Exercise-1 Marked Questions may have for Revision Questions. * Marked Questions may have more than one correct option. **OBJECTIVE QUESTIONS** Section (A) : Definition of limit, LHL & RHL, Indeterminate forms If $f(x) = \begin{cases} 4x, x < 0 \\ 1, x = 0 \\ 3x^2, x > 0 \end{cases}$, then $x \to 0$ f(x) equals A-1. (1) 0(2) 1 (3) 3(4) Does not exist $\underset{x \to 2}{\text{fim}} \left\{ \frac{x}{2} \right\}, \text{ where } \{.\} \text{ represents fractional part function, is}$ A- 2.🖎 (1) 0(2) 1 (3) - 1(4) Limit does not exists A-3. Which of the following limit exists ? $\lim_{x\to 0} \left(\frac{1}{x^2}\right)$ $\lim_{(1) \to 0} \left(\frac{1}{x}\right)$ $\lim_{(3) \to 0} \left(2^{1/x} \right)$ lim (4) $x \to \pi/2$ (sin x) Which of the following limits exists -A-4. lim lim lim (1) $x \to 0 x |x|$ (2) ^{x→1/4} [x] (3) $x \to 0 x \sin 1/x$ (4) All of the above lim A-5.è The value of $x \to \pi$ sgn [tan x], where [.] represents greatest integer function, is (3) –1 (1) 0 (2) 1 (4) Limit does not exists lim $x \rightarrow 0$ sin-1 (sec x) is equal to A-6. (1) 2 (2) 1 (3) 0 (4) Limit not exist $\underset{x\rightarrow0}{\text{lim}}\;\frac{x}{\mid x\mid+x^{2}} \text{ equals-}$ A-7. (1) 1 (2) - 1(3) 0(4) Does not exist {im [x] $\lim_{x\to 0^-} \frac{1}{x}$ (where [.] denotes greatest integer function) is A-8. 0 (1) an indeterminate form 0(2) equal to 1 (3) equal to 0 (4) not an indeterminate form

A-9. A $(x^{2} + 1) + x$ is (1) an indeterminate form (2) equal to 1 (3) not an indeterminate form (4) equal to 2 lim $x \rightarrow 1$ (1 - x + [x - 1] + [1 - x]) is equal to (where [] denotes greatest integer function) A-10. (3) - 1 (2) 1 (4) does not exist (1) 0 lim **A-11.** If $[x] = \text{greastest integer} \le x$, then $x \rightarrow 2$ $(-1)_{[x]}$ is equal to -(4) limit doesn't exist (1) 1 (2) – 1 $(3) \pm 1$ $|\mathbf{X} + \pi|$ lim **A-12.** Let $f(x) = \frac{\sin x}{x + \pi}$, then $\frac{\sin x}{x - \pi} f(x) = \frac{1}{2}$ (2) 1 (1) - 1(4) does not exist (3) 0

Section (B) : Factorisation, Rationalisation, Use of standard limits, use of substitution

B-1.è	$\lim_{x \to 1} \frac{x - 1}{2x^2 - 7x + 5} \text{ equals -}$			
	(1) 1/3	(2) –1/3	(3) 1/2	(4) -1/2
B-2.	$\lim_{x \to 0} (x_2 - 9) \left(\frac{1}{x + 3} + \frac{1}{2} \right)$	$\left(\frac{1}{(-3)}\right)_{\text{equals -}}$		
	(1) 2	(2) 4	(3) 0	(4) Does not exist
B-3 .	$\lim_{x\to 1}\frac{\sqrt{7x+2}-3}{\sqrt{5x-1}-\sqrt{6x-2}}$			
	(1) $\frac{7}{3}$	(2) $-\frac{7}{3}$	$(3) - \frac{14}{3}$	(4) $\frac{7}{6}$
B-4.	$\lim_{x \to a} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \text{eq}$	ual to :		
	(1) $\frac{2}{3}$	(2) $\frac{2}{\sqrt{3}}$	(3) 2	$(4) \frac{2}{3\sqrt{3}}$
B-5.	$\lim_{x\to 1} \frac{(3x-4)(\sqrt{x}-1)}{2x^2+x-3} =$			
	(1) $\frac{-1}{10}$	(2) $\frac{1}{10}$	(3) $\frac{-1}{8}$	$(4) \frac{1}{8}$
B-6 .	$\lim_{x\to 4} \left(\frac{x^{3/2} - 8}{x - 4} \right) =$			
•	(1) $\frac{3}{2}$	(2) 3	(3) $\frac{2}{3}$	(4) $\frac{1}{3}$

