Exercise-1

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

OBJECTIVE QUESTIONS

Section (A) : Degree and order, Formation of diferential equation

A-1.	The order and degree o (1) 2, 2	f the differential equatior (2) 2, 1	$\int_{-1}^{1} \left(\frac{d^2 y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 + y^4 = 0$ (3) 1, 2	are respectively (4) 3, 2
A-2.	The order and degree o (1) 2, 2	f the differential equatior (2) 3, 2	$\frac{\left(\frac{d^3y}{dx^3}\right)^2}{(3) 2, 3} + \frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^2$	$\int_{(4)}^{4} = y$ are respectively (4) 1, 3
			$\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{d^2y}$	
A-3.	The order and degree of (1) 2, 2	f the differential equation (2) 2, 3	$r = \frac{dx^2}{dx^2}$ are (3) 2, 1	respectively (4) 1,4
A-4.	If p and q are order and	degree of differential eq	uation $y^2 \left(\frac{d^2y}{dx^2}\right)^2 + 3x \left(\frac{d^2y}{dx^2}\right)^2$	$\left(\frac{dy}{dx}\right)^{1/3}$ + x^2y^2 = sin x, then :
	(1) p > q	(2) $\frac{p}{q} = \frac{1}{2}$	(3) p = q	(4) p < q
A-5.	The degree of the differ	ential equation $\frac{d^2y}{dx^2} = si$	$\left(x+\frac{dy}{dx}\right)$ is	
	(1) 2	(2) 3	(3) 0	(4) Not defined
A-6.	The order of the differer	ntial equation whose gen	eral solution is given by	
	$y = (C_1 + C_2) \sin (x + C_3)$ (1) 5	$(2) - C_4 e^{x+C_5}$ is (2) 4	(3) 2	(4) 3
A-7.	The order of the different (1) 1	tial equation of family of (2) 2	curves (sin a) x + (cos a) (3) 3	$y = \pi$ is (where a is parameter) (4) 4
A-8.	The order of the differen (1) 1	ntial equation of family of (2) 2	curves y ² = 4a e ^{x+b} is ((3) 3	where a, b are parameters) (4) 5
A-9.	The order of the differen	tial equation of family of	curves ℓn (ay) = be ^x + c i	s (where a, b, c are parameters)
	(1) 1	(2) 2	(3) 4	(4) 5

(where a, b, c, d are parameters)

A-10.

Differential Equation

The order of the differential equation of family of curves $y = \tan \left(\frac{\pi}{4} + ax\right) \tan \left(\frac{\pi}{4} - ax\right) + c e^{bx+d}$ is

(1) 1(2) 2(3) 3 (4) 4Degree of differential equation of family of curve $y = Ax + A^3$ is A-11. (2) two (3) one (4) four (1) three The differential equation for all the straight lines which are at a unit distance from the origin is A-12. (1) $\left(y - x \frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$ (2) $\left(y + x \frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$ (4) $\left(y + x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$ (3) $\left(y - x \frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$ The order and degree of differential equation of all tangent lines to parabola $x^2 = 4y$ is A-13. (1) 1, 2(2) 2, 2 (3) 3, 1 (4) 4, 1 A-14.If the differential equation representing the family of all circles touching x-axis at the origin is $(x^2 - y^2) \stackrel{\overline{dx}}{dx} = g(x) y$, then g(x) equals (2) $\frac{1}{2}x^2$ (3) $\frac{1}{2}x$ (1) $2x^2$ (4) 2x If differential equation of family of curves $y \ln |cx| = x$, where c is an arbitrary constant, is A-15. $v' = \frac{y}{x} + \phi \left(\frac{x}{y}\right)$, for some function ϕ , then ϕ (2) is equal to : $(2) -\frac{1}{4}$ (1) 4 (3) - 4(4) 4 Section (B) : Variable separable, Homogeneous equation If $dx = e^{-2y}$ and y = 0 when x = 5, the value of x for y = 3 is B-1. $e^{6} + 9$ 2 (1) e⁵ (2) e⁶ + 1 (3)(4) *l*n6 B-2. If $\phi(x) = \phi'(x)$ and $\phi(1) = 2$, then $\phi(3)$ equals $(1) e^2$ (2) 2 e² (3) 3 e² $(4) 2 e^{3}$ dy If dx = 1 + x + y + xy and y(-1) = 0, then function y is B-3. (1) $e^{(1-x)^2/2}$ (2) $e^{(1+x)^2/2} - 1$ (3) ln(1 + x) - 1 (4) 1 + xdy If y(x) is the solution of the differential equation $(x + 2) \frac{dx}{dx} = x^2 + 4x - 9$, $x \neq -2$ and y(0) = 0, then B-4. y(-4) is equal to : (1) 2(2) 0(3) - 1(4) 115 |

		dy _ x(2ℓı	nx + 1)	
B-5.	The solution of differential equ	ation $\frac{dx}{dx} = \frac{1}{\sin y}$	ycosy is -	
	(1) $y \sin y = x \ln x + c$ (2) y	$\sin y = x^2 \ell n x + c$	(3) siny = $x^2 \ell nx + c$	(4) y cosy = $x^2 \ell nx + c$
		dy		
D C	The colution of the differential	$\frac{dy}{dx}$	x = 0 $y(0) = 1$ opproached	o zoro whon y mif
D-0.	(1) $k = 0$ (2) $k = 10$	~ 0	r = 0, y(0) = 1, approaches(3) k < 0	S Zero when $X \to \infty$, if $(A) k > 0$
	(1) K = 0 (2) K2	20	(0) K < 0	(4) K 2 0
		dy	y	
B-7.	If $y(x)$ is a solution of the differ	ential equation d	x^{-} + 3y = 2, then $x \rightarrow \infty$ y((x) is equal to -
	$\frac{2}{2}$		(-) -	$\frac{3}{2}$
	(1) 3 (2) 1		(3) 0	(4) 2
	dy $\sqrt{1-y^2}$	-		
B-8.	The solution of $\frac{dx}{dx} + \sqrt{1-x^2}$	= 0 is		
	(1) $\sin^{-1} x \cdot \sin^{-1} y = C$ (2) $\sin^{-1} y = C$	$n^{-1} x = C \sin^{-1} y$	(3) $\sin^{-1} x - \sin^{-1} y = C$	(4) $\sin^{-1}x + \sin^{-1}y = C$
B-9.	The general solution of the diff	erential equation	y dy + $\sqrt{1 + y^2}$ dx = 0 re	presents a family of :
	(1) circles		(2) ellipses other than c	ircles
	(3) hyperbolas		(4) parabolas	
			dy	
B-10.	The value of $x \rightarrow \infty$ v(x) obtained	d from the differen	tial equation $\frac{dx}{dx} = v - v^2$, where v (0) = 2 is
	(1) zero (2) 1		(3) ∞	(4) 2
B_11	The conic whose differential of	$(1, y^2)$	dx = xy dy = 0 and which	passage through $(1, 0)$ is
D-11.	(1) $x^2 - y^2 = 1$ (2) $2x$	$r^2 - 3v^2 = 1$	(3) $x^2 + y^2 = 1$	(4) $x^2 - y^2 = 2$
B-12.	Solution of differential equation	n xdy – ydx = 0 re	presents :	the neurophic primiting
	(1) rectangular hyperbola(3) parabola whose vertex is a	t origin	(2) straight line passing (4) circle whose centre	through origin is at origin
		i oligili		
		dy	$\left(\frac{\mathbf{x}+\mathbf{y}}{\mathbf{x}+\mathbf{y}}\right)$ $\left(\frac{\mathbf{x}-\mathbf{x}-\mathbf{y}}{\mathbf{x}+\mathbf{y}}\right)$	· y
B-13. ⊺ł	ne general solution of the different	ential equation dx	$+\sin\left(2\right) = \sin\left(2\right)$	is
	$\left(\operatorname{cot}\frac{y}{y}\right)$		$\left(\cot \frac{y}{y}\right)$	ĸ
	(1) $ln^{(002)} + 2 \sin x = C$		(2) $ln^{(3)} + 2 \sin^{-\frac{1}{2}}$	$\overline{2} = C$
	$(, \mathbf{V})$		$(, \mathbf{V})$	
	(3) $\ln \left(\frac{\tan \frac{1}{2}}{2} \right) + 2\sin x = C$		(4) $\ln \left(\frac{\tan \frac{1}{4}}{4} \right) + 2\sin \frac{1}{4}$	- C
	(0) (1) (2) (2) (3)		(+) 211 × 7 + 2311 -	-0
		dy		
B-14.	The solution of the differential	equation $\overline{dx} = s$	in(x + y) + cos(x + y) is -	
	$\tan\left(\frac{x+y}{x+y}\right) + 1$			
	(1) $\ell n = x + \frac{1}{2}$	с	(2) ℓn (tan x) = v + c	
	$(\mathbf{x} + \mathbf{v})$			
	(2) $(n \tan \left(\frac{n+y}{2}\right) = x + c$		$(4) \ln (\cos x) = x + c$	
	$(3) \notin (a) = x + c$		$(4) \ell \Pi (COSX) = y + C$	

