Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS Section (A) : Equation of Tangent and Normal and angle of intersection of two curves The equation of tangent to the curve $y = 2\cos x$ at x = 4 is A-1. (2) y + $\sqrt{2} = \sqrt{2} \left(x + \frac{\pi}{4} \right)$ (1) y - $\sqrt{2} = 2 \sqrt{2} \left(x - \frac{\pi}{4} \right)$ $(4) y - \sqrt{2} = \sqrt{2} \left(x - \frac{\pi}{4} \right)$ (3) $y - \sqrt{2} = -\sqrt{2} \left(x - \frac{\pi}{4} \right)$ The equation of tangent at (-4, -4) on the curve $x^2 = -4y$ is A-2. (1) 2x + y + 4 = 0(2) 2x - y - 12 = 0(3) 2x + y - 4 = 0(4) 2x - y + 4 = 0A-3. If $x = t^2$ and y = 2t, then equation of the normal at t = 1 is (1) x + y - 3 = 0(2) x + y - 1 = 0(3) x + y + 1 = 0(4) x + y + 3 = 0The equation of the normal to the curve $y^4 = ax^3$ at (a,a) is A-4. (1) x + 2y = 3a(2) 3x - 4y + a = 0(3) 4x + 3y = 7a(4) 4x - 3y = aA-5. The curve $y - e^{xy} + x = 0$ has a vertical tangent at (1)(1,1)(2)(0, 1)(3)(1,0)(4) no point If the tangent to the curve $x = a (\theta + \sin \theta)$, $y = a (1 + \cos \theta) at \theta = \frac{3}{3}$ makes an angle $\alpha (0 \le \alpha < \pi)$ with x-A-6.🖎 axis, then $\alpha =$ 5π π π (4) 6 $\overline{3}$ 3 (3) 6 (1) (2) The number of tangents drawn to the curve xy = 4 from point (0, 1) is A-7. (4) Infinite (1) 0 (2) 1 (3) 2Equation of the normal to the curve $y = -\sqrt{x} + 2$ at the point of its intersection with the curve A-8. $y = tan (tan^{-1} x) is$ (1) 2x - y - 1 = 0(2) 2x - y + 1 = 0(3) 2x + y - 3 = 0(4) none The angle between the curves $y^2 = 4x + 4$ and $y^2 = 36 (9 - x)$ is A-9. (1) 30° (2) 45° (3) 60° (4) 90° (orthogonal curves) The angle between the curves y = sinx and y = cosx is A-10. (2) $\tan^{-1} (3\sqrt{2})$ (1) $\tan^{-1}(2\sqrt{2})$ (4) $\tan^{-1}(5\sqrt{2})$ (3) $\tan^{-1} (3\sqrt{3})$ A-11. The subtangent, ordinate and subnormal to the parabola $y^2 = 4ax$ at a point (different from the origin) are in (1) AP (2) GP (3) HP (4) AGP

A-12. The length of normal to the curve $x = a (\theta + \sin \theta)$, $y = a (1 - \cos \theta)$ at the point $\theta = \pi/2$ is

	(1) 2a	(2) ^a / ₂	(3) √2a	$(4) \frac{a}{\sqrt{2}}$
Section	on(B) : Rate of cl	hange, Error and A	pproximation	
8-1.	The rate of change	of the volume of a cone	-	
	(1) π²h	(2) $\frac{4}{3}\pi rh$	(3) $\frac{4}{3} \pi r^{2}h$	$(4)^{\frac{2}{3}}$ πrh
-2.¤̀	The side of a square when the side is 8 c (1) 60 cm ² /sec.		e rate of 4 cm per minut (3) 62 cm²/sec.	e. The rate by which the area increas (4) 64 cm²/sec.
8-3.		r bubble is increasing at when the radius is 1 cm		c. The rate by which the volume of
	(1) π cm ³ /sec.	(2) 3π cm ³ /sec.	(3) 2π cm ³ /sec.	(4) 4π cm ³ /sec.
8-4.¤̀	rate of 77 litre/minut (use $\pi = 22/7$)	te. The rate at which the	water level is rising at	of the base is 2 m and height 4 m, at the instant when the depth is 70 cn
	(1) 10 cm/min	(2) 20 cm/min	(3) 40 cm/min	(4) none
-5.	of the particle chang	ging at the same rate, are	Э	ne curve where the x and y coordina
	$(1)^{\left(\frac{-3}{4},\frac{-1}{2}\right)}$	$(2)\left(\frac{-1}{2},\frac{-3}{4}\right)$	$(3)^{\left(\frac{3}{4},\frac{1}{2}\right)}$	$(4)^{\left(\frac{1}{2},\frac{3}{4}\right)}$
-6.	The point on the cur (1) (4, 2)	rve $y^2 = 8x$ for which the (2) (-4, -2)	abscissa and ordinate (3) (2, 4)	change at the same rate is- (4) (-2, - 4)
-7. è	of shadow moving o	on the pavement?	-	e of 4 km/hr. How fast is the farther
	(1) 4 km/hr	(2) 2 km/hr	(3) 6 km/hr	(4) 5 km/hr
-8.¤				oves the kite horizontally at the rate ch the cord is being paid is (4) 8 Km/hr
-9.	If the radius of a sp calculating its volum			0.03 cm, then the approximate erro
	(1) 7.62 πcm ³	(2) 7.68 πcm ³	(3) 7.86 πcm ³	(4) 6.68 πcm ³
-10.	Using differentials, f (1) 5.02	ind the approximate valu (2) 5.01	ue of √25.2 (3) 5.03	(4) 5.04
-11.	The approximate ch (1) 0.06x ³ m ³	ange in the volume of a (2) 0.09x ³ m ³	cube of side x meters ((3) 0.12x ³ m ³	caused by increasing the side by 4% (4) 0.15x ³ m ³
ecti	on(C) : Monotoni	icity		
-1.	$f(x) = x + 1/x, x \neq 0$ (1) $ x < 1$	s increasing when - (2) x > 1	(3) x < 2	(4) x > 2
-2.	For which values of (1) x > 1	x, the function $f(x) = x^2 - (2) x > 2$	- 2x is decreasing - (3) x< 1	(4) x < 2

C-3.	Funciton $f(x) = x^3$ is			
	.,	- (0) (2) Decreasing in (0, • (4) Increasing through	∘) and increasing in (–∞, 0) out
C-4.	2x ² -	(2) Decreasing -1	(3) Not monotonic	(4) None of these
C-5.ൔ	The function $y = x^4$ (1) Always increasing (3) Neither increasing		(2) Always decreasing (4) None of these	
C-6.ൔ	If $f(x) = 2x^3 - 9x^2 + 12x^3$ (1) (1, 2)	< – 6, then in which interv (2) (–∞, 1)	val f(x) is monotonically ii (3) (2, ∞)	
C-7.	Function $f(x) = x - lnx$	is decreasing, when		
	(1) x ∈ (0, 1)	•	(3) x ∈ (1, ∞)	(4) None of these
C-8.	When x ∈ (0, 1), functi (1) Increasing (3) Neither increasing		(2) Decreasing (4) Constant	
C-9.⊵	(1) (-∞, ∞)		en f(x) is strictly increasir (3) [0, ∞)	
C-10.	Function $f(x) = \frac{e^{2x} - e^{2x}}{e^{2x} + e^{2x}}$ (1) Increasing (3) Neither increasing		(2) Decreasing (4) Even function	
C-11.	Function $f(x) = ln \sin y$	is monotonically increas	sing when-	
	(1) $x \in (\pi/2, \pi)$	(2) $x \in (-\pi/2, 0)$	(3) $x \in (0, \pi)$	(4) x ∈ (0, π/2)
C-12.	For $0 \le x \le 1$, the func (1) Monotonically increases (3) Constant function	tion $f(x) = x + x - 1 $ iseasing	(2) Monotonically decr (4) Identity function	easing
C-13.⊾	For what value of 'a' th (1) 0	the function $f(x) = x + \cos(2) 1$	x – a increases (3) –1	(4) Any value
C-14.ங	the condition:	(2) $a^2 - 3b + 15 \le 0$		real numbers R. Then a & b satisf (4) a > 0 & b > 0
C-15.		ich the function $f(x) = (a + b)$		decreases for all real values of x is
C-16.⊾	(1) increases in ($\pi/4$, r (3) increases in [0, $\pi/4$	•	(2) decreases in $[\pi/4,$	5π/4] in [0, π/4) ∪ (π/2, 2π]
• •= •	$\frac{1}{x}$			
C-17.⊾	If $f(x) = \log (x - 2) - x$ (1) $f(x)$ is M.I. for $x \in (3)$ (3) $f(x)$ is M.D. for $x \in (3)$	2,∞)	 (2) f(x) is M.I. for x ∈ [- (4) f(x) is M.D. for x ∈ 	-

