Exercise-1

Marked Questions can be used as Revision Questions.

OBJECTIVE QUESTIONS

Section (A) : Principle of superposition, path difference, Wavefronts, and coherence

- A 1. Ratio of intensities of two light waves is given by 4 : 1. The ratio of the amplitudes of the waves is : (1) 2 : 1 (2) 1 : 2 (3) 4 : 1 (4) 1 : 4
- A 2. Two coherent monochromatic light beams of intensities I and 4I are superposed; the maximum and minimum possible intensities in the resulting beam are : (1) 5I and I (2) 5I and 3I (3) 9I and I (4) 9I and 3I
- A 3. Two sources of waves are called coherent if:-
 - (1) Both have the same amplitude of vibrations
 - (2) Both produce waves of the same wavelength
 - (3) Both produce waves of the same wavelength having constant phase difference
 - (4) Both produce waves having the same velocity
- A 4. The meaning of wave front is:-
 - (1) All the particles on its surface vibrate in same phase
 - (2) All the particles on its surface vibrate in opposite phase
 - (3) Some particles vibrate in same phase and some in opposite phase
 - (4) None of the above

Section (B) : YDSE with Monochromatic light

В1.	The contrast in the fring	ges in any interference	pattern depends on :				
	(1) Fringe width		(2) Wavelength				
	(3) Intensity ratio of the	sources	es (4) Distance between the sources				
B 2.ൔ	Yellow light emitted by light of the same intens	sodium lamp in Young's sity :	double slit experiment is	replaced by monochromatic blue			
	(1) fringe width will dec	crease.	(2) fringe width will inc	rease.			
	(3) fringe width will rem	nain unchanged.	(4) fringes will become	less intense.			
В 3.	For constructive interfe	erence to take place betw be:-	ween two monochromatic	light waves of wavelength $\boldsymbol{\lambda},$ the			
	(1) [2n - 1]λ/4	(2) [2n - 1]λ/2	(3) nλ	(4) [2n + 1]λ/2			
В4.	Young's experiment is (1) Will remain same	performed in air and the	r and then performed in water, the fringe width:-				
	(3) Will increase	(4) All the above types	of waves				
B 5.	In Young's double slit fringe from the central	experiment, the phase fringe will be $[\lambda = 6000]$	difference between the light waves reaching third b A_0 -				
	(1) Zero	(2) 2π	(3) 4π	(4) 6π			
B 6.	The phenomenon of in	terference light was stud	died first by:-				
	(1) Newton	(2) Young	(3) Fresnel	(4) Huygen			
B 7.	In double slits experime	ent, for light of which co	lour the fringe width will b	e minimum:-			
	(1) Violet	(2) Red	(3) Green	(4) Yellow			
B 8.	Two coherent sources	of light produce destruc	tive interference when ph	ase difference between them is:			
	(1) 2π	(2) π	(3) π/2	(4) 0			

Wave	Optics			
В 9.	Young's experiment es (1) Light consist of wav (2) Light consist of part (3) Light consists of ne (4) Light consists of bo	tablishes that :- /es ticles ither particles nor waves th particles and waves		
B 10.	If two line slits are illum	ninated by a wavelength	5 x 10-7 m and the distar	nce between two bright fringes is
	0.005 m on a screen 1 (1) 10 cm	m away, then the distant (2) 1 cm	ce between the slits is:- (3) 10-1 cm	(4) 10-2 cm
B 11. ▲	The fringe width in the halved and the slit scree (1) 2 x 10-4 m	Young's double slit expe een distance is double, th (2) 1 x 10-4 m	eriment is 2 x 10-4 m. If then the new fringe width (3) 0.5 x 10-4 m	the distance between the slits is will be:- (4) 8 x 10-4 m
B 12.	By a monochromatic w (1) A single ray (3) Wave having a sing	ave, we mean:- lle wavelength	(2) A single ray of a sir (4) Many rays of a sing	ngle colour gle colour
B 13.ൔ	Fringe width observed i the fringe width will :	in the Young's double slit	experiment is β . If the free	equency of the source is doubled,
		$\frac{3\beta}{2}$		$\frac{\beta}{2}$
	(1) become 2 β	(2) become 2	(3) remain as β	(4) become 2
B 14.	In a Young's double sli (1) Bright (3) First bright and ther	t experiment, the central n dark	point on the screen is:- (2) Dark (4) First dark and then	bright
B 15.	The distance between the screen is 1 m. If th light is:-	two slits in a double slit e distance of 10th fringe	experiment is 1 mm. The from the central fringe	e distance between the slits and is 5 mm, then the wavelength of
	(1) 5000 A ₀	(2) 6000 Ao	(3) 7000 Ao	(4) 8000 Ao
				1
B 16.ൔ	If the slit separation in times. The value of n	n Young's double slit ex is:	periment is reduced to	$\overline{3}$ rd, the fringe width becomes
	(1) 3	(2) 1/3	(3) 9	(4) 1/9
B-17.	In a Young's double sli	it experiment the intensit	y at a point I where the	corresponding path difference is
	one sixth of the wavele	ength of light used. If I_0 de	enotes the maximum inte	ensity, the ratio ${}^{ m I_0}$ is equal to
	<u>1</u>	<u>1</u>	$\sqrt{3}$	<u>3</u>
	(1) 4	(2) 2	(3) 2	(4) 4
B-18	Initially interference is of the chamber is evacuar (1) The interference pa (2) There is no change (3) The fringe width is s (4) The fringe width is s	observed with the entire ted. With the same source ttern is almost absent as in the interference patte slightly decreased slightly increased	experimental set up insid ce of light used, a carefu it is very much diffused rn	de a chamber filled with air, Now I observer will find that