Differential Equation

	dy		
B-15.	The solution of the differential equation $\overline{dx} + e$ (1) tan (e ^{y-x}) + x = c	$x^{-y} + e^{y-x} = 1$ is - (2) $\tan^{-1}(e^{y-x}) + x = c$	
	(3) $\tan y = x + c$	(4) $\tan x = y + c$	
	dv 4x+	6v + 5	
D 40	$\frac{dy}{dx} = \frac{dx}{dy} + \frac{dx}{dy}$	$\frac{3}{2x+4}$	
B-16.	The solution of differential equation $dx = 0$	IS	
		$\frac{3}{9}$	
	(1) $x^2 + y^2 - xy + x - y = c$ (2)	y – 2x + ° ℓn (24y + 16	5x + 23) = c
		3	
	(3) $4xy + 3(x^2 + y^2) - 10(x + y) = c$ (4)	y + 2x + ⁸ ℓn (24y + 16	x + 23) = c
	<u>×</u> У		
B-17.	$f(x, y) = e^{x} + tan \overline{x}$ is homogeneous of degree	e	
	(1) 0 (2) 1	(3) 2	(4) 3
	. 2	- 2	
	$\frac{dy}{dt} = \frac{y^2 - y^2}{2}$	$\frac{2xy - x^2}{x^2}$	
B-18.	The equation of the curve satisfying $dx = y^2 + y^2$	$2xy - x^2$ and passing thr	ough (1, –1) is .
	(1) $x = y + c$ (2) $y = 2x + c$	(3) y = x	(4) y = -x
	$\mathbf{x}^2 + \mathbf{y}^2$		
D 40	$\frac{x^2 + y^2}{x^2 - y^2} \qquad (1) \qquad 0$	and a share of the same	
B-19.	Integral curve satisfying $y^{r} = \frac{1}{2}$, $y(1) = 2$, r	has the slope of the curve	
	5		$\frac{5}{2}$
	(1) - 3 $(2) - 1$	(3) 1	(4) 3
	$\begin{bmatrix} y \\ y \end{bmatrix}$	$v_{oin}(y)$ $\left[v_{oin}(y)\right]$	(\mathbf{y}) dv
B-20.	The solution of differential equation $\begin{bmatrix} x \cos(-x)^{-1} \\ x \sin(-x) \end{bmatrix}$	$\left[\frac{y \sin\left(\frac{x}{x}\right)}{x} \right]_{y} = \left[\frac{y \sin\left(\frac{x}{x}\right)}{x} \right]_{y}$	$\left -x \cos\left(\frac{1}{x}\right) \right _{x} \frac{1}{dx} = 0$ is -
	(\mathbf{y}) (\mathbf{y})	(\mathbf{y})	(\mathbf{y})
	(1) $v \cos \left(\frac{x}{x}\right) = c$ (2) $xv \sin \left(\frac{x}{x}\right) = c$	(3) xy cos $\left(\frac{x}{x}\right) = c$	(4) xy tan $\left(\frac{x}{x}\right) = c$
Section	on (C) : Linear differential equation, Be	ernoulli's equation	
	dv. L		
•	$\frac{dv}{dt} = \frac{k}{m}$		
C-1.	The solution of the equation $ut + 111$ $v = -g$ is		
	(4) $Ce^{\frac{k}{m}}$ K (2) $Ke^{\frac{k}{m}}$	$\frac{-\frac{k}{m}t}{k}$ $\frac{mg}{k}$	$\frac{k}{m}t$ $\frac{mg}{k}$
	(1) V = 000 - K (2) V = 0 - K 0	$(3) \vee C = C - K$	$(4) \vee C = C - K$
	dy		
C-2.	The solution of the differential equation $dx = y$	tanx – 2sinx is	
	(1) $y = \cos x + c \sec x$ (2) $y = \cos x + c$	(3) y = sinx + c	(4) $y = cosecx + c$
		dy	

C-3. The solution of the differential equation $(1 + x^2) \overrightarrow{dx} + 2xy = \cos x$ is (1) $y (1 + x^2) = c + \cos x$ (2) $y (1 + x^2) = c + \sin x$ (3) y = x + c (4) $y = \cos x + x^2$

