2 + bx + c has always the	e same sign as of 'a' if :			

- **D-2.** The expression $y = ax_2 + bx + c$ has always the same sign as of 'a' if : (1) $4ac < b_2$ (2) $4ac > b_2$ (3) $ac = b_2$ (4) $ac < b_2$
- **D-3.** If $a, b \in R$, $a \neq 0$ and the quadratic equation $ax_2 bx + 1 = 0$ has imaginary roots then a + b + 1 is: (1) positive (2) negative (3) zero (4) depends on the sign of b

D-4.	If a and b are the non-zero distinct roots of $x_2 + ax + b = 0$, then the least value of $x_2 + ax + b$ is				
	(1) $\frac{3}{2}$	(2) $\frac{9}{4}$	$(3) - \frac{9}{4}$	(4) 1	
D-5.	Let $f(x) = x_2 + 4x + 1$, the function is the function of th	hen			
	(1) $f(x) > 0$ for all x		(2) $f(x) > 1$ when $x \ge 0$)	
(3) f(x)	≥ 1 when $x \le -4$	(4) f(x	f(-x) = f(-x) for all x		
D-6.	Range of quadratic ex	pression $f(x) = x_2 - 2x + $	3 ∀ x ∈ [0, 2] is		
	(1) [0, 1]	(2)[2, 3]	(3) [1, 3]	(4) [2, ∞)	
D-7.	The equation, $\pi_x = -2x$	x2 + 6x - 9 has:			
	(1) no solution	(2) one solution	(3) two solutions	(4) infinite solutions	
D-8.	If the inequality (m - 2)x ₂ + 8x + m + 4 > 0 is sa	atisfied for all $x \in R$, ther	the least integral value of m is:	
	(1) 4	(2) 5	(3) 6	(4) 3	
			oots and $\left(\frac{3c}{4}\right) < a + b$,		
D-9.		bx - 3c = 0 has no real r			
	(1) c < 0	(2) c > 0	(3) $c = 0$	(4) a < 0	
D-10.	If $c < 0$ and $ax_2 + bx +$ (1) $a - b + c < 0$	c = 0 does not have any (2) 9a + 3b + $c > 0$	real roots, then (3) $a + b + c > 0$	(4) All of these	
D-11.	The adjoining figure shows the graph of $y = ax_2 + bx + c$, then				
	$(x_{1},0)$ $(x_{2},0)$				
	(1) a > 0 (3) c > 0		(2) b₂ < 4ac (4) a and b are of opp	osite signs	
D-12.		ratic polynomial y = ax2+		-	
D-12.	rne graph of the quau		+ DX + C IS AS SHOWN IN U	le ligule, then	
	(1) $b_2 - 4ac < 0$	(2) b < 0	(3) a > 0	(4) c > 0	
D-13.	For which of the following	g graphs of the quadratic	expression y = a x ₂ + b	c + c, the product a b c is negative	
	y ×	y y	y y		
	(1) /	(2) / T y	(3)	(4) All of these	
D-14.	a, b, c ∈ R, a ≠ 0 and t	the quadratic equation as	x ₂ + bx + c = 0 has no re	al roots, then -	
	(1) a + b + c > 0	(2) a (a + b + c) > 0	(3) b (a + b + c) > 0	(4) $c(a + b + c) < 0$	

	x			
D-15.	For all real value of x, the maximum value of the expression $\frac{x}{x^2 - 5x + 9}$ is			
	(1) 1	(2) 45	(3) 90	(4) 11
			+34x-71	
D-16.	If x is real, then the valu (1) - 5 and 9	ie of the expression X (2) 5 and – 9	(3) -5 and -9	(4) 5 and 9
	(1) = 5 and 9		(3) -5 and -9	(4) 5 and 5
D-17.	If x is real then the va	lue of $\frac{x^2 - 2x + 1}{x + 1}$ will no	ot lie between –	
	(1) 0 and 8	(2) –8 and 8	(3) -8 and 0	(4) – 8 and 6
Secti	ion (E) : Location o	of roots		
E-1.	If α , β are the roots of	the quadratic equation >	$x_2 - 2p(x - 4) - 15 = 0$, th	en the set of values of p for which
		1 & the other root is grea		
	(1) $\left(\frac{7}{3},\infty\right)$	(2) $\left(-\infty,\frac{7}{3}\right)$		$(4)\left(-\infty,\frac{11}{4}\right)$
	(1) (3)	(2) (3)	(3) x ∈ R	(4) (4)
E-2.	If both roots of the eq	uation x2 - (m +1) x + (m	+4) = 0 are negative, the	n m equals –
	(1) – 7 < m < – 5	$(2) - 4 < m \le -3$	(3) 2 < m < 5	(4) 3 ≤ m < 4
Го	If reate of y (a. 2).			
E-3.	(1) a $\in [7,9]$	$(2) a \in [9, 10)$	th of them are greater tha (3) a ∈[9,7]	(4) a ∈[9,12]
	(1) a C[7,3]	(z) a C[3, 10)	(3) a C[3,7]	(+) a C[3, 12]
E-4.			equation 2x2 - (a3 + 8a - 1	1) $x + a_2 - 4a = 0$ possess roots of
	opposite sign is given		(3) a > 0	(4) a > 7
	(1) a > 5	(2) U < a < 4	(3) a > 0	(4) a > 1
E-5.	If α , β be the roots of	$4x_2 - 16x + \lambda = 0$, where	$\alpha \lambda \in R$, such that 1 < α <	2 and 2 < β < 3, then the number
	of integral values of λ			
	(1) 5	(2) 6	(3) 2	(4) 3
E-6.		equation x ₂ – (p + 1)x – p	$p_2 = 0$ lie between 1 and 4	then number of integral values of
	p is - (1) 4	(2) 5	(3) 7	(4) 9
E.7.	If both roots of equation $x_2 + 2(a - 1)x + (a + 5) = 0$ lie in the interval (1,3) then complete set of values of 'a' is			
			(48)	
	(1) $\left(-\infty,-\frac{8}{7}\right)$	(2) (4,∞)	$(3) \qquad \left(-\infty, -\frac{48}{3}\right)$	$(4) \left[\left(-\frac{7}{7}, -1 \right] \right]$
S				
Secti	ion (F) : Common ı	0013		
F-1.		$fax_2 + bx + cand bx_2 + c$	cx + a is common, then :	_
	(1) $a = 0$		(2) $a_3 + b_3 + c_3 = 3abc$	6