Section (C) : YDSE with polychromatic light

- A Young's double slit experiment is performed with white light, then which option is incorrect.(1) The maxima next to the central will be red.(2) The central maxima will be white C-1.

- (3) The maxima next to the central will be violet
- (4) There will not be a completely dark fringe.

Section (D) : YDSE with glass slab, Optical path

D 1.⊾	In Young's experiment, has a fringe width of 0 then width of fringe will	light wavelength 4000 A .6 mm. If whole of the ex be:-	o is used, and fringes are operiment is performed in operiment is performed in	formed at 2 metre distance and a liquid of refractive index 1.5,
	(1) 0.2 mm	(2) 0.3 mm	(3) 0.4 mm	(4) 1.2 mm
D 2.	The slits in a Young's relative to the slits. The ponit will be:	double slit experment ha intensity at the central f	ave equal widths and the ringe is I_0 . If one of the s	source is placed symmetrically lits is closed, the intensity at this
	(1) I ₀	(2) I ₀ /4	(3) I ₀ /2	(4) 4I ₀
Section	on (E) : Thin film in	terference		
E 1.	Colours of thin films res (1) Dispersion of light (3) Absorption of light	sults from:-	(2) Interference if light(4) Scattering of light	
Section	on (F) : differaction	of light		
F 1.	In Fresnel's biprism, co (1) Division of wavefror (3) Division of wavelen	nherent sources are obtai nt gth	ined by:- (2) Division of amplitud (4) None of the above	e
F 2.	In a Fresnel biprism ex 9 cm respectively, Wha (1) 10.5 cm	periment, the two position at is the actual distance o (2) 12 cm	ns of lens give separatior of separation? (3) 13 cm	h between the slits as 16 cm and (4) 14 cm
F 3.	In biprism experiment t (1) extended	he light source is - (2) narrow	(3) polychromatic	(4) all of above
F 4.	In Fresnel's biprism ex (1) interference	periment the coherent so (2) reflection	ources are obtained by - (3) refraction	(4) total internal reflection
F 5.	What is effect on frenal (1) Fringe are effected (2) Diffraction pattern is	l biprism experiment whe	en the white light is used:	-

- (2) Control fringes are white and all others are call
- (3) Central fringes are white and all others are coloured
- (4) None of these

Section (G) : Polarisation and Resolving power

- **G-1.** The diameter of objective of a telescope is 1*m*. Its resolving limit for the light of wave length 4538 Å, will be
 - (1) 5.54×10^{-7} rad (2) 2.54×10^{-4} rad (3) 6.54×10^{-7} rad (4) None of these
- **G-2.** When an unpolarized light of intensity *I*⁰ is incident on a polarizing sheet, the intensity of the light which does not get transmitted is :

	$\frac{1}{1}$	$\frac{1}{2}$ Io		
(1)	2 ⁻⁰	(2) 4 10	(3) zero	(4) <i>I</i> ₀

G-3. A single slit diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced by blue light?