Differential Equation

			dy	
C-4.	The solution of the diffe \underline{x}	rential equation (x + 3y ²) $dx = y, y > 0$ is	
	(1) $y = 3y + c$	(2) $x = 2y^3 + 3y^2 + c$	(3) $y = 3x^2 + c$	(4) $y = 3x + c$
C-5.	Consider the differentia $y = 4$ is :	l equation, ydx – (x + y ²)	dy = 0. If for $y = 1$, x take	es value 1, then value of x when
	(1) 64	(2) 9	(3) 16	(4) 36
C-6.	The solution of the diffe (1) $xy = c - tanx$	erential equation (1 + y + (2) xy = c – arc tanx	$x^{2}y) dx + (x + x^{3})dy = 0$ is (3) $xy = c - x$	s (4) xy = c + arc tanx
C-7.	The solution of different	tial equation $\frac{dy}{dx} = cosx(2)$	2 – ycosecx) is	
	(1) $y = \tan \frac{x}{2} + \cot \frac{x}{2}$ (3) $y = \sin x + C \csc x$	+ C	(2) $y = \sqrt{2} \frac{1}{\sqrt{2}} \sec \frac{x}{2} + \sqrt{2}$ (4) $y = \sin x - \cos x + C$	$\overline{2} \frac{x}{\cos 2} + C$
C-8.	The solution of different	tial equation $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right)$	$\frac{1}{x} = \frac{1}{y}$, x > 0 is	
	(1) $y e^{-2\sqrt{x}} + 2\sqrt{x} = C$ (3) $y e^{2\sqrt{x}} = 2e^{2\sqrt{x}} \cdot \sqrt{x}$	+ C	(2) $e^{2\sqrt{x}} + 2\sqrt{x} y = C$ (4) $y e^{2\sqrt{x}} = 2\sqrt{x} + C$	
C-9.	$\int_{1}^{1} \frac{dy}{dx} + y \tan x = \sin 2x a$ (1) -5	and y(0) = 1, then y(π) is (2) 5	equal to : (3) 1	(4) –1
C-10.	The general solution of (1) $y\sqrt{\tan x} = \cot x + C$	the differential equation, (2) y $\sqrt{\cot x}$ = tan x + C	$\sin 2x \left(\frac{dy}{dx} - \sqrt{\tan x}\right)_{-y}$ c (3) y $\sqrt{\cot x} = x + C$	= 0, is (4) y √ tan x = x + C
		dv		
C-11. ⊤	he solution of differentia	I equation $x \frac{dx}{dx} + y = x^2$	y ⁴ is	
	(1) $\frac{1}{y^3} = 3x^2 + cx^3$	(2) $3x^2 + y^3 = c$	(3) $x^2 = y^3 + c$	(4) $y^3 = x + c$
C-12. Th	ne solution of the differe	ntial equation $\frac{dy}{dx} + \frac{y}{2}\sec x =$	$\frac{\tan x}{2y}$, where $0 \le x < \frac{\pi}{2}$ a	nd y(0) = 1, is given by
	(1) $y = 1 - \frac{x}{\sec x + \tan x}$	(2) $y^2 = 1 + \frac{x}{\sec x + \tan x}$	(3) $y = 1 + \frac{x}{\sec x + \tan x}$	(4) $y^2 = 1 - \frac{x}{\sec x + \tan x}$
C-13 .Th	ne solution of differential	equation 2 $\frac{dy}{dx} = \frac{y^2 - x}{xy + y}$	is	
	(1) $y^2 = ln x + 1 + c$	·	(2) $y^2 = \ell nx + c$	
	(3) $y^2 = e^{x^2} + c$		(4) $y^2 = -(x + 1) \ell n$	x + 1 + c(x + 1) − 1

Section (D) : Exact differential equation, Geometrical and physical applications

D-1. The solution of y dx - x dy + 3x² y² e^{x²} dx = 0 is

$$\frac{x}{(1)} \frac{x}{y} + e^{x^{1}} = C$$
(2) $\frac{x}{y} - e^{x^{2}} = 0$
(3) $-\frac{x}{y} + e^{x^{2}} = C$
(4) $\frac{x}{y} + e^{x^{2}} = C$
D-2. The solution of differential equation y(x³y + e^x) dx = e^x dy is
(1) $e^{x} = x^{3}y + c$
(2) $\frac{1}{y} e^{x} = -\frac{x^{3}}{3} + c$
(3) $e^{x} = y + c$
(4) $e^{-x} = y + c$
D-3. The solution of differential equation (2y sinx dy + (y² cosx + 2x) dx = 0 is
(1) y² sinx = x² + c
(2) y² sinx = -x² + c
(3) y² = sinx + c
(4) y² = cosx + c
D-4. The solution of differential equation (2x - y + 1) dx + (2y - x - 1) dy = 0 is
(1) x² + y² - xy + x - y = c
(2) y - 2x + $\frac{3}{6}$ (n (24y + 16x + 23) = c
(3) 4xy + 3 (x² + y²) - 10 (x + y) = c
(4) x² - y² - xy + x + y = c
D-5. The solution of differential equation (2x + 3y - 5) dy + (3x + 2y - 5) dx = 0 is
(1) x² + y² - xy + x - y = c
(2) y - 2x + $\frac{3}{6}$ (n (24y + 16x + 23) = c
(3) 4xy + 3 (x² + y²) - 10 (x + y) = c
(4) x² - y² - xy + x + y = c
D-5. The solution of differential equation (x²y² - 1) dy + 2x y³ dx = 0 is
(1) x² + y² - xy + x - y = c
(2) y - 2x + $\frac{3}{6}$ (n (24y + 16x + 23) = c
(3) 4xy + 3 (x² + y²) - 10 (x + y) = c
(4) x² - y² - xy + x + y = c
D-6. The solution of the differential equation (x²y² - 1) dy + 2x y³ dx = 0 is
(1) 1 + x²y² = cx
(2) 1 + x²y² = cy
(3) y = c
(4) y = -\frac{1}{x²} + c
D-7. The solution of the differential equation ydx - (x + 2y²) dy = 0 is x = f(y). If f(-1) = 1, then f(1) is equal to :
(1) 4
(2) 3
(3) 1
(4) 2
(1) x³ = 3y³(-1 + e^{-xy})
(2) x³ = 3y³(1 - e^{-xy})
(3) x³ = 3y³(-1 + e^{xy})
(4) x³ = 3y³(1 - e^{xy})
(4) x³ = 3y³(1 - e^{xy})
D-8. The solution of the differential equation ydx - (x + 2y²) dy = 0 is x = f(y). If (x³ = 3y³(1 - e^{xy})
D-9. The solution of the differential equation y³ x - 3y² cos x) dx + (x³ cos y sin² y - 2y sin x) dy = 0 is
(1) x³ sin³ y - 3y³ sin x + C
(2) x² sin³ y - 2y² c

D-13. The equation of the curve such that the distance between the origin and the tangent at an arbitrary point is equal to the distance between the origin and the normal at the same point is

(1)
$$\sqrt{x^2 + y^2} = ce^{\pm tan^{-1}\frac{y}{x}}$$

(2) $\sqrt{x^2 - y^2} = ce^{\pm tan^{-1}\frac{y}{x}}$
(3) $-\sqrt{x^2 + y^3} = ce^{\pm tan^{-1}\frac{y}{x}}$
(4) $\sqrt{x^2 + y^2} = ce^{\pm tan\frac{y}{x}}$

D-14. The equation of the curve which is such that the portion of the axis of x cut off between the origin and tangent at any point is proportional to the ordinate of that point is, where a is constant of proportionality

(1)
$$x = y (b - a lny)$$
 (2) $lnx = by^2 + a$

(3)
$$x^2 = y (a - b \ell n y)$$
 (4) $y^2 = x (a - b \ell n y)$

Exercise-2

Marked questions may have for revision questions.

