	Fyercise	.1		
Marke	ed Questions may have	■ for Revision Question	ns.	
* Mark	ed Questions may hav	ve more than one corre	ect option.	
		OBJECTIVE	QUESTIONS	
Secti	on (A) : Coordinate	e system, Distance	formula, Section fo	rmula
		$P\left(2,-\frac{\pi}{2}\right)$	$Q\left(3,\frac{\pi}{2}\right)$	
A-1.	Find the distance betw	reen points ⁶ ar	nd (6)	
	(1) 7	(2) $\sqrt{7}$	(3) ^{√19}	(4) 19
A-2.	The coordinates of a p two point is 5 then the	ooint are (0, 1) and the o abscissa of another poi	rdinate of another point is nt is-	s –3. If the distance between the
	(1) – 3	(2) 3	$(3) \pm 3$	(4) 1
A-3.	The three points (–2, 2 (1) an isosceles triang (3) a right angled trian	2), (8, –2) and (– 4, – 3) le gle	are the vertices of (2) an equilateral trian (4) none of these	gle
A-4	The quadrilateral form (1) rectangle	ed by the points (a, –b), (2) parallelogram	(0, 0), (–a, b) and (ab, – (3) square	b2) is - (4) None of these
A-5.	The points A(–4, –1), I (1) square	B (−2, −4), C (4, 0) and I (2) rectangle	D(2, 3) are the vertices of (3) rhombus	(4) None of these
A-6.	If (3, – 4) and (–6, 5) a	are the extremities of the	diagonal of a parallelogr	am and (-2, 1) is its third vertex,
	then its fourth vertex is (1) (–1, 0)	s - (2) (–1, 1)	(3) (0, -1)	(4) (0, 1)
A-7.	If x-axis divides the lin	e joining (3, 4) and (5, 6)) in the ratio λ : 1 then λ i	S-
	$(1) - \frac{3}{2}$	$(2) - \frac{2}{3}$	(3) $\frac{3}{4}$	(4) $\frac{1}{3}$
A-8.	The points which trised (1) (3, 4), (6, 8)	ct the line segment joinir (2) (8, 6), (0, 2)	ng the points (0, 0) and (9 (3) (1, 3) (2, 5)	9, 12) are (4) (4, 0), (0, 3)
A-9.	A point on the line join	ing points (0, 4) and (2,	0) dividing the line segme	ent externally in ratio 3 : 2, is -
	(1) (3, -4)	(2) (6, - 8)	$(3) \begin{pmatrix} \frac{3}{5}, & \frac{8}{5} \end{pmatrix}$	$(4) \begin{pmatrix} \frac{8}{5}, & \frac{3}{5} \end{pmatrix}$
A-10.	P and Q are points on of PQ.	the line goining A(-2,5) and B (3,1) such that A	P= PQ = QB. Then the mid point
	$(1)^{\left(\frac{1}{2},3\right)}$	$(2)^{\left(-\frac{1}{2},4\right)}$	(3) (2, 3)	(4) (1, 4)
A-11.	The ratio in which the	join of the points (1, 2) a	nd (– 2, 3) is divided by t	he line 3x +4y = 7 is-
	(1) 4 : 1	(2) 3 : 2	(3) 3 : 1	(4) 7 : 3
A-12.	Find the harmonic con	jagate of point R(2,4) wi	th respect to the points P	(2,2) and Q (2,5).

	(1) (4, 2)	(2) (-2, 3)	(3) (2, 8)	(4) (8, 2)
Sectio	on (B) : Area of tria	ngle, Locus, Chang	e of origin, Slope o	f line, Collinearty
B-1.	The area of the triangle $(1, 2, 3)$ is	formed by the mid points	s of sides of the triangle v	whose vertices are (2,
	1), (– 2, 3), (4, – 3) is - (1) 1.5 sq. units	(2) 3 sq. units	(3) 6 sq. units	(4) 12 sq. units
B-2.	The vertices of a triang	le ABC are (λ,2–2λ), (–λ	.+1, 2λ) and (−4 −λ,6−,	2λ). If its area be 10 units then
	(1) 1	(2) 2	(3) 3	(4) 4
B-3.	Line segment joining (5 locus of P is -	i, 0) and (10 cosθ, 10 sir	$n\theta$) is divided by a point	P in ratio 2 : 3. If θ varies then
D 4	(1) $(x - 3)_2 + y_2 = 16$	(2) $(x + 3)_2 + y_2 = 16$	(3) $y_2 = 4x$	(4) $y = 5x + 12$
В-4.	A rod of length ℓ slides	with its ends on two perp	endicular lines. Find loci	us of its mid points.
	(1) $x_2 + y_2 = \ell_2$	(2) $x_2 + y_2 = \frac{1}{4}$	(3) $2x_2 + 2y_2 = \ell_2$	(4) $x_2 + y_2 = 2\ell_2$
B-5.	Find the locus of a point to 3.	t which moves so that sur	m of the squares of its dis	stance from the axes is equal
	(1) $x_2 + y_2 = 9$	(2) $x_2 + y_2 + = 3$	(3) x + y =3	(4) $x_2 - y_2 = 3$
B-6.	At what point should the (1) (-12,4)	e origin be shifted if the c (2) (– 4, 7)	oordinates of a points (9 (3) (7, - 4)	, 5) become (- 3, 9) (4) (12, - 4)
B-7.	Find the new position of costant term.	f origin so that equation >	x₂ +4x+8y −2 = 0 will not	contain a term in x and the
	$(1)^{\left(\frac{3}{4},4\right)}$	$(2)^{\left(\frac{3}{4},-2\right)}$	$(3)^{\left(-2,\frac{3}{4}\right)}$	$(4)^{\left(-2,-\frac{3}{4}\right)}$
B-8.	If A (2, 3), B(3, 1) and C BC is -	(5, 3) are three points, th	en the slope of the line p	passing through A and bisecting
	(1) 1/2	(2) – 2	(3) –1/2	(4) 2
B-9.	Slope of line joining poi	nts (5, 3) and (k₂, k + 1) i	s 1/2, then k is	_
	(1) 1	(2) 1 + $\sqrt{2}$	(3) √2 – 1	$(4) - 1 - \sqrt{2}$
B-10.	If the points $(k, 2-2k)$,	(1 – k, 2k) and (–k –4, 6	 2k) are collinear, then 	possible values of k are
	$(1) - \frac{1}{2}, 1$	(2) $\frac{1}{2}$, -1	(3) 1, 2	(4) 1, 3
Section	on (C) : Various for	ms of straight line ,	Point and line, An	gle between two lines
C-1.	The equation of a line p	assing through the origin	and the point (a cos θ ,	a sin θ) is-
	(1) $y = x \sin \theta$	(2) $y = x \tan \theta$	(3) y = x cos θ	(4) $y = x \cot \theta$
C-2.	If the point (5, 2) bisects (1) $5x + 2y = 20$	the intercept of a line be $(2) 2x + 5y = 20$	etween the axes, then its $(3) 5x - 2y = 20$	s equation is- (4) $2x - 5y = 20$