(1) There is no change in the diffraction pattern

(2) Diffraction fringes become narrower and crowded together

- (3) Diffraction fringes become boarder and crowded together
- (4) The diffraction pattern disappears
- **G-4.** Shows a glass plate placed vertically on a horizontal table with a beam of unpolarised light falling on its surface at 57° with the normal. The electric vectors in the reflected light on the screen S will vibrate with respect to the plane of incidence :
 - (1) in a vertical plane
 - (2) in a horizontal plane
 - (3) in a plane making an angle of 45° with the vertical
 - (4) in a plane making an angle of 57° with the horizontal
- G-5. Two point white dots are 1 mm apart on a black paper. They are viewed by eye of pupil diameter 3 mm. Approximately, what is the maximum distance at which these dots can be resolved by the eye? [Take wavelength of light = 500 nm]
 (1) 6m
 (2) 3m
 (3) 5m
 (4) 1m
- G-6. Visible light passing through a circular hole form a diffraction disc of radius 0.1 mm on a screen. If X-ray is passed through the same set-up, the radius of the diffraction disc will be :
 (1) zero
 (2) < 0.1 mm
 (3) 0.1 mm
 (4) > 0.1 mm

Exercise-2

Marked Questions can be used as Revision Questions.

PART - I : OBJECTIVE QUESTIONS

- 1. In Franuhoffer diffraction the centre diffraction image is:-
 - (1) Always bright
 - (2) Always dark
 - (3) Sometimes bright and sometimes dark
 - (4) Bright for large wavelength and dark for low wavelength
- 2. Diffraction and interference of light suggest is:-
 - (1) Nature of electro magnetic
- (2) Wave nature

(3) Nature is quantum

- (4) Nature of light is tranverse
- 3. Two coherent sources of light S₁ and S₂, equidistant from the origin, are separated by a distance 2λ as shown. They emit light of wavelength λ . Interference is observed on a screen placed along the circle of large radius R. Point is seen to be a point of constructive interference. Then angle θ (other than 0° and 90°) is
 - (1) 45°
 - (2) 30°
 - (3) 60°
 - (4) Not possible in the first quandrant

- In an experiment the two slits are 0.5 mm apart and the fringes are observed to 100 cm from the plane of the slits. The distance of the 11th bright fringe from the lst bright fringe is 9.72 mm. Calculate the wavelength (1) 4.86 × 10⁻⁵ cm (2) 4.86 × 10⁻⁸ cm (3) 4.86 × 10⁻⁶ cm (4) 4.86 × 10⁻⁷ cm
- **5.** In the Young's double slit experiment, a mica slip of thickness t and refractive index μ is introduced in the ray from the first source S₁. By how much distance, the fringe pattern will be displaced-[d = separation between slits]

(1)
$$\frac{d}{D}(\mu-1)$$
 t (2) $\frac{D}{d}(\mu-1)$ t (3) $\frac{d}{(\mu-1)}$ (4) $\frac{D}{d}(\mu-1)$

Wave	Optics			
6.⊾	If a thin mica sheet of the the path of one of the displacement of the fring	nickness t and refractive ne interfering beams as ge system is-	index $\mu = [5/3]$ is placed s shown in fig. then the	in ne s
	Dt		Dt	
	(1) 3d		(2) 5d	2 d
	Dt		2Dt	- extraction
	$\frac{1}{4d}$		<u>5d</u>	D
	(3)		(4)	S ₂
7.	The Young's double sli and 5460 Å respectively (1) X(blue) = X(green)	t experiment is performe y. If X is the distance of 4	ed with blue and with great th maximum from the centric (2) X(blue) > X(green) $\frac{X(blue)}{2} = \frac{5460}{2}$	en light of wavelengths 4360 Å entral one, then :
	(3) X(blue) < X(green)		(4) ^{X(green)} 4360	
8.	In Young's double slit ex the fringes are 0.012 cm	xperiment when waveler n apart. what is the dista	igth used 6000 A_0 and th nce between the slits:-	e screen is 40 cm from the slits,
	(1) 0.024 cm	(2) 2.4 CM	(3) 0.24 cm	(4) 0.2 cm
9.⊾	The two slits at a distant fringes are observed on fifth bright fringe will be	ce of 1 mm are illuminate a screen placed at a dis	d by the light of waveleng tance of 1 m. The distand	th 6.5 x 10-7 m. The interference ce between third dark fringe and
	(1) 0.65 mm	(2) 1.63 mm	(3) 3.25 mm	(4) 4.88 mm
10.⊾	A two slit Young's interf slits are 2 mm apart. T transparent plate of th interference pattern shit (1) 1.2	ference experiment is do he fringes are observed ickness 0.5 mm is plac fts by 5 mm. The refraction (2) 0.6	ne with monochromatic l on a screen placed 10 ed in front of one of th ve index of the transpare (3) 2.4	light of wavelength 6000 Å. The cm away from the slits. Now a e slits and it is found that the ent plate is : (4) 1.5
11.	In the Young's experim many fringes will be for (1) 62	ent, using light of $\lambda = 58$ med in the field of view for (2) 66	93 A₀, 62 fringes are ob or wavelength of 5461 A₀ (3) 60	served in the field of view. how c:- (4) 68
12.	In two separate set-ups lights of wavelengths in the ratio of the distance (1) 4 : 1	of the Young's double-s the ratio 1 : 2 are used. s between the plane of t (2) 1 : 1	lit experiment, fringes of If the ratio of the slit sep he slits and the screen ir (3) 1 : 4	equal width are observed when aration in the two cases is 2 : 1, a the two set-ups is:- (4) 2 : 1
13.ൔ	White light is incident n The wavelength (in nm) (1) 450	ormally on a glass plate in the visible region (40 (2) 600	(in air) of thickness 500 0 nm - 700nm) that is str (3) 400	nm and refractive index of 1.5. ongly reflected by the plate is: (4) 500
14.	A slit of size 0.15 cm 5 x 10-5 cm. The width o (1) 70 mm	is placed at 2.1 m from of diffraction pattern will I (2) 0.14 mm	n a screen. On illumina be:- (3) 1.4 cm	ted it by a light of wavelength (4) 0.14 cm
15	The distance of nth brief	to the $(n+1)$ th do	rk fringe in Voung's ever	ariment is equal to:
15.		n n nge to the (h+ i) ^m da n λ D	λ D	אוווזפרונ וס פעטמו נט. ה ח
	(1) d	(2) ² ^u	(3) ^{∠u}	(4) ^d
16.	In a Young's double slit meaning). Each of slit between two points on t (1) 0.45 mm	t experiment, d = 1 mm, individually produces s the screen having 75 % i (2) 0.40 mm	$\lambda = 6000$ Å and D = 1 n same intensity on the s ntensity of the maximum (3) 0.30 mm	m (where d, λ and D have usual screen. The minimum distance intensity is: (4) 0.20mm