(3) $a = 0 a_3 + b_3 + c_3 = 3abc$ (4) b = 0**F-2.** The roots of $a_1x_2 + b_1x + c_1 = 0$ are reciprocal of the roots of the equation $a_2x_2 + b_2x + c_2 = 0$ if

	(1) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(2) $\frac{b_1}{b_2} = \frac{c_1}{a_2} = \frac{a_1}{c_2}$	(3) $\frac{a_1}{a_2} = \frac{b_1}{c_2} = \frac{c_1}{b_2}$	(4) $a_1 = \frac{1}{a_2}, b_1 = \frac{1}{b_2}, c_1 = \frac{1}{c_2}$
F-3.	If $x_2 - 11x + a = 0$ and	x ₂ – 14 x + 2a = 0 have	one common root then a	a is equal to –
	(1) 0, -24	(2) 0, 1	(3) 0, 24	(4) 1,24
F-4.	If both the roots of the common, then 2r – p is		$rx + 2x_2 - 1 = 0$ and $6k$	$(2x_2 + 1) + px + 4x_2 - 2 = 0$ are
	(1) 1	(2) –1	(3) 2	(4) 0
F-5.	If x ₂ + 3x + 5 = 0 and a + b + c) is	$x_2 + bx + c = 0$ have a co	ommon root and a, b, c \in	N, then the minimum value of (a
	(1) 8	(2) 9	(3) 10	(4) 7
F-6.	The value of m for whi	ch one root of $x_2 - 3x + 2$	2m = 0 is double of one c	of the roots of $x_2 - x + m = 0$ is
	(1) 0, – 2	(2) 0, 2	(3) 2, 4	(4) 2, -2
F-7.	If the quadratic equation	ons $ax_2 + bx + c = 0$ (a, b	o, c ∈ R, a ≠ 0) and x₂ +	4x + 5 = 0 have a common root,
	then a, b, c must satisf	y the relations:		
	(1) a > b > c		(2) a < b < c	
	(3) a = k; b = 4k; c = 5l	< (k ∈ R, k ≠ 0)	(4) a = 5b = 6c	
F-8.	x ₂ + x + 1 is a factor of	$a x_3 + b x_2 + c x + d = 0,$	then the real root of abov	ve equation is
	(a, b, c, d ∈ R)			
	(1) (a – b)/b	(2) d/a	(3) (b – a)/a	(4) (a – b)/a
	Exercise-	2		

Marked questions may have for revision questions.

PART - I : OBJECTIVE QUESTIONS

1. If a,b are roots of the equation $x_2 + qx + 1 = 0$ and c,d are roots of $x_2 + px + 1 = 0$, then the value of (a - c)(b-c)(a+d) (b+d) will be (1) $q_2 - p_2$ (2) $p_2 - q_2$ (3) $- p_2 - q_2$ (4) $p_2 + q_2$

2. In copying a quadratic equation of the form
$$x_2 + px + q = 0$$
, the coefficient of x was wrongly written as -10 in place of -11 and the roots were found to be 4 and 6. The roots of the correct equation are (1) 8, 3 (2) 4, 3 (3) 6, 3 (4) 5, 6

3. If α,β are roots of the equation $(3x + 2)_2 + p(3x + 2) + q = 0$, then roots of $x_2 + px + q = 0$ are

(1)
$$\alpha,\beta$$
 (2) $3\alpha + 2, 3\beta + 2$ (3) $\frac{1}{3}(\alpha-2), \frac{1}{3}(\beta-2)$ (4) $\alpha - 2, \beta - 2$

