

12.	Two plane mirrors are in parallel to the second m (1) Perpendicular to the (3) Parallel to the second	nclined to each other at a hirror, it is reflected from first mirror d mirror	an angle 60₀. If a ray of li the second mirror (2) Parallel to the first m (4) Perpendicular to the	ght incident on the first mirror is hirror second mirror
13.	It is desired to photogra camera, which is at a di (1) 3 m	ph the image of an obje stance of 4.5 m from the (2) 4.5 m	ect placed at a distance of mirror should be focuse (3) 6 m	of 3 m from a plane mirror. The d for a distance of- (4) 7.5 m
14.	An unnumbered wall cl minutes and the last ter (1) 08: 35: 23	ock shows time 04: 25: m represents seconds. V (2) 07: 35: 23	37, where 1st term rep What time will its image ir (3) 07: 34: 23	oresents hours, 2nd represents a plane mirror show. (4) none of these
15.	Two plane mirrors are p at 15 cm from A. Out of measured from mirror A	arallel to each other and f the following at which p):	l spaced 20 cm apart. An point(s) image(s) is/are r	object is kept in between them not formed in mirror A (distance
	(1) 15 cm	(2) 25 cm	(3) 45 cm	(4) 55 cm
16.	A thick mirror produces (1) first	a number of images of a (2) second	an object. The brightest ir (3) third	nages is (4) last one
17.	If two mirrors are kept a (1) 5	t 60º to each other, then (2) 6	the number of images for (3) 7	ormed by them is (4) 8
18.	To get three images of a (1) 60°	a single object, one shou (2) 90°	Ild have two plane mirror (3) 120º	s at an angle of (4) 30º
19.	A man is 6 feet tall. In o	rder to see his entire ima	age, he requires a plane	mirror of minimum length equal
	(1) 6 ft	(2) 12 ft	(3) 2 ft	(4) 3 ft
SECT	ION (B) : SPHERICA	L MIRROR		
1.	A convex mirror has a fo	ocal length f. A real object	t is placed at a distance	f in front of it from the pole, then
	it produces an image at (1) Infinity	(2) f	(3) f/2	(4) 2f
2.	The image formed by co	onvex mirror of focal leng	gth 30 cm is a quarter of	the size of the object. Then the
	(1) 30 cm	(2) 90 cm	(3) 120 cm	(4) 60 cm
3.	The largest distance of (1) 20 cm (3) 10 cm	the image of a real objec	ct from a convex mirror o (2) Infinite (4) Depends on the pos	f focal length 10 cm can be- ition of the object
4.	In case of concave mirre (1) f	or, the minimum distance (2) 2f	e between a real object a (3) 4f	and its real image is- (4) Zero
5.	A luminous point objectowards it. When its disticm/s at that instant is	t is moving along the pl tance from the mirror is 2	rincipal axis of a concav 20 cm its velocity is 4 cm	ve mirror of focal length 12 cm n/s. The velocity of the image in
	(1) 6, towards the mirror(3) 9, away from the mir	ror	(2) 6, away from the min(4) 9, towards the mirro	rror r.
6.	Which of the following c (1) plane mirror	an form erect, virtual, dir (2) concave mirror	ninished image? (3) convex mirror	(4) none of these
7.	The focal length of a continuing magnified two times (1) 30cm from the mirror (3) 20cm from the mirror because of the mirror the mir	oncave mirror is 20 cm. nes when the image is re r r	Determine where an obeal- (2) 10cm from the mirro (4) 15cm from the mirro	ject must be placed to form an r r

(1) (n – 1)f

12.

8. A convex mirror of focal length f forms an image which is 1/n times the object. The distance of the object from the mirror is $(1) (n-1) f = (2) \left(\frac{n-1}{n}\right) f = (2) \left(\frac{n+1}{n}\right) f$

9. Which of the following could not produce a virtual image
(1) Plane mirror
(2) Convex mirror

- (3) Concave mirror (4) All the above can produce a vritual image
- 10.The field of view is maximum for
(1) Plane mirror(2) Concave mirror(3) Convex mirror
 - (4) Cylindrical mirror

(4) (n + 1)f

11. The focal length of a concave mirror is f and the distance from the object to the principle focus is x. The ratio of the size of the image to the size of the object is

- 13. The image formed by a convex mirror of focal length 30 cm is a quarter of the size of the object. The distance of the object from the mirror is

 (1) 30 cm
 (2) 90 cm
 (3) 120 cm
 (4) 60 cm
- A person sees his virtual image by holding a mirror very close to the face. When he moves the mirror away from his face, the image becomes inverted. What type of mirror he is using
 (1) Plane mirror
 (2) Convex mirror
 (3) Concave mirror
 (4) None of these
- **15.** A square ABCD of side 1mm is kept at distance 15 cm infront of the concave mirror as shown in the figure. The focal length of the mirror is 10 cm. The length of the perimeter of its image will be(nearly):

B C A D 15cm (3) 12 mm

(4) 6 mm

- **16.** A particle is moving towards a fixed spherical mirror. The image:
 - (1) must move away from the mirror
 - (2) must move towards the mirror

(1) 8 mm

- (3) may move towards the mirror
- (4) will move towards the mirror, only if the mirror is convex.
- 17.The distance of an object from the focus of a convex mirror of radius of curvature ' a ' is
' b '. Then the distance of the image from the focus is:
(1) $b_2/4a$ (2) a / b_2(3) $a_2/4b$ (4) $4b/a_2$
- **18.** An object is placed at a distance u from a concave mirror and its real image is received on a screen placed at a distance of v from the mirror. If f is the focal length of the mirror, then the graph between 1/v versus 1/u is

SECTION (C) : REFRACTION IN GENERAL, REFRACTION AT PLANE SURFACE AND T.I.R. 1. Total internal reflection occurs in waves, when wave enters-(1) Glass from air (2) Air from vaccum (4) Air from water (3) Water from air 2. An object is placed at 24 cm distance above the surface of a lake. If water has refractive index of 4/3, then at what distance from lake surface, a fish will sight the object-(1) 32 cm above the surface of water (2) 18 cm over the surface of water (3) 6 cm over the surface of water (4) 6 cm below the surface of water 3. Time taken to cross a 4 mm window glass of refractive index 1.5 will be-(2) 2 x 108 sec (3) 2 x 10-11 sec (4) 2 x 1011 sec (1) 2 x 10-8 sec The total internal reflection of a beam of light occurs when beam of light enters-4. [ic = critical angle, i = angle of incidence](1) Rarer medium from a denser one and i < ic (2) Rarer medium from a denser i > ic(3) Denser medium from a rarer $i < i_c$ (4) Denser medium from a rarer $i > i_c$ 5. A bubble in glass slab [μ = 1.5] when viewed from one side appears at 5 cm and 2 cm from other side then thickness of slab is-(1) 3.75 cm (2) 23 cm (3) 10.5 cm (4) 1.5 cm A light wave travels from glass to water. The refractive index for glass and water are and 3 respectively. 6. The value of the critical angle will be: (1) sin_1 $(2) sin_{-}$ The wavelength of light in vacuum is 6000 Å and in a medium it is 4000 Å. The refractive index of the 7. medium is: (3) 1.2(4) 0.67 (1) 2.4(2) 1.58. A beam of light is converging towards a point. A plane parallel plate of glass of thickness t, refractive index µ is introduced in the path of the beam. The convergent point is shifted by (assume near normal incidence):

- $\begin{pmatrix} l & l & l \\ (1) & l & l \\ (1) & away \end{pmatrix}_{away} \begin{pmatrix} l & l & l \\ (2) & l & l \\ (2) & away \end{pmatrix}_{away} \begin{pmatrix} l & l & l \\ (3) & l & l \\ (3) & l & l \\ (3) & nearer \end{pmatrix}_{nearer} \begin{pmatrix} l & l & l \\ (4) & l$
- **9.** When a beam of light goes from denser medium (μd) to rarer medium (μr), then it is generally observed that magnitude of angle of incidence is half that of angle of refraction. Then magnitude of incident angle will be- (here $\mu = \mu d/\mu r$)

(1) 2 sin-1
$$\left(\frac{\mu}{2}\right)$$
 (2) 2 cos-1 μ (3) cos-1 $\left(\frac{\mu}{2}\right)$ (4) 2 cos-1 $\left(\frac{\mu}{2}\right)$

- **10.** To an observer on the earth the stars appears to twinkle. This can be ascribed to
 - (1) The fact that stars do not emit light continuosly
 - (2) Frequent absorption of star light by their own atmosphere
 - (3) Frequent absorption of star light by the earth's atmosphere

11.	(4) The refractive index The refractive index o wavelenghth of this ligh (1) 4000 Å	fluctuations in the earth' f a certain glass is 1.5 nt when it passes through (2) 6000 Å	s atmosphere for light whose wavelen glass is (3) 9000 Å	gth in vacuum is 6000 Å. The (4) 15000 Å	
	()	()	(-)		
12.	When light travels from the following will chang	n one medium to the othe le	er of which the refractive	index is different, then which of	
	(1) Frequency, waveler(3) Frequency and velocity	ngth and velocity ocity	(2) Frequency and wav(4) Wavelength and vel	elength city	
13.	A monochromatic bean	n of light passes from a d	enser medium into a rar	er medium. As a result	
	(1) Its velocity increase(3) Its frequency decrease	es ases	 (2) Its velocity decrease (4) Its wavelength decrease 	eases	
14.	A rectangular tank of d	epth 8 meter is full of wat (2) 8/3 m	er ($\mu = 4/3$), the bottom i (3) 8 cm	s seen at the depth (4) 10 cm	
15.	If $_{i\mu_{j}}$ represents refraction $_{2\mu_{1}} \times _{3\mu_{2}} \times _{4\mu_{3}}$ is equal to	ive index when a light r	ay goes from medium i	to medium j, then the product	
			_1		
	(1) 3μ1	(2) 3μ2	(3) ${}_{1}\mu_{4}$	(4) 4µ2	
16.	The wavelength of ligh	t diminishes μ times (μ =	1.33 for water) in a med	dium. A driver from inside water	
	(1) Green	se natural colour is green (2) Blue	. He sees the object as (3) Yellow	(4) Red	
17	A diver in a swimming	nool wants to signal his	distress to a person ly	ing on the edge of the need by	
	flashing his water proof	f flash light		ing on the edge of the poor by	
	 (1) He must direct th (2) He has to direct th 	e beam vertically upward the beam horizontally	ls		
	(3) He has to direct	the beam at an angle to t	he vertical which is sligh	tly less than the critical angle of	
	(4) He has to direct to	al internal reflection the beam at an angle to th	ne vertical which is slight	ly more than the critical angle of	
	incidence for the	total internal reflection	-		
18.	The wavelength of light	t in two liquids 'x' and 'y' i	s 3500 Å and 7000 Å, th	en the critical angle of x relative	
	(1) 60°	(2) 45°	(3) 30°	(4) 15°	
19.	Total internal reflection of a ray of light is possible when the (i_c = critical angle, i = angle of incidence) (1) Ray goes from denser medium to rarer medium and $i < i_c$ (2) Ray goes from denser medium to rarer medium and $i > i_c$ (3) Ray goes from rarer medium to denser medium and $i > i_c$ (4) Ray goes from rarer medium to denser medium and $i < i_c$				
20.	A diver at a depth of 12 (1) sin ₋₁ (4/3)	2 m in water (μ = 4/3) see (2) tan ₋₁ (4/3)	s the sky in a cone of se (3) sin ₋₁ (3/4)	mi-vertical angle (4) 90°	
21.	The critical angle for di (1) About 20°	amond (refractive index = (2) 60°	= 2) is (3) 45°	(4) 30°	
22.	The reason for shining (1) Diffraction of light (3) Scattering of light	of air bubble in water is	(2) Dispersion of light (4) Total internal reflect	ion of light	
23.	'Mirage' is a phenomen (1) Reflection of light (3) Total internal reflect	non due to tion of light	(2) Refraction of light(4) Diffraction of light		

