MATHEMATICS

Exercise-1

Marked questions may have for revision questions.

OBJECTIVE QUESTIONS

Section (A) : Representation of sets, Types of sets, subset and power set

A-1.	The set of intelligent stu (1) a null set (3) a finite set	udents in a class is-	(2) a singleton set(4) not a well defined collection		
A-2.	Which of the following i (1) {x : x is a real numb (3) {x : x is a real numb	er and $x_2 - 1 = 0$ }	(2) {x : x is a real num (4) {x : x is a real num		
A-3.	The set A = $\{x : x \in \mathbb{R}, x_2 = 16 \text{ and } 2x = 6\}$ is (1) Null set (3) Infinite set		(2) Singleton set(4) not a well defined collection		
A-4.	If A = {x : -3 < x < 3, x (1) 120	∈ Z} then the number of (2) 30	f subsets of A is – (3) 31	(4) 32	
A-5.	Which of the following a $(1) [3, 7] \subseteq (2, 10)$	are true ? (2) (0, ∞) ⊆ (4, ∞)	(3) (5, 7] ⊆ [5, 7)	(4) [2, 7] ⊆ (2.9, 8)	
A-6.	The number of subsets (1) 32	of the power set of set <i>i</i> (2) 16	A = {7, 10, 11} is (3) 64	(4) 256	
A-7.	Which of the following collections is not a set ? (1) The collection of natural numbers between 2 and 20 (2) The collection of numbers which satisfy the equation $x^2 - 5x + 6 = 0$ (3) The collection of prime numbers between 1 and 100. (4) The collection of all intelligent women in Jalandhar.				
A-8.	The set A = {x : x is a p (1) {1,2,3,5,7}	ositive prime < 10} in the (2) {1,3,5,7,9}	e tabular form is (3) {2,3,5,7}	(4) {1 ,3,5,7}	
A-9.	 Which of the folowing sets is an infinite set ? (1) Set of divisors of 24 (2) Set of all real number which lie between 1 and 2 (3) Set of all humman beings living in India. (4) Set of all three digit natural numbers 				
A-10. Po	ower set of the set $A = \{ (1) \ \{\phi, \{\phi\}, \{\{\phi\}\} \} \}$	φ, {φ}} is : (2) {φ, {φ}, {{φ	}}, A} (3) {φ, {φ}, A}	(4) {{φ}, {{φ}}}	

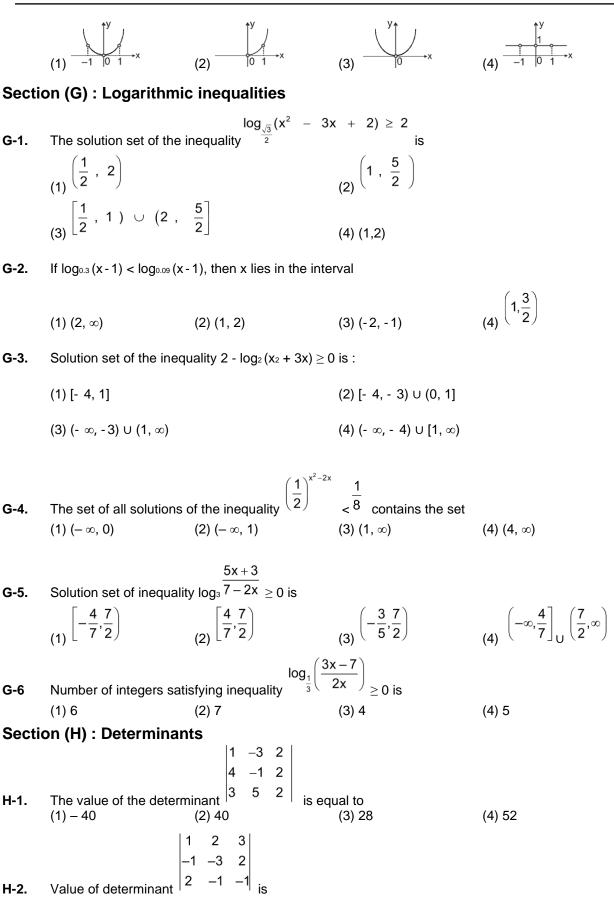
MATHEMATICS

Section (B) : Operations on sets, Law of Algebra of sets

B-1.	Sets A and B have 3 a A \cup B ?	nd 6 elements respective	ely. What can be the mini	imum number of elements in	
	(1) 3	(2) 6	(3) 9	(4) 18	
B-2.	Given the sets $A = \{1, 2\}$	2, 3}, B = {3, 4}, C = {4, 5	5, 6}, then A \cup (B \cap C) is		
	(1) {3}	(2) {1, 2, 3, 4}	(3) {1, 2, 4, 5}	(4) {1, 2, 3, 4, 5, 6}	
B-3.	The smallest set A suc	h that A ∪ {1, 2} = {1, 2, 3	3, 5, 9} is		
	(1) {2, 3, 5}	(2) {3, 5, 9}	(3) {1, 2, 5, 9}	(4) {1, 2, 3, 5, 9}	
B-4.	If A = {2, 3, 4, 8, 10}, B	s = {3, 4, 5, 10, 12}, C = {	4, 5, 6, 12, 14} then (A ∩	B) \cup (A \cap C) is equal to	
	(1) {3, 4, 10}	(2) {2, 8, 10}	(3) {4, 5, 6}	(4) {3, 5, 14}	
B-5.	The shaded region in t	he given figure is			
		A	\sum		
		c	В		
	(1) A ∩ (B ∪ C)	(2) A ∪ (B ∩ C)	(3) A ∩ (B – C)	(4) A − (B ∪ C)	
B-6.	Let U = {1, 2, 3, 4, 5, 6	, 7, 8, 9, 10}, A = {1, 2, 5	}, B = {6, 7}, then A ∩ B'	is	
	(1) B′	(2) A	(3) A′	(4) B	
B-7.	If A = {x : x = 4n + 1, n	\leq 5, n \in N} and B {3n : n	$n \leq 8$, $n \in N$ }, then A – (A	. – B) is :	
	(1) {9, 21}	(2) {9, 12}	(3) {6, 12}	(4) {6, 21}	
B-8.	A U B = A \cap B iff :				
	(1) A ⊂ B	(2) A = B	(3) A ⊃ B	(4) A ⊆ B	
B-9.	If $aN = \{ax : x \in N\}$ and	d bN \cap cN = dN, where b	$b, c \in N, b \ge 2, c \ge 2$ are	relatively prime, then which one	
	of the following is corre	ect?		[SCRA-2007, (2, -1/3)/100]	
	(1) $b = cd$	(2) c = bd	(3) d = bc	(4) $d_2 = bc$	
B / A · ·					
B-10.V	B-10. Which of the following venn-diagrams best represents the sets of females, mothers and doctors ?				