4. If α , β are the roots of $ax_2 + bx + c = 0$ and $\alpha + h$, $\beta + h$ are the roots of $px_2 + qx + r = 0$, then h =

$$\begin{array}{ccc} \left(\frac{b}{a} - \frac{q}{p}\right) \\ (1) \end{array} \begin{pmatrix} \frac{1}{2} & \left(\frac{b}{a} - \frac{q}{p}\right) \\ (2) \end{array} \begin{pmatrix} \frac{1}{2} & \left(\frac{a}{a} - \frac{p}{q}\right) \\ (3) \end{pmatrix} \begin{pmatrix} \frac{a}{2} & \left(\frac{a}{b} - \frac{p}{q}\right) \\ (4) \end{pmatrix} \begin{pmatrix} \frac{a}{2} & \left(\frac{a}{b} + \frac{p}{q}\right) \\ (4) \end{pmatrix}$$

MATHEMATICS

5.	If α , β be the roots of the equation $(x - a) (x - b) + c = 0$ ($c \neq 0$), then the roots of the equation $(x - c - \alpha) (x - c - \beta) = c$ are			
	· · · · ·	(2) a + b and b	(3) a + c and b + c	(4) a − c and b − c
6.	Let α , β , γ be the root (x - α) (x - β) (x - γ) -	s of (x – a) (x – b) (x – c) + d = 0 are :	= d, d \neq 0, then the root	s of the equation
7.	(1) a + 1, b + 1, c + 1 Let α, β be the roots c	(2) a, b, c of x ₂ + (3 – λ) x – λ = 0. T	(3) a – 1, b – 1, c – 1 he value of λ for which c	$\frac{a}{(4)} \frac{b}{b}, \frac{b}{c}, \frac{c}{a}$ $\alpha_2 + \beta_2 \text{ is minimum, is}$
	(1) 0	(2) 1	(3) 2	(4) 3
8.	lf a, b are non-zero re	al numbers and α , β are	e the roots of $x_2 + ax + b$	= 0, then
	(1) α_2 , β_2 are the root	s of x ₂ – (2b – a ₂) x + a ₂ =	= 0	
	(2) $\frac{1}{\alpha}, \frac{1}{\beta}$ are the root	ts of $bx_2 + ax - 1 = 0$		
	(3) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ are the roo	ts of bx ₂ + (2b + a ₂) x + b	o = 0	
		e the roots of the equatio		- b = 0
9.	The values of k for wh	ich the expression kx_2 +	(k + 1)x + 2 will be a per	fect square of linear factor are
	(1) 3 ± 2 $\sqrt{2}$	(2) 4 ± 2 $\sqrt{2}$	(3) 6	(4) 5
10.	If x₂ + (a − b) x + (1 − real and unequal ∀ b		n the value of 'a' for wh	ich both roots of the equation are
	(1) (2, ∞)	(2) (3, ∞)	(3) (1, ∞)	(4) (−∞, 1)
11.	If α , β are the real and	d distinct roots of x2 + px	+ q = 0 and α_4 , β_4 are th	e roots of $x_2 - rx + s = 0$, then the
	equation $x_2 - 4qx + 2c$	q₂ – r = 0 has always		
	(1) imaginary roots(2) two positive roots		(2) two negative roots	
	(3) two positive roots		(4) one positive root a	-
12.	If $a < b < c < d$, then the function of (1) real and distinct	ne roots of the equation ((2) imaginary	(x – a) (x – c) + 2 (x – b) (3) real and equal	(x - d) = 0 are (4) can't say anything
40				
13.	(1) [4, ∞)	(2) $(-\infty, -1] \cup [4, \infty)$		ess atleast one positive root, are: (4) $(-\infty, -1]$
	· / - /	,,, , , , , , , , ,		
14.		of the equation $\sqrt{x^2 - 4}$ –		
	(1) 0	(2) 1	(3) 2	(4) 3
				

15. If the two equations $x_2 - cx + d = 0$ and $x_2 - ax + b = 0$ have one common root and the second equation has equal roots, then 2 (b + d) =

(1) 0

(3) ac

(4) –ac

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.

(2) a + c

- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- A-1. STATEMENT 1 : The nearest point from x axis, on the curve $f(x) = x_2 6x + 11$ is (3, 2) STATEMENT - 2 : If a > 0 and D < 0, then $ax_2 + bx + c > 0 \forall x \in \mathbb{R}$.

A-2. Let α , β be the roots of $f(x) = 3x_2 - 4x + 5 = 0$.

STATEMENT-1: The equation whose roots are 2α , 2β is given by $3x_2 + 8x - 20 = 0$.

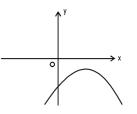
STATEMENT-2: To obtain, from the equation f(x) = 0, having roots α and β , the equation having roots

 2α , 2β one needs to change x to $\frac{x}{2}$ in f(x) = 0.

A-3. STATEMENT - 1 : Maximum value of $\log_{1/3} (x_2 - 4x + 5)$ is '0'. STATEMENT - 2 : $\log_a x \le 0$ for $x \ge 1$ and 0 < a < 1.

