Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A) : Mean, median & mode

A-1. Find the A.M. of the series 1, 2, 4, 8, 16,, 2_n

2 ⁿ⁺¹ – 1	2 ⁿ⁺² -1	2 ⁿ –1	2 ⁿ – 1
(1) <u>n+1</u>	(2) <u>n</u>	(3) n+1	(4) n

- A-2. The average weight of 9 men is x kg. After another men joins the group, the average increases by 5%. Still another man joins and average returns to old level of x kg. Which one of the following true?
 (1) the 10th & 11th men weight same
 - (2) the 10th man weight half as much as the 11th man
 - (3) the 10_{th} man weight as much as the 11_{th} man
 - (4) None of these
- **A-3.** N observations on a variable x are x_i = A + iB for i = 1, 2, 3,, n where A, B are real constants. The mean of the observation is

(n+1)	(n+1)	(n+1)	$\left(\underline{n}\right)$
(1) A + B 2	(2) nA + B 2	(3) A + Bn 2	(4) A + B ⁽²⁾

A-4. Find the median of values 10, 14, 11, 9, 8, 12, 6. (1) 8 (2) 10 (3) 9

A-5. If a variable takes the discrete values $\alpha + 4$, $\alpha - \frac{7}{2}$, $\alpha - \frac{5}{2}$, $\alpha - 3$, $\alpha - 2$, $\alpha + 1$, $\frac{1}{2}$, $\frac{1}{\alpha} - \frac{1}{2}$, $\alpha + 5$ ($\alpha > 0$), then the median is

(1)
$$\alpha - \frac{5}{4}$$
 (2) $\alpha - \frac{1}{2}$ (3) $\alpha - 2$ (4) $\alpha + \frac{5}{4}$

 A-6.
 Find the mode of data 1, 2, 5, 3, 2, 3, 0, 5, 2.

 (1) 3
 (2) 1
 (3) 5
 (4) 2

A-7. Consider the following statements related to measure of central tendency of 50 positive numbers
1. Median is not influenced by extreme values in set of numbers
2. The harmonic mean is unreliable if one or more of the numbers is non-zero

which of the above statement is/are correct

- (1) 1 only (2) 2 only (3) both 1 and 2 (4) neither 1 nor 2
- **A-8.** M(x₁, x₂, x₃ x_n) defines a measure of central tendency based on n values x₁, x₂, x₃,x_n consider the following measured of central tendency

(1) Arithmetic mean (2) Median (3) Geometric mean

which of the above measure satisfie/ satisfies the property

 $\frac{\mathsf{M}(x_1, x_2, x_3, \dots, x_n)}{\mathsf{M}(y_1, y_2, y_3, \dots, y_n)} = \mathsf{M}. \left(\frac{x_1}{y_1}, \frac{x_2}{y_2}, \frac{x_3}{y_3}, \dots, \frac{x_n}{y_n}\right)?$