Wave	Optics			
17. ⊾̀	Let S_1 and S_2 be the P and angle $\angle S_1 PS_2$ = small angle)	e two slits in Young's = θ, then the fringe wid	double slit experiment. If the for the light of wavelen	central maxima is observed at gth λ will be. (Assume θ to be a
	(1) λ/θ	(2) λθ	(3) 2λ/θ	(4) λ/2θ
18.ൔ	In the figure shown in slits from a medium of medium is I_1 . A transparing infront of one slit. The slits is n_2 . The phase of O' (symmetrical, relations)	a YDSE, a parallel bea f refractive index n ₁ . Th arent slab of thickness ' medium between the difference between the ve to the slits) is:	am of light is incident on the wavelength of light in the t' and refractive index is p screen and the plane of the light waves reaching poin	$\begin{array}{c c} n_{1} \\ n_{1} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{2} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{2} \\ n_{3} \\ n_{2} \\ n_{3} \\ n_{4} \\ n_{4}$
	$\frac{2\pi}{2}$	$\frac{2\pi}{2}$	$\frac{2 \pi n_1}{n_2} \left(\frac{n_3}{n_2} - 1 \right)$	$\frac{2 \pi n_1}{2}$
	(1) ¹¹ ¹ ¹ (n ₃ - n ₂)t	(2) [∧] 1 (n ₃ - n ₂)t	(3) $\prod_{2} n_1 (\prod_{2} f)$	(4) [∧] 1 (n ₃ - n ₂) t

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : Assertion/Reasoning

A-1. STATEMENT-1 : Two coherent point sources of light having nonzero phase difference are seperated by small distance. Then on the perpendicular bisector of line segment joining both the point sources, constructive interference cannot be obtained.

STATEMENT-2: For two waves from coherent point sources to interfere constructively at a point, the magnitude of their phase difference at that point must be $2m\pi$ (where m is a nonnegative integer).

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True.
- A-2. STATEMENT-1 : Thin films such as soap bubble or a thin layer of oil on water show beautiful colours when illuminated by white light.

STATEMENT-2: It happens due to the interference of light reflected from the upper surface of the thin film.

- (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True.
- A-3. STATEMENT-1 : Two point coherent sources of light S₁ and S₂ are placed on a line as shown. P and Q are two points on that line. If at point P maximum intensity is observed then maximum intensity should also be observed at Q.

$$Q$$
 S_1 S_2 P

STATEMENT-2: In the figure of statment 1, the distance $|S_1P - S_2P|$ is equal to distance $|S_2Q - S_1Q|$.