24. Given that velocity of light in quartz = 1.5×10^8 m/s and velocity of light in glycerine = (9/4) × 10⁸ m/s. Now a slab made of quartz is placed in glycerine as shown. The shift of the object produced by slab is

- **25.** A ray of light passes from vacuum into a medium of refractive index n. If the angle of incidence is twice the angle of refraction, then the angle of incidence is: (1) $\cos_{-1}(n/2)$ (2) $\sin_{-1}(n/2)$ (3) $2 \cos_{-1}(n/2)$ (4) $2 \sin_{-1}(n/2)$
- **26.** The critical angle of light going from medium A to medium B is θ . The speed of light in medium A is v. The speed of light in medium B is:

(1)
$$\frac{v}{\sin\theta}$$
 (2) v sin θ (3) v cot θ (4) v tan θ

27. A ray of light passes through four transparent media with refractive indices μ₁, μ₂, μ₃ & μ₄ as shown in the figure. The surfaces of all media are parallel. If the emergent ray CD is parallel to the incident ray AB, we must have:

(1)
$$\mu_1 = \mu_2$$

(2) $\mu_2 = \mu_3$
(3) $\mu_3 = \mu_4$
(4) $\mu_4 = \mu_1$

- **28.** If the critical angle for total internal reflection from a medium to vacuum is 30° , then the speed of light in the medium is (1) $6 \times 10_8$ m/s (2) $3 \times 10_8$ m/s (3) $2 \times 10_8$ m/s (4) $1.5 \times 10_8$ m/s
- **29.** If a glass rod is immersed in a liquid of same refractive index, then it will appear (1) bent (2) longer (3) shorter (4) invisible
- **30.** A metal coin is at the bottom of a beaker filled with a liquid of refractive index 4/3 to height of 6 cm. To an observer looking from above the surface of the liquid, coin will appear at a depth of : (1) 7.5 cm (2) 6.75 cm (3) 4.5 cm (4) 1.5 cm
- A transparent cube of 15 cm edge contains a small air bubble. Its apparent depth when viewed through one face is 6 cm and when viewed through the opposite face is 4 cm. Then the refractive index of the material of the cube is :
 (1) 2.0
 (2) 2.5
 (3) 1.6
 (4) 1.5
- 32. If the critical angle for total internal reflection from medium to vacuum is 30°, the velocity of light in medium is
 (1) 3 × 10⁸ m/s
 (2) 1.5 × 10⁸ m/s
 (3) 6 × 10⁸ m/s
 (4) × 10⁸ m/s

33. For the given incident ray as shown in figure, the condition of total internal reflection of the ray will be satisfied if the refractive index of block will be :

34. A small coin is resting on the bottom of a beaker filled with a liquid. A ray of light from the coin travels upto the surface of the liquid and moves along its surface (see figure)

How fast is the light travelling in the liquid? (1) 1.8 × 10₈ m/s (2) 2.4 × 108 m/s (4) 1.2 × 108 m/s (3) 3.0 × 108 m/s 35. Which of the following is used in optical fibers ? (1) total internal reflection (2) scattering (3) diffraction (4) refraction 36. Transmission of light in optical fibre is due to : (1) Scattering (2) Diffraction (3) Polarisation (4) Multiple total internal reflections Which of the following will remain constant in the phenomenon of refraction of light ? 37. (1) Wavelength (2) Velocity (3) Frequency (4) None 38. The phenomena of total internal reflection is seen when angle of incidence is : $(1) 90^{\circ}$ (2) greater than critical angle (3) equal to critical angle $(4) \tilde{0}^{\circ}$ 39. A ray of light from a denser medium strikes a rarer medium of an angle of incidence i. the reflected and refracted rays make an angle of 900 with each other. The angle of reflection and refraction are r and r'. The critical angle is-

40. A ray of light travels from on optically denser to a rarer medium. The critical angle for the two media is c. The maximum possible deviation of the ray will be–

- (1) 2c (2) $\frac{1}{2}$ c (3) π c (4) π 2c A ray of light traveling in water is incident on its surface open to air. The angle of incidence is A
- **41.** A ray of light traveling in water is incident on its surface open to air. The angle of incidence is θ , which is less than the critical angle. Then there will be :
 - (1) only a reflected ray and no refracted ray

π

- (2) only a refracted ray and no reflected ray
- (3) a reflected ray and a refracted ray and the angle between them would be less than $180^{\circ} 2\theta$
- (4) a reflected ray and a refracted ray and the angle between them would be greater than $180^{\circ} 2\theta$.
- **42.** A light beam is traveling from Region I to Region IV (Refer Figure). The refractive index in Regions I, II, III and IV are n₀, and, respectively. The angle of incidence θ for which the beam just misses entering Region IV is

Figure

- **43.** The wavelength of light in two liquids x and y are 3500 Å and 7000 Å, then the critical angle of x relative to y will be (1) 60° (2) 45° (3) 30° (4) 15°
- 44.The correct thickness of a glass having $a\mu g = 1.5$, which permits equal number of wavelengths as that of
18 cm long column of water is- $[a\mu g = 4/3]$
(1) 12 cm(2) 16 cm(3) 18 cm(4) 24 cm
- **45.** Dimension of $\mu_0 \epsilon_0$ is (where symbols have usual meaning) : (1) [LT₋₁] (2) [L₋₁T] (3) [L₋₂T₂] (4) [L₂T₋₂]
- **46.** When a ray of light is reflected from a denser medium interface, then the following changes-(1) Wavelength (2) Phase (3) Frequency (4) Speed
- 47.If refractive index of a medium is 1.5, then velocity of light in that medium will be :
(1) $10 \times 10_8$ (2) $2 \times 10_8$ (3) $3 \times 10_8$ (4) $4 \times 10_8$
- **48.**Light enters into glass from air then its :
(1) frequency increases
(3) wavelength increases(2) frequency decreases
(4) wavelength decreases
- **49.** The value of refractive index for any medium is-(1) $1/\sqrt{\mu_r \epsilon_r}$ (2) $\sqrt{\mu_r \epsilon_r}$ (3) $\sqrt{\mu_r / \epsilon_r}$ (4) $\sqrt{\epsilon_r / \mu_r}$

SECTION (D) : REFRACTION BY PRISM

1

1. A ray of light is incident normally on one of the faces of a prism apex angle 30° and refractive index $\sqrt{2}$. The angle of deviation of the ray is: (1) 15° (2) 22.5° (3) 0° (4) 12.5°

(1) 4° clockwise

- 2. The refractive index of the material of prism of 60° angle is $\sqrt{2}$. At what angle the ray of light be incident on it so that minimum deviation takes place? (1) 45° (2) 60° (3) 30° (4) 75°
- **3.** A ray of light is incident at angle of 60° on one face of a prism which has an apex angle of 30°. The ray emerging out of the prism makes an angle of 30° with the incident ray. The refractive index of the material of the prism is -

(1)
$$\sqrt{2}$$
 (2) $\sqrt{3}$ (3) 1.5 (4) 1.6

- 4. If the critical angle for the medium of prism is C and the angle of prism is A, then there will be no emergent ray when -(1) A < 2C
 (2) A = 2C
 (3) A > 2C
 (4) A \ge 2C
- **5.** A ray of monochromatic light is incident on one refracting face of a prism of angle 75₀. It passes through the prism and is incident on the other face at the critical angle. If the refractive index of the material of the prism is $\sqrt{2}$, the angle of incidence on the first face of the prism is (1) 300 (2) 45₀ (3) 60₀ (4) 0₀
- A ray of light is incident at angle *i* on a surface of a prism of small angle A and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ, the angle of incidence *i* is nearly equal to :
 (1) A/μ
 (2) A/(2 μ)
 (3) μ A
 (4) μ A/2
- 7. A prism having an apex angle of 40 and refractive index of 1.50 is located in front of a vertical plane mirror as shown. A horizontal ray of light is incident on the prism. The total angle through which the ray is deviated is:

(4) 8° clockwise

- **8.** The critical angle between an equilateral prism and air is 45°. If the incident ray is perpendicular to the refracting surface, then
 - (1) After deviation it will emerge from the second refaracting sufrace
 - (2) It is totally reflected on the second surface and emerges out perpendicularly from third surface in air
 - (3) It is totally reflected from the second and third refracting surfaces and finally emerges out from the first surface
 - (4) It is totally reflected from all the three sides of prism and never emerges out
- 9. When light rays are incident on a prism at an angle of 45°, the minimum deviation is obtained. If refractive index of the material of prism is $\sqrt{2}$, then the angle of prism will be

index of the materia	of prism is	v^2 , then the angle of prism will be	
(1) 30°	(2) 40°	(3) 50°	(4) 60°

- **10.** The refractive indedx of a prism for a monochromatic wave is $\sqrt{2}$ and its refracting angle is 60°. For minimum deviation, the angle of incidence will be (1) 30° (2) 45° (3) 60° (4) 75°
- A parallel beam of monochromatic light is incident at one surface of a equilateral prism. Angle of incidence is 55° and angle of emergence is 46°. The angle of minimum deviation will be
 (1) Less than 41°
 (2) Equal to 41°
 (3) More than 41°
 (4) None of the above

12. The minimum refractive index of a material, of a prism of apex angle 90°, for which light cannot be transmitted for any value of i:

(1) $\sqrt{3}$ (2) 1.5 (3) $\sqrt{2}$ (4) None of these

13. A horizontal light ray passes through a prism ($\mu = 1.5$) of angle 4°. Further, it is incident on a plane mirror M that has been placed vertically. By what angle the mirror is rotated so that the ray after reflection becomes horizontal?