select the correct answer using the code below(1) 1 only(2) 2 only(3) 3 only

(4) 1 and 3

14 |

A-9.	If values a, b, c, j, p (1) a	occurs with frequencies (2) e	10 C ₀ , 10 C ₁ , 10 C ₂ ,, 10 (3) f	C ₁₀ then mode is (4) k
A-10.	The mean of 21 obse increased 21, then mea (1) 50	rvations (all different) is an of observations will be (2) 50.5	40. If each observation come (3) 30	s greater than the median are (4) 45
A-11.	The mean of series x_1 , (1) \overline{x} + n	$x_2, x_3, \dots, x_n \text{ is } \overline{x}, \text{ then}$ (2) $\overline{x} + n + 1$	mean of the series $x_i + 2$ (3) $\overline{x} + 2$	2i, i = 1, 2, 3,, n will be (4) \overline{x} + 2n
A-12. If	the difference between (1) 189	mean and mode is 63, th (2) 21	e difference between me (3) 31.5	ean and median is (4) 48.5
A-13.	Mean of variates 1.2.3, (1) $\frac{n(n+1)(n+2)}{4}$	2.3.4,, n(n + 1)(n + 1)(n + 1)(n + 2)(n + 2)(n + 3)(n + 2)(n + 3)(n + 3)	2) (3) $\frac{(n+1)(n+2)(n+3)}{4}$	(4) $\frac{n(n+1)(n+3)}{2}$
Section	on (B) : Range, coe deviaiton.	fficient of range, m	ean deviation and c	coefficient of mean
B-1.	Range of data 7, 8, 2, 7 (1) 10	l, 3, 13, 18 is (2) 15	(3) 17	(4) 11
B-2.	Coefficient of range 5, 2 (1) $\frac{2}{3}$	2, 3, 4, 6, 8, 10 is (2) $\frac{1}{3}$	(3) $\frac{3}{5}$	(4) $\frac{1}{2}$
B-3	The scores of a batsma about median. $\frac{43}{5}$	n in ten innings are : 38, $\frac{44}{5}$	70, 48, 34, 42, 55, 63, 46, $\frac{41}{5}$	54, 44. Find the mean deviation $\frac{42}{5}$
B-4.	(1) 5	(2) 5	(3) 5	(4) 5
	I he mean deviation ab (1) 1936	out median of variates 13 (2) 21.5	3, 14, 15, , 99, 100 i (3) 23.5	s (4) 22
B-5	The mean deviation ab (1) 1936 The mean deviation of mean deviation is	out median of variates 13 (2) 21.5 an ungrouped data is 50	3, 14, 15, , 99, 100 i (3) 23.5). If each observation is	s (4) 22 increased by 2%, then the new
B-5 B-6.	The mean deviation ab (1) 1936 The mean deviation of mean deviation is (1) 50 The mean deviation of mean deviation is	out median of variates 13 (2) 21.5 an ungrouped data is 50 (2) 51 an ungrouped data is 80	3, 14, 15, , 99, 100 i (3) 23.5 D. If each observation is (3) 49 D. If each observation is o	s (4) 22 increased by 2%, then the new (4) 50.5 decreased by 5%, then the new
B-5 B-6.	The mean deviation ab (1) 1936 The mean deviation of mean deviation is (1) 50 The mean deviation of mean deviation is (1) 76	out median of variates 13 (2) 21.5 an ungrouped data is 50 (2) 51 an ungrouped data is 80 (2) 77	3, 14, 15, , 99, 100 i (3) 23.5 D. If each observation is (3) 49 D. If each observation is ((3) 78	s (4) 22 increased by 2%, then the new (4) 50.5 decreased by 5%, then the new (4) 79
B-5 B-6. B-7.	The mean deviation ab (1) 1936 The mean deviation of mean deviation is (1) 50 The mean deviation of mean deviation is (1) 76 The mean deviation from $\frac{n(n+1)d^2}{3}$	out median of variates 13 (2) 21.5 an ungrouped data is 50 (2) 51 an ungrouped data is 80 (2) 77 m mean of the observati $\frac{n(n+1)}{2}d^2$	3, 14, 15,, 99, 100 i (3) 23.5 D. If each observation is (3) 49 D. If each observation is ((3) 78 ons a, a + d, a + 2d, $a + \frac{n(n+1)d^2}{2}$	s (4) 22 increased by 2%, then the new (4) 50.5 decreased by 5%, then the new (4) 79 a + 2nd is (4) $\frac{n(n+1) d }{(2n+1)}$