C-3.	Equation to the straight line cutting off an intercept unity from the positive direction of the axis of y and inclined at 45° to the axis of X is -					
	(1) $x + y + 1 = 0$	(2) $x - y + 1 = 0$	(3) $x - y - 1 = 0$	(4) $x - y + 2 = 0$		
C-4.	If a straight line passing its equation is given by	g through (x_1, y_1) and its	segment between the ax	es is bisected at this point, then		
	(1) $\frac{x}{x_1} + \frac{y}{y_1} = 1$	(2) $\frac{x}{x_1} + \frac{y}{y_1} = 2$	(3) xy ₁ + yx ₁ = 1	(4) $2(xy_1+yx_1) = x_1y_1$		
C-5.	Slope of line bisecting (1) ±3	the angle between co-or (2) ±2	dinate axes, is (3) ±1	(4) ±5		
C-6.	Find equation of a strai makes an angle of 120	ght line on which length ^o with the positive directi	of perpendicular from the on of x-axis.	e origin is four units and the line		
	(1) $\sqrt{3} x - y = 0$	(2) $\sqrt{3} x + y = 8$	(3) x + $\sqrt{3}$ y = 8	(4) $x - \sqrt{3} y = 8$		
C-7.	The point (–4,5) is the v diagonals is	vertex of a square and on	e of its digonals is 7x–y+	8 = 0. The equation of the othere		
	(1) 7x–y+23 = 0	(2) 7y + x =30	(3) 7y + x =31	(4) x -7y =30		
C-8.	The points A (1, 3) an	d C (5,1) are the oppos	itive vertices of rectangl	e. The equation of line passing		
	through other two vertice (1) $2x+y-8 = 0$	(2) $2x-y-4=0$	(3) $2x-y+4=0$	(4) $2x + y + 4 = 0$		
C-9.	Equation of a straight li	Equation of a straight line passing through the origin and making with x – axis an angle twice the size of				
	the angle made by the	line $y = (0.2) x$ with the x	(-axis, is :			
	(1) $y = (0.4) x$	(2) $y = (5/12) x$	(3) $6y - 5x = 0$	(4) none of these		
C-10.	Equation of the line pase (1) $3x + 2y - 1 = 0$	ssing through the point ($(2) 2x + 3y + 1 = 0$	1, – 1) and perpendicular (3) 3x + 2y – 3 = 0	to the line 2x – 3y = 5 is - (4) 3x + 2y + 5 = 0		
C-11.	If the line passing through the points (4, 3) and (2, λ) is perpendicular to the line y = 2x + 3, then λ is					
	equal to-	(2) - 4	(3) 1	(4) = 1		
C 12	The equation of a line i	(2) = 4	(5) I	(+) = 1		
C-12.	(1) $3x + 2y = 12$	(2) 2x - 3y = 12	(3) 2x - 3y = 6	(4) $3x + 2y = 6$		
C-13.	Area of Δ formed by lin	e 3x + 4y + 12 = 0 with c	co-ordinate axis is	() -		
	(1) 6	(2) 2	(3) 1	(4) 5		
C-14.	If the middle points of the then the equation of the	ie sides BC, CA and AB c e side AB is	of the triangle ABC be (1, 3	3), (5, 7) and (– 5, 7) respectively		
	(1) $x-y-2 = 0$	(2) $x-y+12 = 0$	(3) $x-y-12 = 0$	(4) None of these		
C-15.	The distance of the poi	nt (2, 3) from the line 2 x	-3y + 9 = 0 measured	along a line $x - y + 1 = 0$ is :		
	(1) 5 √3	(2) 4 √2	(3) 3 √2	(4) 2 √2		
C-16.	From (1, 4) you travel	$5\sqrt{2}$ units by making 1	35° angle with positive x	-axis (anticlockwise) and then 4		

units by making 120° angle with positive x-axis (clockwise) to reach Q. Find co-ordinates of point Q.

	(1) $(+6, 9-2\sqrt{3})$	(2) $\left(-6, 9-2\sqrt{3}\right)$	(3) $\left(-6, 9+2\sqrt{3}\right)$	(4) $(+6, 9+2\sqrt{3})$	
C-17.	A straight line is drawn the coordinates of two	through the point (2,3) a points on it at a distance	nd is inclined at an angle 4 from P.	e of 30° with the x-axis. Find	
	(1) (2 +2 √3 ,5) or (2 −	2 √3 ,1)	(2) (2 –2 $\sqrt{3}$, 5) or (2 –	2 √3 ,1)	
C-18.	(3) $(2-2\sqrt{3},5)$ or $(2 + Which pair of points lie(1) (0, -1) and (0, 0)(3) (-3, -4) and (1, 2)$	$2\sqrt{3}$,1) on the same side of 3x -	(4) $(2 + 2\sqrt{3}, 5)$ or $(2 + -8y - 7 = 0)$ (2) $(4, -3)$ and $(0, 1)$ (4) $(-1, -1)$ and $(3, 7)$	2 √ ³ ,1)	
C-19.	The set of values of 'b	' for which the origin and	the point (1, 1) lie on th	e same side of the straight line,	
	$a_2x + aby + 1 = 0 \forall a$	\in R, b > 0 are :			
	(1) b ∈ (2, 4)	(2) b ∈ (0, 2)	(3) b ∈ [0, 2]	(4) (2, ∞)	
C-20.	The angle between the	e lines 2x + 3y = 5 and 3x	a – 2y = 7 is-		
	(1) 45°	(2) 30°	(3) 60°	(4) 90°	
C-21.	Given points A (4,5), B by CD is	(-1,-4), C (1,3), D (5,-3), then the ratio of the se	gment into which AB is divided	
	20	13	<u>11</u>	<u>13</u>	
	(1) 13	(2) 20	(3) 20	(4) 19	
Section	on (D) : Centroid, C	Circumcenter Ortho	center, Incenter, Ex	center	
D-1.	The line bx + ay = 3ab (1) (b, a)	cuts the coordinate axes (2) (a, b)	at A and B, then centroi (3) (a/3, b/3)	d of ΔΟΑΒ is - (4) (3a, 3b)	
D-2.	Circumcentre of a trian	gle whose vertex are (0,	0), (4, 0) and (0, 6) is-		
	$(1)^{\left(\frac{4}{3}, 2\right)}$	(2) (0, 0)	(3) (2, 3)	(4) (4, 6)	
D-3.	The orthocentre of the co-ordinates of C are :	e triangle ABC is 'B' and	the circumcentre is S (a	a, b). If A is the origin, then the	
	(1) (2a, 2b)	(2) $\left(\frac{a}{2}, \frac{b}{2}\right)$	(3) $\left(\sqrt{a^2+b^2},0\right)$	(4) none	
D-4.	The incentre of the tria (1) (7, 9)	ngle formed by (0, 0), (5, (2) (9, 7)	12), (16, 12) is (3) (–9, 7)	(4) (-7, 9)	
D-5.	If two vertices joininig	the hypotenuse of a righ	t angled triangle are (0,	0) and (3, 4), then the length of	
	the median through the	e vertex having right angl (2) 2	e is- (3) 5/2	(4) 7/2	
D-6.	A variable straight line 'O' is the origin, then th	passes through a fixed p ne locus of the centroid of	point (a, b) intersecting th f the triangle OAB is :	e co-ordinates axes at A & B. If	
-	(1) bx + ay $- 3xy = 0$	(2) bx + ay $- 2xy = 0$	(3) $ax + by - 3xy = 0$	(4) $ax + by - 2xy = 0$	
Section	Section (E) : Distance between parallel lines, Foot of the perpendicular image of a point and Area of parallelogram				

E-1. The figure formed by the lines 2x + 5y + 4 = 0, 5x + 2y + 7 = 0, 2x + 5y + 3 = 0 and 5x + 2y + 6 = 0 is