C-18.è	The interval in which th (1) $(-\infty, -1)$	the function $f(x) = x^3$ increases (2) (-5, 1)	ases less rapidly than g(x (3) (- 1, 5)	x) = 6x ² + 15x + 5 is : (4) (5 , ∞)
	x – 1			
C 40 >	• The function $\frac{ x-1 }{x^2}$ is	monotonically decreasin	a at the naint	
C-19.¤		2	o .	(1) none of these
	(1) x = 3	(2) x = 1	(3) $x = 2$	(4) none of these
C-20	f(y) = y + 1 y + 2 y	2 l x i 2 l ic monotoni	cally increasing at $x = 2$	
C-20.	(1) - 2,	3 - x + 2 is monotoni (2)0	(3) 3	(4) 5
	(1) 2,	(2)0	(3) 3	(+) 3
Section	on(D) : Local maxir	na and minima		
D-1.	x ³ – 3x + 4 is minimum	at		
D-1.				
	(1) $x = 1$	(2) x = - 1	(3) $x = 0$	(4) No where
D-2.	The local maximum va	lue of $2x^3 - 9x^2 + 100$ is-		
	(1) 0	(2) 100	(3) 3	(4) 30
D-3.è	For what value of x,x ²	(1/x) is maximum-		
	(1) e ^{-1/2}	(2) e ^{1/2}	(3) e	(4) e ⁻¹
D-4.		1x ² + 36x – 20 has local i		
	(1) 2	(2) 4	(3) 6	(4) 0
D-5.	Function $f(x) = -(x - 1)$) ³ (x + 1) ² has local minir	na at x =	
	(1) 1	(2) –1	(3) 6	(4) 0
D-6.ເ≧	Function $f(x) = x \ln x$	as local maxima at x =		
		_		
		1		
	(1) x = e	(2) $x = e^{-e}$	(3) x= 1	(4) No local maxima
		4	(-)	()
		<u> </u>		
D-7.è⊾	The function $f(x) = a \sin \theta$	n x + ³ sin 3x has a ma	aximum at $x = \pi/3$, then a	a equals-
	(1) – 2	(2) 2	(3) –1	(4) 1
				()
D-8.	Function $f(x) = e^{x} + e^{-x}$	has -		
	(1) One minimum point		(2) One maximum poin	+
				il .
	(3) Many extreme poin	ts	(4) No extreme point	
D-9.è⊾	If $f(x) = 1 + 2x^2 + 4x^4 + $	- 6 x ⁶ + + 100 x ¹⁰⁰ is a	a polynomial in a real var	iable x, then f(x) has:
	(1) neither a maximum	nor a minimum	(2) only one maximum	
			(4) one maximum and	
	(3) only one minimum			
	5	<u>,</u>		
	The function $f(x) = \sum_{k=1}^{5} (x)^{2k}$	$(x - k)^2$		
D-10.	The function $f(x) = k=1$	assumes minimu	im value for x given by-	
	(1) 5	(2) 3	(3) 5/2	(4) 2

	(terr=1	π		
	$ \begin{aligned} & \int \tan^{-1} x, x < \\ & \int \frac{\pi}{2} - x , x \ge \\ \end{aligned} $	<u>π</u>		
D-11.è				
	(1) f(x) has no point of(3) f(x) has exactly two		(2) f(x) has only one po(4) f(x) has exactly two	
D-12.凶	The local maximum val		S-	
	(1) 2	(2) $\frac{4}{27}$	(0) 5	(4) 2, ⁴ / ₂₇
- 42 A	(1) 2 (2) is a maximum value		(3) 5	(4) 2, 27
J-13.¤	f(3) is a maximum value (1) f'(3) = 0, f''(3) > 0	(2) $f'(3) = 0, f''(3) < 0$	(3) $f'(3) \neq 0, f''(3) = 0$	(4) f'(3) < 0, f''(3) > 0
D-14.	If for a function f(x), f'(2	f''(2) = 0, f''(2) = 0, f'''(2) > 0	, then x = 2 is -	
	(1) A maximum point	(2) A minimum point	(3) An extreme point	(4) Not an extreme point
	$\int x^3 - x^2 + x^2$	$10 x - 5$, $x \le 1$		
በ_15 ጵ	$\int -2x + \log_2$	$(b^2 - 2)$, $x > 1$ the set	t of values of b for which	h f(x) has greatest value at x = 1
J-10.14	given by :			11 1(x) has greatest value at $x = 1$
	(1) $1 \le b \le 2$		(2) b = {1, 2}	
	(.)			$\left[\left(\sqrt{2} \right) \sqrt{130} \right]$
	(3) b ∈ (-∞, -1)		$(4) \begin{bmatrix} -\sqrt{130}, & -\sqrt{2} \end{bmatrix}$	$0 \left(\sqrt{2}, \sqrt{130}\right)$
D-16.	The minimum value of	the function defined by f	$(x) = \max(x, x + 1, 2 - x)$) is
	(1) 0	(2) 1/2	(3) 1	(4) 3/2
Section	on(E) : Global maxi	ma & minima		
E-1.	The absolute minimum	and maximum values of	$f(x) = x^3, x \in [-2, 2]$ are	respectively -
	(1) 6, 0	(2) 6, 2	(3) –8, 8	(4) 8, 0
E-2.	The absolute maximum	n and minimum values of	$f(x) = \sin x + \cos x, x \in [0, \infty]$), π] are respectively
	(1) √2 , −1	(2) $\sqrt{2}$, 1	(3) $\sqrt{2}$, $-\sqrt{2}$	(4) $\sqrt{3}, \sqrt{2}$
	-	and maximum values of	$\frac{x^2}{2}$ $\left[-2\right]$	$2, \frac{9}{2}$
E-3.	The absolute minimum			
	(1) –10, 8	(2) $\frac{30}{8}$, -10	(3) 25, 16	$(4) -10, \frac{33}{8}$
E-4.ゐ	The absolute maximum	and minimum values of	$f(x) = 3x^4 - 8x^3 + 12x^2 - 4x^3 + 12x^2 + 1$	48x + 25, $x \in [0, 3]$ are respective
	(1) – 25, 39	(2) 25, –39	(3) 8, -8	(4) 8, 10
			1	$\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$
E-5.≧	The absolute minimum	and maximum values of	$f(x) = \sin x + \frac{2}{2} \cos 2x$	$x, x \in \left[0, \frac{\pi}{2}\right]$ are respectively

	(1) $\frac{3}{4}$, $\frac{1}{2}$	(2) $0, \frac{1}{2}$	$(3) -\frac{1}{2},\frac{3}{4}$	(4) $\frac{1}{2}$, $\frac{3}{4}$	
E-6.	Let f(x) = x then in in (1) Local minima of f (3) Global maxima of	(x) exists	(2) Local maxima of f (4) Maxima or minima	i(x) exists a of f(x) does not exist	
E-7.	The maximum value	of 5 sin θ + 3 sin (θ + $\pi/3$	3) + 3 is –		
	(1) 11	(2) 12	(3) 10	(4) 9	
E-8.	The minimum value	of $y = x(\ell n x)^2$ is-			
	(1) 0	(2) 1	(3) 2	(4) None of these	
E-9.	If $xy = 4$ and $x < 0$ the	en maximum value of x +	- 16y is-		
	(1) 8	(2) – 8	(3) 16	(4) – 16	
Secti	on(F) : Applicatio	n of maxima and m	inima		
F-1.	20 is divided into two maximum. The parts		cube of one quantity and	I square of the other quantity is	
	(1) 10, 10	(2) 16, 4	(3) 6, 14	(4) 12, 8	
F-2.	The ratio between th the diameter of the s		r cone of maximum volume inscribed in a given sphere ar		
	(1) 2 : 3	(2) 3 : 4	(3) 1 : 3	(4) 1 : 4	
F-3.ൔ	A triangle with maxin (1) Right angled	num area inscribed in a c (2) Isosceles	ircle is- (3) equilateral	(4) Isosceles right angled	
F-4.è	The semi vertical and	gle of a right circular cone	e of maximum volume of	a given slant height is	
	(1) cos⁻¹ √2	(2) \sin^{-1} . $\sqrt{2}$	(3) tan⁻¹ √3	(4) $\tan^{-1} \sqrt{2}$	
F-5.໖	The volume of the la $4 \pi r^3$	rgest cylinder that can be $4 \pi r^3$	e inscribed in a sphere of $4 \pi r^2$	radius ' r ' cm is (in cubic units) 4 π r ³	
	(1) $\frac{4\pi^{2}}{3\sqrt{3}}$	(2) $\frac{4\pi^{1}}{3\sqrt{2}}$	(3) $\frac{4\pi^{2}}{3\sqrt{2}}$	(4) $\frac{4\pi^{1}}{2\sqrt{3}}$	
0 1				(4)	
Secti	on(G) : inequalitie	es using monotonic	ity		
• •	For $0 < x_1 < x_2 < \frac{\pi}{2}$.				
G-1.	For $U < X_1 < X_2 < 4$.	tan x ₂ x ₂	tan x ₂ x ₂		
	(1) $\frac{\tan x_2}{\tan x_1} < \frac{x_2}{x_1}$	(2) $\frac{\frac{\tan x_2}{\tan x_1}}{\frac{1}{2}} > \frac{\frac{x_2}{x_1}}{\frac{1}{2}}$	(3) $\frac{\tan x_2}{\tan x_1} = \frac{x_2}{x_1}$	(4) None of these	
G-2.ൔ	For $x \in \left(0, \frac{\pi}{2}\right)$				
G-2.¤	(1) $(2\sin x + \tan x) > (2)$ (2) $(2\sin x + \tan x) < (2)$				
		$\left[\frac{1}{1}\right] = 1$, where [.] deno			
	(3) $x \rightarrow 0^+$ 2 sin x + tai (4) Nothing can be sa	'^┘ = 1, where [.] deno ay	te the GIF.		

