Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A): Matrix, Trace of matrix, Algebra of matrices, transpose of a matrix, symmetric and skew symmetric matrix

A-1.	The number of differen (1) 3	t possible orders of matri (2) 1	ices having 18 identical e (3) 6	elements is (4) 4
A-2.	A 3 × 2 matrix whose e $\begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 5 & 4 \end{bmatrix}$ (1)	lements are given by a_{ij} : $\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{bmatrix}$ (2)	= 2i – j is $ \begin{bmatrix} 1 & 0 \\ 3 & -2 \\ 5 & 4 \end{bmatrix} $	$ \begin{bmatrix} 1 & 0 \\ 3 & 2 \\ 5 & 4 \end{bmatrix} $
A-3.	$\begin{bmatrix} x-y & 1 & z \\ 2x-y & 0 & w \end{bmatrix} =$ (1) 10	$\begin{bmatrix} -1 & 1 & 4 \\ 0 & 0 & 5 \end{bmatrix}$, then x + (2) 8	y + z + w = (3) 9	(4) 12
A-4.	$\begin{bmatrix} x^2 + x & x \\ 3 & 2 \end{bmatrix}_{+} \begin{bmatrix} 0 \\ -x + 1 \\ (1) - 1 \end{bmatrix}$	$ \begin{bmatrix} -1 \\ x \end{bmatrix}_{=} \begin{bmatrix} 0 & -2 \\ 5 & 1 \end{bmatrix} $ then x is (2) 0	s equal to - (3) 1	(4) No value of x
A-5.	If I = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, J = \begin{bmatrix} 0 \\ -1 \\ (1) I\cos\theta + J\sin\theta \end{bmatrix}$	$\begin{bmatrix} 1\\0 \end{bmatrix} \text{ and } B = \begin{bmatrix} \cos\theta & \sin\theta\\-\sin\theta & \cos\theta \\ (2) & I\cos\theta - J\sin\theta \end{bmatrix}$	inθ ^{osθ]} , then B = (3) Isinθ + Jcosθ	(4) – Icosθ + Jsinθ
A-6.	If A = $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and B = $\begin{bmatrix} -5\\0\\1 \\ -5 & 8 & 0 \\ 0 & 4 & -2 \end{bmatrix}$	4 0 2 –1 –3 2 , then		
	(1) AB = $\begin{bmatrix} 3 & -9 & 6 \\ -1 \\ 1 \\ 1 \end{bmatrix}$		(2) AB = [-2 -1 4]	
	(3) $AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	(4) AB does not exist	
A-7.	lf [1 x 1] 3 2 4	$5 \boxed{3} = 0$ then x =	5	9
	(1) 2	(2) –2	(3) 2	(4) - 8

Matrices & Determinant

A-8. If A and B are square matrices of order 2, then $(A + B)_2 =$ (1) $A_2 + 2 AB + B_2$ (2) $A_2 + AB + BA + B_2$ (3) $A_2 + 2BA + B_2$ (4) A₂ + B₂ Which relation is true for A = $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 4 \\ -1 & 1 \end{bmatrix}$ A-9. (1) $(A + B)_2 = A_2 + 2AB + B_2$ (2) $(A - B)_2 = A_2 - 2AB + B_2$ (3) AB = BA(4) AB ≠ BA If $A = \begin{bmatrix} \lambda & 1 \\ -1 & 2 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$ then λ is equal to A-10. (2) 2 (3) 3 $(1) \pm 3$ (4) - 3**A-11.** If $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, then $= \begin{bmatrix} 7 & -12 \\ 3 & -5 \end{bmatrix}$ (1) A₂ (3) A₄ (4) A5 (2) A₃ **A-12.** If A = $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then which one of the following statements is **not** correct ? (1) $A_3 - I = A(A - I)$ (2) $A_3 + I = A(A_3 - I)$ (3) $A_2 + I = A(A_2 - I)$ (4) $A_4 - I = A_2 + I$ **A-13.** If $A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$ then $(I - A) = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ (1) I + A(4) I + 3A (2)I + 2A $A = \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix} \text{ then BTAT is}$ A-14. (2) an identity matrix (1) a null matrix (3) scalar, but not an identity matrix (4) such that Tr(BTAT) = 4 $Matrix A = \begin{bmatrix} 5 & -3 & 6 \\ -3 & 7 & -4 \\ 6 & -4 & 8 \end{bmatrix}$ is a A-15. (1) diagonal matrix (2) skew symmetric matrix (3) symmetric matrix (4) lower triangular matrix A-16. If A is a skew- symmetric matrix, then trace of A is (1) 1 (4) 4 (2) - 1(3) 0Which one of the following is wrong? A-17. (1) The elements on the main diagonal of a symmetric matrix are all zero (2) The elements on the main diagonal of a skew - symmetric matrix are all zero (3) For any square matrix A, $\overline{2}$ (A + A') is symmetric matrix (4) For any square matrix A, $\overline{2}$ (A - A') is skew - symmetric matrix A-18. Let A = $[a_{ij}]_{n \times n}$ where $a_{ij} = i_2 - j_2$. Then A is : (1) skew-symmetric matrix. (2) symmetric matrix

Matrices & Determinant

	(3) null matrix		(4) unit matrix	
A-19.	If A and B are symmetric (1) symmetric matrix (matrices, then ABA is 2) skew-symmetric mat	rix (3) dia	agonal matrix (4) scalar matrix
Sectio	on (B) : Minors, Cofa Summation, Differe and a ₁₁ C ₂₁ + a ₁₂ C ₂₂ +	actors, Expansion ntiation, Multiplica a ₁₃ C ₂₃ = 0	of determination of determination	nant, Properties of determinant erminants, Property kA = k _n A
B-1.	The sum of the minors of (1) 2 (all elements in the seco 2) 0	ond row of dete (3) 3	$\begin{array}{c c} 1 & 2 \\ -3 & 4 \\ (4) & 4 \end{array}$
B-2.	The sum of the minors of $(1) -6$ (all elements in the seco 2) 6	ond row of dete (3) 0	$\begin{array}{c cccc} $
B-3.	If the minor of three-one e	element (i.e. M31) in the	determinant	$\begin{array}{c cccc} 0 & 1 & \sec \alpha \\ an\alpha & -\sec \alpha & \tan \alpha \\ 1 & 0 & 1 \\ \end{array} $ is 1 then the value
	of $u = (0 \le u \le n)$ is	3π		
	(1) 0 ((2) $\frac{3\pi}{4}$	(3) π	(4) all of these
B-4.	x3211	$\begin{bmatrix} 3 & 3 \\ 3 & x \\ 3 & 3 \end{bmatrix}, C_{11} = C_{22}, \text{ where}$	e Cij is cofactor	r of element aij then $x = 0$
	(1) 2 (1 a b 1 c a	2) –2	(3) $\frac{5}{2}$	$(4) - \frac{3}{8}$
B-5	In a $\triangle ABC$, if $\begin{vmatrix} 1 & b & c \end{vmatrix}_{=}$	= 0, then sin2A + sin2B +	⊦ sin₂C is :	
	(1) $\frac{3\sqrt{3}}{2}$ (1)	$\frac{9}{4}$	(3) $\frac{5}{4}$	(4) 2
B-6.	The number of distinct rea (1) 4	al roots of the equation, 2) 1	$\begin{array}{c} \cos x & \sin x \\ \sin x & \cos x \\ \sin x & \sin x \end{array}$ (3) 2	$\begin{vmatrix} six \\ sin x \\ cos x \end{vmatrix} = 0 in the interval \begin{bmatrix} -\pi & \pi \\ -4 & 4 \end{bmatrix} is : (4) 3$
B-7.	Let a, b > 0 and $\Delta = \begin{vmatrix} -x \\ b \\ a \end{vmatrix}$ (1) a + b - x is a factor of (3) $\Delta = 0$ has three real re	a b -x a b $-x $, then Δ pots if a = b	(2) x ₂ + (a + b) (4) all of these)x + a_2 + b_2 – ab is a factor of Δ