PART - I : OBJECTIVE QUESTIONS

1. Degree of differential equation
$$\left(\frac{dy}{dx}\right)^{\frac{5}{2}} - 5x \left(\frac{d^2y}{dx^2}\right)^2 + 7y = 0$$
 is
(1) 2 (2) 5 (3) 4 (4) 1
2. The order and degree of differential equation of family of circles touching y axis at origin, is
(1) 1,1 (2) 1,2 (3) 2,1 (4) 2,2
3. The order and degree of differential equation of family of normal to parabola $y^2 = 4x$ is
(1) 1,2 (2) 1,1 (3) 2, 1 (4) 1,3
4. If $\frac{dy}{dx} + \frac{2y}{x} = 0$, y (1) = 1, then y(2) =
(1) $\frac{1}{4}$ (2) 4 (3) $-\frac{1}{2}$ (4) $-\frac{1}{4}$
5. Solution of the differential equation $\frac{dy}{dx} + \frac{1+y^2}{\sqrt{1-x^2}} = 0$ is
(1) tan⁻¹ y + sin⁻¹ x = c (2) tan⁻¹ x + sin⁻¹ y = c (3) tan⁻¹ y . sin⁻¹ x = c (4) tan⁻¹ x - sin⁻¹ y = c
6. Solution of $y - \frac{xdy}{dx} = y^2 + \frac{dy}{dx}$ is
(1) (2x + 1)(1 + y) = c (2) (1 + x)(1 + y) = cx^2 (3) (x + 1) (1 - y) = cy (4) x - y + x^2y - 1 = c
7. If $(x^2 + y^2) dy = xydx$ and $y(1) = 1$ and $y(x_0) = e$, then $x_0 =$
(1) $3e$ (2) $\sqrt{2}e$ (3) $\sqrt{3}$ (4) $\sqrt{3}e$
8. The solution of $(x + y + 1) dy = dx$ is
(1) $x + y + 2 = Ce^y$ (2) $x + y + 4 = C \ln y$ (3) $\ln (x + y + 2) = Cy$ (4) $\ln (x - y + 2) = C + y$

Differential Equation

		dy						
9.	If $y(t)$ is solution of $(t + 2)$	1) $dt - ty = 1, y(0) = -1$, then y (1) =					
	<u>1</u>		1	<u>1</u>				
	(1) 4	(2) –2	(3) – 2	(4) 2				
		d	У		dy			
10.	If $y_1(x)$ is a solution of th + $f(x) y = r(x)$ is	e differential equation d	x + f(x) y = 0, then a solu	tion of differential equation	dx			
	(1) $\frac{1}{y(x)} \int y_1(x) dx$	(2) $y_1(x) = \int \frac{r(x)}{y_1(x)} dx dy$	(3) $\int r(x)y_1(x) dx$	(4) $\int (r(x))^2 y_1(x) dx$				
11.	If $y_1(x)$ and $y_2(x)$ are two	b solutions of $dx + f(x) y$	$r = r(x)$ then $y_1(x) + y_2(x)$ i	is solution of :				
	dy	dy	dy	dy				
	(1) $dx + f(x) y = 0$	(2) $dx + 2f(x) y = r(x)$	(3) $dx + f(x) y = 2 r(x)$	(4) $dx + 2f(x) y = 2r(x)$				
		dy						
12	Solution of differential a	$\frac{dy}{dx} = f^2(x)$	$\pm f(x) + f'(x) + ic$					
12.	(1) $y = f(x) + ce^{x}$	(2) $y = -f(x) + ce^{x}$	(3) $y = -f(x) + ce^{x} f(x)$	(4) $y = cf(x) + e^{x}$				
		dv						
13.	Solution of $(2x - 10y^3)$	$\frac{dy}{dx} + y = 0$ is						
	(1) $xy^2 = 2y^5 + c$	(2) $x = 10y^3 + cy^2$	(3) $x = 10y^3 + cy$	(4) $xy = 2y^5 + c$				
	dy							
14.	Solution of sin y $\overline{dx} =$ (1) secy = x + 1 + ce ^{-x}	$\cos y (1 - x \cos y)$ is (2) $\sec y = x + 1 + ce^{x}$	(3) $\cos y = x + 1 + ce^x$	(4) tan y = 1 + ce⁻×				
15.	Solution of $\sec^2 y dy +$	tan y dx = dx is						
	(1) $\cot y = e^x + 2x + c$	(2) $\sec y = x + 1 + ce^x$	(3) tan y = e ^x	(4) tan y = 1 + ce ^{-x}				
16.	If $xdy = y(dx + ydy)$, y (1)	1) = 1 and y(x ₀) = -3, the	n x ₀ =					
	1		1					
	(1) 4	(2) – 15	(3) – 2	(4) ^{V3} e				
17.	The general solution of (1) $x^4 + x^2y^2 - y^4 = c$	$\begin{array}{l} (2x^3 - xy^2) \ dx + (2y^3 - x^2) \\ (2) \ x^4 - x^2y^2 + y^4 = c \end{array}$	(3) $y = 0$ is (3) $x^4 - x^2y^2 - y^4 = c$	(4) $x^4 + x^2y^2 + y^4 = c$				
		XC	$\frac{1}{y}$ $\left(1-\frac{y}{2}\right)$					
18.	General solution of the	differential equation X^2 +	$-y^{2} + (x^{2} + y^{2}) dx =$	0 is				
	$\left(\underline{\mathbf{y}}\right)$	<u>×</u>	$\left(\underline{\mathbf{y}}\right)$	$\left(\underline{\mathbf{y}}\right)$				
	(1) x + tan ⁻¹ (x) = c	(2) $x + \tan^{-1} y = c$	(3) $x - \tan^{-1} (x) = c$	(4) $2x - 3\tan^{-1} (x) = c$				
19.	General solution of the (1) $xe^y - v^2 = c$	differential equation $e^y dx$ (2) $ve^x - x^2 = c$	$x + (xe^{y} - 2y) dy = 0$ is (3) $ve^{y} + x = c$	(4) $xe^{y} - 1 = cv^{2}$				
	PART-II: MISCELLANEOUS QUESTIONS							

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

(1) Both the statements are true. (2) Statement-I is true, but Statement-II is false.

(3) Statement-I is false, but Statement-II is true. (4) Both the statements are false.

A-1 Statement -1 : The relation $y = A \sin x + B \cos x$ can be represented by the differential equation $\frac{d^2y}{dx^2} + y = 0$

$$+ y = 0.$$

Statement -2: Solution of sec² y $\frac{dy}{dx}$ + x tan y = x² is tan y = x² - ^c e^{x²/2} + 2

A-2. Statement -1 : The solution of D.E. = $\frac{\frac{xdy}{dx} - y}{\sqrt{x^2 - y^2}}$ mx² is given by tan⁻¹ $\frac{y}{x} = \frac{mx^2}{2} + c$ Statement -2 : The solution of differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$ is $x(y + \cos x) = \sin x + c$ A-3. Statement -1 : Solution of the differential equation $y - x \frac{dy}{dx} = y^2 + \frac{dy}{dx}$ is y = c (1 - y) (x + 1) $\frac{dy}{dy} = \frac{dy}{dx} = y^2 + \frac{dy}{dx}$

Statement -2: Differential equation = $f(x) \cdot g(y)$ can be solved by separating variables. g(y) = f(x) dx