Section (C) : Cardinal number Problems

- C-1. Let A and B be two sets. Then (1) $n(A \cup B) \leq n(A \cap B)$ (2) $n(A \cap B) \leq n(A \cup B)$ (3) $n(A \cap B) = n(A \cup B)$ (4) can't be say
- C-2. Let n(U) = 700, n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$, then $n(A' \cap B') =$ (1) 400 (2) 600 (3) 300 (4) 200


C-3.	In a college of 300 stu students. The number of	•	ads 5 newspapers and e	every newspaper is read by 60
	(1) at least 30	(2) at most 20	(3) exactly 25	(4) exactly 30
C-4.	both car and bus. Then	persons travelling by ca	r or bus is	y bus and 10 percent travels by
	(1) 80 percent	(2) 40 percent	(3) 60 percent	(4) 70 percent
C-5.	B and 10% families buy If 2% families buy all th	/ newspaper C, 5% famil e three news papers, the	ies buy A and B, 3 % buy on number of families wh	A, 20% families buy newspaper y B and C and 4% buy A and C. ich buy newspaper A only is
	(1) 3100	(2) 3300	(3) 2900	(4) 1400
C-6.	subjects : Mathematics	100, Physics 70, Chemi and Chemistry 23, Math	istry 40, Mathematics an	tudents obtaining one or more d Physics 30, Mathematics and emistry 18. How many students
	(1) 35	(2) 48	(3) 60	(4) 22
C-7.	Hindi, 20 candidates pa	assed in Sanskrit. 3 cand bassed only in Sanskrit. 2	idates passed only in En	nglish, 15 candidates passed in glish. 4. candidates passed only all the three subjects How many [SCRA-2005, (2, –1/3)/100] (4) 14
			()	
Compr	rehension (C-8 to C-10)			
-	Bengali.	ple, there are 750 people		and 400 people, who can speak
Compr C-8.	In a group of 1000 peo Bengali. Number of people who	ple, there are 750 people can speak Hindi only is	e, who can speak Hindi a	and 400 people, who can speak
C-8.	In a group of 1000 peop Bengali. Number of people who (1) 300	ple, there are 750 people can speak Hindi only is (2) 400	e, who can speak Hindi a (3) 500	
-	In a group of 1000 peop Bengali. Number of people who (1) 300	ple, there are 750 people can speak Hindi only is	e, who can speak Hindi a (3) 500	and 400 people, who can speak
C-8.	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i	e, who can speak Hindi a (3) 500 s (3) 50	and 400 people, who can speak (4) 600
C-8. C-9	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250	e, who can speak Hindi a (3) 500 s (3) 50	and 400 people, who can speak (4) 600
C-8. C-9 C-10	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150	and 400 people, who can speak (4) 600 (4) 100 (4) 200
C-8. C-9 C-10	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who (1) 50	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100 ormulae, Polynomia	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150	and 400 people, who can speak (4) 600 (4) 100 (4) 200
C-8. C-9 C-10 Sectio	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who (1) 50 on (D) : Standard fo	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100 ormulae, Polynomia	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150	and 400 people, who can speak (4) 600 (4) 100 (4) 200
C-8. C-9 C-10 Sectio	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who (1) 50 on (D) : Standard fo Sum of first 8 prime nat (1) 59 $5+3\sqrt{7}$	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100 prmulae, Polynomia tural numbers is (2) 77	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150 I IS & Divisional Alg a (3) 76	and 400 people, who can speak (4) 600 (4) 100 (4) 200 prithm
C-8. C-9 C-10 Section D-1	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who (1) 50 on (D) : Standard fo Sum of first 8 prime nat (1) 59 If $\frac{5+3\sqrt{7}}{5-3\sqrt{7}} = a + b \sqrt{7}$	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100 ormulae, Polynomia tural numbers is (2) 77 then rational numbers a	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150 I IS & Divisional Algo (3) 76	and 400 people, who can speak (4) 600 (4) 100 (4) 200 Drithm (4) 58
C-8. C-9 C-10 Section D-1	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who (1) 50 on (D) : Standard fo Sum of first 8 prime nat (1) 59 $\frac{5+3\sqrt{7}}{5-3\sqrt{7}} = a + b \sqrt{7}$	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100 prmulae, Polynomia tural numbers is (2) 77	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150 I IS & Divisional Algo (3) 76	and 400 people, who can speak (4) 600 (4) 100 (4) 200 Drithm (4) 58
C-8. C-9 C-10 Section D-1	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who (1) 50 on (D) : Standard fo Sum of first 8 prime nat (1) 59 If $\frac{5+3\sqrt{7}}{5-3\sqrt{7}} = a + b \sqrt{7}$ $\frac{44}{19}, \frac{15}{19}$	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100 ormulae, Polynomia tural numbers is (2) 77 then rational numbers a	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150 Is & Divisional Algo (3) 76 and b are respectively $-\frac{15}{19}, -\frac{44}{19}$	and 400 people, who can speak (4) 600 (4) 100 (4) 200 brithm (4) 58 (4) 58
C-8. C-9 C-10 Sectio D-1 D-2.	In a group of 1000 peop Bengali. Number of people who (1) 300 Number of people who (1) 150 Number of people who (1) 50 on (D) : Standard fo Sum of first 8 prime nat (1) 59 If $\frac{5+3\sqrt{7}}{5-3\sqrt{7}} = a + b \sqrt{7}$ $\frac{44}{19}, \frac{15}{19}$	ple, there are 750 people can speak Hindi only is (2) 400 can speak Bengali only i (2) 250 can speak both Hindi an (2) 100 ormulae, Polynomia tural numbers is (2) 77 then rational numbers a $\frac{44}{19}, -\frac{15}{19}$	e, who can speak Hindi a (3) 500 (3) 50 d Bengali is (3) 150 Is & Divisional Algo (3) 76 and b are respectively $-\frac{15}{19}, -\frac{44}{19}$	and 400 people, who can speak (4) 600 (4) 100 (4) 200 brithm (4) 58 (4) 58