	(1) Square	(2) Rectangle	(3) Rhombus	(4) None of these
E-2.	Area of the parallelogra $\frac{ m+n }{(m-n)^2}$	m formed by the lines y = $\frac{2}{ m+n }$	= mx, y = mx + 1, y = nx = (3) $\frac{1}{ m+n }$	and y = nx + 1 equals $\frac{1}{ m-n }$
E-3.	The reflection of the poi $(1) (-1, -14)$	nt (4, –13) in the line 5x (2) (3, 4)	+ y + 6 = 0 is (3) (1, 2)	(4) (-4, 13)
E-4.	The image of the point A y = 0 is the point (α , β),	A (1, 2) by the line mirror then :	y = x is the point B and t	he image of B by the line mirror
	(1) $\alpha = 1, \beta = -2$	(2) $\alpha = 0, \beta = 0$	(3) $\alpha = 2, \beta = -1$	(4) none of these
E-5.	The foot of perpendicula (1) $x + y - 3 = 0$	ar drawn from point $(1, 2)$ (2) x + y - 5 = 0) on the line L is (2, 3), th (3) x + y + 5 = 0	en equation of line L is (4) $2x + y - 5 = 0$
E-6.	A light beam eminating passes through the poir	from the point A(3, 10) at B(4, 3). The equation of $A(3, 3)$	reflects from the straigh of the reflected beam is :	t line $2x + y - 6 = 0$ and then
	(1) $3x - y + 1 = 0$	(2) x + 3y - 13 = 0	(3) $3x + y - 15 = 0$	(4) x - 3y + 5 = 0
Section	on (F) : Angle bisec	tors, concurrent lin	es and family of lin	es
F-1.	The equation of the $12x + 5y - 2 = 0$ is	bisector of the acute	angle between the lin	thes $3x - 4y + 7 = 0$ and
	$(1) \ 11x - 3y + 9 = 0$	(2) 3x + 11y - 13 = 0	(3) 3x + 11y - 3 = 0	(4) 11x - 3y + 2 = 0
F-2.	The equations of bisect	ors of two lines L ₁ & L ₂ a	re $2x - 16y - 5 = 0$ and	64x + 8y + 35 = 0. If the line L ₁
	passes through $(-11, 4)$), the equation of acute a $(2) \in A_{X} + B_{Y} + 25 = 0$	angle bisector of $L_1 \& L_2$	is :
	(1) 2x - 16y - 5 = 0	(2) 64x + 8y + 35 = 0		(4) hone of these
F-3.	The lines $(p - q) x + (q - q$	η – r) y + (r – p) = 0, (q – − r) = 0 are	r) x + (r - p) y + (p - q)	= 0
	(1) Parallel	(2) perpendicular	(3) Concurrent	(4) None of these
F-4.	The least positive value (1) 2	of t so that the lines $x =$ (2) 4	t + a, y + 16 = 0 and y =a (3) 16	ax are concurrent is (4) 8
F-5.	The solution of eqution (1) Only one solution	of equations x + y = 10, 2 (2) No solution	2x + y = 18, and 4x –3y = (3) Infinite solution	= 26, will be (4) None fo these
F-6.	The lines ax + by + c =	0, where 3a + 2b + 4c =	0, are concurrent at the p	point :
	$(1)\left(\frac{1}{2},\frac{3}{4}\right)$	(2) (1, 3)	(3) (3, 1)	$(4)\left(\frac{3}{4}, \frac{1}{2}\right)$
F-7.	The equation of the line	e through the point of inte	ersection of the lines y =	3 and $x + y = 0$ and parallel to
	the line $2x - y = 4$ is -	5 1	,	
	(1) $2x - y + 9 = 0$	(2) $2x - y - 9 = 0$	(3) $2x - y + 1 = 0$	(4) None of these
F-8.	The fix point through wh	the line $x(a + 2b) + y$	v(a + 3b) = a + b always p	basses for all values of a
•	and b, IS- (1) (2, 1)	(2) (1, 2)	(3) (2, -1)	(4) (1, -2)

- F-9. A straight line cuts intercepts from the coordinate axes sum of whose reciprocals is 1/p. It passes through a fixed point -(1) (1/p,p) (2) (p, 1/p) (3) (1/p, 1/p) (4) (p, p) F-10. The line parallel to the x-axis and passing through the intersection of the lines ax + 2by + 3b = 0 and bx-2ay - 3a = 0, where (a, b) \neq (0, 0) is (1) Above the x-axis at a distance of 3/2 from it (2) Above the x-axis at a distance of 2/3 from it (3) Below the x-axis at a distance of 3/2 from it (4) Below the x-axis at a distance of 2/3 from it Section (G) : Pairs of lines and homogenization G-1. The eqution $4x_2 - 24xy + 11y_2 = 0$ represents (1) x+y = 0 & x-11 y = 0(2) x-y = 0 & x+11 y = 0(4) x+y = 0 & x+11 y = 0(3) x-y = 0 & x - 11 y = 0G-2. If the slope of one line of the pair of lines represented by $ax_2 + 10xy + y_2 = 0$ is four times the slope of the other line, then 'a' equals to (3) 4(1) 1(2) 2(4) 16 The combined equation of the bisectors of the angle between the lines represented by G-3. $(x_2 + y_2)^{\sqrt{3}} = 4xy$ is $\frac{x^2 - y^2}{\sqrt{3}} - \frac{xy}{2}$ (1) $y_2 - x_2 = 0$ (2) xy = 0(3) $x_2 + y_2 = 2xy$ G-4. The equation of the linies represented by the equation $ax_2 + (a + b)xy + by_2 + x + y = 0$ are (2) ax + by - 1 = 0, x + y = 0(1) ax + by + 1 = 0, x + y = 0(3) ax + by + 1 = 0(4) None of these The angle between the lines $x_2 - xy - 6y_2 - 7x + 31y - 18 = 0$ is G-5. (4) 30° (1) 45° (2) 60° (3) 90° If the equation $2x_2 + kxy - 3y_2 - x - 4y - 1 = 0$ represents a pair of lines, then the value of 'k' can be: G-6. (1) 1, -5(3) - 1, 3(2) 3, 5 (4) 2, 5 G-7. If the equation $2x_2 - 2xy - y_2 - 6x + 6y + c = 0$ represents a pair of lines, then 'c' is (3) - 3(1) 2(2) 3(4) 1 G-8. The straight lines joining the origin to the points of intersection of the line 2x + y = 1 and curve $3x_2 + 4xy - 4x + 1 = 0$ include an angle : π π (4) 6 (1) 2 (2) 3 $(3) \overline{4}$ If distance between the pair of parallel lines $x_2 + 2xy + y_2 - 8ax - 8ay - 9a_2 = 0$ is $\frac{25\sqrt{2}}{2}$, then 'a/5' is G-9. equal to $(1) \pm 4$ $(2) \pm 2$ $(3) \pm 3$ $(4) \pm 1$ Exercise-2 Marked Questions may have for Revision Questions. **PART - I : OBJECTIVE QUESTIONS**
- 1. The equation of a straight line which passes through the point (-4, 3) and is such that the portion of it between the axes is divided by the point in the ratio 5 : 3 internally, is. (1) 9x - 20y + 96 = 0 (2) 2x - y + 11 = 0 (3) 2x + y + 5 = 0 (4) 3x - 2y + 7 = 0

2.	Area of the quadrilatera (1) 8	al formed by the lines Ixi (2) 6	□ + □y□ = 2 is : (3) 4	(4) none
3.	Two mutually perpenditors together with the straig a^2	dicular straight lines are ht line, $2x + y = a$. Then t $\frac{a^2}{2}$	e drawn from the origin the area of the triangle is $\underline{a^2}$	forming an isosceles triangle :
4.	(1) 2 On the portion of the s the side of the line co-ordinates :	(2) 3 traight line x + 2y = 4 int away from the origin.	(3) ⁵ tercepted between the at Then the point of inte	(4) none xes, a square is constructed on prsection of its diagonals has
	(1) (2, 3)	(2) (3, 2)	(3) (3, 3)	(4) none
5.	AB is a variable line sli on Y-axis. If P is a varia of P is $\frac{x^2}{y^2} = \frac{y^2}{y^2}$	ding between the co-ord able point on AB such that $\frac{x^2}{y^2}$	inate axes in such a way at PA = b, PB = a and AE	that A lies on X-axis and B lies $B = a + b$, then equation of locus
	(1) $a^2 + b^2 = 1$	(2) $a^2 - b^2 = 1$	(3) $x_2 + y_2 = a_2 + b_2$	(4) none of these
6.	The nearest point on th	the line $3x + 4y - 1 = 0$ from (7)	m the origin is	
	$(1)\left(\frac{7}{25}, \frac{4}{25}\right)$	$ (2) \left(\frac{7}{25}, \frac{2}{25}\right) $	$ (3) \left(\frac{3}{25}, \frac{4}{25} \right) $	$ (4) \left(\frac{1}{25}, \frac{3}{25} \right) $
7.	One side of a rectangle	e lies along the line $4x + 7$	7y + 5 = 0. Two of its vert	ices are (-3, 1) and (1, 1). Then
	(1) $7x - 4y + 25 = 0$	(2) $4x + 7y = 11$	(3) $7x - 4y - 3 = 0$	(4) All of these
8.	The equation of a straig straight line $2x + 3y + 2$	ght line which passes thre t = 0 is	ough the point (2, 1) and	makes an angle of $\pi/4$ with the
-	(1) $x + 5y + 3 = 0$	(2) $x - 5y + 1 = 0$	(3) $5x + y - 11 = 0$	(4) $5x - y + 1 = 0$
9.	passing through (0, 0)	am whose two sides are is	y = x + 3, 2x - y + 1 = 0	and remaining two sides are
	(1) 2 sq. unit	(2) 3 sq. unit	$(3) \frac{5}{2}$ sq. upit	$\frac{7}{2}$ so unit
10	The equations of the p	(2) 5 sq. unit	(b) $=$ sq. and AC of	(+) = 34. unit
10.	x + 2y = 0 respectively. (1) $14x + 23y = 40$	If the point A is $(1, -2)$, 1 (2) $14x - 23y = 40$	then the equation of the I (3) $23x + 14y = 40$	ine BC is : (4) $23x - 14y = 40$
11.	The point $(a_2, a + 1)$ is the origin if :	a point in the angle betwe	een the lines 3x - y + 1 =	x = 0 and x + 2y - 5 = 0 containing
	(1) a ≥ 1 or a ≤ − 3 (3) a ∈ (0, 1)		(2) a ∈ (−3, 0) ∪ (1/3, 1 (4) none of these)
12.	The equations of two s $(1, -1)$ are	traight lines which are pa	rallel to x + 7y + 2 = 0 an	d at unit distance from the point
	(1) x + 7y + 6 ± 4 $\sqrt{2}$	= 0	(2) $x + 7y + 6 \pm 5\sqrt{2} =$	= 0
	(3) $2x + 7y + 6 \pm 5 \sqrt{2}$	= 0	(4) $x + y + 6 \pm 5\sqrt{2} = 0$	0
13.	The points on the line x (1) (3, 1), (-7, 11)	<pre>x + y = 4 which lie at a un (2) (7, 11), (2, 2)</pre>	it distance from the line (3) (7, -11), (-3, 7)	4x + 3y = 10, are (4) (1, 3), (–5, 9)
14.	The line $x + 3y - 2 = x - 7y + 5 = 0$. The equ	0 bisects the angle betw ation of the other line is	veen a pair of straight li :	nes of which one has equation