Section (B) : MATCH THE COLUMN

B-1.	Column I Sum of order and degree of differential equat	Column I	
	(A) $ \left(\frac{d^2 y}{dx^2}\right) = \left(y + \left(\frac{dy}{dx}\right)^6\right)^{\frac{1}{4}} $	(p) 7	
	(B) $ \left(\frac{d^4y}{dx^4}\right)^3 + 3\left(\frac{d^2y}{dx^2}\right)^6 + \sin x = 2\cos x $	(q) 5	
	(C) $\left(\frac{d^3y}{dx^3}\right)^{\frac{2}{3}} + 4 - 3\frac{d^2y}{dx^2} + 5\frac{dy}{dx} = 0$	(r) 3	
	(D) $\frac{dy}{dx} + y = \overline{\left(\frac{dy}{dx}\right)}$	(s) 6	
Section	on (C) : ONE OR MORE THAN ONE OPTION	SCORRECT	
C-1.	For the differential equation whose solution is $(x - h)^2$ (1) order is 2 (2) order is 3 (3) d	+ $(y - k)^2 = a^2$ (a is a constant), its legree is 2 (4) degree is 3	3
C-2.	The equation of the curve satisfying the differential eq (1) circle (2) straight line (3) p	yuation $y\left(\frac{dy}{dx}\right)^2 + (x-y)\frac{dy}{dx} - x =$ varabola (4) ellipse	0 can be a
C-3.	Which of the following equation (s) is/are linear ? (1) $\frac{dy}{dx} + \frac{y}{x} = lnx$ (2) $y\left(\frac{dy}{dx}\right) + 4x = 0$ (3) (3)	$2x + y^{3} \left(\frac{dy}{dx} \right)_{x = 3y} \left(4 \right)^{x} \left(\frac{dy}{dx} \right)^{2}_{x + y}$	$y^{3} \frac{d^{2}y}{dx^{2}} + 7 = e^{x}$
C-4.	The graph of the function $y = f(x)$ passing through the dy	point (0,1) and satisfying the diffe	erential equation

 $\frac{dy}{dx} + y \cos x = \cos x$ is such that

- (1) it is a constant function
- (3) it is neither an even nor an odd function
- (2) it is periodic

 $(4) x - 2v = \ln \left(\frac{dy}{dx}\right)$

- (4) it is continuous and differentiable for all x
- C-5. In which of the following differential equation degree is not defined ?

(1)
$$\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^2 = x \ln\left(\frac{d^2}{dx}\right)^2$$

(3) $x = \sin\left(\frac{dy}{dx} - 2y\right), |x| < 1$

- C-6. A normal is drawn at a point P(x, y) of a curve, It meets the x-axis at Q. If PQ is of constant length k. Such a curve passing through (0, k) is :
 - (1) a circle with centre (0, 0)(3) $x^2 + y^2 = k^2$
- (2) a hyperbola with eccentricity $\sqrt{2}$ (4) $x^2 - v^2 = k^2$

(2) $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x \sin\left(\frac{d^2y}{dx^2}\right)$

C-7. If y(x) satisfies the differential equation $y' - y \tan x = 2x \sec x$ and y(0) = 0, then

(1)
$$y \left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$$
 (2) $y' \left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$ (3) $y \left(\frac{\pi}{3}\right) = \frac{\pi^2}{9}$ (4) $y' \left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$

C-8. Let y(x) be a solution of the differential equation $(1 + e^x)y' + ye^x = 1$. If y(0) = 2, then which of the following statements is (are) true ? (1) y(-4) = 0

(2)
$$y(-2) = 0$$

(3) y(x) has a critical point in the interval (-1, 0) (4) y(x) has no critical point in the interval (-1, 0)

Exercise-3

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

 $\left(1+3 \quad \frac{dy}{dx}\right)^{2/3} = 4 \quad \frac{d^3y}{dx^3}$ are 1. The order and degree of the differential equation [AIEEE 2002, (4, -1), 120] $(1) \left(1, \frac{2}{3}\right)$ (2)(3,1)(3)(3,3)(4)(1,2)The solution of the equation dx^2 [AIEEE 2002, (4, -1), 120] 2. $= e_{-2x}$ is e^{-2x} (4) $\frac{1}{4} e_{-2x} + c + d$ 4 4 + cx + d(3) 4 $e_{-2x} + c_{x2} + d$ (1) (2) 3. The degree and order of the differential equation of the family of all parabolas whose axis is x-axis, are respectively [AIEEE 2003, (4, -1), 120] (1) 2, 1 (2) 1, 2 (3) 3, 2 (4) 2, 3The solution of the differential equation $(1 + y_2) + (x - e^{\tan^{-1}y}) \frac{dy}{dx} = 0$, is [AIEEE 2003, (4, -1), 120] 4. (2) $2x e^{\tan^{-1} y} = e^{2\tan^{-1} y} + k$ (1) $(x-2) = k e^{tan^{-1} y}$ (4) x $e^{2\tan^{-1} y} = e^{\tan^{-1} y} + k$ (3) $x e^{\tan^{-1} y} = \tan^{-1} v + k$ 5. The differential equation for the family of curves $x_2 + y_2 - 2ay = 0$, where a is an arbitrary constant, is