G-3.	The true set of real v	alues of x for which the	function, $f(x) = x \ell n x$	– x + 1 is positive is
	(1) (1, ∞)	(2) (1/e, ∞)	(3) [e, ∞)	(4) (0, 1) and (1, ∞)
G-4.ঐ	If a = (100) ^{1/100} and b (1) a = b	= (101) ^{1/101} then (2) a > b	(3) a < b	(4) none of these
Section	on(H) : Rolle's the	eorem & LMVT		
H-1.ൔ	verifies Rolle's theore	em, is		s theorem in [–3, 0]. The value of c which
	(1) 0	(2) – 1	(3) – 2	(4) 3
H-2.	The Rolle's theorem (1) $f(x) = x$	is applicable in the inte (2) $f(x) = x^2$	rval $-1 \le x \le 1$ for the (3) f(x) = $2x^3 + 3$	
		$x^2 - 3$	x	
H-3.⊾̀	For which interval, th (1) [0, 3]	e function $f(x) = x - 1$ (2) [-3, 0]	satisfies all the cond (3) [1, 3]	litions of Rolle's theorem (4) For no interval
H-4.	Rolle's theorem is not (1) f is not continuou (3) $f(-1) \neq f(1)$	t applicable to the func s on [–1, 1]		ntiable on (-1, 1)
H-5.	Rolle's theorem is not (1) f is not continuou (3) $f(-1) \neq f(1)$	t applicable to the func s on [–1, 1]		ntiable on (-1, 1)
H-6.	For the function f(x)	= ex, a = 0, b = 1, the va	alue of c in mean value	e theorem will be
	(1) ℓn x	(2) ℓn (e −1)	(3) 0	(4) 1
				<u>1</u>
H-7.№	From mean value the	eorem $f(b) - f(a) = (b - b)$	a) f'(x1) ; 0 < a < x1 < b	b if $f(x) = x$, then $x_1 =$
		(2) $\frac{a+b}{2}$	2ab	$\frac{b-a}{c}$
	(1) √ab	(2) 2	(3) $\overline{a+b}$	(4) $\overline{b+a}$
H-8.		us on [0,6], differentiabl = 6 , ^{f'} (x) must be eq		nd f(6) =16 , then at some point
	(1) – 18	(2) –3	(3) 3	(4) 14
H-9.⊾	[1, 2] and the tangen		x = 7/4 is parallel to the	ange's mean theorem for the interval ne chord joining the points of intersection a is
	(1) 35/16	(2) 35/48	(3) 7/16	(4) 5/16
	Exercise	-2		

Marked Questions may have for Revision Questions.

PART - I : OBJECTIVE QUESTIONS

$$\frac{x}{a} + \frac{y}{b} = 1$$

The line a b touches the curve $y = be^{-x/a}$ at the point

1.🖎

	(1) (– a, 2b)	(2) $\left(\frac{a}{2}, \frac{b}{2}\right)$	(3) $\left(a, \frac{b}{e}\right)$	(4) (0, b)
2.ऄ	Equation of normal d origin is	rawn to the graph of the	function defined as f(x)	$= \frac{\sin x^2}{x}, x \neq 0 \text{ and } f(0) = 0 \text{ at the}$
	(1) $x + y = 0$	(2) x - y = 0	(3) y = 0	(4) = 0
3.	If tangents are drawn (1) x – y = xy		rve y = sin x, then their po (3) $x^2 - y^2 = x^2y^2$	points of contact lie on the curve (4) $x^2 + y^2 = x^2y^2$
4.ऄ	Let $f(x) = \begin{cases} -x^2 & , \\ x^2 + 8 & , \\ (1) & y = 4x + 1 \end{cases}$	x < 0 $x \ge 0$ Equation of tange (2) $y = 4x + 4$	nt line touching both brar (3) y = x + 4	inches of $y = f(x)$ is (4) $y = x + 1$
5.	The point(s) on the pa $x^{2} + y^{2} - 24y + 128 =$		e closest to the circle,	
6.函	(1) (0, 0) Minimum distance be	(2) $(2, 2\sqrt{2})$ tween the curves f(x) = e	(3) (4, 4) ^x & g(x) = ℓn x is	(4) none
	(1) 1	(2) $\sqrt{2}$	(3) 2	(4) e
7.nà	-	-	_	t at the point (0, 1) and also toucher has a negative gradient are : (4) − 1 ≤ x ≤ 1
8.			r all values of t and a = 0 a the origin with respect to	when t = 0.If the rate of change of the table $t = 0$
	(1) 2	$(2) 2 \sqrt{2}$	(3) $\sqrt{2}$	(4) 4 $\sqrt{2}$
9.	The function $\frac{ x-1 }{x^2}$ (1) (2, ∞)	is monotonically decreas (2) (0, 1)	ing in (3) (0, 1) and (2, ∞)	(4) (– ∞, ∞)
10.	If $f(x) = \frac{(\sin^{-1} x + \tan^{-1} x)}{\pi}$	$\frac{1}{x}$ + $2\sqrt{x}$ then the ran	ge of f(x) is 「 15]	۲ 11]
	(1) [–1, 1]	(2) [0, 48]	$ (3) \left[0, \frac{15}{4} \right] $	$(4)\left[0,\ \frac{11}{4}\right]$
11.ൔ	If f(x) is strictly increa f(x) = c is always equa		d on R and c is a real co	nstant, then number of solutions o
	(1) 1	(2) 2	(3) 0	(4) 0 or 1
12.ൔ	For what values of a $c \in R$.	does the curve $f(x) = x(a^2)$		vs strictly monotonic decreasing ∀ x
	(1) a ∈ R (3) 1 – ^{√2} < a < 1 +	$\sqrt{2}$	(2) a < √2 (4) a < √2 − 1	
•	∈ R. (1) a ∈ R		(2) a <√2 (4) a <√2 – 1	

3.№	Given that f is a real valued differentiable functi (1) f(x) is an increasing function (3) f(x) is an increasing function	on such that f(x) f'(x) < 0 fo (2) f(x) is a decreasing fu (4) f(x) is a decreasing f	nction
4.	If $g(x)$ is monotonically increasing and $f(x)$ is more for $x \in \mathbb{R}$, then		
	(3) (gof) $(x + 1) < (gof) (x + 1)$.	(2) (gof) (x + 1) = (gof) (x (4) None of these	- 1).
5.	Let f and g be two functions defined on an interv decreasing on I while g is strictly increasing on (1) the product function fg is strictly increasing of (2) the product function fg is strictly decreasing (3) fog(x) is monotonically increasing on I (4) All of these	I then on I	$(x) \le 0$ for all $x \in I$ and f is stric
<u>а</u> .	If f : $[1, 10] \rightarrow [1, 10]$ is a non-decreasing function h(x) = f(g(x)) with h(1) = 1, then h(2) (1) lies in (1, 2) (2) is more than 2		
<u>`</u> è	Let $f(x) = (x^2 - 1)^n (x^2 + x + 1)$ then $f(x)$ has loca (1) $n = 5$ (2) $n = 7$	l extremum at x = 1 when	(4) n = 2k, k ∈ N
3.	$\frac{x^2 - 1}{x^2 + 1}$, for every real number, then min (1) does not exist (3) is equal to 1	mum value of f(x) (2) is not attained even th (4) is equal to –1	nough f is bounded
).	$\begin{cases} x^2 ; x \ge 0 \\ ax ; x < 0 \\ x = 0 \text{ is} \end{cases}$. Then set of real values of the transformation of transfo		monotonically increasing at $(4) a \in \varphi$
).	$\begin{cases} x^3 + x^2 - 10x ; & -1 \le x < 0\\ \sin x ; & 0 \le x < \pi/2\\ 1 + \cos x ; & \pi/2 \le x \le \pi \end{cases}$ then f(x) has (1) local minimum at x = $\pi/2$ (3) absolute minima at x = 0, π	(2) local minima at $x = -1$ (4) absolute maxima at x	
۱.	If x be real, then the minimum value of $f(x) = 3^{x}$ (1) 2 (2) 6		(4) 7/9
2.ឝ	If $f(x) = \begin{bmatrix} -\sqrt{1-x^2} & , & 0 \le x \le 1 \\ -x & , & x > 1 \\ . & , & then \end{bmatrix}$ (1) Maximum of $f(x)$ exist at $x = 1$ (3) Maximum of $f^{-1}(x)$ exist at $x = -1$	(2) Maximum of f (x) does (4) Minimum of f ⁻¹ (x) exis	