	14	2		
	(1) √ <u>3</u>	(2) 3	(3) 2	(4) 3
B-9.	If \overline{X} is the mean of x_1, z_2	$\mathbf{x}_2, \mathbf{x}_3 \dots \mathbf{x}_n$. Then the alg	gebraic sum of the devia	tions about mean \overline{X} is
		<u>x</u>		
	(1) 0	(2) n	(3) n X	(4) (n–1) X
D 40		de intigen of 00 shores a	tion from 00 is 00 that t	he mean of the charmention is
B-10.	If the algebraic sum of ((2) 30 1	(3) 29	(A) 31
	(1) 00	(2) 30.1	(0) 20	(+) 51.
Section	on (C) : Variance, S	tandard deviation a	and coefficient of va	ariation.
C-1.	Variance of first 20 nat	ural number is		
	133	379	133	399
	(1) 4	(2) 12	(3) 2	(4) 4
C-2	The mean 8 variance	of 7 observations are 8	16 respectively. If 5 of th	a observations are 2 4 10 12
U- 2.	14. then the LCM of re	maining two observation	s is	
	(1) 16	(2) 24	(3) 20	(4) 14
C-3.	If n = 10, $\overline{x} = \sqrt{12}$, $\sum x$	$_2$ = 1560, then standard of	deviation σ is	
	(1) 12	(2) 13	(3) √166	(4) √12
			()	
C-4.	The mean of distributio	n is 4 if coefficient of vari	iation is 58%. Then stand	dard deviation of distribution is
	(1) 2.23	(2) 3.23	(3) 2.32	(4) 2.75
C-5	The sum of squares of	f deviations for 10 obser	wations taken from mea	n 50 is 250. The co-efficient of
00.	variation is			
	(1) 50%	(2) 10%	(3) 40%	(4) 30%
C-6.	Standard deviation is in	ndependent of		
	(1) change of scale & o	rigin t not scale	(2) change of scale but	not origin
	(3) change of origin but	The scale		cale non origin
C-7	What is standard devia	tion of the set of observa	tions 32, 28, 29, 30, 31?	
	(1) 1.6	(2) $\sqrt{2}$	(3) 2	(4) None of these
	. /	. /	. /	
C-8.	If the standard deviation	n of x₁, x₂, x₁ is 3.5, th	nen the standard deviation	on of
	$-2x_1 - 3, -2x_2 - 3, \dots -$	$2x_n - 3$ is	(0) 7	
	(1) - 7	(2) – 4	(3) 7	(4) 1.75

C-9. The marks of some students were listed out of a maximum 100. The standard deviation of marks was found to be 9. Subsequently the marks raised to a maximum of 150 and standard deviation of new marks was calculeted. The new standard deviation

(1) 9 (2) 13.5 (3) -13.5 (4) -9

Exercise-2

Marked Questions may have for Revision Questions.