	(1) 3x + 3y - 1 = 0	(2) $x - 3y + 2 = 0$	(3) 5x + 5y - 3 = 0	(4) none	
15.	Through the point P(4, the equation of line.	1) a line is drawn to meet	t the line 3x – y = 0 at Q	where PQ = $2\sqrt{2}$. Determine	
	(1) x + y = 5, x - 7y + 3 (3) x + y = 5, x + 7y + 3	= 0 = 0	(2) $x - y = 5$, $x - 7y + 3$ (4) $x - y = 5$, $x + 7y + 3$	= 0 = 0	
16.	A triangle ABC with ve	rtices A (– 1, 0), B (– 2, 3CH will be :	3/4) & C (-3, -7/6) h	as its orthocentre H. Then the	
	(1) (- 3, - 2)	(2) (1, 3)	(3) (- 1, 2)	(4) none of these	
17.	In a triangle ABC, co-o x + y = 5 and x = 4 resp (1) (-2, 7), (4, 3)	rdinates of A are $(1, 2)$ a ectively. Then the co-ord (2) $(7, -2)$, $(4, 3)$	and the equations to the linates of B and C will be (3) (2, 7), (- 4, 3)	medians through B and C are (4) $(2, -7)$, $(3, -4)$	
18.	Equation of a straigh $3x = 4y + 7$ and $5y = 12$ (1) $9x - 7y = 1$	t line passing through x + 6 is (2) 9x + 7y = 71	the point (4, 5) and (3) $7x - y = 73$	equally inclined to the lines (4) $7x - 9y + 17 = 0$	
19.	Equation of a straight lin 0 and $x - y + 3 = 0$ and y-axis at the point (0, -3 (1) $2x - y + 10 = 0$	the which passes through I perpendicular to the strate 3), is (2) $x - 3y + 10 = 0$	the point of intersection aight line intersecting x- (3) $2x - 3y + 10 = 0$	of the straight lines $x + y - 5 =$ axis at the point (-2, 0) and the (4) $2x - 3y + 12 = 0$	
20.	If $a_2 + 9b_2 - 4c_2 = 6ab$, t $\left(\frac{1}{2}, \frac{3}{2}\right) \left(-\frac{1}{3}, \frac{-3}{2}\right)$ (1)	hen the family of lines ax (2) $\left(-\frac{1}{2}, -\frac{3}{2}\right)\left(-\frac{1}{5}, \frac{-3}{2}\right)$	(x + by + c = 0 are concur) $\left(-\frac{1}{7}, -\frac{3}{2}\right)\left(-\frac{1}{5}, -\frac{3}{2}\right)$	rent at : $ \frac{3}{2} $ (4) $ \left(-\frac{1}{2},\frac{3}{2}\right)\left(\frac{1}{2},-\frac{3}{2}\right) $	
21.	The value of k so that the lines is	the equation $12x_2 - 10xy$	$+ 2y_2 + 11x - 5y + k = 0$	may represent a pair of straight	
	(1) 2	(2) 0	(3) 1	(4) – 5	
22.	The equation of second The distance between t	degree $x_2 + 2\sqrt{2} xy + 2y$ hem is <u>4</u>	₂ + 4x + 4 √2 y + 1 = 0 re	presents a pair of straight lines.	
	(1) 4	(2) $\sqrt{3}$	(3) 2	(4) 2√3	
23.	Equation of the line pair	through the origin and p	erpendicular to the line p	air xy $-3y_2 + y - 2x + 10 = 0$ is	
	(1) $xy - 3y_2 = 0$	(2) $xy + 3x_2 = 0$	(3) $xy + 3y_2 = 0$	(4) $x_2 - y_2 = 0$	
24.	If the straight lines $5x_2 + 12xy - 6y_2 + 4x - k$ is equal to :	s joining the origin 2y + 3 = 0 and x + ky − 1	and the points of = 0 are equally inclined	intersection of the curve to the x-axis, then the value of	
	(1) 1	(2) – 1	(3) 2	(4) 3	
	PAR	T - II : MISCELLA	NEOUS QUESTI	ONS	

Section (A) : ASSERTION/REASONING

DIRECTIONS:

- Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.
- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

A-1. Statement-1 : Two of the straight lines represented by the equation $ax_3 + bx_2y + cxy_2 + dy_3 = 0$ will be at right angled if $a_2 + ac + bd + d_2 = 0$ Statement-2 : If roots of equation $px_3 + qx_2 + rx + s = 0$ are α , β and γ , then $\alpha\beta\gamma = -s/p$.

A-2. Statement-1 : The diagonals of the quadrilateral whose sides are 3x + 2y + 1 = 0, 3x + 2y + 2 = 0, 2x + 3y + 1 = 0 and 2x + 3y + 2 = 0 include an angle $\pi/2$

Statement-2 : Diagonals of a parallelogram bisect each other.

- A-3. Statement-1 : Each point on the line y x + 12 = 0 is at same distance from the lines 3x + 4y 12 = 0and 4x + 3y - 12 = 0. Statement-2 : locus of point which is at equal distance from the two given intersecting lines is the angle bisectors of the two lines.
- A-4. Statement-1 : A straight line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q. The absolute minimum value of OP + OQ, as L varies, where O is the origin is 18.
 Statement-2 : A.M. ≥ G.M.

Column-II

Section (B) : MATCH THE COLUMN

B-1. Column-I

(A)	Two vertices of a triangle are $(5, -1)$ and $(-2, 3)$. If orthocentre is the origin, then coordinates of the third vertex are	(p)	(4,7)
(B)	A point on the line $x + y = 4$ which lies at a unit distance from the line $4x + 3y = 10$, is	(q)	(–7, 11)
(C)	Orthocentre of the triangle made by the lines $x + y - 1 = 0$, $x - y + 3 = 0$, $2x + y = 7$ is :	(r)	(1, –2)
(D)	If a, b, c are in A.P., then liines ax + by = c are concurrent at :	(s)	(–1, 2)
		(t)	(4, –7)

B-2. Consider the lines given by

 $L_1 : x + 3y - 5 = 0$ $L_2 : 3x - ky - 1 = 0$

$$L_3: 5x + 2y - 12 = 0$$

Match the Statements/Expressions in **Column I** with the Statements / Expressions in **Column II** and indicate your answer by darkening the appropriate bubbles in the 4 × 4 matrix given in the ORS.