 23.≧	If $f(x) = a \ln x + bx^2 + x$ has its extremum values at $x = -1$ and $x = 2$, then					
	(1) a = 2, b = -1	(2) a = 2, b = - 1/2	(3) a = - 2, b = 1/2	(4) none of these		
24.മ	$f(x) = x^3 - 3 px^2 + 3 (p^2)$	for which all the points o $(2^{2} - 1)x + 1$ lie in the inter (2) (-3, 3)	val (-2, 4), is:			
25. ≩	semi circle at two opp its sides is	osite end. If the area of t	he rectangular portion is	e shape of which is a rectangle with to be maximum, then the length of		
	(1) 120 m , $\frac{220}{\pi}$ m	(2) 110 m, $\frac{\pi}{200}$ m	(3) 110 m , ²²⁰ /π m	(4) 125 m , $\frac{220}{\pi}$ m		
26.¤	The radius of a right circular cone is:	circular cylinder of great	est curved surface whic	h can be inscribed in a given right		
	(1) one third that of the (3) 2/3 that of the cone		(2) $1/\sqrt{2}$ times that of (4) 1/2 that of the con			
27.ເ≧	The maximum area of sides a and b is	f the rectangle whose sid	des pass through the an	gular points of a given rectangle of		
	(1) 2 (ab)	(2) $\frac{1}{2}(a+b)^2$	(3) $\frac{1}{2}(a^2 + b^2)$	(4) none of these		
28.🖎	$\lim_{x \to 0} \left[\frac{\sin x \tan x}{x^2} \right], \text{ (wh}$ (1) 0	ere $x \in \left(0, \frac{\pi}{2}\right)$ and [.] d (2) 1	lenotes the greatest inte (3) – 1	(4) 2		
29.	If the function $f(x) = x^3$ then	$-6x^2 + ax + b$ satisfies l	Rolle's theorem in the int	terval [1,3] and $f'\left(\frac{2\sqrt{3}+1}{\sqrt{3}}\right) = 0$,		
	(1) a = – 11	(2) a = - 6	(3) a = 6	(4) a = 11		
			$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \frac{a_3}{a_3}$			
30.	For all real values of a has a real root in the i	۱٥, a1, a2, a3 satisfying a۵ nterval	4 = 0, the $4 = 0$, the	equation $a_0 + a_1x + a_2x^2 + a_3x^3 = 0$		
	(1) [0,1]	(2) [-1,0]	(3) [1,2]	(4) [-2,-1]		
31.🖎	Consider the function	$f(x) = \max \{x^2, (1-x)^2, 2\}$	$2x(1 - x)$ where $0 \le x \le 1$	1. Let Rolle's Theorem is applicable		
	for f(x) on greatest inte	erval [a, b] then a + b + c	is (where c is p	oint such that $f'(c) = 0$)		
	(1) $\frac{2}{3}$	(2) $\frac{1}{3}$	(3) ¹ / ₂	(4) $\frac{3}{2}$		
32.	$f:[0, 4] \rightarrow R$ is a diffe	rentiable function. Then f	for some a, b \in (0, 4) , f	$f^{2}(4) - f^{2}(0) =$		
	(1) 8f'(a) . f(b)	(2) 4f'(b) f(a)	(3) 2f' (b) f(a)	(4) f'(b) f(a)		
Comp	prehension # (Q.33 to Q Concavity and conve	•				

If $f''(x) < 0 \forall x \in (a, b)$ then the curve y = f(x) is concave down (or simply convex) in (a, b). Inflection point : The point where concavity of the curve changes is known as point of inflection (at inflection point f''(x) is equal to 0 or undefined). nflection poin 33. Number of point of inflection for $f(x) = (x - 1)^3 (x - 2)^2$, is (1) 1 (2) 2 (3) 3(4) 4 $3x^2$ Exhaustive set of values of 'a' for which the function $f(x) = x^4 + \frac{2}{2}ax^3 + 1$ will be concave upward along 34. the entire real line, is : (2) [-2,2] (1) [-1,1](3) [0,2] (4)[0,4]Area enclosed by $f(x) = ln(x-2) - \overline{x}$, x = 6, x = 10 and x-axis is : 35. 8 15 (2) less than $10\ell n2 - 15$ (1) equal to $10\ell n2 -$ (3) greater than $10\ell n2 - 15$ (4) equal to 8ℓn2 -

If $f''(x) > 0 \forall x \in (a, b)$, then the curve y = f(x) is concave up (or simply concave) in (a,b) and

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- **A-1.** Let $f(x) = 2 + \cos x$ for all real x.

Statement-1: For each real t, there exists a point c in $[t, t + \pi]$ such that f'(c) = 0. because **Statement-2 :** $f(t) = f(t + 2\pi)$ for each real t.

A-2. Statement-1: e^{π} is bigger than π^{e} . Statement-2: $f(x) = x^{1/x}$ is a increasing function when $x \in [e, \infty)$

A-3.			positiv Area o	A straight line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q, then minimum area of ΔOPQ is 32 Area of triangle formed by a straight line passes through a fixed point (p,q) and coordinate axes will be minimum then (p,q) is midpoint of intercept between coordinate					
			axes	mate axe	es will be		um then (p,q) is midpoin	t of intercept between coordinate
A-4.	Staten		x ²⁰ Global		m of f(x) nary poir				
A-5.è	Staten	nent-1:	If f(x)	is increa	sing fund	ction wit	th concav	vity upwards, th	en concavity of f ⁻¹ (x) is also
	Staten	nent-2 :	upwar If f(x) upwar	is decre	easing fu	nction w	vith conca	avity upwards, t	hen concavity of $f^{-1}(x)$ is also
Section	on (B)	: MAT	сн тн		UMN				
B-1.è	A line L	_ : v = m	x + 3 m	eets v - a	axis at E	(0. 3) ar	nd the arc	c of the parabol	a $y^2 = 16x$, $0 \le y \le 6$ at the point F
	, y₀). T	he tange	ent to th	ne parab	ola at F((x ₀ , y ₀) i	ntersects	the y-axis at C	$G(0, y_1)$. The slope m of the line l
								al maximum	code given below the lists :
	matori	Column	Colun						Column - II
									1
		Ρ.	m =					1.	2
		Q.	Maxim	num area	a of ∆EF	G is		2.	4
		R.	y0 =					3.	2
		S.	y1 =					4.	1
	Codes	:: Р	Q	R	S				
	(1)	4	1	2	3				
	(2)	3	4	1	2				
	(3) (4)	1 1	3 3	2 4	4 2				
B-2.		Colum						Column – II	
	P.	f(x) =	$\frac{\sin x}{e^x}$	- [0 -1			4	O an aliticana in	Dellala the annual and set off a d
					ГА	07	1.	Conditions in	Rolle's theorem are satisfied.
	Q.	f(x) = s	sgn ((e ^x	– 1) ℓnx), x ∈ [<u>1</u> 2	$[\frac{3}{2}]$	2.	Conditions in	LMVT are satisfied.
	R.	f(x) = (x—1) ^{2/5} ,	x ∈ [0,3]			3.	At least one of satisfied.	condition in Rolle's theorem is no
		<	$\int_{0}^{1} x \left(\frac{e^{\frac{1}{x}} - e^{\frac{1}{x}}}{e^{\frac{1}{x}} + e^{\frac{1}{x}}} \right) dx$	$\left[\frac{-1}{-1}\right], x$	x ∈ [−1,1] x = 0] – {0}			
	S. Codes	f(x) =	(0	,	$\mathbf{X} = 0$		4.	At least one of	condition in LMVT is not satisfied.