D-4.	Which of the following conditions imply that the real number x is rational?			
	(i) x_{1/2} is rational(1) (i) and (ii) only	(ii) x₂ and x₅ are ration(2) (i) and (iii) only	(3) (ii) and (iii) only	(iii) x2 and x4 are rational (4) (i), (ii) and (iii)
	If x + $\frac{1}{x} = 2$, then x ₂ +	<u>1</u>		
D-5.	If $x + X = 2$, then $x_2 + (1) 0$	x² is equal to(2) 1	(3) 2	(4) 3
De	$\frac{(2+1)(2^2+1)(2^4+1)}{(2^8-1)}$)(2 ⁸ + 1) = 4 _n + 1, then n is	_	
D-6.	(1) 4	= 4n + 1, then it is (2) 3	(3) 2	(4) 1
D-7.	If $(x + y)_2 = 2(x_2 + y_2)$	and $(x - y + \lambda)_2 = 4$, $\lambda > 0$), then λ is equal to :	
	(1) 1	(2) 2	(3) 3	(4) 4
D-8.	$\frac{a+3d}{a+9d} = \frac{a+d}{a+5d} = k$	then k is equal to (a, d >	0)	
2 0.	$(1) \frac{1}{2}$.,	(4) $\frac{1}{4}$
	(1) 2	(2) 2	(3) 6	(4) 4
D-9 .	If (x – a) is a factor of : (1) 0	x₃ – a₂x + x + 2, then 'a' i (2) 2	s equal to (3) –2	(4) 1
			. ,	
D-10.	remainder, then value remainder		= 2X3 – 5X + K, When div	ided by (x – 4) leaves the same
	(1) 2	(2) 1	(3) 0	(4) –1
D-11.	If 2 x_3 - 5 x_2 + x + 2 = (x - 2) (a x ₂ - b x - 1), then	a & b are respectively :	
	(1) 2, 1	(2) 2, - 1	(3) 1, 2	(4) - 1, 1/2
Secti	on (E) : Rational In	equalities		
E-1.			$x < 10$ and $0 \le x \le 15$ is	(1) 10
	(1) 10	(2) 11	(3) 12	(4) 13
E-2.	The number of positive	e integers satisfying the i	nequality $\frac{x^2 - 1}{2x + 5} < 3$ is	
	(1) 10	(2) 9	(3) 8	(4) 7
E-3.	The solution of the ine	equality $2x - 1 \le x_2 + 3 \le x_2$		
	(1) x ∈ R	(2) $[2 - \sqrt{2}, 2 + \sqrt{2}]$	(3) [2 − [√] 2 , 2]	(4) $x \in \varphi$
E-4.	The complete set of y	alues of 'x' which satisfy t	he inequations : 5x + 2	$< 3x + 8 \text{ and } \frac{x+2}{x-1} < 4 \text{ is}$
⊾∼₩.	(1) $(-\infty, 1)$	(2) (2, 3)	(3) $(-\infty, 3)$	$(4) (-\infty, 1) \cup (2, 3)$

MATHEMATICS

E-5.	The number of the inte (1) 1	gral solutions of $x_2 + 9 <$ (2) 2	(x + 3) ₂ < 8x + 25 is : (3) 3	(4) 5
E-6.	The complete solution	set of inequality (x – 1) (x	$(x + 3) (2x - 7) (5 - x) \le 0$	is -
	(1) (-∞,-3] ∪ $\begin{bmatrix} 1, \frac{7}{2} \end{bmatrix}$ ∪ [5,∞)	(2) (−3,1] ∪ $\begin{bmatrix} \frac{7}{2},5 \end{bmatrix}$	
	(3) (-∞,-3] ∪ (1,5) ∪ (5		$(4) (1,3] \cup \left\lfloor \frac{7}{2},5 \right\rfloor$	
F 7		$\frac{(x+2)(x+2)}{4+3}$	$\frac{x^2-2x+1)}{3x-x^2} \ge 0 \text{ is}$	
E-7.	The complete solution (1) $[-2, -1) \cup [1,4)$	set of inequality	≥ 0 is (2) $(-\infty, -2] \cup (-1, 4)$	
	(1) $[-2, -1) \cup [1, \infty) \cup \{$	[1]	(4) $(-\infty, -2] \cup (-1, 1) \cup$	(1.4)
			$-3x^{3} + 2x^{2}$	
E-8.	The complete solution		$-x-30 \ge 0$ is:	
	(1) (-∞, -5) ∪ (1, 2) ∪ (6, ∞) ∪ {0}	(2) (-∞, -5) ∪ [1, 2] ∪ (6, ∞) ∪ {0}
	(3) (-∞, -5] ∪ [1, 2] ∪ [6	6, ∞) ∪ {0}	(4) (-∞, -5] ∪ [1, 2] ∪ [6	δ, ∞)
E-9.	Number of integers sat	isfying the inequality x4 –	-5x ₂ + 4 < 0 is	
	(1) 2	(2) 3	(3) 4	(4) 5
E-10.	Number of positive inte	egral values of x satisfyir	ng the inequality	
	$(x-4)^{2013}$. (x +	$(x+1)^{2014}$ (x + 1)		
	$x^{2016}(x-2)^3$. $(x+3)^5$	$\frac{(8)^{2014}}{(x-6)(x+9)^{2012}} \leq 0$) is	
	(1) 0	(2) 1	(3) 2	(4) 3
			_	2 <u>1</u> 2x-1
E-11. N	Number of non-negative	integral values of x sa	tisfying the inequality x	$\frac{2}{x^{2}-x+1} - \frac{1}{x+1} - \frac{2x-1}{x^{3}+1} \ge 0 \text{ is}$
	(1) 0	(2) 1	(3) 2	(4) 3
Section	on (F) : Logarithm			
	1	1	1	
F-1.	$1 + \log_b a + \log_b c$ + $1 +$	$\frac{1}{\log_{c} a + \log_{c} b} + \frac{1 + \log_{a}}{1 + \log_{a}}$	$b + \log_a c$ has the value	equal to
		1		
	(1) abc	(2) abc	(3) 0	(4) 1
	1 1	1		
F-2.	\log_{100} abc \log_{100} abc	$\frac{1}{\log_{\sqrt{ab}} abc}$ has the v	alue equal to :	
	(1) 1/2	(2) 1	(3) 2	(4) 4
F-3.	If $a_4 \cdot b_5 = 1$ then the ve	alue of log₅(a₅b₄) equals		
	(1) 9/5	(2) 4	(3) 5	(4) 8/5