PART - I : OBJECTIVE QUESTIONS

1.	Find the arithmetic means 2 ²ⁿ⁺²	an of $_{2n+1}C_0$, $_{2n+1}C_2^{2n}$	1 ,2n+1 C n	2 ⁿ⁺¹				
	(1) <u>n</u>	(2) $\frac{-}{n+1}$	(3)	$\frac{-}{n+1}$		(4) N	one of these	
2.	A variable takes the van ${}_{n}C_{0, n}C_{1, n}C_{2,}$	llues of 0, 1, 2, , ոCո, then me	, n with ean of the dis	frequencie tribution is	es proport	ional to	o the binomial coefficients	3
	$\underline{n(n+1)}$	<u>n</u>		n(n-1)		r	n(n+1)	
	(1) 4	(2) 2	(3)	2		(4)	2	
3.	Following is the record	of goals scored	by team A in	football se	ession			
	Numbers of goals scor	ed 0	1 2	3	4			
	for team 'B' mean numl	ber of goals score	9 7 ed per match	ວ was 2 qoa	ہ als with sta	andard	deviation 1.25. The tean	n
	which is more consista	nt	·	0				
	(1) A (2) A ⁸ B both are equi		(2)	B				
		ai 						
4.	The mean of two sa standarddeviations we (1) 70	imples of sizes re 3 and 4 respec (2) 60	200 and 30 ctively. Find t (3)	00 were f he varianc 67.2	found to be of comi	be 25 bined s (4) 80	5, 10 respectively. Thei sample of size 500 0	r
5.	The first of the two sar	mples has 100 ite	ems with mea	an 15 and	S.D. 3. If	the wh	hole group has 250 items	S
	with mean 15.6 and S.	D. = $\sqrt{13.44}$ the	en S.D. of the	second g	roup is			
	(1) 5	(2) 4	(3)	6		(4) 3.	.52	
6.	The average marks of of other 10 students w standard deviation will	10 students in a c as 40 with a star be	class was 60 ndard deviati	with stanc on 6. If all	dard devia the 20 st	ition 4. udents	While the average marks are taken together, thei	s r
	(1) 5.0	(2) 7.5	(3)	9.8		(4) 1 ⁻	1.2	
7.	The mean and variand observations three are number of solution of e	ce of 5 observat 1, 2 and 6 and $\frac{1}{2}$ equation 10 – x_2 –	tions of an e $\lambda = x_1 - x_2 + \lambda$	xperiment - 8 where	are 4 an x1 & x2 ar	id 5.2 e rema	respectively. From these aining observations. The	e N
	(1) 1	(2) 2	(3)	3		(4) 4		
8.	The mean and variance found that one of the a (1) variance decreases (3) nothing can be said	e of 10 numbers v number was mis s l about variance	were calculat sread as 10 ir (2) (4)	ed as 11.3 Istead of 1 variance in variance r	and 3.3 r I2. How d ncreases emains u	espect oes the nchang	ively. It was subsequently e variance change. ged.	y

Comprehension #1_(Q. No. 9 to 11)

9.

11

Statistics

As median divides an arranged series into two equal parts, in similar way quartile divides an arranged series in 4 equal part. For ungrouped frequency distribution formula of finding in quartile =

$$\begin{aligned} & \left\{i \cdot \left(\frac{N+1}{4}\right)\right\}^{\text{th}} & \text{term, } i = 1, 2, 3. \\ & \text{Quartile deviation : half of difference between upper quartile & lower quartile.} \\ & \Rightarrow & \text{Quartile deviation } (Q.D.) = \frac{1}{2} (Q_3 - Q_1) \Rightarrow & \text{Coefficient of quartile deviation} = \frac{Q_3 - Q_1}{Q_3 + Q_1} \\ & \textbf{9.} & \text{If } 1, 2, 3, 4, 5, 6, 7, \text{ are numbers then } Q_1 \& Q_3 \text{ are respectively} \\ & (1) 2, 4 & (2) 2, 6 & (3) 4, 6 & (4) 3, 5 \end{aligned}$$

$$\begin{aligned} & \textbf{10.} & \text{Quartile deviation of the following numbers } 10, 8, 12, 11, 14, 9, 6 \text{ is} \\ & (1) 2 & (2) 10 & (3) 1/2 & (4) 1 \end{aligned}$$

$$\begin{aligned} & \textbf{11.} & \text{Coefficient of quartile deviation of numbers } 6, 8, 9, 10, 11, 12, 14 \text{ is} \\ & (1) 1/5 & (2) 1/10 & (3) 2/5 & (4) 1/4 \end{aligned}$$

Comprehension #2 (Q. No. 12 to 14)

To analyse data using mean, median and mode, we need to use the most appropriate measure of central tendency. The mean is useful for predicting future results when there are no extreme values in the data set. The median may be more useful than the mean when there are extreme values in the data set as it is not affected by the extreme values. The median is most commonly quoted figure used to measure property prices as mean property price is affected by a few expensive properties that are not representative of the general property market. The mode is useful when the most common item or characteristic of a data set is required. The mode has applications in printing. It is important to print more of the most popular books.

12. For the data shown, the value of appropriate measure of central tendency is

No.of staff	1	2	4	5	3	2		
Salary (In rupees)	15000	10000	7000	12000	90000	95000		
1) 95000			(2) 1	8350			(3) 90000	(4) 12000

For a normally distributed sample as shown, then most appropriate representative of data is 13.