Section (B) : MATCH THE COLUMN

B-1.	Colum	ın – I	Column – II	
	(A)	If α , α + 4 are two roots of $x_2 - 8x + k = 0$,	(p)	4
		then possible value of k is		
	(B)	If α , β are roots of $x_2 + 2x - 4 = 0$ and $\frac{1}{\alpha}, \frac{1}{\beta}$ are	(q)	0
		-3		
		roots of $x_2 + qx + r = 0$ then value of $\overline{q+r}$ is		
	(C)	If α , β are roots of $ax_2 + c = 0$, $ac \neq 0$, then	(r)	12
		α_3 + β_3 is equal to		
	(D)	If roots of $x_2 - kx + 36 = 0$	(s)	10
		are Integers then number of values of k =		
B-2.	Match	the following		
	(A)	If α , β are roots of equation $x_2 - 2x - \lambda_2 = 0$	(p)	[4,∞)
		then interval of values of $\alpha_2 + \beta_2$ is		


(B)The values of x for which the equation $x_2 - x + \sin_2 \alpha = 0$ (q) $[1,\infty)$ have real solutions for all real values of α (C)If $-x_2 + 2x - \lambda \le 0$ for all real x then(r) $(-\infty,1)$ λ belongs to the interval(D)If graph of $y = kx_2 - 2x + 1$ cut the x axis
at two distinct points then k belongs to the interval(s)[0,1]

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

- C-1Let a < 0, c < 0 and b < a + c, then the equation $ax_2 + bx + c = 0$ has
(1) both negative real roots
(3) roots are of opposite sign(2) one root lies between 1 and 0.
(4) both positive real roots
- **C-2.** If $f(x) = x_2 + 2 (p 3) x + 9$ and 6 lies between roots of the equation f(x) = 0, then

$p \in \left(-\infty, -\frac{3}{4}\right)$	
(1) (4)	(2) f(6) < 0
(3) $6p - p_2 > 0$	(4) exactly one root lies in (0, 6)

C-3. The graph of a quadratic polynomial $y = ax_2 + bx + c$ is as shown in the figure

(1) b is greater than a + c	(2) b cannot take zero value
(3) a & c have the same sign	(4) $4a + 2 b + c$ can be positive

C-4. Let S be the set of all non-zero real numbers α such that the quadratic equation $\alpha x_2 - x + \alpha = 0$ has two distinct real roots x_1 and x_2 such that whose difference is less than 1. Which of the following intervals is(are) a subset(s) of S ?

$$(1) \left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right) \qquad (2) \left(-\frac{1}{\sqrt{5}}, 0\right) \qquad (3) \left(0, \frac{1}{\sqrt{5}}\right) \qquad (4) \left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$$

- **C-5.** If the quadratic equations $x_2 + abx + c = 0$ and $x_2 + acx + b = 0$ have a common root, then the equation containing their other roots is/are:
 - (1) $x_2 + a (b + c) x a_2 bc = 0$ (2) $x_2 - a (b + c) x + a_2 bc = 0$ (3) $a (b + c) x_2 + (b + c) x - abc = 0$ (4) $a (b + c) x_2 - (b + c) x + abc = 0$
- **C-6** If α , β are roots of $x_2 + 3x + 1 = 0$, then
 - (1) $(7 \alpha) (7 \beta) = 0$ (2) $(2 \alpha) (2 \beta) = 11$

(3) $\frac{\alpha^2}{3\alpha+1} + \frac{\beta^2}{3\beta+1} = -2$	(4) $\left(\frac{\alpha}{1+\beta}\right)^2 + \left(\frac{\beta}{\alpha+1}\right)^2 = 18$
(3) $3\alpha + 1^{-3\beta} + 1 = -2$	$(4) \begin{pmatrix} 1+\beta \end{pmatrix} \begin{pmatrix} \alpha+1 \end{pmatrix} = 18$

C-7.	Let $f(x) = \frac{3}{x-2} + \frac{4}{x-3} + \frac{5}{x-4}$, then $f(x) = 0$ has			
	(1) exactly one real root in (2, 3)	(2) exactly one real root in (3, 4)		
	(3) 3 different roots	(4) at least one negative root		
C-8.	If the equations $x_2 + ax + 12 = 0$, $x_2 + b$	$x + 15 = 0$ and $x_2 + (a + b)x + 36 = 0$ have		

C-8. If the equations x2 + a x + 12 = 0, x2 + b x + 15 = 0 and x2 + (a + b) x + 36 = 0 have a common positive root, then which of the following are true ?
(1) ab = 56
(2) common positive root is 3

(3) sum of uncommon roots is 21.

(4) a + b = 15.