F-4.	Let $x = 2^{\log 3}$ and $y = 1$	3 ¹⁰⁹² where base of the lo	garithm is 10, then which	one of the following holds good?
	(1) 2x < y	(2) 2y < x	(3) 3x = 2y	(4) $y = x$
F-5.	If $log_a(ab) = x$, then $log_a(ab) = x$	₀(ab) is equal to		
	1	(2) $\frac{x}{1 + x}$	X	<u> </u>
	(1) $\frac{1}{x}$	(2) ¹ + x	(3) $\frac{x}{1 - x}$	(4) $\frac{x}{x - 1}$
F-6.	(log210) . (log280) – (lo	. (log₂160) is equal	to :	
	(1) log ₂ 5	(2) log ₂ 20	(3) log ₂ 10	(4) log ₂ 16
		$(2)^{3}$		
	$2^{\log_{2^{1/4}}a} - 3$	$\frac{\log_{27}(a^2+1)^3}{a^2-a-1} = -2a$		
F-7.	The ratio 7 ^{4log₄}	^{9^a −a−1 simplifie}	es to :	
	(1) a₂ - a - 1	(2) a ₂ + a - 1	(3) a ₂ - a + 1	(4) a ₂ + a + 1
		(_) ~~ ~~ ~		
F-8.	$10^{\log_p(\log_q(\log_r x))} - 1$ and	$\log_q \left(\log_r (\log_p x) \right) = 0$ th	an 'n' aguala	
г-о.	(1) r _{q/r}	(2) rq	(3) 1	(4) r r/q
			(0) 1	()///4
F-9.	Which one of the follow	wing is the smallest?		
		2	$(3) \left(\frac{1}{\log_{10} \pi}\right)^3$	$\left(\frac{1}{1-\sqrt{2}}\right)$
	(1) log10π	(2) $\sqrt{\log_{10} \pi^2}$	(3) $(\log_{10} \pi)$	$(4) \left(\log_{10} \sqrt{\pi} \right)$
F-10. I	og10(log23) + log10(log34 (1) a composite numbe (3) rational number wh	er	log10(log10231024) simpl (2) a prime number (4) an integer number	ifies to
F-11.	The sum of all the solu	utions to the equation 2	log10 x - log10(2x - 75) =	= 2 is
	(1) 30	(2) 350	(3) 75	(4) 200
F-12.	If $\log_x \log_{18} \left(\sqrt{2} + \sqrt{8}\right)$ (1) 8	$=\frac{1}{3}$. Then the value of (2) 1/8	1000 x is equal to (3) 1/125	(4) 125
F-12.	(1) 8	(2) 1/8	(3) 1/125	(4) 125
F-12. F-13.	(1) 8 Sum of all solutions of	(2) 1/8 equation log ₂ (log ₃ (x ₂ -7	(3) 1/125 1)) = 0 is	
	(1) 8	(2) 1/8	(3) 1/125	(4) 125 (4) 2
	(1) 8 Sum of all solutions of (1) 4	(2) 1/8 equation log2 (log3(x2-7 (2) – 4	(3) 1/125 1)) = 0 is	(4) 2
F-13.	(1) 8 Sum of all solutions of (1) 4	(2) 1/8 equation log2 (log3(x2-7 (2) – 4	(3) 1/125 1)) = 0 is (3) 0	(4) 2
F-13.	(1) 8 Sum of all solutions of (1) 4 If $3^{2 \log_3 x} - 2x - 3 = 0$, to (1) zero	 (2) 1/8 equation log2 (log3(x2-7) (2) - 4 then the number of value (2) 1 	 (3) 1/125 (3) 0 (3) 0 (3) 1/125 (3) 0 (3) 2 	(4) 2 ation is
F-13.	(1) 8 Sum of all solutions of (1) 4 If $3^{2 \log_3 x} - 2x - 3 = 0$, to (1) zero	 (2) 1/8 equation log2 (log3(x2-7) (2) - 4 then the number of value (2) 1 	 (3) 1/125 (3) 0 (3) 0 (3) 1/125 (3) 0 (3) 2 	(4) 2 ation is
F-13. F-14.	(1) 8 Sum of all solutions of (1) 4 If $3^{2 \log_3 x} - 2x - 3 = 0$, t (1) zero If $\log_2(\log_9 x + \frac{3}{2} + 8x)$	 (2) 1/8 equation log2 (log3(x2-7) (2) - 4 then the number of value 	 (3) 1/125 (3) 0 (3) 0 (3) 1/125 (3) 0 (3) 2 	(4) 2 ation is (4) more than 2
F-13. F-14.	(1) 8 Sum of all solutions of (1) 4 If $3^{2 \log_3 x} - 2x - 3 = 0$, t (1) zero If $\log_2(\log_9 x + \frac{3}{2} + 8x) = 1$	 (2) 1/8 equation log2 (log3(x2-7) (2) - 4 then the number of value (2) 1 	 (3) 1/125 (3) 0 (3) 0 (3) 1/125 (3) 0 (3) 2 	(4) 2 ation is
F-13. F-14.	(1) 8 Sum of all solutions of (1) 4 If $3^{2 \log_3 x} - 2x - 3 = 0$, t (1) zero If $\log_2(\log_9 x + \frac{3}{2} + 8x)$	 (2) 1/8 equation log2 (log3(x2-7) (2) - 4 then the number of value (2) 1 = 3x, then value of 27x is 2) 27 	 (3) 1/125 (3) 0 (3) 0 (3) 2 (3) 2 (3) 2 	(4) 2 ation is (4) more than 2