	(1) 2(x ₂ - y ₂) y' = xy	(2) 2(x ₂ + y ₂) y' = xy	(3) (x2 – y2) y' = 2xy	[AIEEE 2004, (4, -1), 120] (4) (x2 + y2) y' = 2xy
6.	The solution of the diffe	erential equation y dx + (1	x + x2y) dy = 0 is- 1	[AIEEE 2004, (4, –1), 120]
	$(1) - \overline{xy} = c$	$(2) - \overline{xy} + \ln y = c$	(3) $\overline{xy} + \ell ny = c$	(4) lny = cx
7.	The differential equation is of order and degree a (1) order 2, degree 2	n representing the family as follows- (2) order 1, degree 3	y of curves $y_2 = 2c(x + \sqrt{a})$ (3) order 1, degree 1	 ⁻), where c > 0 is a parameter , [AIEEE 2005, (4, -1), 120] (4) order 1, degree 2
8.	If $x \frac{dy}{dx} = y(\ell n y - \ell n x)$	+ 1), then the solution of	the equation is	[AIEEE 2005, (4, –1), 120]
	(1) $\ell n^{\left(\frac{x}{y}\right)} = cy$	(2) $\ell n \left(\frac{y}{x}\right) = cx$	(3) x $\ell n \left(\frac{y}{x}\right) = cy$	(4) y $\ell n \left(\frac{x}{y}\right) = cx$
9.	The differential equatio	n whose solution is Ax2	+ By2 = 1, where A and E	are arbitary constant, is of
	(1) first order and second(3) second order and f	nd degree irst degree	(2) first order and first of(4) second order and second o	legree econd degree
10.	The differential equation	n of all circles passing th	rough the origin and havi	ng their centres on the x-axis is- [AIEEE 2007, (4, –1), 120]
	dy	dy	dy	dy
			<u> </u>	<u> </u>
	(1) $x_2 = y_2 + xy dx$	(2) $x_2 = y_2 + 3xy$ dx	(3) $y_2 = x_2 + 2xy dx$	(4) $y_2 = x_2 - 2xy dx$
11*.	(1) $x_2 = y_2 + xy$ dx The normal to a curve abscissa of P, then the	(2) $x_2 = y_2 + 3xy$ dx at P(x, y) meets the x-a curve is a	(3) y ₂ = x ₂ + 2xy dx xis at G. If the distance	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120]
11*.	(1) $x_2 = y_2 + xy$ dx The normal to a curve abscissa of P, then the (1) ellipse	 (2) x2 = y2 + 3xy dx at P(x, y) meets the x-a curve is a (2) parabola 	 (3) y₂ = x₂ + 2xy dx xis at G. If the distance (3) circle 	 (4) y₂ = x₂ - 2xy dx of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola
11*.	(1) $x_2 = y_2 + xy^{-dx}$ The normal to a curve abscissa of P, then the (1) ellipse	 (2) x2 = y2 + 3xy dx at P(x, y) meets the x-a curve is a (2) parabola 	 (3) y₂ = x₂ + 2xy dx xis at G. If the distance of (3) circle 	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola
11*. 12.	 (1) x2 = y2 + xy dx The normal to a curve abscissa of P, then the (1) ellipse The solution of the difference 	(2) $x_2 = y_2 + 3xy^{-}dx$ at P(x, y) meets the x-a curve is a (2) parabola erential equation $\frac{dy}{dx} = \frac{y_2}{2}$	(3) $y_2 = x_2 + 2xy$ dx xis at G. If the distance (3) circle $\frac{x + y}{x}$ satisfying the condi	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola tion y (1) = 1 is
11*. 12.	(1) $x_2 = y_2 + xy^{-dx}$ The normal to a curve abscissa of P, then the (1) ellipse The solution of the diffe	(2) $x_2 = y_2 + 3xy^{-}dx$ at P(x, y) meets the x-a curve is a (2) parabola erential equation $\frac{dy}{dx} = \frac{y_2}{2}$ (2) $y = x \log x + x_2$	(3) $y_2 = x_2 + 2xy$ dx xis at G. If the distance of (3) circle $\frac{x + y}{x}$ satisfying the condition (3) $y = xe(x - 1)$	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola tion y (1) = 1 is [AIEEE 2008 (3, -1), 105] (4) $y = x \log x + x$
11*. 12. 13.	(1) $x_2 = y_2 + xy^{-} dx$ The normal to a curve abscissa of P, then the (1) ellipse The solution of the differ (1) $y = \log x + x$ The differential equation	(2) $x_2 = y_2 + 3xy^{-}dx$ at P(x, y) meets the x-a curve is a (2) parabola erential equation $\frac{dy}{dx} = \frac{y_2}{2}$ (2) $y = x \log x + x_2$ n of the family of circles	(3) $y_2 = x_2 + 2xy^{-}dx$ xis at G. If the distance of (3) circle $\frac{x + y}{x}$ satisfying the condition (3) $y = xe(x - 1)$ with fixed radius 5 units a	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola tion y (1) = 1 is [AIEEE 2008 (3, -1), 105] (4) $y = x \log x + x$ and centre on the line $y = 2$ is [AIEEE 2008 (3, -1), 105]
11*. 12. 13.	(1) $x_2 = y_2 + xy^{-dx}$ The normal to a curve abscissa of P, then the (1) ellipse The solution of the differ (1) $y = \log x + x$ The differential equation (1) $(x - 2)y'^2 = 25 - (y - x)^2$	(2) $x_2 = y_2 + 3xy^{-}dx$ at P(x, y) meets the x-a curve is a (2) parabola erential equation $\frac{dy}{dx} = \frac{y_2}{2}$ (2) $y = x \log x + x_2$ n of the family of circles $-2)^2$	(3) $y_2 = x_2 + 2xy^{-dx}$ xis at G. If the distance of (3) circle $(x + y)^{-x}$ satisfying the condition (3) $y = xe(x - 1)$ with fixed radius 5 units at (2) $(y - 2)y'^2 = 25 - (y - 1)^{-1}$	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola tion y (1) = 1 is [AIEEE 2008 (3, -1), 105] (4) y = x log x + x and centre on the line y = 2 is [AIEEE 2008 (3, -1), 105] - 2) ²
11*. 12. 13.	(1) $x_2 = y_2 + xy^{-dx}$ The normal to a curve abscissa of P, then the (1) ellipse The solution of the difference (1) $y = \log x + x$ The differential equation (1) $(x - 2)y'^2 = 25 - (y - (3))(y - 2)^2y'^2 = 25 - (y - (3))(y - ($	(2) $x^2 = y^2 + 3xy^2 dx^2$ at P(x, y) meets the x-a curve is a (2) parabola erential equation $\frac{dy}{dx} = \frac{y^2}{2}$ (2) $y = x \log x + x^2$ n of the family of circles $(-2)^2 = -2)^2$	(3) $y_2 = x_2 + 2xy^{-dx}$ xis at G. If the distance of (3) circle (4) $x = xe(x-1)$ with fixed radius 5 units a (2) $(y - 2)y'^2 = 25 - (y - (4))(x - 2)^2y'^2 = 25 - (y - (y - (4)))^2$	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola tion y (1) = 1 is [AIEEE 2008 (3, -1), 105] (4) y = x log x + x and centre on the line y = 2 is [AIEEE 2008 (3, -1), 105] -2) ² -2) ²
11*. 12. 13. 14.	(1) $x_2 = y_2 + xy^{-dx}$ The normal to a curve abscissa of P, then the (1) ellipse The solution of the differ (1) $y = \log x + x$ The differential equation (1) $(x - 2)y'^2 = 25 - (y - (3))(y - 2)^2y'^2 = 25 - (y)$ The differential equation constants is	(2) $x^2 = y^2 + 3xy^2 dx^2$ at P(x, y) meets the x-a curve is a (2) parabola erential equation $\frac{dy}{dx} = \frac{y^2}{2}$ (2) $y = x \log x + x^2$ n of the family of circles $(-2)^2 = -2)^2$ n which represents the f	(3) $y_2 = x_2 + 2xy^{-dx}$ xis at G. If the distance of (3) circle (3) satisfying the condition (3) $y = xe(x-1)$ with fixed radius 5 units at (2) $(y - 2)y'^2 = 25 - (y - (4))(x - 2)^2y'^2 = 25 - (y - (4))(x $	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola tion y (1) = 1 is [AIEEE 2008 (3, -1), 105] (4) y = x log x + x and centre on the line y = 2 is [AIEEE 2008 (3, -1), 105] - 2) ² - 2) ² - 2) ² (x) where c1 and c2 are arbitary [AIEEE 2009 (4, -1), 144]
11*. 12. 13. 14.	(1) $x_2 = y_2 + xy^{-dx}$ The normal to a curve abscissa of P, then the (1) ellipse The solution of the differ (1) $y = \log x + x$ The differential equation (1) $(x - 2)y'^2 = 25 - (y - (3) (y - 2)^2y'^2 = 25 - (y)^2)$ The differential equation constants is (1) $y' = y_2$	(2) $x^2 = y^2 + 3xy^{-dx}$ at P(x, y) meets the x-a curve is a (2) parabola erential equation $\frac{dy}{dx} = \frac{y^2}{2}$ (2) $y = x \log x + x^2$ n of the family of circles $(-2)^2 - 2)^2$ n which represents the f (2) $y'' = y' y$	(3) $y_2 = x_2 + 2xy^{-dx}$ xis at G. If the distance of (3) circle (3) circle (4) $y = xe(x-1)$ with fixed radius 5 units a (2) $(y - 2)y'^2 = 25 - (y - (4))(x - 2)^2y'^2 = 25 - (y - (4))(x - ($	(4) $y_2 = x_2 - 2xy dx$ of G from the origin is twice the [AIEEE 2007, (4, -1), 120] (4) hyperbola tion y (1) = 1 is [AIEEE 2008 (3, -1), 105] (4) y = x log x + x and centre on the line y = 2 is [AIEEE 2008 (3, -1), 105] - 2) ² - 2) ² - 2) ² C ₂ ^x where c1 and c2 are arbitary [AIEEE 2009 (4, -1), 144] (4) y.y'' = (y') ²