	Exercise	e-3		
Mark	ed questions may hav	ve for revision questions.		
	PART-I:JE	E (MAIN) / AIEEE	PROBLEMS (P	PREVIOUS YEARS)
				<u>α</u> β
1.	If $\alpha \neq \beta$ but $\alpha_2 = 5\alpha$ (1) $3x_2 + 19x + 3 =$	$-3, \beta_2 = 5\beta - 3$, then the 0 (2) $3x_2 - 19x + 3 = 0$		[AIEEE-2002(3, –1), 225]
2.	The value of 'a' for as large as the other	which one root of the qu er, is :	adratic equation (a ₂ – 5	$5a + 3)x_2 + (3a - 1)x + 2 = 0$ is twice [AIEEE-2003(3, -1), 225]
	(1) $\frac{2}{3}$	$(2) - \frac{2}{3}$	(3) $\frac{1}{3}$	$(4) - \frac{1}{3}$
3.	lf (1 – p) is a root o	f quadratic equation x_2 +	px + (1 - p) = 0, then its	
	(1) 0,1	(2) –1,1	(3) 0, –1	[AIEEE-2004(3, -1), 225] (4) -1,2
4.		quation $x_2 + px + 12 = 0$ is	s 4, while the equation a	x ₂ + px + q = 0 has equal roots, then [AIEEE-2004(3, -1), 225]
	(1) 4	(2) 12	(3) 3	(4) 4
5.		tion $x_2 - bx + c = 0$ be two		[AIEEE-2005(3, -1), 225]
•	(1) –2 Thanking (1) –2	(2) 3	(3) 2	(4) 1
6.	assume the least v (1) 1		(3) 3	the equation x ₂ - (a -2) x- a -1 = 0 [AIEEE-2005(3, -1), 225] (4) 2
7.				less than 5, then 'k' lies in the interval [AIEEE-2005(3, -1), 225]
8.	(1) (5, 6)	(2) (6, ∞)	(3) $(-\infty, 4)$	(4) [4, 5] 0° and tan 15° respectively, then the
0.	value of $2 + q - p$ is (1) 3		(3) 1	[AIEEE-2005(3, -1), 225] (4) 2
9.	All the values of 'm less than 4 lie in the (1) m > 3			+ m ₂ - 1 = 0 are greater than - 2 but [AIEEE-2006(3, -1), 165] (4) - 2 < m < 0
		$3x^2 + 9x$		
10.	If 'x' is real, then ma	aximum value of $3x^2 + 9$		[AIEEE-2006 (3, −1), 165] 1
	(1) 41	(2) 1	(3) $\frac{17}{7}$	(4) $\frac{1}{4}$
11.	If the difference bet values of 'a' is	ween the roots of the equ	ation $x_2 + ax + 1 = 0$ is let [A	ess than , then $\sqrt{5}$ the set of possible AIEEE-2007, (3, –1), 120]
	(1) (-3, 3)	(2) (−3, ∞)	(3) (3, ∞)	(4) (-∞, -3)
12.		ations $x_2 - 6x + a = 0$ and d equations are integers		e root in common. The other roots of the common root is [AIEEE-2008, (3, -1), 105]
	(1) 4	(2) 3	(3) 2	(4) 1
13.	constant term and		Rahul made a mistake	n made a mistake in writing down the in writing down coefficient of x to get [AIEEE- 2011, II, (4, -1), 120] (4) -4, -3