	(2) 1,2 (3) 3,4 (4) 3,4	4	3,4 1,2 1,2	1,2 3,4 1,2	3,4 1,2 3,4		-
Section	on (C) : O	NE OR MO	ORE THAN	ONE OP	TIONS CORF	RECT	
C-1.			equation, tar (2) $\left(2\pi, \frac{5\pi}{2}\right)$		ies in (3) $\left(\pi, \frac{3\pi}{2}\right)$	$(4)\left(\frac{3\pi}{2},\ 2\pi\right)$	
C-2.	(1) f(x) is ir	$3x^2 + 12x - 1$, 37 - x, ncreasing in bes not exist		, then		tinuous in [– 1, 3] e maximum value at x = 2.	
C-3.⊉	(1) h is inc	reasing whe	$+(f(x))^{3} \forall x$ never f is increased and the function of th	easing		ising whenever f is decreasing an be said in general	
C-4.№	Let $f(x) = \frac{1}{2}$ (1) 40 e^{-2}	≪e ^{-x} / ₂₀ , then > 60e ⁻³	$(2)^{5e^{\frac{-1}{4}}} > 4$	$e^{\frac{-1}{5}}$	(3) $5e^{\frac{-1}{4}} < 4e^{\frac{-1}{4}}$	$(4) 40e^{-2} < 60e^{-3}$	
C-5.	at x = 0, th (1) the dist (2) f(x) is ir (3) f(x) has	en ance betwee	en (–1, 2) and ∵x ∈ [1, 2 √5) a at x = 1	(a, f(a)), w		(2) = 18, f(1) = – 1 and f'(x) has local mi e point of local minima is $2\sqrt{5}$.	nima
C-6. ⊾	Which of the following are not true for polynomial function $y = f(x)$ of degree 5, for $a \in R$. (1) If $f'(a) = 0$, $f''(a) = 0$, $f''(a) = 0$ and $f^{ \vee }(a) > 0$ then $f(x)$ has local minima at $x = a$. (2) If $f'(a) = 0$, $f''(a) = 0$ and $f''(a) > 0$ then $f(x)$ has local minima at $x = a$. (3) If $f'(a) = 0$, $f''(a) = 0$ and $f''(a) < 0$, then $f(x)$ has local maxima at $x = a$. (4) If $f'(a) = 0$, $f''(a) = 0$ and $f'''(a) > 0$, then $f(x)$ is increasing at $x = a$.						
C-7.⊾	open recta of remove	ngular box b	y folding after	removing	squares of equa	engths in the ratio 8 : 15 is converted int al area from all four corners. If the total n volume. The lengths of the sides of (4) 60	area
C-8.è	Let f, g : [- values of f		e continuous points –1, 0 a			differentiable on the interval (-1, 2). Le	it the

	x = -1	x = 0	x = 2
f(x)	3	6	0
g(x)	0	1	-1

In each of the intervals (-1, 0) and (0, 2) the function (f - 3g)" never vanishes. Then the correct statement(s) is (are)

(1) f'(x) - 3g'(x) = 0 has exactly three solutions in (-1, 0) \cup (0, 2)

(2) f'(x) - 3g'(x) = 0 has exactly one solution in (-1, 0)

(3) f'(x) - 3g'(x) = 0 has exactly one solution in (0, 2) (4) f'(x) - 3g'(x) = 0 has exactly two solutions in (-1, 0) and exactly two solutions in (0, 2) Exercise-3 Marked Questions may have for Revision Questions. Marked Questions may have more than one correct option. PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS) The function $f(x) = \overline{2}$ 1. × has a local minimum at [AIEEE 2006 (3, -1), 120] (1) x = -2(2) x = 0(3) x = 1(4) x = 2A value of c for which the conclusion of Mean Value Theorem holds for the function $f(x) = \log_{ex} x$ on the 2. interval [1, 3] is [AIEEE 2007(3, -1), 120] 1 (1) 2 log3e (2) 2 loge 3 (3) log3e (4) loge 3 3. The function $f(x) = \tan_{-1} (\sin x + \cos x)$ is an increasing function in [AIEEE 2007(3, -1), 120] (1) $(\pi/4, \pi/2)$ (2) $(-\pi/2, \pi/4)$ (3) (0, $\pi/2$) (4) $(-\pi/2, \pi/2)$ 4.🖎 Suppose the cubic $x^3 - px + q = 0$ has three distinct real roots where p > 0 and q > 0. Then, which one of the following holds ? [AIEEE 2008(3, -1), 105] (1) Minima at $\sqrt[1]{3}$ and maxima at – ٧з (2) Minima at $-\sqrt{3}$ and maxima at $\sqrt{3}$ (3) Minima at both $\sqrt{\frac{p}{3}}$ and – $\sqrt{\frac{p}{3}}$ (4) Maxima at both and -5. Given $P(x) = x^4 + ax^3 + bx^2 + cx + d$ such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] [AIEEE 2009(8, -2), 144] (1) P (-1) is the minimum and P(1) is the maximum of P (2) P (-1) is not minimum but P(1) is the maximum of P (3) P (-1) is the minimum and P(1) is not the maximum of P (4) neither P (-1) is the minimum nor P(1) is the maximum of P The shortest distance between the line y - x = 1 and the curve $x = y_2$ is [AIEEE 2009(4, -1), 144] 6. 3√2 2√3 3√2 8 8 (1) (2) (3) (4)7. Let $f : \mathbf{R} \rightarrow \mathbf{R}$ be defined by [AIEEE 2010(8, -2), 144] $\left[k-2x, if\right]$ x ≤ −1 |2x+3|, if x > -1f(x) =If f has a local minimum at x = -1, then a possible value of k is 2 (1) 0 (3) - 1(4) 1 Let f : $\mathbf{R} \rightarrow \mathbf{R}$ be a continuous function defined by $f(x) = e^{x} + 2e^{-x}$ [AIEEE 8. 2010(8, -2), 144] **Statement -1 :** f(c) = 3, for some $c \in \mathbb{R}$. **Statement -2**: $0 < f(x) \le 2\sqrt{2}$, for all $x \in \mathbb{R}$. (1) Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement -1.

	(3) Statement -1 is fa	ie, Statement-2 is false alse, Statement -2 is tr rue, Statement -2 is tru	ue.	ect explanation for Statement-1.						
			4							
9.	The equation of the ta	angent to the curve y =	$x + \overline{x^2}$, that is parallel	to the x-axis, is [AIEEE 2010 (4, –1), 144]						
	(1) y = 1	(2) y = 2	(3) y = 3	(4) $y = 0$						
10.	Let f be a function defined by - [AIEEE 2011 II(4, -1), 120] $\begin{cases} \frac{\tan x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ f(x) = f(x) = Statement - 1 : x = 0 is point of minima of f Statement - 2 : f'(0) = 0. (1) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for statement-1. (2) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for statement-1 (3) Statement-1 is true, statement-2 is true.									
11.		between line y – x = 1	l and curve x = y² is :	[AIEEE 2011 (4, –1), 120]						
	(1) $\frac{\sqrt{3}}{4}$	$\frac{3\sqrt{2}}{(2)}$	(3) $\frac{8}{3\sqrt{2}}$	(4) $\frac{4}{\sqrt{3}}$						
40										
12.	to escape at the rate	of 72π cubic meters decreases 49 minutes	per minute, then the rat	If a leak in the balloon causes the gas te (in meters per minute) at which the is : [AIEEE 2012(4, -1), 120] $\frac{9}{2}$ (4) $\frac{9}{2}$						
13.	Let a, $b \in R$ be such t	hat the function f giver	h by $f(x) = l n x + bx^2 + a$	ax, x ≠ 0 has extreme values at						
	Statement-2 : a = 2 (1) Statement-1 is fals (2) Statement-1 is tru (3) Statement-1 is tru	e, statement-2 is true;	statement-2 is a correct statement-2 is not a cor	[AIEEE 2012 (4, -1), 120] explanation for Statement-1. frect explanation for Statement-1.						
14.	The real number k for	which the equation, 2	$x^{3} + 3x + k = 0$ has two c	distinct real roots in [0, 1]						
	(1) lies between 1 and(3) lies between -1 and		(2) lies between 2(4) does not exist.							
15.	0.10 1			1), g(0) = 0 and f(1) = 6, then for some EE(Main) 2014, (4, - 1), 120] (4) 2f'(c) = 3g'(c)						
16.	If $x = -1$ and $x = 2$ are	e extreme points of f(x)	$= \alpha \log x + \beta x^2 + x$ then							
	1	1	[J	EE(Main) 2014, (4, –1), 120]						
	(1) $\alpha = 2. \beta = \frac{-\frac{1}{2}}{2}$	(2) $\alpha = 2$, $\beta = \frac{1}{2}$	(3) a = -6	$\beta = \frac{1}{2}$ (4) $\alpha = -6, \beta = -\frac{1}{2}$						
17.	A wire of length 2 u	units is cut into two p	parts which are bent re he sum of the areas of t	espectively to form a square of side the square and the circle so formed is EE(Main) 2016, (4, – 1), 120]						
_	(1) $(4 - \pi) x = \pi r$	(2) x = 2r	(3) 2x = r	(4) $2x = (\pi + 4) r$						