14. For a prism of refractive index $\sqrt{3}$, the angle of the prism is equal to the angle of minimum deviation. The value of the angle of the prism is-(1) 60° (2) 50° (3) 45° (4) 30°

(4) 8°

15. An equilaterial prism is kept on a horizontal surface. A typical ray of light PQRS is shown in the figure. For minimum deviation

- 23. The refractive index of glass is 1.520 for red light and 1.525 for blue light. Let D_1 and D_2 be angles of minimum deviation for red and blue light respectively in a prism of this glass. Then, (1) D_1 can be less than or greater than D_2 depending upon the angle of prism
 - (2) $D_1 > D_2$
 - (3) $D_1 < D_2$
 - (4) $D_1 = D_2$
- 24. A light ray is incident perpendicularly to one face to a 90° prism and is totally internally reflected at the glass-air interface. If the angle of reflection is 45°, we conclude that the refractive index n is

SECTION (E) : REFRACTION BY SPHERICAL SURFACE

- 1. An object is placed at a distance of 20 cm, in rarer medium, from the pole of a convex spherical refracting surface of radius of curvature 10 cm. If the refrective index of the rarer medium is 1 and of the refracting medium is 2, then the position of the image is at-
 - (1) (40/3) cm from the pole & inside the denser medium
 - (2) 40 cm from the pole & inside the denser medium.
 - (3) (40/3) cm from the pole & outside the denser medium
 - (4) 40 cm from the pole & outside the denser medium.
- 2. There is a small black dot at the centre C of a solid glass sphere of refractive index μ . When seen from outside, the dot will appear to be located:
 - (1) away from C for all values of μ

- (2) at C for all values of μ
- (3) at C for $\mu = 1.5$, but away from C for $\mu \neq 1.5$
- (4) at C only for $\leq \mu \leq 1.5$.

180

- The image for the converging beam after refraction through the curved surface is formed at:

(3) $x = \frac{3}{3} - \frac{3}{3}$ cm 7 cm (4) x =(1) x = 40 cm(2) x = cm4. In the figure shown a point object O is placed in air. A spherical boundary of radius of curvature 1.0 m separates two media. AB is principal axis. The refractive index above AB is 1.6 and below AB is 2.0. The separation between the images formed due to refraction at spherical surface is:

3.

SECTION (F): LENS

- 1. A convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. Then its focal length will -
 - (1) Become zero(3) Become small, but non-zero
- (2) Become infinite
- (4) Remain unchanged
- A biconvex lens with equal radii of curvature has refractive index 1.6 and focal length 10 cm. Its radius of curvature will be:
 (1) 20 cm
 (2) 16 cm
 (3) 10 cm
 (4) 12 cm
- A convex lens forms a real image 9 cm long (high) on a screen. Without altering the position of the object and the screen, the lens is displaced and we get again a real image 4 cm long (high) on the screen. Then the length of the object is (1) 9 cm
 (2) 4 cm
 (3) 6 cm
 (4) 36 cm
- 4. An object is placed at a distance of 5 cm from a convex lens of focal length 10 cm, then the image is-
 - (1) Real, diminished and at a distance of 10 cm from the lens.
 - (2) Real, enlarged and at a distance of 10 cm from the lens.
 - (3) Virtual, enlarged and at a distance of 10 cm from the lens.
 - (4) Virtual, diminished and at a distance of 10/3 cm from the lens.
- 5. Inside water, an air bubble behave-
 - (1) Always like a convex lens
 - (2) Always like a concave lens
 - (3) Always like a slab of equal thickness
 - (4) Sometimes concave and sometimes like a convex lens
- A lens behaves as a converging lens in air and a diverging lens in water. The refractive index of the material is (refractive index of water = 1.33)
 (1) equal to unity
 (2) equal to 1.33
 - (3) between unity and 1.33

- (2) equal to 1.33 (4) greater than 1.33
- **7.** In the figure given below, there are two convex lens L₁ and L₂ having focal length of f₁ and f₂ respectively. The distance between L₁ and L₂ will be

8. A virtual erect image by a diverging lens is represented by (u, v, f are coordinates)

9. What should be the value of distance d so that final image is formed on the object itself. (focal lengths of the lenses are written on the lenses).

- 10. A thin linear object of size 1 mm is kept along the principal axis of a convex lens of focal length 10 cm. The object is at 15 cm from the lens. The length of the image is: (1) 1 mm (2) 4 mm (3) 2 mm (4) 8 mm 11. A glass lens is placed in a medium in which it is found to behave like a glas plate. Refractive index of the medium will be : (1) Greater than the refractive index of glass (2) Smaller than the refractive index of glass (3) Equal to refractive index of glass (4) No case will be possible from above 12. A divergent lens will produce (1) Always a virtual image (2) Always real image (3) Sometimes real and sometimes virtual (4) None of above 13. The minimum distance between an object and its real image formed by a convex lens is (1) 1.5 f (2) 2 f (3) 2.5 f (4) 4 f 14. A biconvex lens forms a real image of an object placed perpendicular to its principal axis. Suppose the radii of curvature of the lens tend to infinity. Then the image would (2) Remain as real image still (1) Disappear (3) Be virtual and of the same size as the object (4) Suffer from aberrations 15. The radius of curvature of convex surface of a thin plano-convex lens is 15 cm and refractive index of its material is 1.6. The power of the lens will be (3) +3D (1) +1D (2) - 2D (4) +4D 16. A lens is placed between a source of light and a wall. It forms images of area A1 and A2 on the wall for its two different postions. The area of the source of light is
 - $\left[\frac{\sqrt{A_1} + \sqrt{A_2}}{2}\right]^2$ (2) $\left[\frac{1}{A_1} + \frac{1}{A_2}\right]^{-1}$ (3) $\sqrt{A_1 A_2}$ (1)
- 17. If the central portion of a convex lens is wrapped in black paper as shown in the figure
 - (1) No image will be formed by the remaining portion of the lens
 - (2) The full image will be formed but it will be less bright
 - (3) The central portion of the image will be missing
 - (4) There will be two images each produced by one of the exposed portions of the lens
- 18. A convex lens form a real image of a point object placed on its principal axis. If the upper half of the lens is painted black, the image will (1) Be shifted downwards
 - (3)Not be shifted

(1) 15 cm, concave

(3) ∞ , neither concave nor convex

- (2) Be shifted upwards
- (4) Shift on the principal axis
- In the figure, an air lens of radii of curvature 10 cm ($R_1 = R_2 = 10$ cm) is cut in a cylinder of glass ($\mu = 1.5$). 19. The focal length and the nature of the lens is

- 20. A lens made of glass of refractive index 1.5 has a focal length of 10 cm in air and 50 cm when completely immersed in a liquid. Then the refractive index of the liquid is-
 - (1) 1.36(2) 1.33 (3) 1.30(4) 1.38

21. The correct conclusion that can be drawn from these figures is

^{30.}The radius of the convex surface of plano-convex lens is 20 cm and the refractive index of the material
of the lens is 1.5 The focal length is :
(1) 30 cm(2) 50 cm(3) 20 cm(4) 40 cm

- **31.** A symmetric double convex lens is cut in two equal parts by a plane perpendicular to the principal axis. If the power of the original lens is 4D, the power of a cut lens will be (1) 2D (2) 3D (3) 4D (4) 5D
- 32. A point object is placed at the focus of a double concave lens. The image is formed (1) at infinity (2) between the focus and the lens (3) at focus (4) between the focus and infinity
- A thin convex lens of refractive index 1.5 is placed in a liquid with refractive index 2.0. Then power of the lens in air is 10 D. Then in the liquid its power will be
 (1) 20 D
 (2) 10 D
 (3) -10 D
 (4) -5 D
- **34.** A body is located on a wall. Its image of equal size is to be obtained on a parallel wall with the help of a convex lens. The lens is placed at a distance d ahead of second wall, then the required focal length will be:

d		d	
(1) Only $\overline{4}$		(2) Only $\overline{2}$	
\underline{d}	d		d
(3) More than $\overline{4}$ but less than	2	(4) Less than	4

35. An equiconvex lens is cut into two halves along (i) XOX' and (ii) YOY' as shown in the figure. Let f, f',f'' be the focal lengths of the complete lens, of each half in case (i), and of each half in case (ii), respectively.

Choose the correct statement from the following : (1) f' = f, f'' = f (2) f' = 2f, f'' = 2f (3) f' = f, f'' = 2f (4) f' = 2f, f'' = f

- **36.** A convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens. Then its focal length will :
 - (1) Become small, but non-zero
- (2) Remain unchanged

(3) Become zero

- (4) Become infinite
- **37.** A student measures the focal length of a convex lens by putting an object pin at a distance |u| from the lens and measuring the distance 'v' of the image pin. The graph between 'u' and 'v' plotted by the student should look like -

38.	Image formed on retina	of eye is proportional to	:	size	of	obiect		size	of	image
	(1) size of object	(2) area of object	(3)	size	of	image	(4)	size	of	object
39.	In order to obtain image bulb and wall. Focal ler	e on wall of a bulb at a d ngth of lens will be -	istar	nce d f	rom	the wall a	con	vex lei	ns is	placed between
	(1) d/2 (3) More then d/2		(2) (4)	Betwe Less t	en o han	d/2 & d/4 d/4				
40.	An object is placed 12 of 6 cm focal length is p lens will produce–	cm to the left of a conve blaced at a distance of 30	rging 0 cm	from o	of fo obje	cal length ct to the ri	8 cr ght c	n. Anc f the f	other irst l	converging lens ens. The second
	(1) a virtual enlarged im(3) a real inverted imag	nage e	(2) (4)	(2) no image (4) a real enlarged image						
41.	A biconvex lens of focal is correct : (1) $\pi r^2 \propto f$ (2) $\pi r^2 \propto f^2$	l length f forms a circular	imaç	ge of ra	dius	s r of sun i	n foc	al plar	ne. T	hen which option
	(3) If lower half part is(4) if f is doubled, inter	convered by black sheet sity will increase	, the	n area	of tl	he image	is eq	ual to	π r ²/2	2
42.	A slide projector magn magnified image will be	ified a film of 100 cm ² o :	na	screen	. If I	inear mag	gnific	ation i	s 4,	then area of the
	(1) 1600 cm ²	(2) 800 cm ²	(3)	400 cı	n²		(4)	200 cr	n²	
SECT	ION (G): COMBINA	ATION OF THIN LEN	IS/L	ENS	AN	D MIRR	ORS	6.		
1.	A convex lens of focal separated by a distance (1) 45	length 25 cm and a cor e d cm. If the power of th (2) 30	ncav e co (3)	e lens mbina 15	of fo tion	ocal lengt is zero, <i>d</i>	h 20 is eq (4)	cm a ual to 5	re m	nounted coaxially
2.	A convex lens of power of combination:	4D and a concave lens	of p	ower 3	D ai	re placed	in co	ntact,	the	equivalent power
	(1) 1D	(2) D	(3)	7D			(4)	D		
3.	Two thin lenses of por combination will behave (1) Convex lens of foca (3) Convex lens of foca	wer +5D and –2D are e like a- I length 3m I length 0.33m	place (2) (4)	ed in o Conca None	conta ave l of th	act with e ens of foc ne above	each al lei	other. ngth 0	Foo .33n	cal length of the
4.	The focal length of a pla is $(n = 3/2)$:	no-concave lens is –10 c	cm, t	hen its	foca	al length w	hen	ts plai	ne si	urface is polished
	(1) 20 cm	(2) – 5 cm	(3)	5 cm			(4)	none	of th	ese
5.	A combination of two th at distance 60 cm whe combination when two (1) 30 cm, -60 cm	in lenses with focal leng n lenses are in contact. lenses are separated by (2) 20 cm, –30cm	ths f The 10 c (3)	and fa position m. The 15cm,	2 res on o e col -20	pectively f of this ima rrespondir) cm	forms ge sl ng va (4)	s an in hifts b lues c 12 cm	nage y 30 of f₁ a , –1	e of distant object) cm towards the and f2 are 5 cm
6.	A plano convex lens (f = (1) 20 cm	= 20 cm) is silvered at pl (2) 40 cm	ane (3)	surfaco 30 cm	e. No	ow f will b	e (4)	10 cm		
7.	A luminous object is pla side of the lens, at wha placed in order to have (1) 12 cm	aced at a distance of 30 c at distance from the lens and erect image of the c (2) 30 cm	m fro s mu objec (3)	om a c st a co t coinc 50 cm	onve onve cider	ex lens of ex mirror o nt with it ?	focal of rac (4)	length lius of 60cm	n 20 [:] cur	cm. On the other vature 10 cm be