Column I	Colum	n II
L ₁ , L ₂ , L ₃ are concurrent, if	(p)	k = -9
		6
One of L_1 , L_2 , L_3 is parallel to at least one of the other two, if	(q)	k = - ⁵
		5
L1, L2, L3 form a triangle, if	(r)	k = 6
L_1 , L_2 , L_3 do not form a triangle, if	(s)	k = 5
	Column I L ₁ , L ₂ , L ₃ are concurrent, if One of L ₁ , L ₂ , L ₃ is parallel to at least one of the other two, if L ₁ , L ₂ , L ₃ form a triangle, if L ₁ , L ₂ , L ₃ do not form a triangle, if	Column IColumn L_1, L_2, L_3 are concurrent, if(p)One of L_1, L_2, L_3 is parallel to at least one of the other two, if(q) L_1, L_2, L_3 form a triangle, if(r) L_1, L_2, L_3 do not form a triangle, if(s)

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

C-1. If A(a, a), B(-a, -a) are two vertices of an equilateral triangle, then its third vertex is :

	$(1)^{\left(\frac{a\sqrt{3}}{2}, \frac{a\sqrt{3}}{2}\right)}$	(2) $\left(-a\sqrt{3}, a\sqrt{3}\right)$	(3) $\left(a\sqrt{3}, -a\sqrt{3}\right)$	$(4) \begin{pmatrix} -a\sqrt{3}, & -a\sqrt{3} \end{pmatrix}$
C-2.	Determine whether th is	e triangle formed by the	e lines $x - 7y + 12 = 0$,	7x + y - 16 = 0 and $3x + 4y - 4 = 0$
	(1) equilateral	(2) right-angled	(3) isosceles	(4) None
C-3.	The sides of a triangle following is an interior (1) circumcentre	e are the straight lines point of the triangle ? (2) centroid	x + y = 1 ; 7y = x an (3) incentre	d $\sqrt{3}$ y + x = 0 . Then which of the (4) orthocentre
C-4.	For the straight lines 4 (1) bisector of the obto (2) bisector of the acu (3) bisector of the ang (4) bisector of the ang	4x + 3y - 7 = 0 and 24x use angle between them te angle between them le containing origin is x le containing the point o	+ $7y - 31 = 0$, the equal n is x - 2y + 1 = 0 is 2x + y - 3 = 0 - 2y + 1 = 0 (1, -2) is x - 2y + 1 = 0	ation of
	Exercise	-3 📃 🔤		
Marke * Mork	ed Questions may hav	e for Revision Question	ons.	
wark	PART - I : JEE	(MAIN) / AIEEE	PROBLEMS (PI	REVIOUS YEARS)
1.	Three straight lines 2x	x + 11y - 5 = 0, 4x - 3y	-2 = 0 and $24x + 7y - 2$	20 = 0
	 (1) form a triangle (2) are only concurrent (3) are concurrent with (4) none of these 	it n one line bisecting the	angle between the othe	[AIEEE - 2002 (3, -1), 225] er two
2.	A straight line through and B.The equation to	the point (2,2) intersec the line AB so that the	ts the lines $\sqrt{3} x + y = 0$ triangle OAB is equilat	0 and $\sqrt{3} x - y = 0$ at the points A eral is
	(1) $x - 2 = 0$	(2) $y - 2 = 0$	(3) $x + y - 4 = 0$	[AIEEE - 2002 (3, -1), 225] (4) none of these
3.	If the equation of the I $(a_1 - a_2) x + (b_1 - b_2) y$ <u>1</u>	ocus of a point equidist r + c = 0, then the value	ant from the points (a ₁ , of 'c' is :	b₁) and (a₂, b₂) is [AIEEE - 2003 (3, −1), 225]
	(1) 2 $(a_{22} + b_{22} - a_{12} - a_{$	- b12)	(2) $a_{12} - a_{22} + b_{12} - b_{12}$	D 22
	<u> </u>		$\sqrt{a_1^2 + b_1^2 - a_2^2}$	$-b_2^2$
	(3) 2 $(a_{12} + a_{22} + b_{12} + a_{22})$	- D22)	(4)	
4.	(3) 2 $(a_{12} + a_{22} + b_{12} + b_{$	- b ₂₂) ne triangle whose vertic	es are (a cos t, a sin t),	(b sin t, – b cos t) and (1, 0), where [AIEEE - 2003 (3, –1), 225]
4.	(3) 2 $(a_{12} + a_{22} + b_{12} + b_{$	- b22) ne triangle whose vertic a2 – b2 a2 + b2	 (4) 4 es are (a cos t, a sin t), (2) (3x - 1)₂ + (3y)₂ (4) (3x + 1)₂ + (3y)₂ 	(b sin t, – b cos t) and (1, 0), where [AIEEE - 2003 (3, –1), 225] = a ₂ + b ₂ = a ₂ - b ₂
4. 5.	(3) 2 $(a_{12} + a_{22} + b_{12} + b_{$	- b ₂₂) ne triangle whose vertic a ₂ – b ₂ a ₂ + b ₂ 1) be vertices of a triang us of the vertex C is the	 (4) (4) (4) (4) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	(b sin t, – b cos t) and (1, 0), where [AIEEE - 2003 (3, –1), 225] = a ₂ + b ₂ = a ₂ - b ₂ of this triangle moves on the line 2x [AIEEE - 2004 (3, –1), 225]

٠

	(1) $2x + 3y = 9$	(2) $2x - 3y = 7$	(3) $3x + 2y = 5$	(4) $3x - 2y = 3$
6.	The equation of the stra ordinate axes whose su	ight line passing through m is −1, is :	the point (4,3) and make	ing intercepts on the co- [AIEEE - 2004 (3, -1), 225]
	(1) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2}$	$+\frac{y}{1} = -1$	(2) $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2}$	$+\frac{y}{1}=-1$
_	(3) $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{3} = 1$	$\frac{y}{1} = 1$	(4) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} +$	$\frac{y}{1} = 1$
7.	If one of the lines given	by $6x_2 - xy + 4cy_2 = 0$ is	3x + 4y = 0, then c equa	NS : [AIFFF - 2004 (3 –1) 225]
	(1) 1	(2) –1	(3) 3	(4) -3
8.	The line parallel to the	x-axis and passing thro	ugh the intersection of t	he lines ax + 2by + 3b = 0 and
	bx - 2ay - 3a = 0, when	e (a,b) ≠ (0,0) is :		[AIEEE - 2005 (3, -1), 225]
	(1) above the x-axis at	a distance of (2/3) from i	t	
	(2) above the x-axis at (2) below the x-axis at (2)	a distance of $(3/2)$ from it	t	
	(4) below the x-axis at a	a distance of (2/3) from it		
			x y 1	
9.	If non–zero numbers a,l point. That point is :	b,c are in HP, then the st	raight line a b c	always passes through a fixed [AIEEE - 2005 (3, –1), 225]
	$(1, -\frac{1}{2})$			
	(1) (2)	(2) (1, -2)	(3) (-1, -2)	(4) (-1, 2)
10.	If a vertex of a triangle then the centroid of the	is (1,1) and the mid–poir triangle is :	nts of two sides through	this vertex are (–1,2) and (3,2), [AIEEE - 2005 (3, –1), 225]
	$(1)^{\left(\frac{1}{3},\frac{7}{3}\right)}$	$(2) \left(1, \frac{7}{3}\right)$	$ (3) \left(-\frac{1}{3}, \frac{7}{3}\right) $	$(4) \left(-1 , \frac{7}{3} \right)$
11.	A straight line through the equation is :	ne point A (3, 4) is such th	nat its intercept between	the axes is bisected at A. Its [AIEEE - 2006 (3, -1), 120]
	(1) $3x - 4y + 7 = 0$	(2) $4x + 3y = 24$	(3) $3x + 4y = 25$	(4) x + y = 7
			$\frac{X}{2}$	
12.	If (a, a ₂) falls inside the	angle made by the lines	y = 2, x > 0 and $y = 3x$,	x > 0, then 'a' belongs to : [AIEEE - 2006 (3, -1), 120]
	(1) (3, ∞)	$\begin{pmatrix} \frac{1}{2}, & 3 \end{pmatrix}$	$ (3) \left(-3, -\frac{1}{2} \right) $	$\begin{pmatrix} 0, & \frac{1}{2} \end{pmatrix}$
13.	Let A(h, k), B(1, 1) and area of triangle is 1, the (1) {1, 3}	C(2, 1) be the vertices of n the set of values which (2) {0, 2}	f a right angled triangle v h 'k' can take is given by (3) {-1, 3}	vith AC as its hypotenuse. If the [AIEEE - 2007 (3, -1), 120] (4) {-3, -2}
14.	Let $P = (-1, 0) Q = (0, 0)$ is) and R = $(3, 3\sqrt{3})$ be th	ree points. The equation [AIEEE	of the bisector of the ∠PQR - 2007 (3, -1), 120]
		$\sqrt{3}$	$\frac{\sqrt{3}}{\sqrt{3}}$	
15.	(1) $\sqrt{3} x + y = 0$ If one of the lines of my m is	(2) x + 2 y = 0 $y_2 + (1 - m_2) xy - mx_2 = 0$	(3) $2 x + y = 0$ is a bisector of the angle [AIEEE	(4) $x + \sqrt{3} y = 0$ e between the lines $xy = 0$, then E - 2007 (3, -1), 120]
	<u>1</u>			
	(1) – 2	(2) – 2	(3) ± 1	(4) 2