Matrices & Determinant

α β γ βγα If α , β & γ are the roots of the equation $x_3 + px + q = 0$, then the value of the determinant $\begin{vmatrix} \gamma & \alpha & \beta \end{vmatrix}$ is-B-8. (2) q (3) p₂ – 2q (1) p (4) 0 15 - 2x 11 10 The non-zero roots of the equation = 0 are B-9. 11 (4) 2 (1) 2(2) 4(3) 1 $\begin{array}{ccccc} e^{x_1} & e^{x_4} & e^{x_7} \\ e^{x_4} & e^{x_7} & e^{x_{10}} \\ e^{x_7} & e^{x_{10}} & e^{x_{13}} \end{array}$ **B-10**If x_1 , x_2 , x_3 ,, x_{13} are in A.P. then the value of is -(1) 9 (2) 27 (3) 0 (4) 1sinθ 1 0 1 cos∳ $-\cos\theta$ sin∳ 0 1 B-11. The absolute value of minimum value of the determinant | is 5 9 (4) - 8 (3) 2 (2) –2 (1) 2 $\sqrt{13}$ $+\sqrt{3}$ $2\sqrt{5}$ $\sqrt{5}$ **B-12** The value of the determinant $\begin{vmatrix} \sqrt{10} & \sqrt{10} & 2\sqrt{5} & \sqrt{5} \\ \sqrt{15} & +\sqrt{26} & 5 & \sqrt{10} \\ 3 & +\sqrt{65} & \sqrt{15} & 5 \end{vmatrix}$ is equal to : (1) $5\sqrt{3}$ ($\sqrt{6}-5$) (2) $5\sqrt{3}$ ($\sqrt{6}-\sqrt{5}$) (3) $5(\sqrt{6}-5)$ (4) $\sqrt{3} (\sqrt{6} - \sqrt{5})$ $\begin{vmatrix} x^{2} + x & x + 1 & x - 2 \\ 2x^{2} + 3x - 1 & 3x & 3x - 3 \\ x^{2} + 2x + 3 & 2x - 1 & 2x - 1 \end{vmatrix} = ax - 12$, then 'a' is equal to : B-13. (1) 24 (2) - 12(3) -24 (4) 12 The determinant $\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix} =$ B-14. If U_n = $\begin{vmatrix} n & 1 & 5 \\ n^2 & 2N+1 & 2N+1 \\ n^3 & 3N^2 & 3N+1 \end{vmatrix}$, then $\sum_{n=1}^{N} U_n$ B-15. is equal to

Matrices & Determinant

	(1) 2 $\sum_{n=1}^{N} n$	(2) 2 $\sum_{n=1}^{N}$ n2	(3) $\frac{1}{2} \sum_{n=1}^{N} n^2$	(4) 0
B-16.lf	$f(x) = \begin{cases} \sin x & \cos x & \sin x \\ 23 & 17 \\ 1 & 1 \\ (1) & 6 \end{cases}$	$ x + \cos x + 1 $ $\begin{vmatrix} 13 \\ 1 \\ (2) 4 \end{vmatrix}$, $x \in \mathbb{R}$, then	$\frac{d^2y}{dx^2} + y \text{ is equal to :}$ (3) -10	(4) 0
B-17.	if A and B are square r (1) – 9	natrices of order 3 such $(2) - 81$ $(3) - 2$	that A = - 1, B = 3, the 27 (4) 81	n 3AB is equal to
B-18.	If A is a square matrix (1) det $(-A) = - det A$ (3) det $(A + I) = 1 + det$	of order 3, then the true t A	statement is (where I is u (2) det A = 0 (4) det (2A) = 2 det A	unit matrix).
Secti C-1.	on (C) : Cramer rule The system of linear equivalence solution if (1) $\lambda = 8$	e quations x + y − z = 6, x (2) λ ≠ 8	+ 2y - 3z = 14 and 2x + $(3) \lambda = 7$	5y − λz = 9 (λ ∈ R) has a unique (4) λ ≠ 7
C-2.	The system of equation (1) $\lambda = -2$	n – 2x + y + z = 1, x – 2y (2) λ = –1	$y + z = -2, x + y + \lambda z = 4$ (3) $\lambda = 3$	will have no solution if (4) $\lambda = 2$
C-3.	If the system of equation then : (1) $p = 2$, $\mu = 3$	ons $x + 2y + 3z = 4$, $x + py + 3z = 4$, $x + py + 3z = 4$	+ 2z = 3, x + 4y + μz = 3 ha (3) 3 p = 2 μ	as an infinite number of solutions (4) $p = 4$, $\mu = 2$
C-4.	The system of linear ed (1) a unique solution w (3) an infinite number o	quations $x - y + z = 1$, x hen $\alpha = 2$ of solutions, when $\alpha = 2$	x + y - z = 3, $x - 4y + 4z(2) a unique solution w(4) an infinite number of$	= α has : hen α ≠ 2 of solutions, when α = − 2
C-5.	If a \neq b, then the syster trivial solution if (1) a + b = 0	m of equations $ax + by +$ (2) $a + 2b = 0$	bz = 0, bx + ay + bz = 0, (3) $2a + b = 0$	bx + by + az = 0 will have a non (4) a + 4b = 0
C-6.	If a, b, c are non zeros $(\alpha + a) x + \alpha y + \alpha z = 0$ $(1) \alpha_{-1} = -(a_{-1} + b_{-1} + c_{-1})$ $(3) \alpha + a + b + c = 1$, then the system of equ , $\alpha x + (\alpha + b)y + \alpha z = 0$ (2-1)	ations , αx + αy + (α + c)z = 0 ha (2) α ₋₁ = a + b + c (4) α = a + b + c	as a non-trivial solution if
C-7.	The value of a for whic ax + (a + 1) y + (a + 2) (1) −1	th system of equations, a z = 0, $x + y + z = 0$, has (2) 0	aзx + (a + 1)зy + (a + 2)зz a non-zero solution is: (3) 1	e = 0, (4) 2
C-8.	A man has to distribute distribute x, y, z chocol "F" corrosponding and E, 37 in school F and 1 (1) $x = 3$; $y = 4$; $z = 5$	te three types of choco ates to 2, 1, and 1 stude 1, 1 and 1 students of 2 in school "G" then find (2) $x = 1$; $y = 2$; $z = 5$	lates A,B,C to students nts of "E" corrospondingly school "G". If he distribut d x, y, and z ? (3) x = 1 ; y = 2 ; z = 0	of three schools E, F, G. IF here y y, 3, 2 and 4 students of school red total 15 chocolates in school (4) $x = 3$; $y = -4$; $z = 5$