16.	Let I be the purchas	se value of an equipment a	and V(t) be the value aft dV(t)	er it has been used for t years. The					
	value V(t) depreciates at a rate given by differential equation $dt = -k(T - t)$, where $k > 0$ is a constant and T is the total life in years of the equipment. Then the scrap value V(T) of the equipment is : [AIEEE 2011, I, (4, -1), 120]								
	1	kT ²	$k(T-t)^2$						
	(1) $T^2 = \overline{k}$ dy	(2) I – ²	(3) I – <u>2</u>	(4) e ^{-kT}					
17.	If ^{dx} = y + 3 > 0 ar	nd $y(0) = 2$, then $y(\ell n 2)$ is	equal to :	[AIEEE 2011, I, (4, –1), 120]					
	(1) 7	(2) 5	(3) 13	(4) –2					
18.	The curve that pass it lying between the	ses through the point (2, 3 coordinate axes is bisected), and has the property ed by the point of contac	that the segment of any tangent to t is given by : [AIEEE 2011, II, (4, –1), 120]					
		6		$\left(\frac{\mathbf{x}}{\mathbf{y}}\right)^{\mathbf{z}}$ $\left(\frac{\mathbf{y}}{\mathbf{y}}\right)^{\mathbf{z}}$					
	(1) $2y - 3x = 0$	(2) y = x	(3) $x^2 + y^2 = 13$	$(4) \begin{pmatrix} 2 \\ + \end{pmatrix} + \begin{pmatrix} 3 \\ - \end{pmatrix} = 2$					
10	Consider the differe	ntial equation $y^2 dx + \begin{pmatrix} x - x \end{pmatrix}$	$\left(\frac{1}{y}\right)_{dy=0}$ If $y(1) = 1$ f	han x is given by :					
13.			dy = 0. If $y(1) = 1, 1$	[AIEEE 2011, II, (4, –1), 120]					
	$\underline{2} \underline{e^{\frac{1}{y}}}$	$\underline{1} \underline{e^{y}}$	$\underline{1} \underline{e^{y}}$	$\underline{1} \underline{e^{y}}$					
	(1) 4 - ^y _ e	(2)3- ^y + e	(3) 1 + ^y _ e	(4) 1- ^y + e					
20.	The population p(t) $\frac{dp(t)}{dt} = 0.5 p(t) - 4$	at time t of a certain mous 50. If p(0) = 850, then the	se species satisfies the of time at which the popul	differential equation ation becomes zero is :					
			1	[AIEEE-2012, (4, -1)/120]					
	(1) 2 ℓn 18	(2) ℓn 9	(3) [−] / ₂ ℓn 18	(4) ℓn 18					
21.	At present, a firm is	s manufacturing 2000 iten	ns. It is estimated that t	he rate of change of production P					
	w.r.t. additional num then the new level c (1) 2500	ber of workers x is given b of production of items is (2) 3000	by $\frac{dx}{dx} = 100 - \frac{12\sqrt{x}}{[Ale]}$ (3) 3500	the firm employs 25 more workers, EEE - 2013, (4, -1),360] (4) 4500					
				dp(t) 1					
22.	Let the population o – 200 . If p(0) = 100 (1) 600 – 500 e ^{t/2}	f rabbits surviving at a tim , then p(t) equals : (2) 400 – 300 e ^{-t/2}	e t be governed by the ([JEE(Main) (3) 400 – 300 e ^{t/2}	differential equation $dt = 2$ p(t) 2014, (4, - 1), 120] (4) 300 - 200 e ^{-t/2}					
			dy						
23.	Let y(x) be the solut	tion of the differential equa	al (x log x) ^{dx} + y = 2x [JE	log x, $(x \ge 1)$. Then y(e) is equal to E(Main) 2015, (4, -1), 120]					
	(1) e	(2) 0	(3) 2	(4) 2e					
24.	If a curve y = f	(x) passes through the $f(-\frac{1}{2})$	point (1, -1) and s	atisfies the differential equation,					
	y(1 + xy) dx = xdy, t	hen ⁽²⁾ is equal to	[JE	E(Main) 2016, (4, – 1), 120]					

Differential Equation

	$(1) -\frac{4}{5}$	$(2) \frac{2}{5}$	(3) ⁴ /5	$(4) - \frac{2}{5}$
25.	If $(2 + \sin x) \frac{dy}{dx} + (y + \sin x) \frac{dy}{dx}$	(1) $\cos x = 0$ and $y(0) =$	1, then $y\left(\frac{\pi}{2}\right)$ is e	qual to :
	$(1)\frac{1}{3}$	$\frac{2}{3}$	$(2) \frac{1}{3}$	[JEE(Main) 2017, (4, - 1), 120] (4) $\frac{4}{3}$
26.	Let $y = y(x)$ be the solu $\frac{dy}{dx}$	tion of the differential equation $y\left(\frac{\pi}{2}\right)$	quation $y\left(\frac{\pi}{2}\right)$	(4)
	$\sin x dx + y \cos x = 4x,$ $-\frac{8}{\pi^2} \pi^2$	$x \in (0,\pi)$. If $(2) = 0$, the $-\frac{4}{2}\pi^2$	then $\frac{4}{\pi^2}$ is equal	to [JEE(Main) 2018, (4, – 1), 120] 8 ²
P	(1) 9 ^{<i>n</i>} ART - I : JEE (AD	(2) 9 ^{<i>n</i>} VANCED) / IIT-JE	(3) ⁹ √3 [~] EE PROBLEN	$\frac{(4)^{9\sqrt{3}}}{\text{MS (PREVIOUS YEARS)}}$
	l l	<u>dy</u>		
1.	If y (t) is a solution of (1	l + t) ^{dt} − ty = 1 and y (0) = -1, then y (1)	is equal to : [IIT-JEE-2003, Scr. (3, –1), 84]
	$(A) - \frac{1}{2}$	(B) e + $\frac{1}{2}$	(C) e - ¹ / ₂	(D) ¹ / ₂
2.	If $y = y(x)$ and $\left(\frac{2 + \sin x}{y + 1}\right)$	$\left(\frac{x}{dx}\right) \frac{dy}{dx} = -\cos x : y(0) = 0$	1, then y $\left(\frac{\pi}{2}\right)$ is e	gual to
	(A) 1/3	(B) – 2/3	(C) 2/3	[IIT-JEE-2004, Scr. (3, 0), 84] (D) - $1/3$ $t^{2}f(x) = x^{2}f(x)$
3.	Let f(x) be differentiable 0. Then f(x) is	e on the interval (0, ∞) s	uch that f(1) = 1 ar	$\lim_{t \to x} \frac{\frac{t + (x) - x + (t)}{t - x}}{t - x} = 1 \text{ for each } x > $ [IIT-JEE-2007, Paper-1, (3, -1), 81]
	(A) $\frac{1}{3x} + \frac{2x^2}{3}$	(B) $\frac{-1}{3x} + \frac{4x^2}{3}$	(C) $\frac{-1}{x} + \frac{2}{x^2}$	(D) ¹ / _x
4	The differential equation	$\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ deter	minor o family of a	irolog with
4.				[IIT-JEE-2007, Paper-2, (3, –1), 81]
	 (A) variable radii and a (B) variable radii and a (C) fixed radius 1 and v (D) fixed radius 1 and v 	fixed centre at $(0, -1)$ fixed centre at $(0, -1)$ variable centres along th variable centres along th	e x-axis e y-axis	
5.	A curve passes throug x > 0. Then the equation	h the point $\left(1, \frac{\pi}{6}\right)$. Let the point of the curve is	ne slope of the curv [JEE (A	$\frac{y}{x} + \sec\left(\frac{y}{x}\right),$ we at each point (x, y) be $\frac{y}{x} + \sec\left(\frac{y}{x}\right),$ dvanced) 2013, Paper-1, (2, 0)/60]
	(A) $\sin\left(\frac{y}{x}\right) = \ln x + \frac{1}{2}$		(B) $\operatorname{cosec}^{\left(\frac{y}{x}\right)} =$	ℓn x + 2