1) – 3 Exe questio	TCISC - ns may have $x : x \in \mathbb{R}, -1$	(2) 3 e for revision que PART - I : OI < x < 1} , B = {x : >	BJECTIVE		(4) –32 (4) 2
1) – 3 Exe questio	TCISC - ns may have $x : x \in \mathbb{R}, -1$	(2) 3 e for revision que PART - I : OI < x < 1} , B = {x : >	estions.		
questio	ns may have $x : x \in \mathbb{R}, -1$	e for revision que PART - I : OI < x < 1} , B = {x : >	BJECTIVE	QUESTION	
_et A = {	x : x ∈ R, −1 ·	PART - I : OI	BJECTIVE	QUESTION	15
-	x : x ∈ R, –1 ·	< x < 1} , B = {x : >		QUESTION	15
-					<u></u>
1) {x : 1	< x ≤ 2}	(2) (y + 1 < y = 1)	$x \in \mathbb{R}, x \leq 0 \text{ or } x$	\geq 2} and A \cup B	= R – D, then the set D is
		$(2) \{X : 1 \leq X < A\}$		-	(4) {x : 1 < x < 2}
1. 1 c 2. L r	$V \cup (B \cap Z) = (N)$ of integers, R Let A = {n \in 1 number of ele Which of the a	is the set of real r	numbers. is a multiple of to the number is/are correct?	3}. There exists	et of positive integers, Z is the se s no subset B of N such that the 3. [SCRA-2011, (2, –1/3)/100] (4) Neither 1 nor 2
1) / 2) / 3) T	$A_1 \cup A_2 \cup A_3$ is $A_1 \cup A_2 \cup A_3$ is The smallest poth A ₁ and A	s the smallest sub subset of X conta $_2 \cup A_3$ only if $A_2 =$	set of X containi set of X contain ining A₁ ∪ A₂ ar	ing elements of ing either A₁ or	each of A ₁ , A ₂ and A ₃ A ₂ \cup A ₃ but not both
K in U. Consider I. (2. (the following $(A \cap B) \cup C)'$ $(A' \cap B') \cap (A'$ the above st	g sets : ' ∩ B')' = B ∩ C A ∪ B ∪ C') = (A ∪ atements is/are co (2) 2 only	(B ∪ C))′ prrect ? (3) Bot		, let X ' denote the complement of [SCRA-2011, (2, -1/3)/100] (4) Neither 1 nor 2
	t et A, B, in U. onsider (/hich of) 1 only	both A ₁ and A None of these et A, B, C be distinct in U. onsider the following $((A \cap B) \cup C)$ $(A' \cap B') \cap (A'$ /hich of the above st) 1 only et U be set with num onsider the following	both A ₁ and A ₂ \cup A ₃ only if A ₂ = A_3 None of these et A, B, C be distinct subsets of a university in U. onsider the following sets : $((A \cap B) \cup C)' \cap B')' = B \cap C$ $(A' \cap B') \cap (A \cup B \cup C') = (A \cup C')$ /hich of the above statements is/are conditional of the above statements is and the above statements is/are conditional of the above statements is/are con	both A ₁ and A ₂ \cup A ₃ only if A ₂ = A ₃ None of these et A, B, C be distinct subsets of a universal set U. For a in U. onsider the following sets : $((A \cap B) \cup C)' \cap B')' = B \cap C$ $(A' \cap B') \cap (A \cup B \cup C') = (A \cup (B \cup C))'$ /hich of the above statements is/are correct ?) 1 only (2) 2 only (3) Bot et U be set with number of elements in U is 2009.	both A ₁ and A ₂ \cup A ₃ only if A ₂ = A ₃ None of these et A, B, C be distinct subsets of a universal set U. For a subset X of U in U. onsider the following sets : $((A \cap B) \cup C)' \cap B')' = B \cap C$ $(A' \cap B') \cap (A \cup B \cup C') = (A \cup (B \cup C))'$ //hich of the above statements is/are correct ?) 1 only (2) 2 only (3) Both 1 and 2 et U be set with number of elements in U is 2009. onsider the following statements :