(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1

- (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (3) Statement-1 is True, Statement-2 is False
- (4) Statement-1 is False, Statement-2 is True.

Section (B) : Match the column

B-1. A double slit interference pattern is produced on a screen, as shown in the figure, using monochromatic light of wavelength 500 nm. Point P is the location of the central bright fringe, that is produced when light waves arrive in phase without any path difference. A choice of three strips A, B and C of transparent materials with different thicknesses and refractive indices is available, as shown in the table. These are placed over one or both of the slits, singularly or in conjunction, causing the interference pattern to be

shifted across the screen from the original pattern. In the column-I, how the strips have been placed, is mentioned whereas in the column-II, order of the fringe at point P on the screen that will be produced due to the placement of the strip(s), is shown. Correctly match both the column.

Section (C) : One or More Than One Options Correct

C-1. White light is used to illuminate the two silts in a Young's double slit experiment. The separation between the slits is b and the screen is at a distance d (> > b) from the slits. At a point on the screen directly in front of one of the slits, certain wavelengths are missing. Some of these missing wavelengths are :

b^2	2b ²	b ²	2b ²
(1) $\lambda = d$	(2) $\lambda = d$	(3) $\lambda = 3d$	(4) $\lambda = 3d$

- **C-2.** In Young's double slit experiment, the interference pattern is found to have an intensity ratio between bright and dark fringes as 9. This implies :
 - (1) the intensities at the screen due to the two slits are 5 and 4 units
 - (2) the intensities at the screen due to the two slits are 4 and 1 units
 - (3) the amplitude ratio of the individual waves is 3
 - (4) the amplitude ratio of the individual waves is 2
- **C-3.** If one of the slits of a standard Young's double slit experiment is covered by a thin parallel sided glass slab so that it transmits only one half the light intensity of the other, then:
 - (1) The fringe pattern will get shifted towards the covered slit
 - (2) The fringe pattern will get shifted away from the covered slit
 - (3) The bright fringes will become less bright and the dark ones will become more bright
 - (4) The fringe width will remain unchanged

Exercise-3

Marked Questions can be used as Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. 2.	Wavelength of light used in an optical instrument are $\lambda_1 = 4000$ Å and $\lambda_2 = 5000$ Å, then ratio of respective resolving powers (corresponding to $\lambda_1 \alpha v \delta \lambda_2$) is - [AIEEE 2002; 3/225, -1]									
	(1) 16 : 25	(2) 9 : 1	(3) 4 : 5	(4) 5 : 4						
2.	Electromagnetic waves (1) polarization	are transverse in nature (2) interference	is evident by (3) reflection	[AIEEE 2002; 3/225, -1] (4) diffraction						
3.	Wavelength of light use respective resolving por (1) 16 : 25	ed in an optical instrume wers (corresponding to λ (2) 9 : 1	ent are $\lambda_1 = 4000$ Å and λ_1 and λ_2) is (3) 4 : 5	$\lambda_2 = 5000$ Å, then ratio of their [AIEEE 2002; 3/225, -1] (4) 5 : 4						