(1) 5 cm

- 8. The plane surface of a plano convex lens of focal lenght f is silvered. It will behave as:
 (1) plane mirror
 (2) convex mirror of focal length 2f
 - (3) concave mirror of focal length f/2
- (4) none of the above

(4) 2.5 cm

- 9. A concave lens of focal length 20 cm placed in contact with a plane mirror acts as a :

 (1) Convex mirror of focal length 10 cm
 (2) Concave mirror of focal length 40 cm
 (3) Concave mirror of focal length 60 cm
 (4) Concave mirror of focal length 10 cm
- **10.** A plano-convex lens of focal length 10 cm is silvered at its plane face. The distance d at which an object must be placed in order to get its image on itself is:

11. In the figure (i) a thin lens of focal length 10 cm is shown. The lens is cut into two equal parts, and the parts are arranged as shown in the figure (ii). An object AB of height 1 cm is placed at distance of 7.5 cm from the arrangement. The height of the final image will be:

12. A convex lens of focal length 40 cm is kept in contact with a concave lens of focal length 25 cm. The power of the combination is

			$\underline{\mathbf{t}_0}$	$\underline{\mathbf{I}_{e}}$	
	(1) – 6.5 D	(2) + 6.5 D	(3) ${ m f_e}$ $-$ 1.5 D	(4) f_{o} + 1.5 D	
13.	3. The plane faces of two identical plano-convex lenses, each having focal length of 40 cm, are placed against each other to form a common convex lens. The distance from this lens at which an object more placed to obtain a roal involted image with magnification equal to units is				re placed ject must
	(1) 80 cm	(2) 40 cm	(3) 20 cm	(4) 160 cm	

- 14.A convex lens and a concave lens, each having same focal length of 25 cm, are put in contact to form a combination of lenses. The power in diopters of the combination is :
(1) 25 (2) 50 (3) Infinite (4) Zero
- A plano convex lens of refractive index 1.5 and radius of curvature 30 cm is silvered at the curved surface. Now this lens has been used to from the image of an object. At what distance from this lens an object be placed in order to have a real image of the size of the object.
 (1) 20 cm
 (2) 30 cm
 (3) 60 cm
 (4) 80 cm
- **16.** A plano-convex lens is made of a material of refractive index $\mu = 1.5$. The radius of curvature of curved surface of the lens is 20 cm. If its plane surface is silvered, the focal length of the silvered lens will be : (1) 10 cm (2) 20 cm (3) 40 cm (4) 80 cm
- **17.** power of combination of two lens of focal lengths 20 cm and 25 cm respectively : (1) + 1 D (2) + 9 D (3) - 1 D (4) - 9 D

SECTION (H) : DISPERSION OF LIGHT

1.Dispersive power of a prism depends on-
(1) Material(2) Prism angle(3) Shape of prism(4) Angle on incidence

2.	When light is passed th (1) Red	rough a prism, the colour (2) violet	r which deviates least is: (3) Blue	(4) Green	
3.	If refractive index of red	d, violet and yellow lights	s are 1.42, 1.62 and 1.50	0 respectively for a medium, its	
	(1) 0.4	(2) 0.3	(3) 0.2	(4) 0.1	
4.	Two thin lenses, one co into contact. If this com (ω_1/ω_2) of above two len	onvex of focal length 30 bination is equivalent to uses is -	cm and the other concated an achromatic lens ther	ve of focal length 10cm are put the ratio of dispersive powers	
	(1) 1/3	(2) – 3	(3) 3	(4) – 1/3	
5.	The colour are characte (1) Frequency	erised by which of followin (2) Amplitude	ng character of light- (3) Wavelength	(4) Velocity	
6.	The dispersion of light in a medium implies that : (1) lights of different wavelengths travel with different speeds in the medium (2) lights of different frequencies travel with different speeds in the medium (3) the refractive index of medium is different for different wavelengths (4) all of the above.				
7.	Critical angle of light pa (1) red	ssing from glass to air is (2) green	minimum for (3) yellow	(4) violet	
8.	A plane glass slab is pla is:	aced over various coloure	ed letters. The letter whic	h appears to be raised the least	
	(1) violet	(2) yellow	(3) red	(4) green	
9.	A medium has $n_v = 1.56$ (1) 3/50	6, nr = 1.44. Then its disp (2) 6/25	persive power is: (3) 0.03	(4) none of these	
10.	All the listed things below (ω) .	ow are made of flint glas	ss. Which one of these h	nave greatest dispersive power	
	(1) prism	(2) glass slab	(3) biconvex lens	(4) all have same ω	
11.	Light of wavelength 400 & $n_r = 1.48$. The angle of (1) 0.2°	0 Å is incident at small a of dispersion produced by (2) 0.08°	ngle on a prism of apex a y the prism in this light is (3) 0.192º	angle 4º. The prism has n _v = 1.5 : (4) None of these	
12.	When white light passes emergent beam, the ray (1) Violet ray	s through a glass prism, / which is deviating least (2) Green ray	one gets spectrum on th is or Deviation by a prisr (3) Red ray	e other side of the prism. In the m is lowest for (4) Yellow ray	
13.	A spectrum is formed b dispersion is $(1) + 18$	y a prism of dispersive p	ower ' ω '. If the angle of α	deviation is ' δ ', then the angular	
14.	(1) w/oWhen white light passes(1) Only deviation(3) Deviation and disper	s through the achromatic	combination of prisms, t (2) Only dispersion (4) None of the above	then what is observed	
15.	An achromatic combina (1) 2 convex lenses (3) 1 convex lens and 1	tion of lenses is formed l concave lens	by joining (2) 2 concave lenses (4) Convex lens and pla	ane mirror	
16.	An achromatic converg power + 5 D. What is th (1) 2:5	ent doublet of two lense e ratio of the dispersive (2) 3 : 5	s in contact has a power powers of the convergen (3) 5 : 2	r of + 2D. The convex lens has t and divergent lenses ? (4) 5 : 3	

17. The ratio of angle of minimum deviation of a prism when dipped in water and when in airwill be

	$(a \mu_0 = 3/2 \text{ and } a \mu_w = 4/3)$	nall			
	(1) 1/8	(2) 1/2	(3) 3/4	(4) 1/4	
18.	The respective angle of without deviation, then $-\frac{(\mu_y - 1)}{2}$	the flint and crown glass the ratio of their angles $A = -\frac{(\mu_y - 1)}{2}$	s prisms are A' and A. Th \'/A will be	ey are to be used for dispersion	
	(1) $(\mu_y'-1)$	(2) $(\mu_y - 1)$	(3) $(\mu_y'-1)$	(4) $(\mu_y - 1)$	
19.	Focal length of a conve (1) Blue light	x lens will be maximum f (2) Yellow light	or (3) Green light	(4) Red light	
20.	Rainbows are formed b (1) Reflection and diffra (3) Dispersion and total	y : ction internal reflection	(2) Refraction and scatt (4) Interference only	ering	
21.	The ratio of the refractive (1) Less than unity (2) Equal to unity (3) Greater than unity (4) Less as well as great	ve index of red light to blu ater than unity depending	ue light in air is gupon the experimental a	arrangement	
22.	The refractive index of a (1) Red light	a piece of transparent qu (2) Violet light	artz is the greatest for (3) Green light	(4) Yellow light	
23.	Refractive index for a m (1) Equal to that of ultra (3) Equal to that for red	naterial for infrared light is violet light colour of light	s (2) Less than that for ul (4) Greater than that fo	traviolet light r ultraviolet light	
24.	With respect to air critic	al angle in a medium for	light of red colour [λ_1] is	θ . Other facts remaining same,	
	(1) θ	(2) More than θ	(3) Less than θ	(4) None of these	
25.	A beam of light composiglass slab. When comir	ed of red and green rays ng out of the opposite pa	is incident obliquely at a p rallel face, the red and g	point on the face of a rectangular reen rays emerge from :	
	 (1) Two points propagating in two different non-parallel directions (2) Two points propagating in two different parallel directions (3) One point propagating in two different directions (4) One point propagating in the same direction 				
SECTION (I) : DEFECTS OF VISION					
1.	A shortsighted person of	an read a book clearly a	t a distance of 10 cm fror	n the eyes. The lenses required	
	(1) Convex lenses of focal length 30 cm (3) convex lenses of focal length 12 cm (4) concave lenses of focal length 12 cm				
2.	A person can't see the	objects clearly placed at	a distance more than 40	cm. He is advised to use a lens	
	(1) + 2.5 D	(2) – 2.5 D	(3) + 0.4 D	(4) – 0.4 D	

- A person can see clearly only upto a distance of 25cm. He wants to read a book placed at a distance of 50cm. What kind of lens does he required for his spectacles and what must be its power ?