Differential Equation

(C)
$$\sec\left(\frac{2y}{x}\right) = \ln x + 2$$
 (D) $\cos\left(\frac{2y}{x}\right) = \ln x + \frac{1}{2}$

 $\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}}$ in (-1, 1) satisfying The function y = f(x) is the solution of the differential equation 6. √3 $\int_{1}^{2} f(x) dx$ f(0) = 0. Then [JEE (Advanced) 2014, Paper-2, (3, -1)/60] is (C) $\frac{\pi}{6} - \frac{\sqrt{3}}{4}$ (B) $\frac{\pi}{3} - \frac{\sqrt{3}}{4}$ $\frac{\sqrt{3}}{2}$ √3 (D) $\frac{\pi}{6}$ (A) 3 Let $f: (0, \infty) \rightarrow R$ be a differentiable function such that $f'(x) = 2 - \frac{f(x)}{x}$ for all $x \in (0, \infty)$ and $f(1) \neq 1$. Then 7. [JEE (Advanced) 2016, Paper-1, (3, -1)/62] $\lim_{x\to 0^+} x f\left(\frac{1}{x}\right) = 2$ (A) $\lim_{x \to 0^+} f'\left(\frac{1}{x}\right) = 1$ (C) $\lim_{x\to 0^+} x^2 f'(x) = 0$ (D) $|f(x)| \le 2$ for all $x \in (0, 2)$ dy A solution curve of the differential equation $(x^2 + xy + 4x + 2y + 4)$ $\frac{dx}{dx} - y^2 = 0$, x > 0, passes through the 8. point (1, 3). Then the solution curve (A) intersects y = x + 2 exactly at one point (B) intersects y = x + 2 exactly at two points (C) intersects $y = (x + 2)^2$ (D) does NOT intersect $y = (x + 3)^2$ $8\sqrt{x}\left(\sqrt{9+\sqrt{x}}\right)dy = \left(\sqrt{4}+\sqrt{9+\sqrt{x}}\right)^{2}$ If y = y(x) satisfies the differential equation 9. and y (0) = $\sqrt{7}$, then y(256) = [JEE(Advanced) 2017, Paper-2,(3, -1)/61]

(C) 9

(A) 16 (B) 3

(D) 80

		15W	ers	<u>ج</u> ۶									
						EXERC	CISE # '	1					
Secti	on (A)												
A-1.	(1)	A-2.	(2)	A-3.	(1)	A-4.	(4)	A-5.	(4)	A-6.	(4)	A-7.	(1)
A-8.	(1)	A-9.	(2)	A-10.	(2)	A-11.	(1)	A-12.	(3)	A-13.	(1)	A-14.	(4)
A-15.	(2)												
Secti	on (B)												
B-1.	(3)	B-2.	(2)	В-3.	(2)	B-4.	(2)	B-5.	(2)	B-6.	(3)	B-7.	(1)
B-8.	(4)	B-9.	(3)	B-10.	(2)	B-11.	(1)	B-12.	(2)	B-13.	(4)	B-14.	(1)
B-15.	(2)	B-16.	(2)	B-17.	(1)	B-18.	(4)	B-19.	(1)	B-20.	(3)		()
Secti	on (C)				()								
C-1.	(1)	C-2.	(1)	C-3.	(2)	C-4.	(1)	C-5.	(3)	C-6.	(2)	C-7.	(3)
C-8.	(4)	C-9.	(1)	C-10.	(3)	C-11.	(1)	C-12.	(4)	C-13.	(4)		. /
Secti	on (D)		. ,		. /				. ,		. ,		
D-1.	(1)	D-2.	(2)	D-3.	(2)	D-4.	(1)	D-5.	(3)	D-6.	(2)	D-7.	(2)
D-8.	(2)	D-9.	(1)	D-10.	(3)	D-11.	(2)	D-12.	(2)	D-13.	(1)	D-14.	(1)
	()	-	()	_	(-)				()	-	()		()
						EXERC	SISE # 2	2					
						PAI	RT- I						
1.	(3)	2.	(1)	3.	(4)	4.	(1)	5.	(1)	6.	(3)	7.	(4)
8. 15	(1) (4)	9. 16	(3)	10. 17	(2)	11. 18	(3)	12. 19	(3)	13.	(1)	14.	(2)
10.	(-)	10.	(~)		(~)		('))T_ II	10.	(')				
Secti	on (A)					FAI	x I - II						
A-1	(2)	А-2.	(3)	A-3.	(1)								
Secti	on (B)												
B-1.	$A \rightarrow s$,	B → p,	$C \rightarrow q$,	D → r									
Secti	on (C)	:	(1 2)	C-3	(1 2)	C-4	(1 2 1)	C-5	(1 2)	C-6	(1 2)	C-7	(1Λ)
C-8.	(1,3)	U- 2.	(1,2)	C-3.	(1,3)	C-4.	(1,2,4)	C-J.	(1,2)	C-0.	(1,3)	C-7.	(1,4)
						FYFR		3					
1	(2)	2	(2)	2	(2)	PAI	RT-I	5	(2)	e	(2)	7	(2)
ı. o	(3) (2)	2. 0	(∠) (2)	ა. 10	(∠) (2)	4. 11*	(∠) (1_4)	ว. 10	(3) (4)	0. 12	(∠) (2)	1. 1.4	(∠) (4)
0. 1 <i>E</i>	(∠) (4)	у. 16	(S)	10.	(3) (1)	11". 10	(1,4)	12.	(4) (2)	13. 20	(3) (1)	14. 04	(4) (2)
15. 22	(4) (2)	10. 22	(∠) (2)	17. 24	(1)	10. 25	(∠) (1)	19. 26	(3) (1)	20.	(1)	21.	(3)
<i>LL</i> .	(3)	23.	(3)	24.	(3)	23.	(1)	20.	(1)				
	(•	(•		PAF	RT-II	_	(•	(D)	-	(
1.	(A)	2.	(A)	3.	(A)	4.	(C)	5.	(A)	6.	(B)	1.	(A)
8.	(A,D)	9.	(B)										