16.	The perpendicular bise possible value of k is	ector of the line segment	joining P(1, 4) and Q(k (2)	, 3) has y-intercept – 4. Then a [AIEEE - 2008 (3, −1), 105]
	(1) – 4	(2) 1	(3) 2	(4) – 2
17.	The lines $p(p_2 + 1) x - y$ in 2-D geometry for:	$y + q = 0$ and $(p_2 + 1)_2 x + 1_2$	+ $(p_2 + 1) y + 2q = 0$ are	perpendicular to a common line [AIEEE - 2009(4, -1),144]
	(1) exactly one value of(3) more than two value	f p es of p	(2) exactly two values ((4) no value of p	of p
18.	Three distinct points A,	B and C are given in the	2-dimensional coordinat	e plane such that the ratio of the 1
	distance of any point fro circumcentre of the tria	om the point (1, 0) to the ngle ABC is at the point :	distance from the point ([AIEEE - 2009	–1, 0) is equal to ³ . Then the (4, –1), 144]
	$(1) \begin{pmatrix} \frac{5}{4}, & 0 \end{pmatrix}$	$\begin{pmatrix} \frac{5}{2} & 0 \end{pmatrix}$	$ (3) \left(\frac{5}{3} , 0 \right) $	(4) 0, 0
	<u>×</u> +	+ <u>y</u>		
19.	The line L given by ⁵	^b = 1 passes through t	the point (13, 32). The li	ne K is parallel to L and has the
	equation $\frac{c}{3} = 1$. The	nen the distance betweer	n L and K is	[AIEEE - 2010 (8, –2), 144]
			23	
	(1) $\sqrt{17}$	(2) √15	(3) √17	(4) v15
20.	The line $L_1 : y - x = 0$ a bisector of the acute an	and L_2 : $2x + y = 0$ integrating the set L_1 and L_2 in L_2 in L_2	sect the line L_3 : y + 2 = tersects L_3 at R.	0 at P and Q respectively. The [AIEEE - 2011, I(4, -1), 120]
	Statement-1: The rat Statement-2: In any (1) Statement-1 is true, (2) Statement-1 is true, (3) Statement-1 is true, (4) Statement-1 is false	tio PR : RQ equals $2\sqrt{2}$ triangle, bisector of an ar Statement-2 is true ; Sta Statement-2 is true ; Sta Statement-2 is false a, Statement-2 is true	: V ^D ngle divides the triangle atement-2 is correct expl atement-2 is not a correc	into two similar triangles. anation for Statement-1 ct explanation for Statement-1
21.	The lines $x + y = a $ ar possible values of a is t (1) $(0, \infty)$	nd ax – y = 1 intersect ea the interval : (2) [1. ∞)	ach other in the first quad $(3) (-1, \infty)$	drant. Then the set of all [AIEEE - 2011, II(4, –1), 120] (4) (–1, 1]
22	(1) (0,) If $\Delta(2, -3)$ and $B(-2, 1)$	are two vertices of a tria	(c) (i,)	(1) (1) (1)
~~.	the locus of the centroid (1) $x - y = 1$	d of the triangle is : (2) $2x + 3y = 1$	(3) $2x + 3y = 3$	[AIEEE - 2011, II(4, -1), 120] (4) 2x - 3y = 1
23.	If the line $2x + y = k$ pase 1) and (2, 4) in the ratio $\frac{29}{2}$	sses through the point wh o 3 : 2, then k equals :	nich divides the line segr	nent joining the points (1, [AIEEE-2012, (4, -1)/120] <u>11</u>
	(1) 5	(2) 5	(3) 6	(4) 5
24.	A line is drawn through OPQ, where O is the c	the point (1, 2) to meet th origin. if the area of the t	e coordinate axes at P a triangle OPQ is least, th	nd Q such that it forms a triangle en the slope of the line PQ is : [AIEEE-2012, (4, -1)/120]
	$(1) - \frac{1}{4}$	(2) – 4	(3) – 2	$(4) - \frac{1}{2}$
25.	A ray of light along x +	$\sqrt{3} y = \sqrt{3}$ gets reflected	upon reaching x-axis, th	e equation of the reflected ray [AIEEE - 2013, (4, - 1) 120]
	(1) $y = x + \sqrt{3}$	(2) $\sqrt{3} y = x - \sqrt{3}$	(3) $y = \sqrt{3} x - \sqrt{3}$	(4) $\sqrt{3} y = x - 1$
26.	The x-coordinate of the 1) (1, 1) and (1, 0) is :	incentre of the triangle th	nat has the coordinates ([AIEE]	of mid points of its sides as (0, E - 2013, (4, – 1) 120]