 (1) concave, -1.0 D
 (2) Convex, +1.5 D
 (3) Concave, -2.0 D
 (4) Convex, +2.0 D
- 4. Astigmatism (for a human eye) can be removed by using

	(1) Concave lens	(2) Convex lens	(3) Cylindrical lens	(4) Prismatic lens	
5.	Circular part in the centr (1) Blind spot	re of retina is called (2) Yellow spot	(3) Red spot	(4) None of the above	
6.	A person cannot see dis he should use to read a (1) +3.0 D	stinctly at the distance le book at a distance of 25 (2) +0.125D	ess than one metre. Calc cm (3) – 3.0 D	ulate the power of the lens that (4) + 4.0 D	
7.	A person who can see to clearly thinges at a dista (1) 15 cm (concave) (3) 10 cm	hings most clearly at a o ince of 30 cm. what shou	distance of 10 cm, requir uld be the focal length of (2) 15 cm (convex) (4) 0	res spectacles to enable to see the spectacles ?	
8.	The power of lens used he can see without spec (1) 25 cm	by a short-sighted persor tacles (2) 50 cm	n is - 2 D. Find the maxim (3) 100 cm	um distance of an object, which (4) 10 cm	
SECT	ION (J) : OPTICAL II	NSTRUMENT			
1.	A simple microscope ha	s a focal length of 5 cm.	The magnification at the	least distance of distinct vision	
	is- (1) 1	(2) 5	(3) 4	(4) 6	
2.	In a compound microscope, the intermediate image is - (1) virtual, erect and magnified (2) real, erect and magnified (3) real, inverted and magnified (4) virtual, erect and reduced				
3.	The resolving power of a (1) greater focal length (3) greater diameter	a telescope is more whe	n its objective lens has (2) smaller focal length (4) smaller diameter		
4.	A Galileo telescope has the two lenses in norma	an objective of focal leng I adjustment will be	th 100 cm & magnifying p	oower 50. The distance between	
	(1) 150 cm	(2) 100 cm	(3) 98 cm	(4) 200 cm	
5.	The convex lens is used (1) Microscope	l in- (2) Telescope	(3) Projector	(4) All of the above	
6.	The magnifying power of (1) shorter focal length i (3) shorter diameter is u	f a simple microscope ca s used sed	an be increased if an eye (2) longer focal length is (4) longer diameter is us	epiece of : s used sed	
7.	The focal length of the objective of a microscope is(1) arbitrary(2) less than the focal length of eyepiece(3) equal to the focal length of eyepiece(4) greater than the focal length of eyepiece				
8.	Resolving power of a microscope depends upon (1) the focal length and aperture of the eye lens (2) the focal lengths of the objective and the eye lens (3) the apertures of the objective and the eye lens(4) the wavelength of light illuminating the object				
9.	An astronomical telesco adjustment is 10, when angular magnification w	pe has an eyepiece of f final image is at least ill be :	ocal-length 5 cm. If the a distance of distinct visio	angular magnification in normal n (25cm) from eye piece, then	
	(1) 10	(2) 12	(3) 50	(4) 60	
10.	A person with a defectiv (1) concave lens with $f =$ (3) concave lens with $f =$	e sight is using a lens ha = 0.5 m = 0.2 m	aving a power of +2D. Th (2) convex lens with $f =$ (4) convex lens with $f =$	ie lens he is using is 2.0 m 0.5 m	

11.	The focal lengths of the magnifying power for th (1) 30 cm	e objective and eye-lens ne relaxed eye is 45, ther (2) 25 cm	of a microscope are 1 on the length of the tube is (3) 15 cm	cm and 5 cm respectively. If the s : (4) 12 cm	
12.	In a compound microso (1) Large (3) Equal to that of obje	cope magnification will be	e large, if the focal length (2) Smaller (4) Less than that of ob	of the eye piece is : ojective	
13.	The focal length of the (1) Equal to the focal le (3) Greater than the foc	objective lens of a comp ongth of its eye piece cal length of eye piece	ound microscope is : (2) Less than the focal (4) Any of the above th	length of eye piece ree	
14.	Microscope is an optica (1) Enlarges the object (2) Increases the visua (3) Decreases the visua (4) Brings the object ne	al instrument which : I angle formed by the obj al angle formed by the ob earer	ject at the eye oject at the eye		
15.	For which of the followi (1) White colour	ng colour, the magnifying (2) Red colour	g power of a microscope (3) Violet colour	will be maximum : (4) Yellow colour	
16.	The length of the comp length of eye lens is 5 o (1) 1.8 cm	ound microscope is 14 cr cm, then the object distan (2) 1.5 cm	n. The magnifying power nce for objective lens will (3) 2.1 cm	for relaxed eye is 25. If the focal be : (4) 2.4 cm	
17.	If the focal length of ob cm away from the obje microscope is :	jective and eye lens are active lens and the final i	1.2 cm and 3 cm respectimage is formed at infinit	tively and the object is put 1.25 ty. The magnifying power of the	
	(1) 150	(2) 200	(3) 250	(4) 400	
18.	When the object is self $2\mu\sin\theta$	-luminous, the resolving $\mu \sin \theta$	power of a microscope is $2\mu\cos\theta$	s given by expression : 2μ	
	(1) 1.22λ	(2) λ	(3) 1.22λ	(4) λ	
19.	the focal length of object image is formed at (i) le be:	ctive and eye lens of a st east distance of distinct v	ronomical telescope are rision (ii) infinity. The mag	respectively 2m and 5 cm. Final gnifying power in both cases will	
	(1) -48, -40	(2) –40, –48	(3) –40, 48	(4) –48, 40	
20.	For observing a cricket match, a binocular is preferred to a terrestrial telescope because : (1) The binocular gives the proper three dimensional view (2) The binocular has shorter length (3) The telescope does not give erect image (4) Telescope have chromatic aberrations				
21.	An astronomical teles seperation between the focal length f_0 of the ob (1) $f_0 = 45$ cm and $f_e = -$ (3) $f_0 = 50$ cm and $f_e = -$	cope has an angular r objective and the eye pi jective and the focal leng -9 cm 10 cm	magnification of magnitu- lece is 36 cm and the fina- gth f_e of the eye piece are (2) $f_0 = 7.2$ cm and $f_e =$ (4) $f_0 = 30$ cm and $f_e = 6$	ude 5 for distant objects. The al image is formed at infinity. The e : 5 cm 6 cm	
22.	In Gallilean telescope, then for relaxed vision, (1) 21.25 cm and 16 (3) 75 cm and 16	if the powers of an obje the length and magnifica	ective and eye lens are r ation will be : (2) 75 cm and 20 (4) 8.5 cm and 21.25	respectively +1.25 D and –20D,	
23.	An astronomical telesce	ope has two lenses of foo	cal powers 0.5 D and 20D	D. Then its magnifying power will	
	(1) 8	(2) 20	(3) 30	(4) 40	

24.	The magnifying power of objective of a compound microscope is 7. If the magnifying power of microscope is 35, the magnifying power of evelops will be -					
	(1) 5	(2) 30	(3) 35	(4) 28		
25.	For a telescope, larger (1) greater is the resolv (3) greater is the magn	the diameter of the object ving power ifying power	ctive lens (2) smaller is the resolv (4) smaller is the magn	ring power ifying power		
26.	The focal length of the moon substends an an the moon's image will	e objective and eye-piece gle of 0.5° at the eye. If it be	of a telescope are resp is looked through the tel	ectively 100 cm and 2 cm. The escope, the angle subtended by		
	(1) 100°	(2) 50°	(3) 25°	(4) 10°		
27.	Focal lengths of object object from objective le	tive & eye piece of a mid ens is 4.5 cm then magnif	croscope are 4 cm & 8 c ying power is :	cm respectively and distance of		
	(1) 18	(2) 32	(3) 64	(4) 20		
28.	When length of tube of	f microsocpe is increased	then magnifying power:	÷		
	(1) decreases(3) remains unchanged) decreases) remains unchanged		crease		
29.	Electron microscope is	better than optical micro	scope because of .			
	(1) more resolving pow	/er	(2) Comfortable use			
	(3) Low purchasing cos	St	(4) observation can be	taken fastiy		
30.	For a compound micro	scope, the focal lengths on the second se	of object lens and eye len	is are f_0 and f_e respectively, then		
	(1) $f_0 = f_e$	(2) $f_0 > f_e$	(3) f ₀ < f _e	(4) none of these		
31.	An astronomical telesc	ope has a large aperture	to			
	(1) reduce spherical at (3) increase span of ot	perration	(2) have high resolution (4) have low dispersion	have high resolution		
32.	Wavelength of light us	ed in an optical instrume	ent are $\lambda_1 = 4000$ Å and	$\lambda_2 = 5000$ Å, then ratio of their		
	(1) 16 : 25	(2) 9 : 1	(3) 4 : 5	(4) 5 : 4		
33	The image formed by a	an objective of a compour	nd microscope is			
	(1) virtual and diminish	ed	(2) real and diminished			
	(3) real and enlarged		(4) virtual and enlarged			
	Exercise	-2				
	C	NLY ONE OPTIO	N CORRECT TYP	PE		
1	A person's eve is at a t	neight of 1.5 m. He stands	s infront of a 0.3m long of	ane mirror which is 0.8 m above		

- the ground. The length of the image he sees of himself is: (1) 1.5m (2) 1.0m (3) 0.8m (4) 0.6m
- 2. A point object is kept in front of a plane mirror. The plane mirror is performing SHM of amplitude 2 cm. The plane mirror moves along the x-axis and x- axis is normal to the mirror. The amplitude of the mirror is such that the object is always infront of the mirror. The amplitude of SHM of the image is (1) zero (2) 2 cm (3) 4 cm (4) 1 cm

3. In the figure shown, the image of a real object is formed at point I. AB is the principal axis of the mirror. The mirror must be:

(3) 3 f

4.

5.

6.

- (4) depends on whether the image is real or virtual.
- 7. A ray of light is incident on a parallel slab of thickness t and refractive index n. If the angle of incidence θ is small, than the displacement in the incident and emergent ray will be:

 $t\theta n$ $t\theta$ (n-1)tθ (3) n-1(2) *n* п (1) (4) none

- 8. A concave spherical surface of radius of curvature 10 cm separates two mediums X and Y of refractive indices 4/3 and 3/2 respectively. Centre of curvature of the surface lies in the medium X. An object is placed in medium X.
 - (1) Image is always real
 - (2) Image is real if the object distance is greater than 90 cm.
 - (3) Image is always virtual
 - (4) Image is virtual only if the object distance is less than 90 cm.
- The observer 'O' sees the distance AB as infinitely large. If refractive index of liquid is u1 and that of glass 9.

(4) None of these

then
$$\frac{\mu_1}{\mu_2}$$
 is :
(2) 1/2 (3) 4

is μ2,

(1) 2

10. In the given figure a plano-concave lens is placed on a paper on which a flower is drawn. How far above its actual position does the flower appear to be ?