Section (D) : Adjoint of Matrix, Inverse of matrix and their properties, solution of system of linear equations by matrix method, Cayley-Hamilton theorem

D-1.	If A = $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, then adj (1) $\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$	$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ (2)	$ \begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix} $	$ \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} $
D-2.	$ If A = \begin{bmatrix} cos \theta & -sin \theta & 0 \\ sin \theta & cos \theta & 0 \\ 0 & 0 & 1 \\ (1) A' $) , then adj A = (2) I	(3) O	(4) A ₂
D-3.	If A is a square matrix o (1) k adj A	of order n × n and k is a s (2) kոadj A	calar, then adj (kA) is eq (3) k _{n-1} adj A	ual to (4) k _{n+1} adj A
D-4.	If A is square matrix of (1) $ A _{n-1} A$	order n then adj(adj A) = (2) A _{n-2} A	(3) A n-2	(4) A ⁿ A
D-5.	If A is square matrix of (1) A	order 3 then adj(adj A) = (2) A ₂	= (3) A ₃	(4) A ₄
D-6.	If for a matrix A, $ A = 6$ (1) -1	and adj A = $\begin{bmatrix} 1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & k & 0 \end{bmatrix}$ (2) 0	, then k is equal to : (3) 1	(4) 2
D-7.	If A is a 3 × 3 matrix such	ch that 5.adjA = 5, then 1	A is equal to :	
	(1) $\pm \frac{1}{5}$	(2) $\pm \frac{1}{25}$	(3) ± 1	$(4) \pm 5$
D-8.	Given A = $\begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$; I = (1) $\lambda \in \phi$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ If A – λ I is a (2) $\lambda_2 - 3\lambda - 4 = 0$	singular matrix then (3) $\lambda_2 + 3\lambda + 4 = 0$	$(4) \lambda_2 - 3\lambda - 6 = 0$
D-9.	From the matrix equation (1) A is singular matrix (3) A is symmetric matric	on AB = AC, we conclude ix	B = C provided : (2) A is non-singular matrix (4) A is a square matrix	atrix
D-10.	Let A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, be a 2 x which have inverses is:	2 matrix where a,b,c,d ta	ake the values 0 or 1 only	y. The number of such matrices
	(1) 8	(2) 7	(3) 6	(4) 5
D-11.	If A, B are two n \times n not (1) AB is non-singular n (3) (AB) ₋₁ = A ₋₁ B ₋₁	n-singular matrices, then natrix	(2) AB is singular matrix (4) (AB)-1 does not exist	(t

 $\cos \alpha - \sin \alpha 0$ cos β 0 sinβ 0 1 0 $\sin \alpha \cos \alpha 0$ and G (β) = $\begin{bmatrix} -\sin\beta & 0 & \cos\beta \end{bmatrix}$, then [F (α) G (β)]-1= **D-12.** If F (α) = $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 1 (1) F (α) – G(β) (2) – F (α) – G (β) (4) [G(β)]-1 [F(α)]-1 (3) [F(α)]-1 [G(β)]-1 2 –2 **D-13.** If $A_{-1} = \begin{bmatrix} 0 & 1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, then (AB)-1 $\begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 9 & 3 & 5 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 9 & 3 & 5 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & -2 \end{bmatrix}$ $\begin{bmatrix} 9 & 3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & -2 \end{bmatrix}$ $(4) \begin{bmatrix} 9 & 3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & -2 \end{bmatrix}$ $If A_{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \text{ then}$ D-14. (1) | A | = 2(2) A is singular matrix [1/2 -1/2 0 0 -1 1/2 (3) Adj. A = $\begin{bmatrix} 0 & 0 & -1/2 \end{bmatrix}$ (4) A is skew symmetric matrix D-15. If B is a non-singular matrix and A is a square matrix, then det (B₋₁ AB) is equal to (3) det (A) (1) det (A₋₁) (2) det (B₋₁) (4) det (B) D-16. If A is a square matrix such that $A_2 = I$, then $A_{-1} =$ (1) 2A (2) A (3) O (4) A + ILet $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and X be a matrix such that A = BX, then X is equal to D-17. a₁ b₁ c₁ a₂ b₂ c₂ If A = $\begin{bmatrix} a_3 & b_3 & c_3 \end{bmatrix}$ and $|A| \neq 0$, then the system of equations $a_1x + b_1y + c_1z = 0$, $a_2x + b_2y + c_2 = 0$ and D.18. $a_{3x} + b_{3y} + c_{3z} = 0$ has (1) only one solution (2) infinite number of solutions (3) no solution (4) more than one but finite number of solutions 4x - 5y - 2z = 25x - 4y + 2z = 3The system of equations 2x + 2y + 8z = 1D-19. (1) has a unique solution (2) has infinite solutions (3) has two solutions (4) is inconsistent Identify the correct statement(s) D-20.

(1) If system of n simultaneous linear equations has a unique solution, then coefficient matrix is singular

(2) If system of n simultaneous linear equations has a unique solution, then coefficient matrix is

non singular (3) If A-1 exists, (adj A)-1 may or may not exist $\cos x - \sin x 0$ sinx cosx 0 (4) $F(x) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$, then $F(x) \cdot F(y) = F(x - y)$ $If A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} and A_{-1} = \frac{1}{6} (A_2 + cA + dI), then the value of c and d are$ D-21 (1) - 6, -11(2) 6, 11 (3) – 6, 11 (4) 6, – 11 [-4 1] **D-22.** If $A = \begin{bmatrix} 3 & 1 \end{bmatrix}$, then the determinant of the matrix (A₂₀₁₆ - 2A₂₀₁₅ - A₂₀₁₄) is (2) 2016 (3) –175 (1) 2014 (4) -25 **Exercise-2** Marked Questions may have for Revision Questions. **PART - I : OBJECTIVE QUESTIONS** 1. If AB = O for the matrices $\begin{bmatrix} \cos^2\theta & \cos\theta\sin\theta\\ \cos\theta\sin\theta & \sin^2\theta \end{bmatrix}_{\text{and }B} = \begin{bmatrix} \cos^2\phi & \cos\phi\sin\phi\\ \cos\phi\sin\phi & \sin^2\phi \end{bmatrix}_{\text{then }\theta-\phi\text{ is}}$ A = (1) an odd multiple of 2(2) an odd multiple of π (3) an even multiple of $\overline{2}$ (4) 0 If A = $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, B = $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ and AB is equal to kB, then the value of k is 2. (1) 2(2) 3 (3) 0 (4) 6 3 -4 If $X = \begin{bmatrix} 1 & -1 \end{bmatrix}$, then value of X_n is, (where n is natural number) 3. $(2) \begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$ $(3) \begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$. '3n –4n∣ (1) [n -n] Suppose A is a matrix such that $A_2 = A$ and $(I + A)_{10} = I + kA$, then k =4. (2) 1024 (3) 1047 (4) 2048 (1) 1023 Which of the following is incorrect 5. (1) $A_2 - B_2 = (A + B) (A - B)$ (2) $(A_T)_T = A$ (3) $(AB)_n = A_n B_n$, where A, B commute (4) $(A - I) (I + A) = O \Leftrightarrow A_2 = I$ a b Let S be the set of all real matrices, $A = \begin{bmatrix} c & d \end{bmatrix}$ such that a + d = 2 and $A_T = A_2 - 2A$. Then S 6. (2) has exactly four elements. (1) has exactly two elements.