	(1) 2 + √2	(2) 2 – $\sqrt{2}$	(3) 1 + √ ²	(4) $1 - \sqrt{2}$								
27.	Let PS be the median of line passing through (1, (1) $4x + 7y + 3 = 0$	of the triangle with vertic , -1) and parallel to PS i (2) 2x $-9y - 11 = 0$	es P(2, 2), Q (6, – 1), a s : [JEE(N (3) 4x – 7y – 11 = 0	nd R (7, 3). The equation of the Main) 2014, (4, – 1), 120] (4) 2x + 9y + 7 = 0								
28.	Let a, b, c and d be nor + 2by + d = 0 lies in the	n-zero numbers. If the po fourth quadrant and is e	int of intersection of the equidistant from the two a	lines $4ax + 2ay + c = 0$ and $5bx$ axes then : Main) 2014 (4 - 1) 1201								
	(1) 3bc - 2ad = 0	(2) 3bc + 2ad = 0	(3) $2bc - 3ad = 0$	(4) $2bc + 3ad = 0$								
29.	The number of points, vertices (0, 0), (0, 41) a (1) 901	having both co-ordinate and (41, 0) is (2) 861	s as integers, that lie in [JEE(N (3) 820	the interior of the triangle with /ain) 2015, (4, - 1), 120] (4) 780								
30.	Two sides of a rhombus are along the lines, $x - y + 1 = 0$ and $7x - y - 5 = 0$. if its diagonals intersect at $(-1, -2)$ then which one of the following is a vertex of this rhombus 2											
	(-1, -2), then which one of the following is a vertex of this rhombus ? [JEE(Main) 2016, (4, -1), 120]											
		$\left(\frac{1}{2},\frac{8}{2}\right)$	$\left(-\frac{10}{-7}\right)$									
	(1) (-3, -8)	(2) (3'3)	(3, 3)	(4) (-3, -9)								
31.	Let k be an integer suc Then the orthocentre of	th that the triangle with v f this triangle is at the po	ertices (k, –3k), (5, k) ar int : [JEE(N	nd (–k, 2) has area 28 sq. units. Jain) 2017, (4, – 1), 120]								
	$\left(2,-\frac{1}{2}\right)$	$\left(1,\frac{3}{4}\right)$	$\left(1,-\frac{3}{4}\right)$	$\left(2,\frac{1}{2}\right)$								
32.	(1) A straight line through a	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)								
	the origin and the recta	ngle OPRQ is completed	l, then the locus of R is	(4 - 1)								
	(1) $3x + 2y = xy$	(2) $3x + 2y = 6x$	(3) 3x + 2y = 6	(4) 2x + 3y = xy								
	PART - II : JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)											
		-										
1.	The area bounded by the	he curves y = x - 1 an	d y = $- x + 1$ is [II]	T-JEE - 2002, Scr, (3,– 1), 90]								
1.	The area bounded by th	he curves y = x – 1 an (B) 2	d y = $- x + 1$ is [II (C) $2\sqrt{2}$	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4								
1.	The area bounded by the (A) 1 $\frac{\pi}{2}$	he curves y = x – 1 an (B) 2	d y = $- x + 1$ is [II (C) $2\sqrt{2}$	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4								
1. 2.	The area bounded by the (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed	he curves y = x – 1 an (B) 2 I angle. If P = (cosθ, sin	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = (cos($\alpha - \theta$),	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin (α – θ)), then Q is obtained								
1. 2.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by	he curves y = x – 1 an (B) 2 I angle. If P = (cosθ, sin	d y = - x + 1 is [II] (C) $2\sqrt{2}$ θ) and Q = (cos(α - θ), [I	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin (α – θ)), then Q is obtained I T-JEE - 2002,Scr, (3,– 1), 90]								
1. 2.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at	he curves y = x – 1 an (B) 2 I angle. If P = (cosθ, sin around origin through an	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = (cos($\alpha - \theta$), [I angle α	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin (α – θ)), then Q is obtained I T-JEE - 2002,Scr, (3,– 1), 90]								
1. 2.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation	he curves y = x – 1 an (B) 2 I angle. If P = (cosθ, sin around origin through an on around origin through	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = (cos($\alpha - \theta$), [I angle α an angle α	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin (α – θ)), then Q is obtained I T-JEE - 2002,Scr, (3,– 1), 90]								
1. 2.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation and (B) anticlockwise rotation (C) reflection in the line	the curves $y = x - 1$ an (B) 2 I angle. If P = (cos θ , sin around origin through an on around origin through through origin with slope	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = (cos($\alpha - \theta$), [I] angle α an angle α e tan α	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin (α – θ)), then Q is obtained I T-JEE - 2002,Scr, (3,– 1), 90]								
1. 2.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation (C) reflection in the line (D) reflection in the line	the curves $y = x - 1$ and (B) 2 I angle. If P = (cos θ , since around origin through and on around origin through through origin with slope through origin with slope	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = $(\cos(\alpha - \theta))$, [I] angle α an angle α e tan α e tan α	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin (α – θ)), then Q is obtained I T-JEE - 2002,Scr, (3,– 1), 90]								
1. 2. 3.	The area bounded by the (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation (C) reflection in the line (D) reflection (D	the curves $y = x - 1$ and (B) 2 If angle. If P = (cos θ , since around origin through an on around origin through through origin with slope through origin with slope through origin with slope (0, 0) and R = (3, $3\sqrt{3}$) b	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = (cos($\alpha - \theta$), [I] angle α an angle α tan angle α tan α tan ($\alpha/2$) the three points. Then the	T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin (α – θ)), then Q is obtained IT-JEE - 2002,Scr, (3,– 1), 90] e equation of the bisector of the IIT-JEE - 2002,Scr, (3,– 1), 90]								
1. 2. 3.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation (C) reflection in the line (D) reflection in the line Let P = (-1, 0), Q = (0) angle PQR is $\sqrt{3}$	the curves y = $ x - 1$ an (B) 2 I angle. If P = $(\cos\theta, \sin\theta)$ around origin through an on around origin through through origin with slope through origin with slope through origin with slope (0, 0) and R = $(3, 3\sqrt{3})$ b	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = $(\cos(\alpha - \theta))$, [I] angle α an angle α e tan α e tan $(\alpha/2)$ the three points. Then the [T-JEE - 2002, Scr, (3,– 1), 90] (D) 4 sin ($\alpha - \theta$)), then Q is obtained IT-JEE - 2002,Scr, (3,– 1), 90] e equation of the bisector of the IIT-JEE - 2002,Scr, (3,– 1), 90] $\sqrt{3}$								
1. 2. 3.	The area bounded by the (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation (C) reflection in the line (D) reflection (D) r	the curves y = $ x - 1$ an (B) 2 I angle. If P = $(\cos\theta, \sin\theta)$ around origin through an on around origin through through origin with slope through origin with slope through origin with slope (B) x + $\sqrt{3}y = 0$	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = $(\cos(\alpha - \theta))$, [I] angle α an angle α tan angle α tan α tan $(\alpha/2)$ the three points. Then the [I] (C) $\sqrt{3}x + y = 0$	T-JEE - 2002, Scr, (3,- 1), 90] (D) 4 sin ($\alpha - \theta$)), then Q is obtained IT-JEE - 2002, Scr, (3,- 1), 90] e equation of the bisector of the IIT-JEE - 2002, Scr, (3,- 1), 90] (D) x + $\frac{\sqrt{3}}{2}$ y = 0								
1. 2. 3. 4.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation (C) reflection in the line (D) reflection in the line Let P = (-1, 0), Q = (0) angle PQR is $\frac{\sqrt{3}}{2}x + y = 0$ A straight line through the through the first of	the curves $y = x - 1$ and (B) 2 I angle. If P = $(\cos\theta, \sin\theta)$ around origin through and through origin through and through origin with slope through origin with slope through origin with slope (B) x + $\sqrt{3}y = 0$ the origin O meets the para the point O divides the seg	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = $(\cos(\alpha - \theta))$, [I angle α an angle α e tan α e tan $(\alpha/2)$ e three points. Then the [(C) $\sqrt{3}x + y = 0$ and $(\alpha/2) = 0$ $(\alpha/3x + 2y = 9)$ and $(\alpha/3y + 2y + 2)$ and $(\alpha/3y + 2)$ and $($	T-JEE - 2002, Scr, (3,-1), 90] (D) 4 sin ($\alpha - \theta$)), then Q is obtained IT-JEE - 2002, Scr, (3,-1), 90] e equation of the bisector of the IIT-JEE - 2002, Scr, (3,-1), 90] (D) x + $\frac{\sqrt{3}}{2}$ y = 0 nd 2x + y + 6 = 0 at points P and								
1. 2. 3. 4.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation (C) reflection in the line (D) reflection in the	the curves $y = x - 1$ and (B) 2 I angle. If P = $(\cos\theta, \sin\theta)$ around origin through an on around origin through an on around origin with slope through origin with slope through origin with slope through origin with slope (B) x + $\sqrt{3}y = 0$ the origin O meets the para the point O divides the second	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = $(\cos(\alpha - \theta),$ [I] angle α an angle α an angle α tan α tan $(\alpha/2)$ the three points. Then the [I] (C) $\sqrt{3}x + y = 0$ rallel lines $4x + 2y = 9$ are gement PQ in the ratio	T-JEE - 2002, Scr, (3,- 1), 90] (D) 4 sin ($\alpha - \theta$)), then Q is obtained IT-JEE - 2002, Scr, (3,- 1), 90] e equation of the bisector of the IIT-JEE - 2002, Scr, (3,- 1), 90] (D) x + $\frac{\sqrt{3}}{2}$ y = 0 and 2x + y + 6 = 0 at points P and [IIT-JEE - 2002, Scr, (3,- 1), 90]								
1. 2. 3. 4.	The area bounded by the (A) 1 (A) 1 Let $0 < \alpha < \frac{\pi}{2}$ be fixed from P by (A) clockwise rotation at (B) anticlockwise rotation (C) reflection in the line (D) reflection in the	the curves $y = x - 1$ and (B) 2 I angle. If P = $(\cos\theta, \sin\theta)$ around origin through and through origin through and through origin with slope through origin with slope through origin with slope through origin with slope (B) x + $\sqrt{3}y = 0$ the origin O meets the para the point O divides the seg (B) 3 : 4	d y = $- x + 1$ is [II (C) $2\sqrt{2}$ θ) and Q = $(\cos(\alpha - \theta),$ [I] angle α an angle α an angle α the tan α the tan $(\alpha/2)$ the three points. Then the [I] (C) $\sqrt{3}x + y = 0$ and $(\alpha/2) + y = 0$ (C) $(\alpha/3) + (\alpha/2) + (\alpha/3) + ($	T-JEE - 2002, Scr, (3,-1), 90] (D) 4 sin ($\alpha - \theta$)), then Q is obtained IT-JEE - 2002, Scr, (3,-1), 90] e equation of the bisector of the IIT-JEE - 2002, Scr, (3,-1), 90] (D) x + $\frac{\sqrt{3}}{2}$ y = 0 and 2x + y + 6 = 0 at points P and [IIT-JEE - 2002, Scr, (3,-1), 90] (D) 4 : 3								