	a≠a,≠0 .			
14.				f(x) = f(x) - g(x). If $p(x) = 0$ only for
		t, then the value of p(2) is :		[AIEEE- 2011, II, (4, -1), 120]
	(1) 3	(2) 9	(3) 6	(4) 18
15.	If the equations x_2 +	$2x + 3 = 0$ and $ax_2 + bx + c$	$c = 0, a, b, c \in R$, have a	a common root, then a : b : c is
				[AIEEE - 2013, (4, – 1) , 120]
	(1) 1 : 2 : 3	(2) 3:2:1	(3) 1:3:2	(4) 3 : 1 : 2
16.	If $a \in R$ and the equ	ation - 3(x - [x]) ₂ + 2 (x -	- [x]) + a ₂ = 0 (where [x] denotes the greatest integer $\leq x$)
	has no intgeral solut	ion, then all possible value	s of a lie in the interval	:
				[JEE(Main)2014,(4, – 1), 120]
	(1) (-2, -1)	(2) (-∞, -2) ∪ (2, ∞)	(3) (−1, 0) ∪ (0, 1)	(4) (1, 2)
				1 1
17.	Let α and β be the r	oots of equation $px_2 + qx +$	-r=0 p≠0 lfp g ra	are in the A.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then
	the value of $ \alpha - \beta $ is			E(Main) 2014, (4, – 1), 120]
	$\frac{\sqrt{34}}{9}$	(2) $\frac{2\sqrt{13}}{9}$	(3) $\frac{\sqrt{61}}{9}$	(4) $\frac{2\sqrt{17}}{9}$
	(1) 9	(2) 5	(3) 9	(4) 5
				$n > 1$ then the value of $\frac{a_{10} - 2a_8}{2a_9}$
18.	Let α and β be the ro	pots of equation $x_2 - 6x - 2$	$2 = 0$. If $a_n = \alpha_n - \beta_n$, for	$n \ge 1$, then the value of $2a_9$
			1 /	,
	is equal to :			2015, (4, – 1), 120]
		(2) – 6		
	is equal to : (1) 6	(2) – 6	[JEE(Main) (3) 3	2015, (4, – 1), 120] (4) –3
	is equal to : (1) 6	(2) – 6	[JEE(Main) (3) 3	2015, (4, – 1), 120]
1.	is equal to : (1) 6 PART - II : JEE ((2) – 6 (ADVANCED) / IIT-J	[JEE(Main) (3) 3 EE PROBLEMS (2015, (4, – 1), 120] (4) –3
1.	is equal to : (1) 6 PART - II : JEE (For the equation 3x2	(2) – 6 (ADVANCED) / IIT-J	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20	2015, (4, – 1), 120] (4) –3 PREVIOUS YEARS)
1.	is equal to : (1) 6 PART - II : JEE ((2) – 6 (ADVANCED) / IIT-J	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of	2015, (4, – 1), 120] (4) –3 PREVIOUS YEARS) of the other, then p is equal to:
 1. 2.	is equal to : (1) 6 PART - II : JEE (For the equation 3x2 (A) 1/3	(2) – 6 (ADVANCED) / IIT-J + px + 3 = 0, p > 0 if one	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3	2015, (4, - 1), 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., (1 + 1 + 1, 0)/90] (D) 2/3
	is equal to : (1) 6 PART - II : JEE (For the equation 3x2 (A) 1/3	(2) – 6 (ADVANCED) / IIT-J (a + px + 3 = 0, p > 0 if one (B) 1	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c -	2015, (4, - 1), 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., (1 + 1 + 1, 0)/90] (D) 2/3
	is equal to : (1) 6 PART - II : JEE (For the equation 3x2 (A) 1/3	(2) – 6 (ADVANCED) / IIT-J (a + px + 3 = 0, p > 0 if one (B) 1	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c - [IIT-JEE-20	2015, (4, - 1), 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., (1 + 1 + 1, 0)/90] (D) 2/3 < 0 < b, then
	is equal to : (1) 6 PART - II : JEE (For the equation $3x_2$ (A) 1/3 If $\alpha \& \beta (\alpha < \beta)$ are the (A) $0 < \alpha < \beta$	(2) – 6 (ADVANCED) / IIT-J a + px + 3 = 0, p > 0 if one (B) 1 he roots of the equation x2 (B) $\alpha < 0 < \beta < \Box \alpha \Box$	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c $-$ [IIT-JEE-20 (C) $\alpha < \beta < 0$	2015, (4, - 1), 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., (1 + 1 + 1, 0)/90] (D) 2/3 < 0 < b, then 02, Scr., (1 + 1 + 1, 0)/90] (D) α < 0 < □α□ < β
2.	is equal to : (1) 6 PART - II : JEE (For the equation $3x_2$ (A) 1/3 If $\alpha \& \beta (\alpha < \beta)$ are the (A) $0 < \alpha < \beta$ If $b > a$, then the equation	(2) – 6 (ADVANCED) / IIT-J a + px + 3 = 0, p > 0 if one (B) 1 the roots of the equation x2 (B) $\alpha < 0 < \beta < \Box \alpha \Box$ uation (x – a) (x – b) – 1 = 0	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c - [IIT-JEE-20 (C) $\alpha < \beta < 0$ 0, has: [IIT-	2015, (4, - 1), 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., (1 + 1 + 1, 0)/90] (D) 2/3 < 0 < b, then 02, Scr., (1 + 1 + 1, 0)/90] (D) $\alpha < 0 < \Box \alpha \Box < \beta$ JEE-2002, Scr., (1 + 1 + 1, 0)/90]
2.	is equal to : (1) 6 PART - II : JEE (For the equation $3x_2$ (A) 1/3 If $\alpha \& \beta (\alpha < \beta)$ are the (A) $0 < \alpha < \beta$ If $b > a$, then the equation (A) both roots in [a, b)	(2) - 6 (ADVANCED) / IIT-J (a + px + 3 = 0, p > 0 if one (B) 1 the roots of the equation x2 (B) $\alpha < 0 < \beta < \Box \alpha \Box$ uation (x - a) (x - b) - 1 = 0 p]	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c - [IIT-JEE-20 (C) $\alpha < \beta < 0$ 0, has: [IIT- (B) both roots in (- α	2015, $(4, -1)$, 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., $(1 + 1 + 1, 0)/90$] (D) 2/3 < 0 < b, then 02, Scr., $(1 + 1 + 1, 0)/90$] (D) $\alpha < 0 < \Box \alpha \Box < \beta$ JEE-2002, Scr., $(1 + 1 + 1, 0)/90$] o, a)
2. 3.	is equal to : (1) 6 PART - II : JEE (For the equation $3x_2$ (A) 1/3 If $\alpha \& \beta (\alpha < \beta)$ are the (A) $0 < \alpha < \beta$ If $b > a$, then the equation (A) both roots in [a, b)	(2) - 6 (ADVANCED) / IIT-J a + px + 3 = 0, p > 0 if one (B) 1 the roots of the equation x2 (B) $\alpha < 0 < \beta < \Box \alpha \Box$ uation (x - a) (x - b) - 1 = 0 a = 0 ∞)	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c - [IIT-JEE-20 (C) $\alpha < \beta < 0$ 0, has: [IIT- (B) both roots in (- ∞ , (D) one root in (- ∞ ,	2015, $(4, -1)$, 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., $(1 + 1 + 1, 0)/90$] (D) 2/3 < 0 < b, then 02, Scr., $(1 + 1 + 1, 0)/90$] (D) $\alpha < 0 < \Box \alpha \Box < \beta$ JEE-2002, Scr., $(1 + 1 + 1, 0)/90$] o, a) a) & other in (b, ∞)
2.	is equal to : (1) 6 PART - II : JEE (For the equation $3x_2$ (A) 1/3 If $\alpha \& \beta (\alpha < \beta)$ are the (A) $0 < \alpha < \beta$ If $b > a$, then the equation (A) both roots in [a, b) (C) both roots in [b, c] The number of solution	(2) - 6 (ADVANCED) / IIT-J (ADVANCED) / IIT-J (B) 1 (B) 1 (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c - [IIT-JEE-20 (C) $\alpha < \beta < 0$ 0, has: [IIT- (B) both roots in (- \propto , (D) one root in (- ∞ , x - 3) is/are [IIT-	2015, $(4, -1)$, 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., $(1 + 1 + 1, 0)/90$] (D) 2/3 < 0 < b, then 02, Scr., $(1 + 1 + 1, 0)/90$] $(D) \alpha < 0 < \Box \alpha \Box < \beta$ JEE-2002, Scr., $(1 + 1 + 1, 0)/90$] ϕ , a) a) & other in (b, ∞) JEE-2002, Scr., $(3, 0)/90$]
2. 3. 4.	is equal to : (1) 6 PART - II : JEE (For the equation $3x_2$ (A) 1/3 If $\alpha \& \beta (\alpha < \beta)$ are the (A) $0 < \alpha < \beta$ If $b > a$, then the equation (A) both roots in [a, b) (C) both roots in [b, c) The number of solution (A) 3	(2) - 6 (ADVANCED) / IIT-J (ADVANCED) / IIT-J (B) 1 (B) 1 (B) 1 (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c - [IIT-JEE-20 (C) $\alpha < \beta < 0$ 0, has: [IIT- (B) both roots in (- \propto , (D) one root in (- ∞ , x - 3) is/are [IIT- (C) 2	2015, (4, - 1), 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., (1 + 1 + 1, 0)/90] (D) 2/3 < 0 < b, then 02, Scr., (1 + 1 + 1, 0)/90] (D) $\alpha < 0 < \Box \alpha \Box < \beta$ JEE-2002, Scr., (1 + 1 + 1, 0)/90] o, a) a) & other in (b, ∞) JEE-2002, Scr., (3, 0)/90] (D) 0
2. 3.	is equal to : (1) 6 PART - II : JEE (For the equation $3x_2$ (A) 1/3 If $\alpha \& \beta (\alpha < \beta)$ are the (A) $0 < \alpha < \beta$ If $b > a$, then the equation (A) both roots in [a, b) (C) both roots in [b, c) The number of solution (A) 3	(2) - 6 (ADVANCED) / IIT-J (ADVANCED) / IIT-J (B) 1 (B) 1 (B) 1 (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (B) $\alpha < 0 < \beta < \Box \alpha \Box$ (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	[JEE(Main) (3) 3 EE PROBLEMS (of the roots is square of [IIT-JEE-20 (C) 3 + bx + c = 0, where c - [IIT-JEE-20 (C) $\alpha < \beta < 0$ 0, has: [IIT- (B) both roots in (- ∞ , (D) one root in (- ∞ , x - 3) is/are [IIT- (C) 2 + b2 are such that min	2015, $(4, -1)$, 120] (4) -3 PREVIOUS YEARS) of the other, then p is equal to: 02, Scr., $(1 + 1 + 1, 0)/90$] (D) 2/3 < 0 < b, then 02, Scr., $(1 + 1 + 1, 0)/90$] $(D) \alpha < 0 < \Box \alpha \Box < \beta$ JEE-2002, Scr., $(1 + 1 + 1, 0)/90$] ϕ , a) a) & other in (b, ∞) JEE-2002, Scr., $(3, 0)/90$]