Matrices & Determinant

(3) is an empty set. (4) has exactly one element. 7. If A is a square matrix, then (1) AA' is symmetric matrix (2) AA' is skew - symmetric matrix (3) A'A is skew - symmetric matrix (4) A₂ is symmetric matrix 8. If A is a skew - symmetric matrix and n is an even positive integer, then An is (1) a symmetric matrix (2) a skew-symmetric matrix (3) a diagonal matrix (4) a scalar matrix If A is a skew-symmetric matrix of odd order then det(A) is 9. (1) 1(3) 0(4) - 1(2) 8 $a^{2} + 1$ ab ac ba $b^2 + 1$ bc $c^{2} + 1$ ca cb 10. If D = then D = (2) a₂ + b₂ + c₂ (1) 1 + a₂ + b₂ + c₂ $(3) (a + b + c)_2$ (4) $a_2 + b_2 + c_2 - 1$ $a^{2}(1+x)$ ab ac ab $b^{2}(1+x)$ bc $c^{2}(1+x)$ bc ac 11. is divisible by The determinant $\Delta = 1$ (1) 1 + x(2) $(1 + x)_2$ (4) x₂ + 1 (3) X₂ $1 + a^2 + a^4$ $1 + ab + a^2b^2$ $1 + ac + a^2c^2$ $1 + ab + a^2b^2$ $1 + b^2 + b^4$ $1+bc+b^2c^2$ $\Delta = \begin{vmatrix} 1 + ac + a^2c^2 & 1 + bc + b^2c^2 \end{vmatrix}$ $1 + c^2 + c^4$ is equal to 12. (1) $(a - b)_2 (b - c)_2 (c - a)_2$ (2) 2(a - b) (b - c) (c - a)(3) 4(a - b) (b - c) (c - a)(4) $(a + b + c)_3$ sinθcos∳ sinθsin∮ $\cos\theta$ $\cos\theta\cos\phi$ $\cos\theta\sin\phi$ $-\sin\theta$ $-\sin\theta\sin\phi$ $\sin\theta\cos\phi$ 0 . then 13. Let $\Delta = |$ (1) Δ is independent of θ (2) Δ is independent of ϕ (3) Δ is a constant (4) Δ is dependent of ϕ $\cos(\theta + \phi) - \sin(\theta + \phi) \cos 2\phi$ sinθ $\cos \theta$ sin∮ $-\cos\theta$ $\text{sin}\,\theta$ cos∳ 14. The value of the determinant is (1) 0(2) independent of θ (3) independent of φ (4) independent of $\theta \& \phi$ both b а ах + b b b x + С С b b x + ca x + С 15. The non-zero roots of the equation $\Delta =$ [|]= 0 are b 2b а а а (1) ab (2) (3) (4)

16	$\begin{vmatrix} (b+c)^2 & a^2 \\ b^2 & (c+a)^2 \\ c^2 & c^2 & (a^2) \end{vmatrix}$	$\begin{vmatrix} a^2 \\ b^2 \\ a+b \end{vmatrix}^2 = k abc (a+b+b)^2$	c_{2} then the value of k is	
	(1) 2	(2) -2	$\frac{5}{2}$ (3) $\frac{5}{2}$	$(4) - \frac{9}{8}$
	$\begin{vmatrix} 1 \\ 2x \\ 3x(x-1) \\ x(x-1) \end{vmatrix}$	$\begin{array}{c c} x & x+1 \\ x(x-1) & x(x+1) \\ x(x-2) & x(x^2-1) \\ \end{array}$		
17.	If $f(x) = \int f(x) dx$ (1) 5050	(2) 100	en f '(5) is equal to (3) 0	(4) –100
18.	Let p, q, r be real num x + 2y – 3z = p, 2x + 6 (1) 5p + 2q – r = 0	bers such that p + q + r by – 11z = q , x – 2y + 7z (2) 5p – 2q – r = 0	 ≠ 0. The system of linea z = r has at least one solution (3) 5p + 2q + r = 0 	r equations ution if : (4) 5p – 2q + r = 0
19.	For what values of λ , μ x + y + z = 6; x + 2 y + (1) λ = 3	u the simultaneous equa ·3z = 10 & x+2y+λz (2) λ≠3, μ∈ R	ations z = μ have a unique solut (3) λ ≠ 3, μ ≠ 2	ion; (4) λ = 3, μ = 2
20.	For what values of λ, μ x + y + z = 6; x + 2 y + (1) λ = 3, μ = 5	the simultaneous equal $3z = 10 \& x + 2y + \lambda z$ (2) $\lambda = 3, \mu = 10$	ations z = μ have infinite numbe (3) λ ≠ 3, μ ≠ 2	r of solutions (4) λ = 3, μ = 2
21.	For what values of λ , μ x + y + z = 6; x + 2 y + (1) λ = 3, μ = 10	the simultaneous equal $3z = 10 \& x + 2y + \lambda z$ (2) $\lambda = 3, \mu \neq 10$	ations z = μ have no solution (3) λ ≠ 3, μ ≠ 2	(4) $\lambda = 4, \mu = 2$
22.	The value of 'k ' for wh non – trivial solution of $\frac{33}{2}$	hich the set of equations ver the set of rational is: $(2) \frac{31}{2}$	3x + ky - 2z = 0, x + ky	+ 3z = 0, 2x + 3y - 4z = 0 has a
23.	If the system of linear solution, then a, b, c s (1) 2ac = ab + bc	equations, x + 2ay + az atisfy (2) 2ab = ac + bc	 (c) 10 = 0, x + 3by + bz = 0 and (3) 2b = a + c 	(1) 10 (1) $x + 4cy + cz = 0$ has a non-zero (4) $b_2 = ac$
24.	If the system of linear x + 3y + 7z = 0, -x + 4 has a non-trivial solution (1) one	equations : $4y + 7z = 0$, (sin 3θ) x + on, then the number of v (2) two	(cos2θ)y + 2z = 0 values of θ lying in the int (3) three	erval [0, π], is (4) more than three
25.	If the system of equati	ons ax + y + z = 0,. x +	by + z = 0 and x + y + cz 1 1	= 0, where
	a, b, c ≠ 1, has a non [.] (1) 0	-trivial solution, then the (2) 1	e value of $\frac{1}{1-a} + \frac{1}{1-b} + (3) -1$	$\frac{1-c}{(4)}$ is
26.	If A is a non-singular	matrix and AT denotes th	ne transpose of A, then:	