Wave	Optics /					
4.	To demonstrate the phe	enomenon of interference	e we require two	sources	which emit ra	diation of 3; 3/225, –1]
	(1) nearly the same frequency(2) the same frequency(3) different wavelength(4) the same frequency	quency h and having a definite ph	ase relationship			, , .
5.	The maximum number in Young's double-slit e (1) infinite	of possible interference r experiment is (2) five	maxima for slit-se (3) three	eparatior	n equal to twic [AIEEE 2004 (4) zero	e the wavelength l; 3/225, −1]
6.	The angle of incidence a index n), is (1) sin ⁻¹ (n)	at which reflected light in (2) sin ⁻¹ (1/n)	totally polarized t (3) tan ⁻¹ (1/n)	for reflec	ction from air t [AIEEE 200 4 (4) tan ⁻¹ (n)	o glass (refractive ; 3/225, –1]
7.	A young's double slit e formed on a screen.	xperiment uses a monoc	chromatic source	. The sh	ape of the in	terference fringes ; 3/225, –1]
	(1) Straight line	(2) Parabola	(3) Hyperbola		(4) Circle	
8.	If I_0 is the intensity of t intensity when the slit w (1) I_0	the principal maximum in vidth is doubled ? (2) Io/2	n the single slit o (3) 2I₀	diffraction	n pattern, the [AIEEE 2005 (4) 4I₀	n what will be its i; 3/225, –1]
			()			
9.	When an unpolarized li does not get transmitte	ght of intensity I₀ is incid d is	ent on a polarizir	ng sheet	, the intensity [AIEEE 2005	of the light which ; 3/225, –1]
	(1) zero	(2) Io	(3) $\frac{1}{2}$ Io	(4) $\frac{1}{4}$ Io		
						λ
10.	In a Young's double sli wavelength of the light	t experiment the intensit used) is I. If I0 denotes t	y at a point wher he maximum inte	e the pa ensity, I/I	th difference 0 is equal to	is $\overline{6}$ (λ being the
	1	$\sqrt{3}$	1		3	, 0/120, 1]
	(1) $\sqrt{2}$	(2) $\frac{\sqrt{3}}{2}$	(3) $\frac{1}{2}$		(4) $\frac{3}{4}$	
11.	At two points P and Q o	on a screen in Young's d λ	ouble slit experin	nent, wa	ves from slits	S_1 and S_2 have a
	path difference of 0 and	$\frac{1}{4}$ respectively. The rat	io of intensities a	it P and [AIEEE	Q will be 2011, 11 Ma	y; 4/120, –1]
	(1) 2 : 1	(2) √2 ∶1	(3) 4 : 1		(4) 3 : 2	
12.	In a Young's double slit and wavelength λ . In a incoherent sources of w	e experiment, the two slite mother experiment with t vaves of same amplitude	s act as coherent he same arrange and wavelength.	sources ement th If the int	s of waves of one two slits an ensity at the r 1	equal amplitude A re made to act as niddle point of the
	screen in the first case	is I_1 and in the second ca	ase is I_2 , then the	e ratio	² is:	M 4/400 41
	(1) 2	(2) 1	(3) 0.5	LAIEEE	2011, 11 Ma (4) 4	y, 4/1∠∪, −1]
13.	Statement - 1 : On viewing the clear bl varies as the crystal is i Statement - 2:	lue portion of the sky thr rotated.	ough a Calcite C	Crystal, t	he intensity o	f transmitted light

The light coming from the sky is polarized due to scattering of sun light by particles in the atmosphere. The scattering is largest for blue light [AIEEE 2011, 11 May; 4/120, -1]

(1) Statement-1 is true, statement-2 is false.

(2) Statement-1 is true, statement-2 is true, statement-2 is the correct explanation of statment-1

(1) points

- (3) Statement-1 is true, statement-2 is true, statement-2 is not the correct explanation of statement-1 (4) Statement-1 is false, statement-2 is true.
- 14. In Young's double slit experiment, one of the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If I_m be the maximum intensity, the resultant intensity I when they interfere at phase difference φ is given by : [AIEEE 2012; 4/120, -1]

(1)
$$\frac{I_m}{9}$$
 (4 + 5 cos ϕ) (2) $\frac{I_m}{3} \left(1 + 2\cos^2\frac{\phi}{2} \right)$ (3) $\frac{I_m}{5} \left(1 + 4\cos^2\frac{\phi}{2} \right)$ (4) $\frac{I_m}{9} \left(1 + 8\cos^2\frac{\phi}{2} \right)$

- 15. This equation has statement 1 and Statement 2. Of the four choices given the Statements, choose the one that describes the two statements. [AIEEE 2012; 4/120, -1] Statement 1: Davisson-Germer experiment established the wave nature of electrons. Statement 2 : If electrons have wave nature, they can interfere and show diffraction. (1) Statement 1 is false, Statement 2 is true. (2) Statement 1 is true, Statement 2 is false (3) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation for statement 1
 - (4) Statement 1 is true. Statement 2 is true. Statement 2 is not the correct explanation of Statement 1
- 16.🖎 Two coherent point sources S_1 and S_2 are separated by a small distance 'd' as shown. The fringes obtained on the screen will be : [JEE-Main 2013; 4/120, -1]

17.🖎 Tow beams, A and B, of plane polarized light with mutually perpendicular planes of polarization are seen through a polaroid. From the position when the beam A has maximum intensity (and beam B has zero intensity), a rotation of polaroid through 30° makes the two beams appear equally bright. If the initial

 I_A

intensities of the two beams are I_A and I_B respectively, then I_B equals

				[JEE(Main) 2014; 4/120, –1]
	(1) 3	(2) $\frac{3}{2}$	(3) 1	(4) $\frac{1}{3}$
18.	On a hot summer night from the ground. When that as it travels, the lig (1) becomes narrower (3) bends downwards	, the refractive index of a a light beam is directed ht beam :	air is smallest near the gr horizontally, the Huygen [JEE(N (2) goes horizontally wi (4) bends upwards	round and increases with height s' principle leads us to conclude /ain)-2015; 4/120, –1] thout any deflection
19. ⊾	Assuming human pupil minimum separation be (1) 1 μm	to have a radius of 0.2 tween two objects that h (2) 30 μm	5 cm and a comfortable uman eye can resolve a (3) 100 μm	viewing distance of 25 cm, the t 500 nm wavelength is : [JEE(Main)-2015; 4/120, –1] (4) 300 μm