13	11	$\sqrt{3}$	1
(1) sin $\theta > \overline{11}$	(2) sin $\theta > \overline{13}$	(3) sin $\theta > 2$	(4) sin $\theta > \sqrt{2}$

- In a laboratory four convex lenses L₁, L₂, L₃ and L₄ of focal lengths 2, 4, 6 and 8 cm, respectively are available. Two of these lenses form a telescope of length 10 cm and magnifying power 4. The objective and eye lenses are respectively

 (1) L₂, L₃,
 (2) L₂, L₄
 (3) L₁, L₂,
 (4) L₄, L₁
- **17.** Distance stars are viewed with the help of an astronomical telescope. The angular separation between two stars which can be just resolved by the telescope.
 - (1) Is independent of the diameter of the aperture of the telescope
 - (2) increases with the increases in the diameter of the aperture of the telescope
 - (3) decreases with the increase in the diameter of the telescope aperture
 - (4) increases quadritically with the diameter of the telescope aperture
- **18.** Refractive index of water is 5/3. A light source is placed in water at a depth of 4 m. Then what must be the minimum radius of disc placed on water surface so that the light of source can be stopped?

19. STATEMENT-1: The formula connecting u, v and f for a spherical mirror is valid only for mirrors whose sizes are very small compared to their radii of curvature.

because

STATEMENT-2: Laws of reflection are strictly valid for plane surfaces, but not for large spherical surfaces.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True.

Exercise-3

PART - I : NEET / AIPMT QUESTION (PREVIOUS YEARS)

- 1. A boy is trying to start a fire by focusing sunlight on a piece of paper using an equiconvex lens of focal length 10 cm. The diameter of the sun is $1.39 \times 10_9$ m and its mean distance from the earth is $1.5 \times 10_{11}$ m. What is the diameter of the sun's image on the paper ? [AIPMT-2008] (1) $9.2 \times 10_{-4}$ m (2) $6.5 \times 10_{-4}$ m (3) $6.5 \times 10_{-5}$ m (4) $12.4 \times 10_{-4}$ m
- **2.** Two thin lenses of focal lengths f_1 and f_2 are in contact and coaxial. The power of the combination is : [AIPMT-2008]

(1) $\sqrt{\frac{f_1}{f_2}}$ (2) $\sqrt{\frac{f_2}{f_1}}$ (3) $\frac{f_1 - f_2}{f_2 f_1}$ (4) $\frac{f_1 + f_2}{f_1 f_2}$

- **3.** A ray of light travelling in a transparent medium of refractive index μ , falls on a surface separating the medium from air at an angle of incidence of 45°. For which of the following value of μ the ray can undergo total internal reflection? **[AIPMT-2010]** (1) $\mu = 1.33$ (2) $\mu = 1.40$ (3) $\mu = 1.50$ (4) $\mu = 1.25$
- 4. A lens having focal length f and aperture of diameter d forms an image of intensity I. Aperture of diameter in central region of lens is covered by a black paper. Focal length of lens and intensity of image now will be respectively [AIPMT-2010]

(1) f and
$$\frac{I}{4}$$
 (2) $\frac{3f}{4}$ and $\frac{I}{2}$ (3) f and $\frac{3I}{4}$ (4) $\frac{f}{2}$ and $\frac{I}{2}$

- 5. The speed of light in media M_1 and M_2 are $1.5 \times 10_8$ m/s and $2.0 \times 10_8$ m/s respectively. A ray of light enters from medium M_1 to M_2 at an incidence angle i. If the ray suffers total internal reflection, the value of i is [AIPMT-2010 Mains]
 - (1) Equal to $\sin_{-1}\left(\frac{2}{3}\right)$ (3) Equal to or greater than $\frac{\left(\frac{2}{3}\right)}{\sin^{-1}\left(\frac{3}{4}\right)}$ (2) Equal to or less than $\frac{\sin^{-1}\left(\frac{2}{3}\right)}{\sin^{-1}\left(\frac{2}{3}\right)}$ (4) Less than

6.	A ray of light is incident first face (i.e., incident fa (1) zero	on a 60° prism at the mi ace) of the prism is (2) 30°	inimum deviation position (3) 45°	n. The angle of refraction at the [AIPMT-2010 Mains] (4) 60°
7.	Which of these is not du (1) working of optical fib (2) difference between a (3) mirage on hot summ (4) brillance of diamond	ue to total internal reflection ore apparent and real deptho ner days	ion? of pond	[AIPMT-2011]
8.	The dimensions of $(\mu_0 \in (1) [L_{1/2} T_{-1/2}]$))-1/2 are : (2) [L-1 T]	(3) [L T ₋₁]	[AIPMT-2011] (4) [L _{-1/2} T _{1/2}]
9.	A bioconvex lens has a describe best the image of lens material = 1.5) (1) Virtual, upright, heig (3) Real, inverted, heigh	a radius of curvature of formed of an object of he ht = 1 cm ht = 4 cm	magnitude 20 cm. Whic eight 2 cm placed 30 cm f (2) Virtual, upright, heig (4) Real, inverted, heigh	ch one of the following options from the lens ?(Refractive index [AIPMT-2011] ht = 0.5 cm ht = 1cm
10.	A thin prism of angle 19 glass of refractive index The angle of the second (1) 7°	5° made of glass of refra ($\mu_2 = 1.75$. The combina d prism should be: (2) 10°	active index $\mu_1 = 1.5$ is c tion of the prism produce (3) 12 ^o	combined with another prism of es dispersion without deviation. [AIPMT Mains 2011] (4) 5°
11.	A conversing beam of intersect at a point 15 c rays meets will move 5 (1) - 10 cm	rays is incident on a di m from the lens on the c cm closer to the lens. Th (2) 20 cm	verging lens. Having pa opposite side. If the lens le focal length of the lens (3) – 30 cm	ssed though the lens the rays is removed the point where the is : [AIPMT Mains 2011] (4) 5 cm
12.	When a biconvex lens of glass. This implies th (1) equal to that of glass (3) greater than that of g	of glass having refractive at the liquid must have re glass	index 1.47 is dipped in a efractive index. (2) less then one (4) less then that of glas	a liquid, it acts as a plane sheet [AIPMT Pre 2012] ss
13.	A ray of light is incident and emerges normally incidence i, is nearly eq (1) μ A	at an angle of incidence, from the opposite face. ual to : (2)	i, on one face of prism of If the refractive index of (3) Α/μ	f angle A (assumed to be small) of the prism is μ, the angle of [AIPMT_Pre_2012] (4) A/2μ
14.	A concave mirror of for A beam of light coming to infinity. The distance (1) $f_1 + f_2$	cal length ' f_1 ' is placed at from infinity and falling o 'd' must equal : (2) $-f_1 + f_2$	t a distance of 'd' from a n this convex lens – cond (3) 2f ₁ + f ₂	convex lens of focal length 'f ₂ ' cave mirror combination returns [AIPMT_Pre_2012] (4) -2f ₁ + f ₂
15.	The magnifying power of objective and eyepiece (1) 10 cm, 10 cm	of a telescope is 9. Wher is 20 cm. The focal lengt (2) 15 cm, 5 cm	n it is adjusted for paralle th of lenses are : (3) 18 cm, 2 cm (4) 11 c	I rays the distance between the [AIPMT_Pre_2012] cm, 9 cm
16.	The dimensions of $(\mu_0 \epsilon_0 (1) [L_{1/2}T_{-1/2}]$)- _{1/2} are : (2) [L- ₁ T]	(3) [LT ₋₁]	[AIPMT_Main_2012] (4) [L _{1/2} T _{1/2}]
17.	A plano convex lens fits If lenses are made of di the curved surface of th	exactly into a plano conc fferent materials of refrac e lenses, then the focal l	ave lens. Their plane sur ctive indices μ₁ and μ₂ an ength of the combination	faces are parallel to each other. d R is the radius of curvature of i is :
	R	R	2R	[14221_2013] R
	(1) $\overline{2(\mu_1 - \mu_2)}$	(2) $\overline{(\mu_1 - \mu_2)}$	(3) $(\mu_2 - \mu_1)$	(4) $\overline{2(\mu_1 + \mu_2)}$

- For a normal eye, the cornea of eye provides a converging power of 40 D and the least converging power of the eye lens behind the cornea is 20 D. Using this information, the distance between the retina and the cornea eye lens can be estimated to be :

 (1) 2.5 cm
 (2) 1.67 cm
 (3) 1.5 cm
 (4) 5 cm
- **19.** It the focal length of objective lens is increased then magnifying power of :
 [AIPMT_2014]

 (1) microscope will increase but that of telescope decrease
 [AIPMT_2014]
 - (2) microscope and telescope both will increase
 - (3) microscope and telescope both will decrease
 - (4) microscope will decrease but that of telescope will increase.
- **20.** The refracting angle of a prism 'A', and refractive index of the material of the prism is $\cot(A/2)$. The angle of minimum deviation is : (1) $180_0 - 2A$ (2) $90_0 - A$ (3) $180_0 + 2A$ (4) $180_0 - 3A$
- **21.**Two identical thin plano-convex glass lenses (refractive index \times 1.5) each haveing radius of curvature of
20 cm are placed with their convex surfaces in contact at the center. The intervening space is filled with
oil of refractive index 1.7. The focal length of the combination is :
(1) -25 cm[AIPMT-2015]
(4) -20 cm
- 22. A beam of light consisting of red, green and blue colours is incident on a right angled prism. The refractive index of the material of the prism for the above red, green and blue wavelengths are 1.39, 1.44 and 1.47, respectively. [AIPMT-2015]

The prism will:

- (1) separate all the three colours from one another
- (2) not separate the three colours at all
- (3) separate the red colour part from the green and blue colours
- (4) separate the blue coloure part from the red and green colours
- In an astronomical telescope in normal adjustment a straight black line of lenght L is drawn on inside part of objective lens. The eye-piece forms a real image of this line. The length of this image is I. The magnification of the telescope is : [AIPMT-2015]

$$\begin{array}{cccc} \frac{L}{I} - 1 & \frac{L+I}{L-I} & \frac{L}{I} & \frac{L}{I} + 1 \\ (2) & \frac{L-I}{L-I} & (3) & 1 \end{array}$$

24. Match the corresponding entries of column–1 with column–2. [Where m is the magnification produced by the mirror] [AIPMT_2016]

	Column-1			Column–2
(A)	m = -2		(a)	Convex mirror
	_1			
(B)	m = 2		(b)	Concave mirror
(C)	m = +2		(c)	Real image
	<u>+ 1</u>			
(D)	m = 2		(d)	Virtual image
(1)	$A \rightarrow c$ and d;	$B \rightarrow b$ and d;	C ightarrow b	and c; D \rightarrow a and d
(2)	$A \rightarrow b$ and c;	$B \rightarrow b$ and c;	$C \rightarrow b$	and d; D \rightarrow a and d
(3)	$A \rightarrow a and c;$	$B \rightarrow a and d;$	C→a	and b; D \rightarrow c and d
(4)	$A \rightarrow a and d;$	$B \rightarrow b$ and c;	$C \rightarrow b$	and d; D \rightarrow b and c

25. A astronomical telescope has objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance :

[AIPMT_2016]