Matrices & Determinant

	(1) □А□ ≠ □Ат□ □А□+□Ат□≠ 0	(2) □A. AT□≠ □A□2	(3) □A⊤ A□ ≠ []A⊤□₂ (4)
27.	If A' denotes transpose (1) 0	e of matrix A, A' A = I and (2) – 1	d det A = 1, then det (A - (3) 1	- I) must be equal to (4) 2
28.	For any 2 × 2 matrix A, (1) 10	, if A (adjA) = $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, (2) 100	then A = (3) 0	(4) 1000
29.	If A = [aij]₃×₃ is a scalar (1) 1	matrix with a11 = a22 = a33 (2) 8	a = 2 and A(adjA) = kI₃ th (3) 0	en k is (4) –1
30.	Let A = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and B = (1) 91	$\begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$. If 10A ₁₀ + ad (2) 92	(5) =B, then b1+ b2 + b (3) 111	0₃ + b₄ is equal to (4) 112
31.	$\begin{bmatrix} a & b & (a\alpha - b) \\ b & c & (b\alpha - c) \\ 2 & 1 & 0 \\ (1) & \alpha = 1 \end{bmatrix}$	is non invertible if (2) a, b, c are in A.P.	(3) a, b, c are in G.P.	(4) a, b, c are in H.P.
32.	If A and B are two inve (1) 1	rtible matrices such that (2) 8	AB = C and A = 2, C = (3) 0	= – 2,then det(B) is (4) –1
33.	If D is a determinant of (1) $\Delta = D_2$ (3) if D = 9, then Δ is po	order three and Δ is a de erfect cube	terminant formed by the (2) $\Delta = D_3$ (4) $\Delta = D$	cofactors of determinant D ; then
34.	$ If A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}, \text{ ther} (1) A $	n value of A-1 is equal to (2) A2	: (3) A3	(4) A4
35.	If A = $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$, the (1) A ₂	en (5A – I) (A – I) = (2) A₃	(3) A4	(4) A
36.	If A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (where (1) a - d = 0	bc ≠ 0) satisfies the equ (2) k = – A	ations x ₂ + k = 0, then (3) k = A	(4) k = a + d
	PAR	RT - II : MISCELLA	ANEOUS QUEST	IONS

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- A-1. Let A be set of all determinants of order 3 with entries 0 or 1, B be the subset of A consisting of all determinants with value 1 and C be the subset of A consisting of all determinants with value –1. Then STATEMENT -1 : The number of elements in set B is equal to number of elements in set C. and

STATEMENT-2 : $(B \cap C) \subseteq A$

A-2. Statement 1 : If A =
$$\begin{bmatrix} 2 & 1+2i \\ 1-2i & 7 \end{bmatrix}$$
 then det(A) is real.
$$\begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$$

Statement 2 : If A = $\begin{bmatrix} a_{21} & a_{22} \end{bmatrix}$, a_{ij} being complex numbers then det(A) is always real.

$a^2 + x^2$	ab – cx	ac+bx		∫ x	С	-b]
ab + xc	$b^2 + x^2$	bc-ax		-с	х	а	
ac – bx	bc+ax	$c^2 + x^2$	and B =	b	–a	Х	

- A-4. Let A and B be two 2 × 2 matrices. Statement - 1 : A(adj A) = $|A| I_2$ Statement - 2 : adj(AB) = (adj A) (adj B)
- **A-5.** Let A be a 3×3 matrix such that $A_2 5A + 7I = 0$.

Statement – I : $A_{-1} = \frac{1}{7}$ (5I – A). Statement – II : The polynomial $A_3 - 2A_2 - 3A + I$ can be reduced to 5(A – 4I).

Section (B) : MATCH THE COLUMN

B-1.					
	x + y + z = 3				
	x + 2y + 3z = 6				
	$x + 3y + \lambda z = m$				
	Column -I			Column -II	
	(A) has unique solution		(p)	$\lambda = 5, m = 9$	
	(B) has no solution		(q)	λ = 5, m ≠ 9	
	(C) has infinite number	of solutions	(r)	λ≠5, m≠9	
	(D) is inconsistent		(s)	$\lambda \in R$	
B-2.	Let $f(x) = \begin{bmatrix} 2\cot x & -1 & 0 \\ 1 & \cot x & -1 \\ 0 & 1 & 2\cot x \end{bmatrix}$) 1 ^{bt x} then			
	Column -I			Column -II	
	(A) $3f'\left(\frac{\pi}{3}\right)$		(p)	– 16	

	(B) $f\left(\frac{\pi}{4}\right)$	(q)	- 32			
	(C) $f'\left(\frac{\pi}{4}\right)$	(r)	8			
	(D) $f^{\left(\frac{\pi}{2}\right)}$	(s)	0			
Secti	on (C) : ONE OR MORE THAN	ONE OPTIONS CORRECT				
	(a b c) b c a					
C-1	If $A = \begin{pmatrix} c & a & b \end{pmatrix}$, where a, b, c are (1) $ab + bc + ca = 0$ (2) $a_2 + b_2 - b_3 = 0$	e real positive numbers, $a b c = 1 a c c_2 = 1$ (3) $a_3 + b_3 + c_3 = 4$	nd $A_T A = I$, then (4) $a + b + c = 2$			
C-2.	$ \begin{array}{c c} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \\ (1) 0 & (2) -2 \end{array} = 0 \text{ in the}$	interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, then tan x is (3) 1	; (4) 3			
C-3.	If the system of equation $x - ky - z$ possible values of k are (1) 1 (2) 2	z = 0, kx - y - z = 0, x + y - z = 0 (3) 0 $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \end{bmatrix}$	has a non-zero solution, then the			
C-4.	If the adjoint of a 3×3 matrix P is	$\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$, then the possible value	(s) of the determinant of P is (are)			
	(1) -2 (2) -1	(3) 1	(4) 2			
C-5.	For 3x3 matrices M and N, which of the following statement(s) is (are) NOT correct ? (1) N _T M N is symmetric or skew symmetric, according as M is symmetric or skew symmetric (2) M N – N M is skew symmetric for all symmetric matrices M and N (3) M N is symmetric for all symmetric matrices M and N (4) (adj M) (adj N) = adj(MN) for all invertible matrices M and N					
C-6.	Let M be a 2 × 2 symmetric matrix (1) the first column of M is the trans (2) the second row of M is the trans (3) M is a diagonal matrix with nonz (4) the product of entries in the mai	with integer entries. Then M is inver spose of the second row of M spose of first column of M zero entries in the main diagonal n diagonal of M is not the square o	rtible if f an integer			
C-7.	Let M and N be two 3 × 3 matrices (1) determinant of $(M_2 + MN_2)$ is 0 (2) there is a 3 × 3 non-zero matrix (3) determinant of $(M_2 + MN_2) \ge 1$ (4) for a 3 × 3 matrix U, if $(M_2 + MN_2)$	such that MN = NM. Further, if M \neq U such that (M ₂ + MN ₂)U is the zer 2)U equals the zero matrix then U is	5 N ₂ and M ₂ = N ₄ , then o matrix s the zero matrix			