Straight Line

- A straight line L through the origin meets the lines x + y = 1 and x + y = 3 at P and Q respectively. Through P and Q two straight lines L1 and L2 are drawn parallel to 2x y = 5 and 3x + y = 5 respectively. Lines L1 and L2 intersect at R. Show that the locus of R, as L varies, is a straight line.
 [IIT-JEE 2002, Main, (5, 0), 60]
- 6. A straight line L with negative slope passes through the point (8, 2) and cuts the positive coordinate axes at points P and Q. Find the absolute minimum value of OP + OQ, as L varies, where O is the origin.
 [IIT-JEE 2002,Main, (5, 0), 60]

7. The number of integral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices (0, 0), (0, 21) and (21, 0), is [IIT-JEE - 2003, Scr, (3,-1), 84]
(A) 133 (B) 190 (C) 233 (D) 105

8. Orthocentre of triangle with vertices (0, 0), (3, 4) and (4, 0) is **[IIT-JEE - 2003,Scr, (3, - 1), 84]**

- (A) $\begin{pmatrix} 3, \frac{5}{4} \end{pmatrix}$ (B) (3, 12) (C) $\begin{pmatrix} 3, \frac{3}{4} \end{pmatrix}$ (D) (3, 9)9. The centre of circle inscribed in a square formed by lines $x_2 - 8x + 12 = 0$ and $y_2 - 14y + 45 = 0$ is [IIT-JEE - 2003,Scr, (3, -1), 84]
 - (A) (4, 7) (B) (7, 4) (C) (9, 4)
- 10.Area of the triangle formed by the line x + y = 3 and angle bisectors of the pair of straight lines $x_2 y_2 + 2y = 1$ is[IIT-JEE 2004, Scr, (3, -1), 84](A) 2 sq units(B) 4 sq. units(C) 6 sq. units(D) 8 sq. units
- **11.** Let O(0, 0), P(3, 4), Q(6, 0) be the vertices of the triangle OPQ. The point R inside the triangle OPQ is such that the triangles OPR, PQR, OQR are of equal area. The co-ordinates of R are

[IIT-JEE - 2007, P-II, (3, - 1), 81]

(D) (4, 9)

- (A) $\left(\frac{4}{3}, 3\right)$ (B) $\left(3, \frac{2}{3}\right)$ (C) $\left(3, \frac{4}{3}\right)$ (D) $\left(\frac{4}{3}, \frac{2}{3}\right)$
- 12.Lines $L_1 : y x = 0$ and $L_2 : 2x + y = 0$ intersect the line $L_3 : y + 2 = 0$ at P and Q, respectively. The bisector
of the acute angle between L_1 and L_2 intersects L_3 at R.[IIT-JEE 2007, P-II, (3, -1), 81]

STATEMENT - 1 : The ratio PR : RQ equals $2\sqrt{2}$: $\sqrt{5}$.

because

STATEMENT - 2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1
- (B) Statement 1 is True, Statement 2 is True; Statement 2 is **NOT** a correct explanation for Statement 1
- (C) Statement 1 is True, Statement 2 is False
- (D) Statement 1 is False, Statement 2 is True
- **13.** A straight line L through the point (3, -2) is inclined at an angle 60° to the line $\sqrt{3}x + y = 1$. If L also intersects the x-axis, then the equation of L is **[IIT-JEE 2011, Paper-1, (3, -1), 80]**

(A) $y + \sqrt{3} x + 2 - 3\sqrt{3} = 0$ (C) $\sqrt{3} y - x + 3 + 2\sqrt{3} = 0$ (B) $y - \sqrt{3}x + 2 + 3\sqrt{3} = 0$ (D) $\sqrt{3}y + x - 3 + 2\sqrt{3} = 0$

14.For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0
and bx + ay + c = 0 is less than $2\sqrt{2}$. Then[JEE (Advanced) 2013, Paper-1, (2, 0)/60]
(A) a + b - c > 0(A) a + b - c > 0(B) a - b + c < 0(C) a - b + c > 0(D) a + b - c < 0

Answers

Ε

	<u>ر</u>												
						EXER	CISE #	±1					
Secti	ion (A)												
A-1.	(2)	A-2.	(3)	A-3.	(3)	A-4	(4)	A-5.	(2)	A-6.	(1)	A-7.	(2)
A-8.	(1)	A-9.	(2)	A-10.	(1)	A-11.	(1)	A-12.	(3)				
Secti	ion (B)												
B-1.	(1)	B-2.	(1)	В-3.	(1)	B-4.	(2)	B-5.	(2)	B-6.	(4)	B-7.	(3)
B-8.	(3)	B-9.	(2)	B-10.	(2)								
Secti	ion (C)												
C-1.	(2)	C-2.	(2)	C-3.	(2)	C-4.	(2)	C-5.	(3)	C-6.	(2)	C-7.	(3)
C-8.	(2)	C-9.	(2)	C-10.	(1)	C-11.	(1)	C-12.	(2)	C-13.	(1)	C-14.	(2)
C-15.	(2)	C-16.	(2)	C-17.	(1)	C-18.	(4)	C-19.	(2)	C-20.	(4)	C-21.	(2)
Secti	ion (D)												
D-1.	(2)	D-2.	(3)	D-3.	(1)	D-4.	(1)	D-5.	(3)	D-6.	(1)		
Secti	ion (F)												
E-1.	(3)	E-2.	(4)	E-3.	(1)	E-4.	(3)	E-5.	(2)	E-6.	(2)		
Secti	ion (F)		(')	_ •	(.)		(0)	_ •.	(-)	_ •	(-)		
F-1.	(1)	F-2.	(1)	F-3.	(3)	F-4.	(4)	F-5.	(1)	F-6.	(4)	F-7.	(1)
Гo	(2)	ΓO	(4)	E 40	(2)		()		()		()		()
F-0.	(3)	г-9.	(4)	F-10.	(3)								
Secu		C 2	(4)	C 2	(1)	6.4	(1)	C F	(1)	C 6	(1)	6.7	(2)
G-1. G-8	(3)	G-2. G-9	(4) (4)	6-3.	(1)	6-4.	(1)	G-5.	(1)	G-0.	(1)	G-7.	(2)
<u> </u>	(')	0 0.	(')										
						EXERC	CISE #	2					
						PAI	RT - I						
1.	(1)	2.	(1)	3.	(3)	4.	(3)	5.	(1)	6.	(3)	7.	(4)
8.	(3)	9.	(2)	10.	(1)	11.	(2)	12.	(2)	13.	(1)	14.	(3)
15.	(1)	16.	(4)	17.	(2)	18.	(1)	19.	(3)	20.	(4)	21.	(1)
22.	(3)	23.	(2)	24.	(2)								
•						PAF	κT - II						
Secti	on (A)	_		_		_							
A-1.	(1)	A-2.	(1)	A-3.	(3)	A-4.	(1)						
Sect	on (B)												
B-1.	(A) →	p;(B) -	→ q ; (C) → s;(C	0) → S	B-2.	(A) →	(s), (B)	→ (p, q), (C) →	(r), (D) → (p, q,	s)
Secti	ion (C)												

C-1.	(2, 3)	C-2.	(2, 3)	C-3.	(2, 3)	C-4.	(1, 2,	3, 4)					
	EXERCISE # 3												
PART - I													
1.	(3)	2.	(2)	3.	(1)	4.	(2)	5.	(1)	6.	(4)	7.	(4)
8.	(4)	9.	(2)	10.	(2)	11.	(2)	12.	(2)	13.	(3)	14.	(1)
15.	(3)	16.	(1)	17.	(1)	18.	(1)	19.	(3)	20.	(3)	21.	(2)
22.	(2)	23.	(3)	24.	(3)	25.	(2)	26.	(2)	27.	(4)	28.	(1)
29.	(4)	30.	(2)	31.	(4)	32.	(1)						
	PART - II												
1.	(B)	2.	(D)	3.	(C)	4.	(B)	5.	x - 3y + 5 = 0			6.	18
7.	(B)	8.	(C)	9.	(A)	10.	(A)	11.	(C)	12.	(C)	13.	(B)
14.	(A) or (C) or Bonus												