18.	Consider $f(x) = \tan^{-1} \left(\frac{1}{2} \right)$	$\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in \left(0, \frac{\pi}{2}\right).$	A normal to y = f(x) at x [JEE	$\frac{\pi}{6}$ also passes through the point : (Main) 2016, (4, – 1), 120]
	$(1)^{\left(0,\frac{2\pi}{3}\right)}$	(2) $\left(\frac{\pi}{6}, 0\right)$	(3) $\left(\frac{\pi}{4}, 0\right)$	(4) (0, 0)
19.		e is available for fencing m) of the flower-bed, is :		form of a circular sector. Then the (Main) 2017, (4, – 1), 120]
	(1) 12.5	(2) 10	(3) 25	(4) 30
20.	The normal to the curve through the point :	y(x - 2)(x - 3) = x + 6		e curve intersects the y-axis passes (Main) 2017, (4, – 1), 120]
	$(1)^{\left(-\frac{1}{2},-\frac{1}{2}\right)}$	$(2)^{\left(\frac{1}{2},\frac{1}{2}\right)}$	$(3)^{\left(\frac{1}{2},-\frac{1}{3}\right)}$	$(4)\left(\frac{1}{2},\frac{1}{3}\right)$
21.	The radius of a circle, I	having minimum area, wł	nich touches the curve	$y = 4 - x^2$ and the lines, $y = x $ is
			[JEE	(Main) 2017, (4, – 1), 120]
	(1) 2 $(\sqrt{2} + 1)$	(2) 2 $(\sqrt{2} - 1)$	(3) $4(\sqrt{2}-1)$	(4) $4(\sqrt{2}+1)$
22.	If the curves $y^2 = 6x$, 9	x ² + by ² = 16 intersect ea	ch other at right angels	s , then the value of b is :
			[JEE	(Main) 2018, (4, – 1), 120]
		9		7
	(1) 4	(2) $\frac{9}{2}$	(3) 6	(4) $\frac{7}{2}$
	1	1	f(x)	
23.	Let $f(x) = x^2 + \overline{x^2}$ and g is :	$g(x) = x - \overline{x}, x \in \mathbb{R} - \{-1\}$, 0, 1}. If $h(x) = \overline{g(x)}$, t [JEE	hen the local minimum value of h(x) (Main) 2018, (4, – 1), 120]
	$(1) - 2\sqrt{2}$	(2) $2\sqrt{2}$	(3) 3	(4) - 3

F	PART - I : JEE (A	ADVANCED)/IIT-	JEE PROBL	EMS (PREVIOUS YEARS)
1.	,	curve $y_3 + 3x_2 = 12y$ wher	e the tangent is v	[IIT-JEE-2002, Scr.(3, -1) /90]
	$(A)\left(\pm\frac{4}{\sqrt{3}}, -2\right)$	()	(C) (0, 0)	(D) $\left(\pm\frac{4}{\sqrt{3}}, 2\right)$
2.		est interval in which the fu		[↓] sin ³ x is increasing is [IIT-JEE-2002, Scr.(3, –1) /90]
	(A) $\frac{\pi}{3}$	(B) ^π / ₂	(C) $\frac{3\pi}{2}$	(D) π
3.				[IIT-JEE-2003, Scr.(3, –1) /84]
	f(x) = $\begin{cases} \frac{1}{2} - x \\ \left(\frac{1}{2} - x\right)^2 \end{cases}$ (A) (C) f(x) = x x	$x \ge \frac{1}{2}$	$f(x) = \begin{cases} \frac{\sin x}{x} \\ (B) \\ (D) f(x) = x \end{cases}$	$\frac{nx}{x}, x \neq 0$ $1, x = 0$
4.		nd strictly increasing in a		'0', then
	$\lim_{x \to 0} \frac{f(x^2) - f(x)}{f(x) - f(0)} =$			[IIT-JEE-2004, Scr.(3, –1) /84]
	(A) 0	(B) 1	(C) – 1	(D) 2
5.	.,			o f in [0, 1] , then value of α can be [IIT-JEE-2004, Scr.(3, –1) /84]
6.	(A) -2	(B) -1 + d and 0 < b ² < c, then i	(C) 0	(D) 1/2 [IIT-JEE-2004, Scr.(3, –1) /84]
0.	(A) f(x) is a strictly in (C) f(x) is a strictly d	creasing function	(B) f(x) has a (D) f(x) is bou	local maxima
7.	The tangent to the c and $(c + 1, e^{c+1})$ (A) on the left of x = (C) at no point		point (c, e ^c) inter (B) on the righ (D) at all point	
8.	Let the function g : ($-\infty, \infty$ $\rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)_{\text{be g}}$	iven by g(u) = 2 ta	an ⁻¹ (e ^u) – ^π /2 . Then, g is [IIT-JEE 2008, Paper-2, (3, −1)/ 82]
	(B) odd and is strictl (C) odd and is strictl	ly increasing in (0, ∞) y decreasing in $(-\infty, ∞)$ y increasing in $(-\infty, ∞)$		
	(D) heither even hor	odd, but is strictly increas	sing in (−∞, ∞)	$(2+x)^3$ 2 - x - 1
9.ເ⊾	The total number of	local maxima and local m		tion f(x) = $\begin{cases} (2+x)^3 & , & -3 < x \le -1 \\ x^{2/3} & , & -1 < x < 2 \\ EE 2008, Paper-1, (3, -1)/82 \end{bmatrix}$ is
	(A) 0	(B) 1	(C) 2	(D) 3
10.	The number of point	s in (– ∞ , ∞), for which x^2		
	(A) 6	(B) 4	(C) 2	ced) 2013, Paper-1, (2, 0)/60] (D) 0

11. If $f: R \rightarrow R$ is a twice differentiable function such that f''(x) > 0 for all $x \in R$, and $f^{\left(\frac{1}{2}\right)} = \frac{1}{2}$, f(1) = 1, then **[JEE(Advanced) 2017, Paper-2,(3, -1)/61]**

(A) $f'(1) \le 0$ (B) f'(1) > 1 (C) $0 < f'(1) \le \frac{1}{2}$ (D) $\frac{1}{2} < f'(1) \le 1$

Answers

E

								# 4					
						EXER	CISE	#1					
Secti	on (A)	:											
A-1.	(3)	A-2.	(4)	A-3.	(1)	A-4.	(3)	A-5.	(3)	A-6.	(4)	A-7.	(2)
A-8.	(1)	A-9.	(4)	A-10.	(1)	A-11.	(2)	A-12.	(3)				
Secti	on(B)	:											
B-1.	(4)	B-2.	(4)	B-3.	(3)	B-4.	(2)	B-5.	(2)	B-6.	(3)	B-7.	(3)
B-8.	(2)	B-9.	(2)	B-10.	(1)	B-11.	(3)						
Secti	on(C)	:											
C-1.	(2)	C-2.	(3)	C-3.	(4)	C-4.	(1)	C-5.	(3)	C-6.	(4)	C-7.	(1)
C-8.	(2)	C-9.	(3)	C-10.	(1)	C-11.	(4)	C-12.	(3)	C-13.	(4)	C-14.	(2)
C-15.	(1)	C-16.	(2)	C-17.	(1)	C-18.	(3)	C-19.	(1)	C-20.	(4)		
Secti	on(D)	:											
D-1.	(1)	D-2.	(2)	D-3.	(1)	D-4.	(3)	D-5.	(2)	D-6.	(4)	D-7.	(2)
D-8.	(1)	D-9.	(3)	D-10.	(2)	D-11.	(3)	D-12.	(4)	D-13.	(2)	D-14.	(4)
D-15.	(4)	D-16.	(4)										
Secti	on(E)	:											
E-1.	(3)	E-2.	(1)	E-3.	(1)	E-4.	(2)	E-5.	(4)	E-6.	(4)	E-7.	(3)
E-8.	(1)	E-9.	(4)										
Secti	on(F) :	:											
F-1.	(4)	F-2.	(1)	F-3.	(3)	F-4.	(4)	F-5.	(1)				
Secti	on(G)	:											
G-1.	(2)	G-2.	(1)	G-3.	(4)	G-4.	(2)						
Secti	on(H)	:											
H-1.	(3)	H-2.	(2)	H-3.	(4)	H-4.	(2)	H-5.	(2)	H-6.	(2)	H-7.	(1)
H-8.	(3)	H-9.	(2)										
						EXER	CISE	# 2					
							RT-1	<u> </u>					
1.	(4)	2.	(1)	3.	(3)	4.	(2)	5.	(3)	6.	(2)	7.	(3)
8.	(2)	9.	(3)	10.	(4)	11.	(4)	12.	(3)	13.	(4)	14.	(3)
15.	(1)	16.	(3)	17.	(4)	18.	(4)	19.	(1)	20.	(3)	21.	(1)
22.	(1)	23.	(2)	24.	(3)	25.	(3)	26.	(4)	27.	(2)	28.	(2)
29.	(4)	30.	(1)	31.	(4)	32.	(1)	33.	(3)	34.	(2)	35.	(3)