C-8.	Let X and Y be two	arbitrary, 3 × 3, non-ze	ro, skew-symmetric ma	atrices and Z be an ar	oitrary 3 × 3, non
	zero, symmetric ma	trix. Then which of the	following matrices is (a	re) skew symmetric ?	
	(1) $Y_3Z_4 - Z_4Y_3$	(2) X44 + Y44	(3) $X_4Z_3 - Z_3X_4$	(4) X ₂₃ + Y ₂₃	
			$(1+\alpha)^2$	$(1+2\alpha)^2$ $(1+ 3\alpha)$	2
			$(2+\alpha)^2$	$(2+2\alpha)^2$ $(2+3\alpha)^2$	
C-9.	Which of the followi	ng values of α satisfy the	the equation $(3+\alpha)^2$	$(3+2\alpha)^2$ $(3+3\alpha)^2$	= - 648α ?
	(1) – 4	(2) 9	(3) – 9	(4) 4	

Exercise-3

Marked Questions may have for Revision Questions.

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

2 0 1 а and B = $\lfloor 0 \\$ Let A = $\lfloor 3 \rfloor$ $b \rfloor$, a, b \in N. Then, 4 1. [AIEEE 2006, (3, -1), 120] (1) there exist more than one but finite number of B's such that AB = BA(2) there exists exactly one B such that AB = BA(3) there exists infinitely many B's such that AB = BA(4) there cannot exist any B such that AB = BAIf A and B are square matrices of size $n \times n$ such that $A_2 - B_2 = (A - B) (A + B)$, then which of the following 2. will be always true ? [AIEEE 2006, (3, -1), 120] (1) AB = BA(2) either A or B is a zero matrix (3) either A or B is an identity matrix (4) A = B5 5α α 0 α 5α 05 0 3. Let A = . If $|A_2| = 25$, then $|\alpha|$ equals -[AIEEE 2007 (3, -1), 120] 1 (3) 5 $(1) 5_2$ (2) 1 (4) 5 1 1 1+ x 1 1+y for $x \neq 0, y \neq 0$, then D is If D =4. [AIEEE 2007 (3, -1), 120] (1) divisible by y but not x (2) divisible by neither x nor y (3) divisible by both x and y (4) divisible by x but not y 5. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that x = cy+ bz, y = az + cx and z = bx + ay. Then $a_2 + b_2 + c_2 + 2abc$ is equal to [AIEEE 2008 (3, -1), 105] (1) 2 (2) - 1(3) 0(4) 1 6. Let A be a square matrix all of whose entries are integers. Then, which one of the following is true ? [AIEEE 2008 (3, -1), 105] (1) If det (A) = \pm 1, then A-1 exists but all its entries are not necessarily integers (2) If det (A) $\neq \pm 1$, then A₋₁ exists but all its entries are non-integers (3) If det (A) = \pm 1, then A-1 exists and all its entries are integers (4) If det (A) = \pm 1, then A-1 need not exist 7. Let A be a 2 x 2 matrix with real entries. Let I be the 2 x 2 identity matrix. Denote by tr(A), the sum of diagonal entries of A. Assume that $A_2 = I$. [AIEEE 2008 (3,-1),105] Statement-1 If $A \neq I$ and $A \neq -I$, then det (A) = -1. Statement-2 If A \neq I and A \neq – I, then tr (A) \neq 0. (1) Statement-1 is false, statement-2 is true. (2) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for statement-1. (3) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for statement-1. (4) Statement-1 is true, statement-2 is false. 8. Let A be a 2×2 matrix. Statement-1 : adj(adj(A)) = A. Statement-2 : |adj A| = |A|[AIEEE 2009 (4, -1), 144] (1) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. (2) Statement-1 is true, Statement-2 is false.

	(3) Statement-1 is false, Statement-2 is true.(4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.				
		a _b	a+1 $a-1$ $a+1b+1$ $b-1$ $a-1$	b+1 $c-1b-1$ $c+1$	
9.	Let a, b, c be such that value of 'n' is - (1) zero	t b(a + c) ≠ 0. If $ $ c (2) any even integer	(3) any odd integer	$(-1)^{n+1}b$ $(-1)^{n}c$ = 0. Then the [AIEEE 2009 (4, -1), 144] (4) any integer	
10.	The number of 3 × 3 no	on-singular matrices, w	th four entries as 1 and a	Il other entries as 0, is	
	(1) 5	(2) 6	(3) at least 7	[AIEEE 2010 (8, –2), 144] (4) less than 4	
11.	Let A be a 2 × 2 matrix with non-zero entries and let $A_2 = I$, where I is 2 × 2 identity matrix. Tr(A) = sum of diagonal elements of A and $ A $ = determinant of matrix A. [AIEEE 2010 (4, -1), 144] Statement -1 : Tr(A) = 0 Statement -2 : $ A = 1$ (1) Statement -1 is true, Statement-2 is true ; Statement -2 is not a correct explanation for Statement -				
	 (2) Statement-1 is true (3) Statement -1 is fal (4) Statement -1 is true 	, Statement-2 is false. se, Statement -2 is true e, Statement -2 is true;	e. Statement-2 is a correct	explanation for Statement-1.	
12.	Consider the system of $x_1 + 2x_2 + x_3 = 3$, $2x_1 + The system has$	linear equations : $3x_2 + x_3 = 3$, $3x_1 + 5x_2$	+ 2x ₃ = 1	[AIEEE 2010 (4, –1), 144]	
	(1) exactly 3 solutions	(2) a unique solution	(3) no solution	(4) infinite number of solutions	
13.	Let A and B be two syn Statement-1 : A(BA) a Statement-2 : AB is sy (1) Statement-1 i Statement-1. (2) Statement-1 is explanation for (3) Statement-1 is (4) Statement-1 is	nmetric matrices of ord nd (AB)A are symmetri mmetric matrix if matrix s true, Statement-2 s true, Statement-2 is Statement-1. true, Statement-2 is fal false, Statement-2 is tr	er 3. c matrices. c multiplication of A with E is true; Statement-2 true; Statement-2 is true se. ue.	[AIEEE 2011, I, (4, -1), 120] B is commutative. is a correct explanation for e; Statement-2 is not a correct	
14.	The number of values $4x + ky + 2z = 0$, $kx + 4$ (1) 3	of k for which the linear 4y + z = 0, $2x + 2y + z(2) 2$	equations = 0 posses a non-zero s (3) 1	[AIEEE 2011, I, (4, –1), 120] olution is : (4) zero	
	、 <i>*</i>	· /	$\begin{bmatrix} \omega & 0 \end{bmatrix}$	• •	
15.	If $\omega \neq 1$ is the complex	cube root of unity and	matrix H = $\begin{bmatrix} 0 & \omega \end{bmatrix}$, then I	H ₇₀ is equal to -	
	(1) 0	(2) – H	(3) H ₂	(4) H	
16.	If the trivial solution is t x - ky + z = 0, $kx + 3y(1) R - {2, -3}$	he only solution of the s / – kz = 0 ,3x + y – z = (2) R – { 2 }	system of equations 0 then the set of all valu (3) R – { –3 }	[AIEEE 2011, II, (4, -1), 120] les of k is : (4) {2, -3}	
17.	Statement - 1 : Determ Statement - 2 : For an Where det (B) denotes (1) Both statements are	hinant of a skew-symmetry matrix A, det $(A)_T = d$ the determinant of mates true	etric matrix of order 3 is z et(A) and det (–A) = – det rix B. Then : (2) Both statements ar	ero. (A). [AIEEE 2011, II, (4, –1), 120] e false	