MATHEMATICS

	(A) no relation	(B) 0 < c < b/2	(C) c < $\sqrt{2}$ b	(D) c > √2 b
6.	If the quadratic expre	ession x ₂ + 2ax – 3a + 10	$> 0 \forall x \in R$, then []]	Г-JEE-2004, Scr., (3, –1)/84]
	(A) a > 5	(B) a < 5	(C) – 5 < a < 2	(D) 2 < a < 3
7.	If one root of the equ	ation $x_2 + px + q = 0$ is so	quare of other, then the	e relation between p, q is :
			[11]	Г-JEE-2004, Scr., (3, –1)/84]
	(A) p ₃ – q (3p – 1) +	•	(B) p ₃ + q (3p + 1)	•
	(C) p ₃ + q (3p – 1) +	•	(D) p ₃ – q (3p + 1)	·
0	Lat a R ha the rest	of the equation y and	$\frac{\alpha}{2}$ 20 ho th	ne roots of the equation $x_2 - qx + r =$
8.				
	0. Then the value of			Γ-JEE 2007, Paper-1, (3, −1)/ 81]
	(A) $\frac{2}{9}$ (p – q) (2q – p))	(B) $\frac{2}{9}$ (q – p) (2p –	- 0)
	(C) $\frac{2}{9}$ (q - 2p) (2q -	n)	(D) $\frac{2}{9}$ (2p – q) (2q	
9.	Let p and q be real n	umbers such that $p \neq 0$, p	₃≠qandp₃≠−q. Ifαa	and β are nonzero complex numbers
				$\frac{\alpha}{\beta}$ $\frac{\beta}{\beta}$
	satisfying $\alpha + \beta = -p$	and $\alpha_3 + \beta_3 = q$, then a α_3	quadratic equation hav	ring $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is
			[IIT-JEE 20	010, Paper-1, (3, –1)/ 84]
	(A) (p ₃ + q) x ₂ - (p ₃ +	$2q)x + (p_3 + q) = 0$	(B) (p ₃ + q) x ₂ - (p ₃	$(-2q)x + (p_3 + q) = 0$
	(C) $(p_3 - q) x_2 - (5p_3 - q) x_2$	$-2q)x + (p_3 - q) = 0$	(D) (p ₃ – q) x ₂ – (5p	$p_3 + 2q)x + (p_3 - q) = 0$
40				for $n > 1$ then the value of $\frac{a_{10} - 2a_8}{2a_9}$
10.		$x_{2} = 0$, wit		Tor n ≥ 1, then the value of °
	is		-	011, Paper-1, (3, –1)/ 80]
	(A) 1	(B) 2	(C) 3	(D) 4
11.	A value of b for which	ch the equations x2 + bx	a – 1 = 0 and x ₂ + x +	b = 0 have one root in common is
				Г-JEE 2011, Paper-2, (3, –1)/ 80]
	(A) − √2	(B) – ^{i√3}	(C) i √5	(D) \sqrt{2}
	(**)			
12.	The quadratic equat	ion $p(x) = 0$ with real co	pefficients has purely i	imaginary roots. Then the equation
	p(p(x)) = 0 has		[JEE (Adv	/anced) 2014, Paper-2, (3, −1)/60]
	(A) only purely imag	-	(B) all real roots	
	(C) two real and two	purely imaginary roots	(D) neither real nor	purely imaginary roots
	$\frac{\pi}{2}$			
13.	Let $-6 < \theta < -12$.	Suppose α_1 and β_1 are th	e roots of the equation	$x_2 - 2x \sec \theta + 1 = 0$ and α_2 and β_2
		equation $x_2 + 2x \tan \theta - 1$		