						PA	ART -II						
Sect	ion (A)	:											
A-1.	(1)	A-2.	(2)	A-3.	(1)	A-4.	(1)	A-5.	(3)				
Section (B) :													
B-1.	(1)	B-2.	(1)										
Sect	ion (C)	:											
C-1.	(2,3)	C-2.	(1,2,3	3,4)	C-3.	(1,3)	C-4.	(1,2)	C-5.	(2,3)	C-6.	(2,3)	
C-7.	(1,3)	C-8.	(2, 3)										
						EXER	CISE	# 3					
						P/	ART-I						
1.	(4)	2.	(1)	3.	(2)	4.	(1)	5.	(2)	6.	(1)	7.	(3)
8.	(4)	9.	(3)	10.	(2)	11.	(2)	12.	(3)	13.	(2)	14.	(4)
15.	(2)	16.	(1)	17.	(2)	18.	(1)	19.	(3)	20.	(2)	21.	(3)
22.	(2)	23.	(2)										
						PA	ART - II						
1.	(D)	2.	(A)	3.	(A)	4.	(C)	5.	(D)	6.	(A)	7.	(A)
8.	(C)	9.	(C)	10.	(C)	11.	(B)						

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Max. Time : 1 Hr.

1

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- **3.** Only one choice is correct **1 mark** will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1

- 1. Number of tangents of curve $y = 4x^3-2x^5$ which passes through origin is (1) 1 (2) 2 (3) 3 (4) 0
- 2. Value of p for which length of subtangent and subnormal is same for the curve $y = e^{px} + px$ at (0,1) is

	(1) ± 1	(2) ± 2	(3) $\pm \frac{1}{3}$	$(4) \pm \frac{1}{2}$
	$\frac{x^2}{x^2} + \frac{y^2}{y^2} =$	1 and y ³ = 16x cut orthog	3	a ²
3.		and $y^3 = 16x$ cut orthogonal	gonally then values of	2 _{is}
	(1) $\frac{4}{3}$	(2) 4	(3) 2	(4) 1
4.		f an isosceles triangle w in area of triangle when		lecreasing at the rate of 2 cm / s. equal to base is
	(1) –15 $\sqrt{3}$ cm ² /s	(2) –10 $\sqrt{3}$ cm ² /s	(3) –20 $\sqrt{3}$ cm ² /s	(4) $-5\sqrt{3}$ cm ² /s
5.	If x + 4y = 14 is a norm (1) 35	al to the curve $y^2 = \alpha x^3 -$ (2) 53	β at (2,3) then the value (3) 9	e of $\alpha^2 + \beta^2$ is (4) 45
6.		ferentiable for $0 \le x \le 1$ s that f'(c) = 2g'(c) then g((2) -1	1) =	0, f(1) = 6. Let there exists a real(4) 3
7.	The least value of k for (1) – 16	which $f(x) = x^3 + x^2 + kx + (2) -5$	5 is an increasing functi (3) –4	on ∀ x∈[1,2] is (4) –6
8.		continuous function defi (2) $\forall x_1 > x_2$ then solution (2) [1, 4]	set of $f(g(\alpha^2 - 2\alpha)) > f(g(\alpha^2 - 2\alpha))$	
9.	If f(x) and g(x) = f(x) $\sqrt{1}$	$\frac{\overline{(1-2(f(x))^2)}}{(2) f(x) \le \frac{-1}{2}}$ are strictly in	creasing function $\forall x \in F$ $\underline{1} \qquad \underline{1}$	R then
10.		$4x^{2} + 3y^{2} = 12$ in first q maximum then value of x^{2}		rea enclosed by the lines $y = x$, y

	(1) $\frac{5}{2}$	(2) 4	(3) $\frac{7}{2}$	(4) 5
				$< x < \frac{\pi}{2}$ then g(x) is increasing in
1.			$(\tan^2 x - 2 \tan x + 4)$ for 0	< x < 2 then g(x) is increasing in
	(1) $\left(0,\frac{\pi}{4}\right)$	(2) $\left(\frac{\pi}{6},\frac{\pi}{3}\right)$	$(3)^{\left(0,\frac{\pi}{3}\right)}$	$(4) \left(\frac{\pi}{4},\frac{\pi}{2}\right)$
2.	If $4x^4 + 9y^4 = C^6$ then	the maximum value of	xy is	- 1
	(1) $\frac{C^2}{2\sqrt{3}}$	(2) $\frac{C^3}{2\sqrt{3}}$	(3) $\frac{C^2}{3\sqrt{2}}$	(4) $\frac{C^{3.}}{3\sqrt{2}}$
	(1) 2√3	(2) Z√3	(3) 3√2	(4) 3√2
	<u>b</u>			
3.		R + where $a > 0$ and $b =$		
	(1) 27ab² ≥ 4c³	(2) $27ab^3 \ge 4c^3$	(3) $27a^2b^2 \ge 4c^3$	$(4) 27a^3b \ge 4c^3$
4.	The angle at which the	ne curve y = ke ^{kx} interse	ct y–axis is	
	t = -1/(1-2)	-1/1/2	(3) $\sin^{-1} \frac{1}{\sqrt{1+k^4}}$	(4) $\sec^{-1}\sqrt{1+k^4}$
	(1) ^{tan⁻¹(k²)}	(2) $\cot^{-1}(k^2)$	(3) $\sqrt{1+k^4}$	(4) $\sec^{-1}\sqrt{1+k^4}$
_		$-\frac{\pi}{2}$	n value of (tanA. tanB) is	
5.	If $A > 0$, $B > 0$ and A		n value of (tanA. tanB) is 1	3
	(1) 1	(2) $\frac{1}{2}$	(3) 3	(4) $\sqrt{3}$
•				
6.	then value of $4\alpha^2 + \beta^2$		origin to the tangent an	d normal to the curve $x^{2/3} + y^{2/3} = 6$
	(1) 25	(2) 21	(3) 31	(4) 36
7.	The distance of the p	point on $y = x^4 + 3x^2 + 2x^2$	which is nearest to the	line $y = 2x - 1$ is
	_4	3	(3) $\frac{2}{\sqrt{5}}$	1
	(1) √5	(2) $\frac{3}{\sqrt{5}}$	(3) √5	(4) $\sqrt{5}$
8.	If x and y are two par	rts of 8 such that sum of	their cubes is least poss	sible then value of ab is
	(1) 4	(2) 8	(3) 12	(4) 16
	3	, x = 0		
	$\left\{-x^2+3x+a\right\}$	a ,0 < x < 1		
9.	$ \lim_{(A) \to a} f(x) = \begin{cases} 3 \\ -x^2 + 3x + a \\ mx + b \end{cases} $	$,1 \le x \le 2$ satisfy the la	agrange's theorem then	value of (a+b) m is
	(1) 7	(2) 9	(3) 5	(4) 8
20.	value of f(2) is	tial $y = f(x)$ touches the	line $y = x$ at $x = 1$ and	passes through the point (-1,0) th
	(1) $\frac{5}{4}$	(2) $\frac{7}{4}$	(3) $\frac{9}{4}$	1
				(4) $\frac{1}{4}$
				$\frac{\alpha_1}{\alpha_1} + \frac{\beta_1}{\alpha_1}$
21.	If tangent at (α,β) to	the curve $x^3 + y^3 = c^3$ me	eets curve again in $(\alpha_1,\beta$	β_1) then $\alpha \beta =$
	(1) – 1	(2) 1	eets curve again in (α ₁ ,β (3) 0	(4) 2
		х		
22.	The interval in which	$f(x) = \frac{lnx}{lnx}$ is decreasing	g is	