14. Based upon collection of data of numbers of days it snows, rains or it is sunny in a month for three month December, January and February of last year, the weather forecast points that snow is likely to be in January. Which measure is used for this forecast?

(1) Mean	(2) Mode	(3) Median	(4) Range	
	PART - II : MISCE	ELLANEOUS QUE	ESTIONS	

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

A-1. Statement-1 : If
$$\sum_{i=1}^{9} (x_i - 8) = 9$$
 and $\sum_{i=1}^{9} (x_i - 8)^2 = 45$ then S.D. of x_1, x_2, \dots, x_9 is 2
Statement-2 : S.D. is independent of change of origin.

A-2. Statement-1 : Mean cannot be represented graphically.Statement-2 : Mean may not coincide with anyone of the actual values.

Section (B) : MATCH THE COLUMN

B-1		Column - I		Column - II
	(1)	Better measure of central tendency for data 1, 7, 8, 9, 9 is	(p)	Mean
	(2)	Which is not independent of change of scale ?	(q)	Median
	(3)	Which is not dependent on change of origin ?	(r)	Mode
	(4)	The value of range of data is always greater than or equal to	(s)	S.D.
B-2	Let n ∈	N.		
		Column I		Column II
	(1)	Column I S.D. of 2, 4, 6, 2n ; n ∈ N	(p)	Column II n
	(1)	Column I S.D. of 2, 4, 6, $2n$; $n \in N$	(p)	Column II n <u>n+1</u>
	(1) (2)	Column I S.D. of 2, 4, 6, $2n$; $n \in N$ S.D. of 1, 3, 5,, $2n - 1$; $n \in N$	(p) (q)	$\frac{n+1}{2}$
	(1) (2) (3)	Column I S.D. of 2, 4, 6, 2n ; $n \in N$ S.D. of 1, 3, 5,, $2n - 1$; $n \in N$ Mean of 1,3,5, $2n-1$; $n \in N$	(p) (q) (r)	Column II n $\frac{n+1}{2}$ $\sqrt{\frac{n^2-1}{3}}$
	(1) (2) (3)	Column I S.D. of 2, 4, 6, $2n$; $n \in N$ S.D. of 1, 3, 5,, $2n - 1$; $n \in N$ Mean of 1,3,5, $2n-1$; $n \in N$	(p) (q) (r)	Column II n $\frac{n+1}{2}$ $\sqrt{\frac{n^2-1}{3}}$ $\sqrt{n^2-1}$

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

C-1. If the daily earnings (in rupees) of 12 workers in a factory are 16, 11, 3, 7, 5, 28, 9, 31, 28, 43, 15, 17, then which of the following is(are) true

(1) mean = 17.75 (2) median = 15.5 (3) mode = 28 (4) mean deviation about mean = $9.8^{\overline{3}}$

- **C-2** If first sample of 25 variates has the mean 40 and standard deviation 5 and a second sample of 35 variates has the mean 45 and standard deviation 2, then which of the following is/are true
 - (1) mean of combined sample space = 42.917
 - (2) mean of combined sample space = 32.9
 - (3) standard deviation of combined sample space = 3.34
 - (4) standard deviation of combined sample space = 4.34
- C-3. Which of the following is false :
 - (1) Algebraic sum of deviations of observation from their mean is zero
 - (2) If S.D. of $x_i(i = 1, 2, 3, ..., n)$ is σ then S.D. of hx_i is $h\sigma$
 - (3) Median is severely affected by fluctuations in extreme values
 - (4) Mean deviations of a given set of observations is least when taken about their median.