	II If A is a subset of	U with n (A) = 1681 and	d out of these 1681 eleme	nts, exactly 1075 elements belong
	to a subset B of U	, then n (A – B) = m_2	+ p1 p2 p3 for some position	tive integer m and distinct primes
	p ₁ , p ₂ , p ₃ Which of the stateme (1) I only	ents given above is / ar (2) II only	e correct ? (3) Both I and II	[SCRA-2009, (2, –1/3)/100] (4) Neither I nor II.
6.	in Physics, 19 in Che	mistry, 12 in Mathemati	cs and Physics 9 in Mathe	ubjects are 23 in Mathematics, 24 matics and Chemistry, 7 in Physics who have taken exactly one subject
	(1) 15	(2) 30	(3) 22	(4) 27
7.	Chemistry, at least 8 have failed in all the	0% failed in Mathematic	cs and at least 85% failed i [SC (2) 7%	d in Physics, at least 72% failed in n English. How many at least must RA-2011, (2, –1/3)/100] (1) 5%
	(3) 15%		(4) Cannot be detern	nined due to insufficient data
8.	If (a + b + c)₃ = a₃ + (1) 3	b3 + c3 then (a + b)(b + (2) 1	c)(c + a) is equal to : (3) 0	(4) –1
9.	$f(x) = x_5 + ax_3 + bx.$ divided by $x_2 - 1$ is (1) x	The remainder when for (2) 2x	(x) is divided by x + 1 is ' (3) 3x	-3', then the remainder when it is(4) 4x
10.			livided by x–1, x+1 & x+. 2 – x – 2, then remainder i (3) x – 2	2, then remainders are 5, 3 and 2 s : (4) x + 2
11.	. ,		mial such that when it is) is divided by (x – 2), ther (3) 5	divided by (x – 1) and (x + 1) the n remainder is (4) 13
12.		then the least and the h	ighest values of 4x2 are:	
	, .			81
	(1) 0 & 81	(2) 9 & 81	(3) 36 & 81	(4) 9 & $\frac{81}{4}$
		<u>14x</u>	9x - 30	
13.	Sum of integers satis (1) 5	sfying inequality $\frac{14x}{x+1} \leq$ (2) 6	(3) 11	(4) 12
14.	If logab = 2; log₅c = (1) 90	2 and log ₃ c = 3 + log ₃ a (2) 93	then (a + b + c) equals (3) 102	(4) 243
15.	The sum of the solut (1) log ₃ 2	ions of the equation 9x (2) log ₃ 6	- 6 · 3x + 8 = 0 is (3) log ₃ 8	(4) log ₃ 4

	$\left(\frac{x^2+3x+2}{x+2}\right)+3x-\frac{x(x^3-2x+2)}{(x+1)(x^2-2x+2)}$	$\frac{-1}{-x+1}\log_2 8$	
16.	The expression: $(x-1)(\log_2 3)(\log_3 4)(\log_4 4)$	$\overline{5}$)(log ₅ 2) reduces to	
	$x+1 \qquad \qquad \underline{x^2+3x+2}$	Зx	
	(1) $\frac{x+1}{x-1}$ (2) $\frac{x^2+3x+2}{(\log_2 5)x-1}$	(3) $\overline{x-1}$	(4) x
17.	If a, b, c are positive real numbers such that	$b^{\log_3 7} = 27$; $b^{\log_7 11} = 49$	and $C^{\log_{11}25} = \sqrt{11}$. The value of
	$\left(a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}\right) \text{ equals}$		
	(1) 489 (2) 469	(3) 464	(4) 400
	The expression $\log_p \sqrt[p]{p} \sqrt[p]{p}$, where		
18.	The expression log _p nradical sign , where	$p \ge 2, p \in N$; $n \in N$ whe	en simplified is
	(1) independent of p	(2) independent of p ar	nd of n
	(3) dependent on both p and n	(4) positive	
		$\sqrt{(x)}$	(2-x)
			$\frac{-8}{10}$ $(2-x)$ $\frac{10}{7}$ $(\log_2 5 - 1)$ > 0 and
19.	The set of values of x satisfying simultaneously	the inequalities	7 $(02^{\circ}) \ge 0$ and
	2 _{x-3} - 31 > 0 is :		
	(1) a unit set	(2) an empty set	
	(3) an infinite set	(4) a set consisting of e	exactly two elements.
20.	If $log_{0.5} log_5 (x_2 - 4) > log_{0.5}1$, then 'x' lies in the	nterval	
	(1) (− 3, −√5) ∪ (√5 , 3)	(2) (− 3, −√5) ∪ (, 3 √	/5 ₎
	$(3)(\sqrt{5}, 3\sqrt{5})$	(4) φ	
21.	The solution set of the inequality $\frac{(3^{x} - 4^{x}) \cdot \ln x}{x^{2} - 3x}$	$\frac{(x+2)}{4} < 0$ is	
	(1) $(-\infty, 0] \cup (4, \infty)$ (2) $(-2, 0] \cup (4, \infty)$		(4) (−2, −1) ∪ (− 1, 0] ∪ (4, ∞)
	$\left \begin{array}{cccc} x^2 - 2x + 3 & 7x + 2 & x + 4 \\ 2x + 7 & x^2 - x + 2 & 3x \\ 3 & 2x - 1 & x^2 - 4x + 7 \\ \end{array} \right _{= ax_6 + b}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
22.			
	(1) 2 (2) 1	(3) - 204	(4) –108
23.	If $\sqrt{\log_4 \{\log_3 \{\log_2(x^2 - 2x + a)\}\}}$ is defined $\forall x \in$	R, then the set of values	of 'a' is
	 (1) [9, ∞) (2) [10, ∞) 	(3) [15, ∞)	(4) [2, ∞)

24.	Product of roots of equa	ation (log3x)2 – 2(log3x) -	$2 - 2(\log_3 x) - 5 = 0$ is	
	(1) 2	(2) 3	(3) 8	(4) 9

MATHEMATICS

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

DIRECTIONS :