Application of Derivative

	(1) (e,∞)	(2) (–∞,e)	(3) (0, e)	(4) (0, 3)
3.	The values of a for v have a positive point			(20)
	(1) (–∞,–3)	$(2)\left(3,\frac{29}{7}\right)$	(2) ($(4) (-\infty, -3) \cup \qquad \left(3, \frac{29}{7}\right)$
4.		f origin from the curve $5x^2$	(3) (-∞,-3) ∪ (3,∞) +5y²–6xy= 4 is	(4) (−∞,−3)0
	_	(2) $\frac{1}{\sqrt{2}}$		
	(1) \sqrt{2}	(2) √2	(3) 1	(4) 0
5.	A long wire of length	ו ℓ cm is bent to form a tr	iangle with one of its an	gle as 60° then maximum area
	can be			
	ℓ ²			ℓ^2
	(1) $\overline{4\sqrt{3}}$ sq.cm	(2) ^{ℓ²} 12√3 sq. cm	(3) $\overline{3\sqrt{3}}$ sq. cm	(4) ³ sq.cm
		$e^{\frac{-\pi}{2}} < \theta < \frac{\pi}{2}$		
6.	Which relation is true	e for $\frac{1}{2}$		
	(1) cos(ℓ nθ) < ℓn (c	osθ)	(2) cos(ℓnθ) > ℓn (co	osθ)
	(3) $\cos(\ell n \theta) = \ell n$ (c)	cosθ)	(4) none of these	
7.	Let f and g be increa	asing and decreasing func	tions respectively from	
	[0,∞) to [0,∞) . Let h((x) = f(g(x), h(0) = 0 then h	n(x) – h(1) is	
	(1) always zero	(2) always neagtive	(3) always positive	(4) increasing
3.	A point on the curve then a+b =	$\Rightarrow y = (x-2)^2$ at which the	tangent is parallel to the	e chord joining (2,0) & (4,4) is (a
	(1) 3	(2) 4	(3) 1	(4) 5
				$\frac{x^2}{16} + \frac{y^2}{9} = 1$ with its vertex at a
9.	The maximum area end of major axis is	of the isosceles triangle	inscribed in the ellipse	$\frac{16}{16} + \frac{10}{9} = 1$ with its vertex at
	··· 8 /2	0 /2	10 /2	$(4) \frac{3\sqrt{3}}{4}$
	(1) ⁸ √3	(2) ^{9√3}	(3) ¹⁰ √3	(4) 4
).		lue of $f(5.001)$ where $f(x) =$		(4) 25 205
	(1) – 34.995	(2) 34.995	(3) –35.995	(4) 35.995
		Practice Test (JEE-Main Patter	n)

Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

		PART - II : PRA	CTICE QUESTIC	ONS					
	-	have for Revision Quest have more than one corr							
1.ເ▲	-	drawn from the point (-	e point (-1/2, 0) to the curve $y = e^{(x)}$. (Here { } denotes fraction						
	function). (1) 2	(2) 1	(3) 3	(4) 4					
2.	If $f(x) = xe^{x(1-x)}$, then								
	(1) increasing on	$\begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}$	(2) decreasing on R	1]					
	(3) increasing on R		(4) decreasing on $\left[-\right]$	$\left[\frac{1}{2}, 1\right]$					
3.	The length of a long	est interval in which the f							
	(1) $\frac{\pi}{3}$	(2) ^{$\frac{\pi}{2}$}	(3) $\frac{3\pi}{2}$	(4) π					
4.	Let $f(x) = (1 + b^2)x^2$			x). As b varies, the range of m(b) is					
	(1) [0, 1]	$(2) \left(0, \frac{1}{2} \right]$	$\begin{bmatrix} \frac{1}{2}, & 1 \end{bmatrix}$	(4) (0, 1]					
5.	If f(x) be a twice different difference (1) f''(x) = 2 $\forall x$ (3) f''(x) = 3 $\forall x \in (2)$	∈ [1, 3]	that $f(x) = x^2$ for $x = 1, 2, 3$, then] (2) $f''(x) = 2$ for some $x \in (1, 3)$ (4) $f''(x) = f'(x)$ for $x \in (2, 3)$						
6.	[0, 1] by $f(x) = e^{x^2}$ - the absolute maxim	al-valued functions defined + e^{-x^2} , g(x) = $xe^{x^2} + e^{-x^2}$ um of f, g and h on [0, 1], (2) a = c and a ≠ b	and $h(x) = x^2 e^{x^2} + e^{-x^2}$ then	² . If a, b and c denote, respectively,					
_									
7.	If $f(x) = x^{\alpha} \ln x$ and $f(x) = (1) -2$	0) = 0, If Rolle's theorem (2) –1	(3) 0	1] , then value of α can be ;fn (4) 1/2					
8.	$\int_{10}^{10} P(x) = 51x^{101} - 23$ (1) (45, 46)	323x ¹⁰⁰ - 45x + 1035 , thei (2) (451/100, 46) (3) (4		e root in 45, 461/100)					
10*.	The function f(x) = 2	x + x + 2 - x + 2 - 2	x has a local minimum c	or a local maximum at x =					
	(1) – 2	(2) $\frac{-2}{3}$	(3) 2	(4) $\frac{2}{3}$					
11*.	Let f: (0, ∞) → R be (1) f(x) is monotonic		. Then						

= 0, for all x ∈ (0, ∞) (4) f(2^x) is an odd function of x on R COMPREHENSION Comprehension #1 (Q.12 to 14) If a continuous function f defined on the real line R, assumes positive and negative values in R then the equation f(x) = 0 has a root in **R**. For example, if it is known that a continuous function f on **R** is positive at some point and its minimum value is negative then the equation f(x) = 0 has a root in **R**. Consider $f(x) = ke^{x} - x$ for all real x where k is a real constant. 12. The line y = x meets $y = ke^{x}$ for $k \le 0$ at (1) no point (3) two points (2) one point (4) more than two points 13. The positive value of k for which $ke^{x} - x = 0$ has only one root is 1 (1) e (2) 1 (3) e (4) loge 2 14. For k > 0, the set of all values of k for which $ke^{x} - x = 0$ has two distinct roots is (2) $\left(\frac{1}{e}, 1\right)$ (3) $\left(\frac{1}{e}, \infty\right)$ 0. (4)(0,1)Comprehension # 2 (Q.15 to 16) Let f : $[0, 1] \rightarrow R$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0) = f(1) = 0 and satisfies $f''(x) - 2f'(x) + f(x) \ge e^x$, $x \in [0, 1]$. Which of the following is true for 0 < x < 1? 15. Which of the following is 1: (1) $0 < f(x) < \infty$ (2) $-\frac{1}{2} < f(x) < \frac{1}{2}$ (3) -1 < f(x) < 1 (4) $-\infty < f(x) < 0$ $\frac{1}{2}$ If the function $e_{-x} f(x)$ assumes its minimum in the interval [0, 1] at $x = \frac{1}{4}$, which of the following is true ? 16. (1) f'(x) < f(x), $\frac{1}{4} < x < \frac{3}{4}$ (2) $f'(x) > f(x), 0 < x < \overline{4}$ (4) f'(x) < f(x), $\frac{3}{4} < x < 1$ (3) $f'(x) < f(x), 0 < x < \frac{1}{4}$ **DIRECTIONS: (Q. 17)** Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct. (1) Both the statements are true. (2) Statement-I is true, but Statement-II is false. (3) Statement-I is false, but Statement-II is true. (4) Both the statements are false. Statement 1 : The curves $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{1+a^2} + \frac{y^2}{1-b^2} = 1$ are orthogonal, for $b \in (-1,1)$. 17. **Statement 2**: $ax^2 + by^2 = 1$ and $Ax^2 + By^2 = 1$ are orthogonal then ab(A - B) = AB(a - b).

		SP /	Ansv	vers									_
						-							
1.	(3)	2.	(4)	3.	(3)	4.	ART - I (2)	5.	(2)	6.	(4)	7.	(2)
8.	(1)	9.	(3)	10.	(2)	11.	(4)	12.	(2)	13.	(1)	14.	(2)
15.	(3)	16.	(4)	17.	(4)	18.	(4)	19.	(1)	20.	(3)	21.	(1)
22.	(3)	23.	(4)	24.	(2)	25.	(2)	26.	(2)	27.	(1)	28.	(2)
29.	(2)	30.	(1)										
						P/	ART - II	l					
1.	(2)	2.	(1)	3.	(1)	4.	(4)	5.	(2)	6.	(4)	7.	(4)
8.	(2)	10*.	(1,2)	11*.	(1,3,4)	12.	(2)	13.	(1)	14.	(1)	15.	(4)
16.	(3)	17.	(1)										