Exercise-3

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.	Consider the following statements						
	(i)	Mode can be	computed from hist	ogram (ii) M	ledian is not independ	lent of change of scale	
	(iii)	Variance is ir	ndependent of chang	ge of origin and so	ale		
	Which	of these is/are	correct?		[AIEEE	E 2004, (3, –1), 225]	
	(1) On	ly (i)	(2) Only (ii)	(3) Only (i	i) and (ii) (4) (i),	(ii) and (iii)	
2.	In a s	eries of 2n obs	servations, half of th	nem equal a and	remaining half equal	- a. If the S.D. of the - - - - - - - - - -	
	1	/410113 13 2, 110					
	(1) [–]		(2) $\sqrt{2}$	(3) 2	(4) ^{v2}	_	
3.	lf in a	frequency dis	stribution, the mean	and median are	e 21 and 22 respect	ively, then its mode is	
	approx	kimately			[AIEEE	E 2005, (3, –1), 225]	
	(1) 20.	.5	(2) 22.0	(3) 24.0	(4) 25.	5	

MATHEMATICS

Statistics

4.	Let x_1 , x_2 , x_n be n ob among the following is	oservations such that Σ	$\sum x_{i}^{2} = 400 \text{ and } \sum x_{i} = 8$	³⁰ . Then a possible value of n [AIEEE 2005, (3, –1), 225]
	(1) 12	(2) 9	(3) 18	(4) 15
5.	Suppose a population A observations 151, 152, then V _A /V _B is	A has 100 observations 1, 250. If V _A and V _B rep	01, 102,, 200 an present the variances of t [AIEEE 2006,	d another population B has 100 he two populations respectively, (3, –1), 225]
	(1) 1	(2) 9/4	(3) 4/9	(4) 2/3
6.	The average marks of I combined is 50. The pe	boys in a class is 52 and ercentage of boys in the c	that of girls is 42. The a class is	verage marks of boys and girls [AIEEE 2007, (3, -1), 120] (4) 60%
	(1) 40 %	(2) 20 %	(3) 00 %	(4) 00 %
7.	The mean of the number possible values of a and	er a, b, 8, 5, 10 is 6 and th d b ?	ne variance is 6.80. Then [AIEEE]	which one of the folowing gives 2008 , (3 , –1) , 105]
	(1) a = 3, b = 4	(2) a = 0, b = 7	(3) a = 5, b = 2	(4) a = 1, b = 6
			n ² – 1	
8.	Statement-I The varian	nce of first n even natural	numbers is $\frac{1}{4}$	[AIEEE 2009, (4, –1), 144]
			<u>n(n + 1)</u>	
	Statement-II The sum	of first n natural number	rs is 2 and the s	um of squares of first n natural
	$\frac{n(n+1)(2n+1)}{6}$	- 1)		
	(1) Statement-1 is True	Statement-2 is True: St	atement-2 is a correct ex	colanation for Statement-1
	(2) Statement-1 is True	, Statement-2 is True; St	atement-2 is NOT a corr	ect explanation for Statement-1
	(3) Statement-1 is True	, Statement-2 is False		
	(4) Statement-1 is False	e, Statement-2 is True		
9.	If the mean deviation of	f numbers 1, 1 + d, 1 + 2	d,,1 + 100d from thei	r mean is 255, then the value of
	d is equal to-	(2) 20 0	(3) 10 1	[AIEEE 2009, (4, -1), 144] (4) 20 2
10.	For two data sets, each given to be 2 and 4, res	of size 5, the variance a spectively. The variance of the sectively of the section of the sectio	re given to be 4 and 5 an of the combined data set	id the corresponding means are is
			40	[AIEEE 2010, (4, –1), 144
	(1) $\frac{11}{2}$	(2) 6	$(3) \frac{13}{2}$	$(4) \frac{5}{2}$
11	If the mean deviation of	bout the median of the su		50 then lal equals :
			וווטפוט a, za,, סטא IS	[AIEEE 2011, (4, -1), 120]
	(1) 2	(2) 3	(3) 4	(4) 5

MATHEMATICS

Statistics

[AIEEE 2011, (4, -1), 120]