26.	(1) 54.0 cm The angle incidence for If the ray suffers minim index of the material of 1	(2) 37.3 cm a ray of light at a refrac um deviation through th the prism respectively, a 1	(3) 46.0 cm ting surface of a prism is e prism, the angle of mi re	(4) 50.0 cm 5 45°. The angle of prism is 60°. nimum deviation and refractive [AIPMT_2016_ <i>XII</i>]
	(1) 30°; $\sqrt{2}$	(2) 45° ; $\sqrt{2}$	(3) 30° ; $\sqrt{2}$	(4) 45° ; √2
27.	A person can see clearl to increase the maximu the person has to use, v (1) conves, +0.15 diopte (3) conves, -0.25 diopte	y object only when they m distance of distinct vis will be : er er	lie between 50 cm and 4 ion to infinity, the type ar (2) conves, +2.25 diopte (4) conves, –0.2 diopte	00 cm from his eyes. In order nd power of the correcting lens, [NEET 2016] er
28.	Two identical glass (μ_g between that two lenses	= 3/2) equiconvex lenses s in filled with water (μ_w =	s of focal length f each ar = 4/3). The focal length o	e kept in contact. The space f the combination is [NEET 2016]
	3f	<u>f</u>		<u>4f</u>
	(1) 4	(2) ³	(3) f	(4) 3
29.	An air bubble in a glass viewed from one surfac the slab is	slab with refractive inde e and 3 cm deep when v	x 1.5 (near normal incide riewed from the opposite	ence) is 5 cm deep when face. The thickness (in cm) of [NEET 2016]
	(1) 16	(2) 8	(3) 10	(4) 12
30.	A thin prism having refra with another thin prism deviation. The refracting (1) 4°	acting angle 10° is made of glass of refractive in g angle of second prism (2) 6°	of glass of refractive ind dex 1.7. This combination should be : (3) 8°	ex 1.42. This prism is combined on produces dispersion without [NEET 2017] (4) 10°
31.	A beam of light from a the source. The beam i mirror is rotated through the scale. The angle θ is	souce L is incident norm s reflected back as a sp h a small angle θ, the sp s given by :	nally on a plane mirror fix ot on a scale placed just pot of the light is found to	ted at a certain distance x from above the source L. When the move through a distance y on [NEET 2017]
	v	v	х	х
	(1) $\frac{3}{2x}$	(2) $\frac{5}{x}$	(3) ^{2y}	(4) ^y
32.	An astronomical refract when it has an objective (1) small focal length ar (3) large focal length ar	ing telescope will have e lens of nd large diameter nd large diameter	large angular magnificat (2) small focal length ar (4) large focal length ar	ion and high angular resolution [NEET 2018] nd small diameter nd small diameter
33.	The refractive index of refracting surfaces of th light entering the prism if its angle of incidence (1) 60°	the material of a prism ne prism is made a mirro from the other face will r on the prism is (2) zero	is $\sqrt{2}$ and the angle of or inwards, by silver coat etrace its path (after refle (3)30°	the prism is 30°. On of the two ting. A beam of monochromatic ection from the silvered surface) [NEET 2018] (4) 45°
34.	An object is placed at a displaced through a dis (1) 30 cm away from the (3) 30 cm towards the n	a distance of 40 cm from tance of 20 cm towards t e mirror nirror	a concave mirror of foc he mirror, the displacem (2) 36 cm towards the r (4) 36 cm away from th	al length 15 cm. If the object is ent of the image will be nirror e mirror
35.	Pick the wrong answer (1) Rainbow is combine (2) When the light rays (3) The order of colours	in the context with rainbo d effect of dispersion, re undergo two internal refl is reversed in the secor	ow. fraction and reflection of ections in a water drop, a idary rainbow.	[NEET_2019-I] sunlight. a secondary rainbow is formed.

95 | Page

(4)	An observer	can see a	rainbow	when his	front is	towards the sun.
١.	• /	7 11 00001 001	0011 000 u			11 01 10 10	tomarao trio oarn.

36. In total internal reflection when the angle of incidence is equal to the critical angle for the pair of medium in contact, what will be angle of refraction? [NEET_2019-I]
 (1) 90°
 (2) 180°
 (3) 0°
 (4) equal to angle of incidence

37. Two similar thin equi-convex lenses, of focal f each, are kept coaxially in contact with each other such that the focal length of the combination is F₁. When the space between the two lens is filled with glycerin (which has the same refractive index ($\mu = 1.5$) as that of glass) then the equivalent focal length is F₂. The ratio F₁ : F₂ will be **[NEET_2019-I]** (1) 3 : 4 (2) 2 : 1 (3) 1 : 2 (4) 2 : 3

 38.
 An equiconvex lens has power P. It is cut into two symmetrical halves by a plane containing the principal axis. The power of one part will be,

 [NEET_2019-II]

	Р	Р	
(1) 0	(2) 2	(3) 4	(4) P

39. A double convex lens has focal length 25 cm. The radius of curvature of one of the surfaces is double of the other. Find the radii if the refractive index of the material of the lens is 1.5. [NEET_2019-II]
(1) 100 cm, 50 cm
(2) 25 cm, 50 cm
(3) 18.75 cm, 37.5 cm
(4) 50 cm, 100 cm

PART - II : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

2

1. A transparent solid cylindrical rod has a refractive index of $\sqrt{3}$. It is surrounded by air. A light ray is incident at the mid-point of one end of the rod as shown in the figure. **[AIEEE-2009, 4/144]**

The incident angle (θ) for which the light ray grazes along the wall of the rod is:

 $\frac{1}{(2)}$ $\frac{1}{15}$ m/s

$\left(\sqrt{3}\right)$	$\left(\begin{array}{c}2\end{array}\right)$	$\begin{pmatrix} 1 \end{pmatrix}$	(1)
(1) sin-1 $\left(\begin{array}{c} 2 \end{array} \right)$	(2) sin-1 $\left(\overline{\sqrt{3}}\right)$	(3) sin-1 $\left(\overline{\sqrt{3}}\right)$	(4) $\sin_{-1}\left(\frac{1}{2}\right)$

2. A car is fitted with a convex side-view mirror of focal length 20 cm. A second car 2.8 m behind the first car is overtaking the first car at a relative speed of 15 m/s. The speed of the image of the second car as seen in the mirror of the first one is : [AIEEE 2011]

$$\frac{1}{10}$$

(1) 10 m/s

(3) 10 m/s

(4) 15 m/s

3. A beaker contains water up to a height h_1 and kerosene of height h_2 above water so that the total height of (water + kerosene) is $(h_1 + h_2)$. Refractive index of water is μ_1 and that of kerosene is μ_2 . The apparent shift in the position of the bottom of the beaker when viewed from above is : **[AIEEE 2011]**

(1)
$$\begin{pmatrix} 1+\frac{1}{\mu_1} \end{pmatrix}$$
 $h_1 - \begin{pmatrix} 1+\frac{1}{\mu_2} \end{pmatrix}$ h_2
(2) $\begin{pmatrix} 1-\frac{1}{\mu_1} \end{pmatrix}$ $h_1 + \begin{pmatrix} 1-\frac{1}{\mu_2} \end{pmatrix}$ h_2
(3) $\begin{pmatrix} 1+\frac{1}{\mu_1} \end{pmatrix}$ $h_2 - \begin{pmatrix} 1+\frac{1}{\mu_2} \end{pmatrix}$ h_1
(4) $\begin{pmatrix} 1-\frac{1}{\mu_1} \end{pmatrix}$ $h_2 + \begin{pmatrix} 1-\frac{1}{\mu_2} \end{pmatrix}$ h_1

- 4. When monochromatic red light is used instead of blue light in a convex lens, its focal length will : [AIEEE 2011]
 - (1) increase (2) decrease
- (3) remain same (4) does not depend on colour of light 5. An object 2.4 m in front of a lens forms a sharp image on a film 12 cm behind the lens. A glass plate 1 cm thick, of refractive index 1.50 is interposed between lens and film with its plane faces parallel to film. At what distance (from lens) should object shifted to be in sharp focus on film ? [AIEEE 2012] (2) 2.4 m (3) 3.2 m (4) 5.6 m (1) 7.2 m
- Diameter of a plano convex lens is 6 cm and thickness at the centre is 3 mm. If speed of light in material 6. of lens is $2 \times 10_8$ m/s, the focal length of the lens is : [JEE-Main 2013] (2) 20 cm (3) 30 cm (1) 15 cm (4) 10 cm
- 7. The graph between angle of deviation (δ) and angle of incidence (i) for a triangular prism is represented by : [JEE-Main 2013]

4 5

different liquids having refractive indices 3 and 3, it has the focal lengths f_1 and f_2 respectively. The [JEE-Mains 2014] correct relation between the focal length is :

(1) $f_1 = f_2 < f$

8.

(2) $f_1 > f$ and f_2 becomes negative

(3) $f_2 > f$ and f_1 becomes negative

- (4) f_1 and f_2 both become negative
- A green light is incident from the water to the air water interface at the critical angle (θ). Select the 9. correct statement. [JEE-Mains 2014]
 - The entire spectrum of visible light will come out of the water at an angle of 90° to the normal. (1)
 - (2) The spectrum of visible light whose frequency is less than that of green light will come out ot the air medium.
 - The spectrum of visible light whose frequency is more than that of areen light will come out to the (3) air medium.
 - The entire spectrum of visible light will come out of the water at various angles to the normal. (4)
- 10. Monochromatic light is incident on a glass prism of angle A. If the refractive index of the material of the prism is μ , a ray, incident at an angle θ , on the face AB would get transmitted through the face AC of the prism provided: [JEE(Main)-2015; 4/120, -1]

$$(1) \theta > \sin_{-1} \left[\mu \sin\left(A - \sin^{-1}\left(\frac{1}{\mu}\right)\right) \right]$$

$$(2) \theta < \sin_{-1} \left[\mu \sin\left(A - \sin^{-1}\left(\frac{1}{\mu}\right)\right) \right]$$

$$(3) \theta > \cos_{-1} \left[\mu \sin\left(A + \sin\left(\frac{1}{\mu}\right)\right) \right]$$

$$(4) \theta < \cos_{-1} \left[\mu \sin\left(A + \sin\left(\frac{1}{\mu}\right)\right) \right]$$

- An observer looks at a distant tree of height 10 m with a telescope of magnifying power of 20. To the observer the tree appears: [JEE(Main)-2016; 4/120, -1]
 (1) 10 times page 20. To the second second
 - (1) 10 times nearer
 - (3) 20 times nearer

- (2) 20 times taller
- (4) 10 times taller
- **12.** In an experiment for determination of refractive index of glass of a prism by $i \delta$, plot, it was found that a ray incident at angle 35°, suffers a deviation of 40° and that it emerges at angle 79°. In that case which of the following is closest to the maximum possible value of the refractive index? [JEE(Main)-2016]