The box of a pin hole camera, of length L, has hole of radius a. it is assumed that when the hole is 20. illuminated by a parallel beam of light of wavelength λ the spread of the spot (obtained on the opposite wall of the camera) is the sum of its geometrical spread and the spread due to diffraction. The spot would then have its minimum size (say b_{min}) when : [JEE(Main)-2016; 4/120, -1]

(1)
$$a = \sqrt{\lambda L}$$
 and $b_{\min} = \left(\frac{2\lambda^2}{L}\right)$
(2) $a = \sqrt{\lambda L}$ and $b_{\min} = \sqrt{4\lambda L}$
(3) $a = \frac{\lambda^2}{L}$ and $b_{\min} = \sqrt{4\lambda L}$
(4) $a = \left(\frac{\lambda^2}{L}\right)$ and $b_{\min} = \left(\frac{2\lambda^2}{L}\right)$

In a Young's double slit experiment, slits are separated by 0.5 mm, and the screen is placed 150 cm away. A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes on the screen. The least distance from the common central maximum to the point where the bright fringes due to both the wavelengths coincide is : [JEE(Main) 2017; 4/120, -1]
 (1) 15.6 mm
 (2) 1.56 mm
 (3) 7.8 mm
 (4) 9.75 mm

PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

1. In the ideal double-slit experiment, when a glass-plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is: [JEE 2002 Screening, 3/90]

(A)
$$2\lambda$$
 (B) $2\lambda/3$ (C) $\lambda/3$ (D) λ
2. A parallel beam of light of wavelength λ is incident on a plane mirror at an angle θ as shown in the figure. With maximum intensity at point P, which of the following relation is correct. [JEE 2003 Screening, 3/90]
(A) $\cos \theta - \sec \theta = \frac{\lambda}{4d}$ (B) $\cos \theta = \frac{\lambda}{4d}$
(C) $\cos \theta - \sin \theta = \frac{\lambda}{d}$ (D) $\cos \theta = \frac{\lambda}{2d}$

3. In a YDSE arrangement composite lights of different wavelengths $\lambda_1 = 560$ nm and $\lambda_2 = 400$ nm are used. If D = 1m, d = 0.1 mm. Then the distance between two completely dark regions is [JEE 2004 Screening, 3/84]

(C) 14 mm

(D) 28 mm

(A) 4 mn (B) 5.6 mm

- **4.** In the Young's double slit experiment using a monochromatic light of wavelength λ , the path difference (in terms of an integer n) corresponding to any point having half the peak intensity is :
 - $\begin{bmatrix} JEE (Advanced) 2013; P-1, 2/60 \end{bmatrix}$ (A) $\begin{pmatrix} (2n+1) & \frac{\lambda}{4} \\ (B) & (B) \end{pmatrix} \begin{pmatrix} (2n+1) & \frac{\lambda}{4} \\ (C) \end{pmatrix} \begin{pmatrix} (2n+1) & \frac{\lambda}{8} \\ (D) \end{pmatrix} \begin{pmatrix} (2n+1) & \frac{\lambda}{16} \\ (D) \end{pmatrix}$

5. Using the expression $2d \sin \theta = \lambda$, one calculates the values of d by measuring the corresponding angles θ in the range 0 to 90°. The wavelength λ is exactly knowns and the error in θ is constant for all values of θ . As θ increases from 0° : [JEE (Advanced) 2013; P-2, 3/60, -1] (A) the absolute error in d remains constant. (B) the absolute error in d increases.

(C) the fractional error in d remains constant.

- (D) the fractional error in d decreases.
- **6*.** A light source, which emits two wavelengths $\lambda_1 = 400$ nm and $\lambda_2 = 600$ nm, is used in a Young's double slit experiment. If recorded fringe widths for λ_1 and λ_2 are β_1 and β_2 and the number of fringes for them within a distance y on one side of the central maximum are m₁ and m₂, respectively, then **[JEE (Advanced)-2014.P-1, 3/60]**

(A) $\beta_2 > \beta_1$

- (B) $m_1 > m_2$
- (C) From the central maximum, 3^{rd} maximum of λ_2 overlaps with 5^{th} minimum of λ_1
- (D) The angular separation of fringes for λ_1 is greater than λ_2
- **7.** A young's double slit interference arrangement with slits S_1 and S_2 is immersed in water (refractive index = 4/3) as shown in the figure. The positions of maxima on the surface of water are given by

9*.