(3) Statement-1 is false and statement-2 is true. (4) Statement-1 is true and statement-2 is false 0 0 1 0 0 1 2 1 0 and Au₂ = $\begin{pmatrix} 0 \end{pmatrix}$ 3 2 1) 0 18 . If u_1 and u_2 are column matrices such that $Au_1 =$, then $u_1 + u_2$ is Let A =equal to : [AIEEE-2012, (4, -1)/120] 1 -1 -1 1 -1 1 0 (1)19. Let P and Q be 3 x 3 matrices P \neq Q. If P₃ = Q₃ and P₂Q = Q₂P, then determinant of (P₂ + Q₂) is equal to : [AIEEE-2012, (4, -1)/120] (1) - 2(2) 1 (3) 0(4) - 120. The number of values of k, for which the system of equations : [AIEEE - 2013, (4, -1) 120] (k + 1)x + 8y = 4k, kx + (k + 3)y = 3k - 1 has no solution, is (1) infinite (2) 1 (4) 3(3) 2α 3 1 3 3 2 4 4 is the adjoint of a 3 × 3 matrix A and |A| = 4, then α is equal to : If D 21. [AIEEE - 2013, (4, - 1) 120] (1) 4(2) 11 (3)5(4) 01+f(1) 1+f(2)1+f(1) 1+f(2) 1+f(3)1+f(2) 1+f(3) 1+f(4)= K $(1 - \alpha)_2 (1 - \beta)_2 (\alpha - \beta)_2$, then K is equal 22. If α , $\beta \neq 0$ and $f(n) = \alpha_n + \beta_n$ and [JEE(Main) 2014, (4, -1), 120] to 1 (4) ^{αβ} (1) 1(2) - 1(3) αβ 23. If A is an 3 × 3 non-singular matrix such that AA' = A'A and B = $A_{-1}A'$, then BB' equals : [JEE(Main) 2014, (4, -1), 120] (1) B₋₁ (2) (B₋₁)' (3) I + B (4) I 2 1 2 2 1 -2 a 2 b 24. If A =is a matrix satisfying the equation $AA_T = 9I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to : [JEE(Main) 2015, (4, -1), 120] (2) (-2, 1) (1)(2, -1)(3)(2,1)(4)(-2, -1)The set of all value of λ for which the system of linear equations : 25. $2x_1 - 2x_2 + x_3 = \lambda x_1$, $2x_1 - 3x_2 + 2x_3 = \lambda x_2$, $-x_1 + 2x_2 = \lambda x_3$ has a non-trivial solution, [JEE(Main) 2015, (4, -1), 120] (1) is an empty set (2) is a singleton (4) contains more than two elements (3) contains two elements The system of linear equations $x + \lambda y - z = 0$, $\lambda x - y - z = 0$, $x + y - \lambda z = 0$ has a non-trivial solution for : 26. [JEE(Main) 2016, (4, -1), 120] (1) Exactly one value of λ . (2) Exactly two values of λ . (3) Exactly three values of λ . (4) Infinitely many values of λ .

Matrices & Determinant

	[5a -	- b				
27.	If A = ³ (1) 5	2 dand A	adj A = A A [⊤] , t (2) 4	hen 5a + I	b is equal to (3) 13	[JEE(Main) 2016, (4, – 1), 120] (4) – 1
28.	It S is the set	t of distinct	values of 'b' fo	or which th	ne following syste	em of linear equations
	x + y + 2 = 1 x + ay + z = 1	1				[JEE(Main) 2017, (4, -1), 120]
	ax + by + z =	= 0 has no s	solution, then \$	S is :	(2) an infinite s	et
	(3) a finite se	et containin	g two or more	elements	(4) a singleton	
	2	- 3				
29.	If A = $\lfloor -4 \rfloor$	$1 \downarrow$, then	adj (3A² + 12A) is equal	to	[JEE(Main) 2017, (4, –1), 120]
	72 –	84	51 63		51 84	72 -63
	(1) [-63]	51 _	(2) 84 72		(3) [63 72]	(4) └─84 51 ⅃
	PART - II ·	JEE (AI) / IIT IF		MS (PREVIOUS YEARS)
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> 1 1</u>	1
	1	./3			1 -1-	$\omega^2 \omega^2$
1	Let $\omega = -\frac{1}{2}$	$+i\frac{\sqrt{3}}{2}$ Th	en the value o	f the dete	$rminant$ 1 ω^2	ω^4 is
						[IIT-JEE 2002, Scr, 3, – 1), 90]
	(A) 3 ω		(Β) 3 ω (ω –	1)	(C) 3 ω ₂	(D) 3 ω (1 – ω)
	$\lceil \alpha \rceil$	0	[1 0]			
2.	If $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	¹ and B =	.[5 1] , the	n value of	α for which $A_2 =$	B is :
	(A) 1		(B) – 1		(C) 4	[IIT-JEE 2003, Scr, (3,–1), 84] (D) no real values
3	The value of	λ for which	h the system o	of equation	y = y - z - 1	$2x - 2y + z = 4x + y + \lambda z = 4$ has no.
0.	solution is		(D) 2	n oquallor	(0) 2	[IIT-JEE 2004, Scr, (3, - 1), 84]
	(\mathbf{A}) 3 $\sqrt{3}$	1]	(B) = 3		(0) 2	(D) - 2
	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$				
	1	√3	1 1			
4.	If $P = \lfloor 2 \rfloor$	²], A = [_ ^{0 1} and Q :	= PAP⊤ an	$d x = P_T Q_{2005} P, th$	nen x is equal to
	_	_	[4.0005			[IIT-JEE 2005 Scr, (3, – 1), 84]
	1 2005		4 + 2005	√3 60° 4 200	$\frac{15}{15} \left \frac{1}{1} \right ^{2+1}$	$\sqrt{3}$ 1 1 2005 2 $\sqrt{3}$
	(A) ^L ⁰ ^I		(B) L 2003	4-200	^{55√3} (C) 4 ∟ −	(D) 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 3 2 4 3 2 4 3 3 3 3 3 3 3 3 3
		α	2			
5.	If for the mat	rix A = $\lfloor 2 \rfloor$	^α [⊥] ; A₃ = 12	25, then th	e value of α is	[IIT-JEE 2005 Main, (3 – 1), 84]
	(A) ± 1		(B) ± 4		(C) ± 3	(D) ±2
6.	Consider the	system of	equations	0.4.4-	4	[IIT-JEE 2008, Paper-1, (3, – 1), 163]
	X – Zy + 3Z = STATEMEN	:	y - 2z = K, x system of equ	– 3y + 4z Jations ha	= 1 s no solution for	k ≠ 3
	and		0)010111 01 0 4			
			1	3 –1		
			_	1 –2 k		
	STATEMEN	T-2 : The d	eterminant ¹	4 1	≠ 0, for k ≠ 3.	
	(A) STA STA	TEMENT-1 TEMENT-1	is True, STA	ATEMENT	-2 is True ; STA	IEMENT-2 is a correct explanation for