12. A scientist is weighing each of 30 fishes. Their mean weight worked out is 30 gm and a standard deviation of 2 gm. Later, it was found that the measuring scale was misaligned and always under reported every fish weight by 2 gm. The correct mean and standard deviation (in gm) of fishes are respectively :

		-	
(1) 32, 2	(2) 32, 4	(3) 28, 2	(4) 28, 4

13. Let x₁, x₂,, x_n be n observations, and let x̄ be their arithmetic mean and σ₂ be the variance
Statement-1: Variance of 2x₁, 2x₂,, 2x_n is 4σ₂. [AIEEE 2012, (4, -1), 120]
Statement-2: Arithmetic mean 2x₁, 2x₂,, 2x_n is 4 x̄.
(1) Statement-1 is false, Statement-2 is true.
(2) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.

- (3) Statement-1 is true, statement-2 is true; statement-2 is **not** a correct explanation for Statement-1.
- (4) Statement-1 is true, statement-2 is false.

All the students of a class performed poorly in Mathematics. The teacher decided to give grace marks of 10 to each of the students. Which of the following statistical measures will not change even after the grace marks were given ?
 [AIEEE - 2013, (4, -1),360]
 (1) mean
 (2) median
 (3) mode
 (4) variance

15.	The variance of	first 50 even natural nun	[AIEEE - 2014, (4, –1),360]	
	833			437
	(1) 4	(2) 833	(3) 437	(4) 4

The mean of the data set comprising of 16 observations is 16. If one of the observation valued 16 is deleted and three new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is
 (1) 16.8
 (2) 16.0
 (3) 15.8
 (4) 14.0

17. If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?

[JEE(Main) 2016, (4, -1), 120]

(1) $3a_2 - 32a + 84 = 0$ (2) $3a_2 - 34a + 91 = 0$ (3) $3a_2 - 23a + 44 = 0$ (4) $3a_2 - 26a + 55 = 0$

Answers

						EXER	CISE -	1					
						PA	RT-I						
Sect	ion (A))											
A-1.	(1)	A-2.	(4)	A-3.	(1)	A-4.	(2)	A-5.	(1)	A-6.	(4)	A-7.	(1)
A-8.	(3)	A-9.	(3)	A-10.	(1)	A-11.	(2)	A-12.	(2)	A-13.	(3)		
Sect	ion (B))											
B-1.	(3)	B-2.	(1)	B-3	(1)	B-4.	(4)	B-5	(2)	B-6.	(1)	B-7.	(4)
B-8.	(3)	B-9.	(1)	B-10.	(4)								
Sect	ion (C))											
C-1.	(1)	C-2.	(2)	C-3.	(1)	C-4.	(3)	C-5.	(2)	C-6.	(3)	C-7	(2)
C-8.	(3)	C-9.	(2)										
						EXER	CISE -	2					
						ΡΑ	RT-I						
1.	(2)	2.	(2)	3.	(1)	4.	(3)	5.	(2)	6.	(4)	7.	(1)
8.	(1)	9.	(2)	10.	(1)	11.	(1)	12.	(4)	13.	(1)	14.	(2)
						PA	RT- II						
Sect	ion (A))											
A-1.	(1)	A-2.	(1)										
Sect	ion (B))											
B-1	(A) →	(q, r) ; (B) → (p	, q, r, s) ;	(C) →	(s); (D)	→ (s)						
B-2	$A \rightarrow r; B \rightarrow r; C \rightarrow p; D \rightarrow p$												
Sect	ion (C))											
C-1.	(1,2,3	3,4)		C-2	(1,4)	C-3.	(2,3)						
						EXER	CISE -	3					
						ΡΑ	RT-I						
1.	(3)	2.	(3)	3.	(3)	4.	(3)	5.	(1)	6.	(3)	7.	(1)
8.	(4)	9.	(3)	10.	(1)	11.	(3)	12.	(1)	13.	(4)	14.	(4)