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- A-1. Let X and Y be two sets.
 - **Statement-1** $X \cap (Y \cup X)' = \varphi$
 - **Statement-2** If $X \cup Y$ has m elements and $X \cap Y$ has n elements then symmetric difference $X \Delta Y$ has m n elements.
- A-2. STATEMENT 1 : The largest prime number, that can be written as the sum of two prime numbers and as the difference of two prime numbers is 5.
 - **STATEMENT 2**: 2 is the only even prime number and 3 is the only prime number which is divisible by 3.
- A-3. STATEMENT 1: When a polynomial P(x) (degree > 2) is divided by (x 1) and (x 2) the remainders are -1 and 1 respectively. If the same polynomial is divided by (x 1) (x 2) then the remainder is (2x 3).
 - **STATEMENT 2 :** If P(x) is divided by a quadratic expression, then the remainder is either 0 or a polynomial whose degree is at most 1.
- A-4. STATEMENT 1: $\log_{10} (\sqrt{13} \sqrt{12}) < \log_{0.1} (\sqrt{14} \sqrt{13})$ STATEMENT 2: (i) If a > 1, then x > 1 $\Rightarrow \log_{3} x > 0$ and $0 < x < 1 \Rightarrow \log_{3} x < 0$ (ii) If 0 < a < 1, then x > 1 $\Rightarrow \log_{3} x < 0$ and $0 < x < 1 \Rightarrow \log_{3} x < 0$
- A-5. STATEMENT 1 : The equation $(\log_{10} x)_2 \log_{10} x_3 + 2 = 0$ has only one solution. STATEMENT 2 : $\log_{10} x_2 = 2\log_{10} x$, if x > 0
- A-6. STATEMENT 1 : Maximum value of $\log_{1/3} (x_2 4x + 5)$ is '0'. STATEMENT - 2 : $\log_a x \le 0$ for $x \ge 1$ and 0 < a < 1.

Section (B) : MATCH THE COLUMN

B-1. Match the set P in column one with its super set Q in column II Column – I (set P) Column–II (set Q) (1) $[3^{2n} - 8n - 1 : n \in N]$ (p) {49 (n − 1) : n ∈ N (2) $\{2^{3n} - 1 : n \in N\}$ $\{64 (n - 1) : \in N\}$ (q) $\{3^{2n} - 1 : n \in N\}$ (3) $\{7n : n \in N\}$ (r) (4) $\{2^{3n} - 7n - 1 : n \in N\}$ $\{8n : n \in N\}$ (s)

B-2. Column-I

- (1) When the repeating decimal 0.363636..... is written as a rational (p)
- Column-II

1

MATHEMATICS

B-3.

(2)	fraction in the simplest form, the sum of the numerator and denominato The number of solutions of $2_{2x} - 3_{2y} = 55$, in which x and y are integers, is	r is	(q)	0
(3)	If $log_8a + log_8b = (log_8a)(log_8b)$ and $log_8b = 3$, then the value of 'a' is		(r)	15
(4)	If P = $3^{\sqrt{\log_3 2}} - 2^{\sqrt{\log_2 3}}$ then value of P is		(s)	16
	Column-I	Colu	nn-ll	
(1)	Anti logarithm of $(0.\overline{6})$ to the base 27 has the value equal to	(p)	5	
(2) (3)	Characteristic of the logarithm of 2008 to the base 2 is The value of b satisfying the equation,	(q)	7	
(4)	log _e 2 · log₅625 = log₁₀16 · loge10 is Number of naughts after decimal before a significant figure	(r)	9	
	comes in the number $\left(\frac{5}{6}\right)^{100}$, is	(s)	10	

(Given $\log_{102} = 0.3010$ and $\log_{103} = 0.4771$)

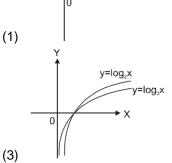
Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

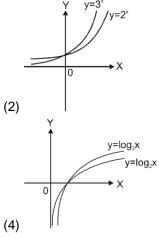
C-1.	A and B are two sets such that $n(A) = 3$ and $n(B) = 6$, then			
	(1) minimum value of $n(A \cup B) = 6$	(2) minimum value of $n(A \cup B) = 9$		
	(3) maximum value of $n(A \cup B) = 6$	(4) maximum value of $n(A \cup B) = 9$		

- C-2 In a survery, it was found that 21 persons liked product A, 26 liked product B and 29 liked product C. If 14 persons liked products A and B, 12 liked products C and A, 13 persons liked products B and C and 8 liked all the three products then which of the following is (are) true ?
 - (1) The number of persons who liked the product C only = 12
 - (2) The number of persons who like the products A and B but not C = 6
 - (3) The number of persons who liked the product C only = 6
 - (4) The number of persons who like the products A and B but not C = 12

C-3. If
$$\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$$
, then $\frac{(a^k + b^k + c^k)^{\frac{1}{k}}}{(d^k + e^k + f^k)^{\frac{1}{k}}}$ is equal to : $(k \in N)$
(1) $\frac{a}{d}$ (2) $\frac{b}{e}$ (3) $\frac{c}{f}$ (4) $\frac{b}{c}$

C-4Let $a > 2, a \in N$ be a constant. If there are just 18 positive integers satisfying the inequality
 $(x - a)(x - 2a)(x - a_2) < 0$ then which of the option(s) is/are correct?
(1) 'a' is composite
(2) 'a' is odd
(3) 'a' is greater than 8(2) 'a' is odd
(4) 'a' lies in the interval (3, 11)


 $\log_3 135$ $\log_3 5$


C-5. Let N = $\log_{15} 3^{-1} - \log_{405} 3^{-1}$. Then N is :

(1) a natural number (2) a prime number (3) a rational number (4) an integer

MATHEMATICS

 $\log_{52} x + \log_{5x} \left(\frac{5}{x}\right) = 1 \text{ are}$ Values of x satisfying the equation C-6. (3) 25 (1) 1 (2) 5 (4) 3 The equation $\log_{x^2} 16 + \log_{2x} 64 = 3$ has : C-7. (1) one irrational solution (2) no prime solution (3) two real solutions (4) one integral solution The solution set of the system of equations $\log_3 x + \log_3 y = 2 + \log_3 2$ and $\log_{27}(x + y) = 3$ is : C-8. (1) {6, 3} (2) {3, 6} (3) {6, 12} (4) {12, 6} 1 If $\overline{2} \leq \log_{0.1} x \leq 2$, then C-9 (2) x lies between $\frac{1}{100}$ and $\frac{1}{\sqrt{10}}$ (1) maximum value of x is $\sqrt{10}$ (4) minimum value of x is $\overline{100}$ (3) minimum value of x is 10C-10.Which of the following statements are true (1) $\log_2 3 < \log_{12} 10$ (2) $\log_6 5 < \log_7 8$ (4) $\log_{16}15 > \log_{10}11 > \log_{7}6$ (3) $\log_3 26 < \log_2 9$ Which of the following is correct : C-11 /y=3[×]