		Ivanced) 2016, Paper-1, (3, –1)/62]	
(A) $2(\sec\theta - \tan\theta)$	(B) 2sec θ	(C) – 2tan θ	(D) 0

Answers

E

	<u> </u>												
					E	EXERO	CISE #	1					
Secti	on (A)												
A-1.	(2)	A-2.	(2)	A-3.	(3)	A-4.	(1)	A-5.	(3)	A-6.	(2)	A-7.	(3)
A-8.	(3)	A-9.	(2)	A-10.	(3)	A-11.	(1)	A-12	(2)	A-13.	(1)	A-14.	(1)
A-15.	(4)	A-16.	(1)										
Secti	on (B)												
B-1	(2)	B-2.	(1)	B-3	(2)	B-4.	(3)	B-5.	(4)	B-6.	(2)	B-7.	(1)
Secti	on (C)	:											
	(3)		(1)	C-3.	(4)	C-4.	(3)	C-5.	(3)	C-6.	(3)	C-7.	(4)
Secti	on (D)	:											
D-1.	(2)	D-2.	(2)	D-3.	(1)	D-4.	(3)	D-5.	(3)	D-6.	(2)	D-7.	(1)
D-8.	(2)	D-9.	(1)	D-10.	(1)	D-11.	. ,	D-12.	(2)	D-13.	(4)	D-14.	(2)
D-15.	(1)	D-16.	(4)	D-17.	(3)								
Secti	on (E)	:											
	(2)		(2)	E-3.	(2)	E-4.	(2)	E-5.	(4)	E-6.	(2)	E.7.	(4)
Secti	on (F)	:											
F-1.		F-2.	(2)	F-3.	(3)	F-4.	(4)	F-5.	(2)	F-6.	(1)	F-7.	(3)
F-8.	(4)												
								0					
							CISE # RT -I	2					
1.	(2)	2.	(1)	3.	(2)	4.	(2)	5.	(3)	6.	(2)	7.	(3)
8.	(4)	9.	(1)	10.	(3)	11.	(4)	12.	(1)	13.	(4)	14.	(4)
15.	(3)						. /		. ,				. /
						PAI	RT -II						
Secti	on (A)	:											
A-1.	(1)	A-2.	(3)	A-3.	(1)								
Secti	on (B)	:											
			→ (p), (C) → (q),	(D) →	(s)	B-2.	(A) →	р, (В) -	→ s (C) -	→ q (D) -	→ r	
	on (C)			,					-				
C-1	• •		(1,2,4,)	C-3.	(1,2.3)	C-4.	(1.4)	C-5.	(2.3)	C-6	(2,3.4)	C-7.	(1.2
	(1,2,3)		、·,—, ·,)		(,,=,•)		(.,.)		(_,-)		(_,-,)		(- ,=
	,												

						EXER	CISE #	‡ 3					
						PA	RT -I						
1.	(2)	2.	(1)	3.	(3)	4.	(1)	5.	(4)	6.	(1)	7.	(3)
8.	(1)	9.	(2)	10.	(1)	11.	(1)	12.	(3)	13.	(1)	14.	(4)
15.	(1)	16.	(3)	17.	(2)	18.	(3)						
						PA	RT -II						
1.	(C)	2.	(B)	3.	(D)	4.	(B)	5.	(D)	6.	(C)	7.	(A)
8.	(D)	9.	(B)	10.	(C)	11.	(B)	12.	(D)	13.	(C)		
	、 /		. /		. /		. /		. ,		. ,		