- 13. A diverging lens with magnitude of focal length 25cm is placed at a distance of 15 cm from a converging lens of magnitude of focal length 20 cm. A beam of parallel light falls on the diverging lens. The final image formed is : [JEE Main 2017]
 - (1) real and at a distance of 6 cm from the convergent lens
 - (2) real and at a distance of 40 cm from convergent lens.
 - (3) virtual and at a distance of 40 cm from convergent lens
 - (4) real and at distance of 40 cm from the divergent lens.
- Consider a tank made of glass (refractive index 1.5) with a thick bottom. It is filled with a liquid of refractive index μ. A student finds that, irrespective of what the incident angle i (see figure) is for a beam of light entering the liquid, the light reflected from the liquid glass interface is never completely polarized. For this to happen, the minimum value of μ is :

15. A convex lens is put 10 cm from a light source and it makes a sharp image on a screen, kept 10 cm from the lens. Now a glass block (refractive index 1.5) of 1.5 cm thickness is placed in contact with the light source. To get the sharp image again,, the screen is shifted by a distance d. Then d is :

(4) 0

[JEE Main 2019]

- (1) 1.1 cm away from the lens (2) 0.55 cm away from the lens
- (3) 0.55 cm towards the lens
- 98 | Page

16.	Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror (M1) and									
	parallel to the second mirror (M_2) is finally reflected from the second mirror (M_2) parallel to the first mirr									
	(M ₁). The angle betwee	n the two mirrors will be	:	[JEE Main 2019]						
	(1) 75°	(2) 90°	(3) 45°	(4) 60°						

17. A plano convex lens of refractive index μ₁ and focal length f₁ is kept in contact with another plano concave lens of refractive index μ₂ and focal length f₂. If the radius of curvature of their spherical faces is R each and f₁ = 2f₂, then μ₁ and μ₂ are related as : [JEE Main 2019]
(1) 2μ₁ - μ₂ = 1
(2) μ₁ + μ₂ = 3
(3) 3μ₂ - 2μ₁ = 1
(4) 2μ₂ - μ₁ = 1

18. The eye can be regarded as a single refracting surface. The radius of curvature of this surface is equal to that of cornea (7.8 mm). This surface separates two media of refractive indices 1 and 1.34. Calculate the distance from the refracting surface at which a parallel beam of light will come to focus:

[JEE Main 2019]

- (1) 4.0 cm (2) 2 cm (3) 1 cm (4) 3.1 cm
- **19.** The variation of refractive index of a crown glass thin prism with wavelength of the incident light is shown. Which of the following graphs is the correct one, if D_m is the angle of minimum deviation ?

20. An object is at a distance of 20 m from a convex lens of focal length 0.3 m. The lens forms an image of the object. If the object moves away from the lens at a speed of 5 m/s, the speed and direction of the image will be : [JEE Main 2019]

(1) 0.92×10^{-3} m/s away from the lens (3) 1.16×10^{-3} m/s towards the lens (2) 3.22×10^{-3} m/s towards the lens (4) 2.26×10^{-3} m/s away from the lens

A monochromatic light is incident at a certain angle on an equilateral triangular prism and suffers minimum 21. deviation. If the refractive index of the material of the prism is $\sqrt{3}$, then the angle of incidence is : [JEE Main 2019] (1) 30° (2) 90° (3) 60° (4) 45°

22. What is the position and nature of image formed by lens combination shown in figure ? (f₁, f₂ are focal lengths) [JEE Main 2019]

23. A point source of light S is placed at a distance L in front of the centre of plane mirror of width d which is hanging vertically on a wall. A man walks in front of the mirror along a line parallel to the mirror, at a distance 2L as shown below. The distance over which the man can see the image of the light source in the mirror is : [JEE Main 2019]

24. Formation of real image using a biconvex lens is shown below : [JEE Main 2019]

25. A plano-convex lens (focal length f_2 , refractive index μ_2 , radius of curvature R) fits exactly into a planoconcave lens (focal length f_1 , refractive index μ_1 , radius of curvature R). Their plane surfaces are parallel to each other. Then, the focal length of the combination will be : **[JEE Main 2019]** R $2f_4f_2$

(1)
$$\overline{\mu_2 - \mu_1}$$
 (2) $f_1 - f_2$ (3) $\overline{f_1 + f_2}$ (4) $f_1 + f_2$

(1) Erect real image

Answers **EXERCISE - 1 SECTION (A)** 2. (4) (2) (2) 5. (2) 7. (2) 1. 3. 4. 6. (1)(1)13. 10. 14. (4)9. (2)(2)11. 12. (2)(4)8. (2)(3) (1)15. (3)16. (2) 17. 18. (2) 19. (4) SECTION (B): 2. (2) 3. (3) 4. (4) 5. (3) (3) 7. (1) 1. (3)6. 8. (1)9. (4)10. (3)11. (2) 12. (1)13. (2) 14. (3)15. (3)16. (3) 17. (3)18. (2) SECTION (C) : 1. (4)2. (1) 3. (3) 4. (2) 5. (3) 6. (3) 7. (2) (1) 10. (4) 11. 12. 14. 8. 9. (2)(1) (4) 13. (1) (1) (2) (3)16. 17. (3)18. 19. 20. (3)21. (4) 15. (1) (3) (4) 23. 24. (1) 25. 26. (1) 27. (4) 28. (4) 22. (3)(3)31. (4) 32. 33. 34. 35. (1) 29. (4)30. (2)(3)(1)(3)38. (2)40. 42. 36. (4)37. 39. (1)(2) 41. (3)(2) (3)44. 45. (4)47. (2) 49. 43. (3)(2)46. (2) 48. (4) (2)SECTION (D): (2) (3) (2) 1. (1) 2. (1)3. 4. 5. 6. (3) 7. (2)8. (2)9. (4)10. (2)11. (1)12. (3) 13. (1) 14. (1)15. (3) 16. (3)17. (2)18. 19. (2) 20. 21. (2)(1)(1) (3)24. (2)22. (1) 23. SECTION (E): (2) 3. (1) 1. (2)2. 4. (1) SECTION (F): 6. 1. (2) 2. (4) 3. (3) 4. (3) 5. (2) (3) 7. (3) (4) 9. 10. (2)11. 12. (1)(4) 14. (3)8. (1) (3) 13. (4) 17. (2) (1) 21. 15. 16. (3)18. (3)19. (1)20. (3)22. (3)23. 24. (4)25. (1)26. (3) 27. (4)28. (2)(1)29. (3)30. 31. (1)32. (2)33. (4) 34. (2)35. (4)(3)37. 38. (2)36. (4)(2)(1)39. (4) 40. (3) 41. 42. (1)SECTION (G) : 2. (4)(1) 3. (3)4. (3) 5. (2) 6. (4) 7. (3) 1. 8. (3)9. 10. (3)11. (2) 12. (3)13. (2) 14. (4)(1)(1)16. 15. (2) 17. (2) SECTION (H) : 2. (4) (1) 3. (1) (3) 5. (1) 6. 7. (4) 1. (1) 4. 10. 11. (3) 9. (4)(4)12. 13. (4)14. (1)8. (2)(3) 15. (3)16. (2)17. (4)18. (1)19. (4) 20. (3) 21. (1) 22. (2)23. (2)24. (3)25. (2) SECTION (I): 1. 2. (2) 3. (3) 4. (3) 5. (2) 6. (1) 7. (1) (4)(2) 8. SECTION (J) : 2. (3) 3. (3) (3) 5. (4) (1) (2) 1. (4)4. 6. 7. (4) 9. (2)10. (4) 11. (3) 12. (2) 13. (2)14. (2) 8. 21. (4) 15. (3)16. 17. (2) 18. 19. 20. (1)(1)(1)(1) (1)22. (3)23. 24. (1)25. 26. 27. (2)28. (4)(1)(3)

Ge	eomet	rical 0	ptics										
9.	(1)	30.	(3)	31.	(2)	32.	(4)	33.	(3)				
						EXER	CISE	- 2					
	(4)	2	(3)	3	(2)	4	(4)	5	(3)	6	(1)	7	(1)
	(3)	<u>-</u> . 9.	(0)	10.	(1)	11.	(4)	12.	(3)	13.	(1)	14.	(1)
5.	(2)	16.	(4)	17.	(3)	18.	(1)	19.	(3)		(-/		(.
								2					
							ART-I	- 3					
	(1)	2.	(4)	3.	(3)	4.	(3)	5.	(3)	6.	(2)	7.	(2)
	(3)	9.	(3)	10.	(2)	11.	(3)	12.	(1)	13.	(1)	14.	(3)
5.	(3)	16.	(3)	17.	(2)	18.	(2)	19.	(4)	20.	(1)	21.	(2)
2.	(3)	23.	(3)	24.	(2)	25.	(1)	26.	(3)	27.	(3)	28.	(1)
9.	(4)	30.	(2)	31.	(1)	32.	(3)	33.	(4)	34.	(4)	35.	(4)
6.	(1)	37.	(3)	38.	(4)	39.	(3)						
						P/	ART-II						
	(3)	2.	(2)	3.	(2)	4.	(1)						
	(4)												
	Initial	lly the ob	oject dist	ance is 2	240 cm a	and the i	mage di	stance is	s 12 cm	SO			
	$\frac{1}{f} = \frac{1}{f}$	$\frac{1}{12} + \frac{1}{24}$	$\frac{1}{0} = \frac{20}{24}$	$\frac{1}{0} \Rightarrow f =$	$\frac{240}{21}$ m	l							
	due t	o the sla	b, the sl	nifting of	the ima	ge will b	ə:						
	-		2 1	0									
	shift -	_ = 1(1 _	$(\frac{1}{3}) = \frac{1}{3}$										
	Sint-	• (•	1 3	35									
	Nou	ví <u>–</u> 40	$\frac{1}{3}$ $\frac{1}{3}$	3 ~~									
	WOW	v = 12 - 12	-~=	- cm									
	$\therefore \frac{2}{2^4}$	$\frac{1}{40} = \frac{3}{35}$	$\frac{1}{-u}$										
	$\frac{1}{u} =$	$\frac{3}{35} - \frac{2}{24}$	$\frac{1}{40} = \frac{1}{5} \left(\frac{1}{5} \right)$	$\left(\frac{3}{7}-\frac{21}{48}\right)$)								
	5	144 - 1	47										
	$\frac{3}{u} =$	$\frac{144}{48\times 2}$	7										
	u = 5	60 cm =	5.6 m										
•	(3)	7.	(3)	8.	(2)	9.	(2)	10.	(1)	11.	(3)	12.	(4)
3.	(2)	14.	(3)	15.	(2)	16.	(4)	17.	(1)	18.	(4)	19.	(1)
0.	(3)	21.	(3)	22.	(2)	23.	(2)	24.	(3)	25.	(1)		