(A) 198

(B) 162

7.

8.

9.

(B) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is NOT a correct explanation for STATEMENT-1 (C) STATEMENT-1 is True, STATEMENT-2 is False (D) STATEMENT-1 is False, STATEMENT-2 is True Let M and N be two 2n x 2n non-singular skew-symmetric matrices such that MN = NM. If P_T denotes the transpose of P, then $M_2 N_2 (M_T N)_{-1} (MN_{-1})_T$ is equal to [IIT-JEE 2011, Paper-1, (4, 0), 80] (A) M₂ $(B) - N_2$ $(C) - M_2$ (D) MN Let P = $[a_{ij}]$ be a 3 x 3 matrix and let Q = $[b_{ij}]$, where $b_{ij} = 2_{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is [IIT-JEE 2012, Paper-1, (3, -1), 70] (C) 212 (A) 210 (B) 211 (D) 213 If P is a 3 x 3 matrix such that $P_T = 2P + I$, where P_T is the transpose of P and I is the 3 x 3 identity matrix, x 0 у 0 then there exists a column matrix $X = \begin{bmatrix} z \\ \neq \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$ such that **[IIT-JEE 2012, Paper-2, (3, -1), 66]** 0 0 (A) $PX = \begin{bmatrix} 0 \end{bmatrix}$ (B) PX = X(C) PX = 2X(D) PX = -X1 0 0 4 1 0 1 16 4 and I be the identity matrix of order 3. If $Q = [q_{ij}]$ is a matrix such that Let P = 10. $q_{31} + q_{32}$ \mathbf{q}_{21} $P^{50} - Q = I$. then equals [JEE (Advanced) 2016, Paper-2 (3, -1)/62] (A) 52 (B) 103 (C) 201 (D) 205 How many 3 × 3 matrices M with entries from {0, 1, 2} are there, for which the sum of the diagonal entries 11. of $M^{T} M$ is 5 ? [JEE(Advanced) 2017, Paper-2,(3, -1)/61]

(C) 126

(D) 135

Answers													
EXERCISE - 1													
Section (A):													
A-1.	(3)	A-2.	(4)	A-3.	(4)	A-4.	(1)	A-5.	(1)	A-6.	(4)	A-7.	(4)
A-8.	(2)	A-9.	(4)	A-10.	(3)	A-11.	(2)	A-12.	(3)	A-13.	(1)	A-14.	(2)
A-15.	(3)	A-16.	(3)	A-17.	(1)	A-18.	(1)	A-19.	(1)				
Secti	on (B)	:											
B-1.	(3)	B-2.	(1)	B-3.	(4)	B-4.	(3)	B-5	(2)	B-6.	(3)	B-7.	(4)
B-8.	(4)	B-9.	(2)	B-10	(3)	B-11.	(1)	B-12	(1)	B-13.	(1)	B-14.	(2)
B-15.	(2)	B-16.	(1)	B-17.	(2)	B-18.	(1)						
Section (C) :													
C-1.	(2)	C-2.	(1)	C-3.	(4)	C-4.	(4)	C-5.	(2)	C-6.	(1)	C-7.	(1)
Section (D) :													
D-1.	(1)	D-2.	(1)	D-3.	(3)	D-4.	(2)	D-5.	(4)	D-6.	(4)	D-7.	(1)
D-8	(2)	D-9.	(2)	D-10.	(3)	D-11	(1)	D-12.	(4)	D-13.	(1)	D-14	(3)
 D-15.	(3)	D-16.	(2)	D-17.	(1)	D.18.	(1)	D-19.	(4)	D-20.	(2)	D-21	(3)
D-22.	(4)	-			~ /	-	~ /	-	× /	_ `	. /		~ /
	. ,							•					
						EXER	<u> 15E -</u>	2					
1	(1)	2	(2)	3	(4)		RT - I	5	(1)	6	(3)	7	(1)
8.	(1)	2. 9.	(2)	10.	(1)	11.	(1)	12.	(1)	13.	(2)	14.	(1)
15.	(3)	16	(0)	17.	(3)	18.	(2)	19.	(2)	20.	(2)	21.	(2)
22.	(1)	23.	(1)	24.	(4)	25.	(2)	26.	(4)	27.	(1)	28.	(1)
29.	(2)	30.	(4)	31.	(3)	32.	(4)	33.	(1)	34.	(3)	35.	(2)
36.	(3)												
PART-II													
A-1.	(1)	A-2.	(2)	A-3.	(1)	A-4.	(2)	A-5.	(1)				
Section (B) :													
B-1. (A) \rightarrow r; (B) \rightarrow q; (C) \rightarrow p; (D) \rightarrow q							$(A) \rightarrow q ; (B) \rightarrow r ; (C) \rightarrow q ; (D) \rightarrow s$						
Section (C) :													
C-1	(1,2,3)	C-2.	(2,3)	C-3.	(1,4)	C-4.	(1,4)	C-5.	(3,4)	C-6.	(3,4)	C-7.	(1,2)
C-8.	(3,4)	C-9.	(2,3)										
_						EXER	CISE -	3					
PART - I													
1.	(3)	2.	(1)	3.	(3)	4.	(3)	5.	(4)	6.	(3)	7.	(4)
8. 15	(1)	9. 16	(3)	10. 17	(3) (4)	11. 18	(2)	12. 19	(3)	13. 20	(2)	14. 21	(2)
22.	(1)	23.	(1)	24.	(4)	25.	(4)	26.	(3)	20. 27.	(<i>2)</i> (1)	28.	(<i>2</i>) (4)
29.	(2)				• /	D 4 -	· · ·		、 /		. /		. /
1	(B)	2	(ח)	3	(ח)		(A)	5	(\mathbf{C})	6	(A)	7	(\mathbf{C})
ı. 8.	(D)	2. 9.	(D) (D)	з. 10.	(D) (B)	4. 11.	(A) (A)	IJ.	(U)	0.	(A)	1.	(U)
→	(-)		(-)		(-)		(* 9						

-