 $x^2 = p^2 m^2 \lambda^2 - d^2$, where λ is the wavelength of light in air (refractive index = 1), 2d is the separation between the slits and m is an integer. The value of p is **[JEE(Advanced) 2015 ; P-1, 4/88]**

8. While conducting the Young's double slit experiment, a student replaced to two slits with a large opaque plate in the x-y plane containing two small holes that act as two coherent point sources (S_1 , S_2) emitting light of wavelength 600 nm. The student mistakenly placed the screen parallel to the x-z plane (for z > 0) at a distance D = 3 m from the mid-point of S_1S_2 , as shown schematically in the figure. The distance between the sources d = 0.6003 mm. The origin O is at the intersection of the screen and the line joining S_1S_2 . Which of the following is(are) true of the intensity pattern on the screen ?

- (A) Semi circular bright and dark bands centered at point O
- (B) Hyperbolic bright and dark bands with foci symmetrically placed about O in the x-direction
- (C) The region very close to the point O will be dark
- (D) Straight bright and dark bands parallel to the x-axis

Two coherent monochromatic point sources S_1 and S_2 of wavelength $\lambda = 600$ nm are placed symmetrically on either side of the center of the circle as shown. The sources are separated by a distance d = 1.8 mm. This arrangement produces interference fringes visible as alternate bright and dark spots on the circumference of the circle. The angular separation between two consecutive bright spots is $\Delta \theta$. Which of the following options is/are correct? [JEE (Advanced) 2017, P-2, 4/61, -2]

- (A) The total number of fringes produced between P_1 and P_2 in the first quadrant is close to 3000
- (B) A dark spot will be formed at the point P₂
- (C) At P2 the order of the fringe will be maximum

(D) The angular separation between two consecutive bright spots decreases as we move from P_1 to P_2 along the first quadrant

	A	nsw	ers	\$ ╞							
		EXE	ERCIS	E-1		В 7.	(1)	B 8.	(2)	В 9.	(1)
Sectio	on (A)					B 10.	(4)	B 11.	(4)	B 12.	(3)
A 1.	(1)	A 2.	(3)	A 3.	(3)	B 13.	(4)	B 14.	(1)	B 15.	(1)
A 4.	(1)		()			B 16. ≱	(1)	B-17.	(D)	B-18.	(D)
Sectio	on (B)					Section	n (C)				
B 1.	(3)	B 2.	(1)	В 3.	(3)	C-1.	(1)				
B 4.	(2)	В 5.	(4)	B 6.	(2)						

Wave	e Optics	· /									
Sectio	on (D)					16.	(4)	17.	(1)	18.	(1)
D 1.№	(3)	D 2.	(2)					F	PART - II		
Sectio	on (E)					Sect	ion (A)	•			
E 1.	(2)					A-1.	(4)	A-2.	(3)	A-3.	(4)
Sectio	on (F)					Sect	ion (B)				
F 1. F 4.	(1) (3)	F 2. F 5.	(2) (3)	F 3.	(2)	B-1.	(1 →	r), (B –	• r), (C	→ s), (I) → D
Soctio	n (G)					Sect	ion (C)				
G-1.	(1)	G-2.	(1)	G-3.	(2)	C-1.	(1,3)	C-2.	(2,4)	C-3.	(1,3,4)
G-3.	(1)	G-5.	(3)	G-6.	(2)			EXE	RCISE	- 3	
								F	PART – I		
						1.	(4)	2.	(1)	3.	(4)
						4.	(4)	5.	(2)	6.	(4)
						7.	(3)	8.	(3)	9.	(3)
						10.	(4)	11.	(1)	12.	(1)
						13.	(2)	14.	(4)	15.	(3)
		EX	ERCIS	E-2		16.	(4)	17.	(4)	18.	(4)
		F	PART –	I		19.	(2)	20.	(2)	21.	(3)
1.	(1)	2.	(2)	3.	(3)			P	PART – I	I	
4.	(1)	5.	(2)	6.	(1)	1.	(A)	2.	(B)	3.	(D)
7.	(3)	8.	(4)	9.	(2)	4.	(B)	5.	(D)	6.	(A, B, C
10.	(1)	11.	(2)	12.	(1)	7.	3	8.	(A,C)	9.	(A,C)
13.	(2)	14.	(4)	15.	(3)				,		