MATHEMATICS

	Exerci	ise-3		
	PART-I:	JEE (MAIN) / AIEI	EE PROBLEMS (P	REVIOUS YEARS)
1.	If A, B and C are	e three sets such that A \cap	$B = A \cap C$ and $A \cup B = A$	∪ C, then [AIEEE-2009, (4, – 1), 144]
	(1) A = C	(2) B = C	(3) A \cap B = φ	(4) A = B
2.		3, 4, 5}. The number of nd Y ∩ Z is empty, is : (2) 3₅	of different ordered pairs (3) 25	(Y, Z) that can formed such that [AIEEE-2012, (4, - 1), 120] (4) 5 ₃
3.			()	e set of natural numbers, then X ∪ Y [JEE(Main) 2014, (4, – 1), 120] (4) Y – X
4.		m element and another se th sets then find (m, n) (2) 6, 3	et contains n element. If 56 (3) 8, 3	is the difference between the number [BITSAT-2014] (4) 3, 8
5.	The sum of all r	eal values of x satisfying	the equation $(x^2 - 5x + 5)^{x^2}$	² +4x-60 = 1 is [JEE(Main) 2016, (4, - 1), 120]
	(1) – 4	(2) 6	(3) 5	(4) 3

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

Marked questions may have for revision questions.

1.	The number of solution	on(s) of $\log_4(x-1) = \log_2$	(x – 3) is/are	[IIT-JEE-2002, Scr., (1, 0)/35]
	(A) 3	(B) 1	(C) 2	(D) 0
2.		ution of the following equ	ations	
	$(2x)\ell_{n2} = (3y)\ell_{n3}$			
	$3\ell_{nx} = 2\ell_{ny}$.			
	Then xo is		[1	IIT-JEE 2011, Paper-1, (3, –1), 80]
	1	<u>1</u>	1	
	(A) 6	(B) ³	(C) 2	(D) 6

MATHEMATICS

		ISW	ers	;)=									
						EXER	CISE -	1					
						PA	RT- I						
Secti	ion (A)												
A-1.	(4)	A-2.	(2)	A-3.	(1)	A-4.	(4)	A-5.	(1)	A-6.	(4)	A-7.	(4)
A-8.	(3)	A-9.	(2)	A-10.	(2)								
Secti	ion (B)												
B-1.	(2)	B-2.	(2)	B-3.	(2)	B-4.	(1)	B-5.	(4)	B-6.	(2)	B-7.	(1)
B-8.	(2)	B-9.	(3)	B-10.	(4)								
Secti	ion (C))											
C-1.	(2)	C-2.	(3)	C-3.	(3)	C-4.	(3)	C-5.	(2)	C-6.	(3)	C-7.	(2)
C-8.	(4)	C-9	(2)	C-10	(3)								
Secti	ion (D)												
D-1	(2)	D-2.	(4)	D-3.	(1)	D-4.	(1)	D-5.	(3)	D-6.	(1)	D-7.	(2)
D-8.	(1)	D-9.	(3)	D-10.	(2)	D-11.	(1)						
Secti	ion (E)												
E-1.	(1)	E-2.	(4)	E-3.	(4)	E-4.	(4)	E-5.	(4)	E-6.	(1)	E-7.	(2)
E-8.	(2)	E-9.	(3)	E-10.	(4)	E-11. ((4)						
Secti	ion (F)	:											
F-1.	(4)	F-2.	(2)	F-3.	(1)	F-4.	(4)	F-5.	(4)	F-6.	(4)	F-7.	(4)
F-8.	(1)	F-9.	(1)	F-10	(4)	F-11.	(4)	F-12.	(4)	F-13.	(3)	F-14.	(2)
F-15.	(3)	F-16.	(2)										
Secti	ion (G))											
G-1.	(3)	G-2.	(1)	G-3.	(2)	G-4.	(4)	G-5.	(2)	G-6	(4)		
Cast	an (11)												

Section (H) :

H-1. (2) H-2. (2) H-3. (2)

	EXERCISE - 2												
						PA	RT-I						
1.	(2)	2.	(1)	3.	(1)	4.	(2)	5.	(3)	6.	(3)	7.	(2)
8.	(3)	9.	(2)	10.	(3)	11.	(2)	12.	(1)	13.	(4)	14.	(2)
15.	(3)	16.	(1)	17.	(2)	18.	(1)	19.	(1)	20.	(1)	21.	(4)
22.	(4)	23.	(1)	24.	(4)								

MA	ГНЕМА	TICS										
						РА	RT- II					
Secti	on (A)											
	(1) on (B)		(1)	A-3.	(1)	A-4.	(1)	A-5.	(3)	A-6.	(1)	
B-1.	(A) →	(q), (B)	→ (r),(C) → (s),	(D) → (p)						
B-2.	(A) \rightarrow r, (B) \rightarrow p, (C) \rightarrow s, (D) \rightarrow q											
B-3.	(A) \rightarrow r, (B) \rightarrow s, (C) \rightarrow p, (D) \rightarrow q											
Secti	on (C)											
C-1.	(1,4)		C-2	(1,2)		C-3.	(1,2,3)	C-4	(2,4)	C-5. (1,2,3,4)	
C-6. C-11	(1,2,3) (2,3))	C-7.	(1,2,3,	,4)	C-8.	(1,2)		C-9	(1,2,4)	C-10. (2,3)	
						EXER	CISE -	3				
						ΡΔ	RT- I					
1.	(2)	2.	(2)	3.	(2)	4.		5.	(4)			
						PA	RT- II					
1.	(2)	2.	(3)									