B-7.	$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$ is	equal to $\frac{\sqrt{2}}{8}$	(3) 0	$\frac{1}{\sqrt{2}}$
B-8.¤̀	The value of $x \to a = \frac{1}{4a}$	$\frac{\overline{b} - \sqrt{a - b}}{a^2 - a^2}$ (a > b) equals (2) $\frac{1}{a\sqrt{a - b}}$	s (3) $\frac{1}{2a\sqrt{a-b}}$	$(4) \frac{1}{4a\sqrt{a-b}}$
B-9.	lim _{x→0} sin3x tan5x	_		
	(1) $\frac{5}{3}$	(2) $-\frac{5}{3}$	$(3)\frac{3}{5}$	$(4) -\frac{3}{5}$
B-10.	$\lim_{x\to 0} \frac{\tan mx}{\ln(1-5x)}$	-		F
	(1) $\frac{m}{5}$ lim $\frac{(x)^{5/3} - (a)^{5/3}}{x^{3} - (a)^{5/3}}$	(2) $\frac{5}{m}$	$(3)^{-\frac{m}{5}}$	$(4) -\frac{5}{m}$
B-11.	(1) $a^{2/3}$	(2) $\frac{5}{3}a^{5/3}$	(3) $\frac{5}{3}a^{2/3}$	(4) $\frac{3}{5}a^{2/3}$
B-12.è⊾	$\lim_{x \to 0^{1}} \frac{\sqrt{x} \tan x}{\left(e^{x} - 1\right)^{3/2}}$ equals (1) 0	(2) 1	(3) 1/2	(4) 2
B-13.	$\lim_{x\to 0} \frac{e^{\alpha x} - e^{\beta x}}{x}$ equal to	-		
	(1) αβ (4 [×] 1) ³	(2) α + β	(3) α – β	(4) $\frac{\alpha}{\beta}$
B-14.è	$\lim_{x \to 0} \frac{(4 - 1)}{\sin\left(\frac{x}{p}\right)} \ln\left(1 + \frac{1}{p}\right)$	$\frac{x^2}{3}$ is equal to		
	(1) 9 p (<i>l</i> n 4)	(2) 3 p (ℓn 4) ₃	(3) 12 p (ℓn 4)₃	(4) 27 p (ℓn 4)₂
B-15.	$\lim_{x \to 0} \frac{2^{x} - 1}{(1 + x)^{1/2} - 1} =$			
	(1) ^{log} _e 2	(2) ^{log} e ⁴	(3) $\log_e \sqrt{2}$	(4) ^{log} e 8

	$\lim_{x \to \infty} \frac{\sin 4x}{2}$			
B-16.	$x \to 0$ $1 - \sqrt{(1 - x)}$ equals	3 -		
	(1) 4	(2) 8	(3) 10	(4) 12
	$x\left(1-\sqrt{1-x^2}\right)$			
B-17.è	$\lim_{x \to 0} \frac{1}{\sqrt{1 + x^2} (\sin^{-1} x)^3} e^{-\frac{1}{2} (\sin^{-1} x)^3}$	quals		
2	(1) 0	(2) 1	(3) 1/2	(4) 1/4
	$\sqrt{1+\sin x} - \sqrt{1-\sin x}$	-		
B-18.	$\lim_{x\to 0} X$	- =		
	(1) – 6	(2) – 2	(3) 2	(4) 1
B-19.ൔ	$\lim_{x\to 0} \frac{e^{\alpha x} - e^{\beta x}}{\sin \alpha x - \sin \beta x} eq$	uals		
	(1) 0	(2) α – β	(3) – 1	(4) 1
	200	x 000 2x		
D 00	$\lim_{x \to 0} \frac{\sec 4}{\sec 3}$	$\frac{1}{3x - \sec 2x}$		
B-20.	The value of $x \to 0$ (1) 1	(2) 0	(3) 3/2	(4) ∞
	(.).		(0) 0/2	
D 01	$\lim_{x \to 0} \frac{\ln(1 + \tan x)}{x} =$			
D-21.	(1) 0	(2) 1	(3) – 1	(4) Limit doesn't exists
	ℓn(2+x)+ℓn0.5			
B-22.è	$\lim_{x \to 0} \frac{1}{x}$	s equal to		
	<u>1</u>	<u>3</u>	<u>1</u>	
	(1) 2	(2) 2	(3) – 2	(4) 1
	$\lim \frac{\ln(1-\ln x)}{\ln x^2}$			
B-23	x→1 (1x ⁻ =	1		
	$(1) - \frac{1}{2}$	(2) $\frac{1}{2}$	(3) –1	(4) Limit doesn't exists
	tany y	(-)		()
D 04 \	$\lim_{x \to 0} \frac{e^{a - x} - e^{-a}}{\tan x - x}$			
B-24.¤	¹	I to	1	
	(1) $\frac{1}{2}$	(2) 1	$(3) - \frac{1}{2}$	(4) – 1
	(m 0) ^{1/2} 0			
	$\lim_{x \to 2^{2}} \frac{(x+6)^{3}-2}{2-x} =$			
В-25. ₫	1	1	1	
	(1) 12	(2) - 12	(3) 2	(4) does not exist

Section (C) : Infinite limits

C-1 മ	tim $\sqrt{3x^2}$	$\frac{x^2-1}{4x+3} - \sqrt{2x^2-1}$ is -		
	$\frac{1}{1}$	$\frac{1}{4}$		$\frac{1}{2}$ $\sqrt{2}$ $\sqrt{2}$
	(1) 4 $(\sqrt{3} - \sqrt{2})$	(2) 4 ($\sqrt{3} + \sqrt{2}$)	(3) $(\sqrt{3} - \sqrt{2})$	(4) $2(\sqrt{3}-\sqrt{2})$
C-2.	The value of $x \to \infty$ $\frac{\sqrt{x}}{2x+}$ (1) 1	(2) 0	(3) –1	(4) 1/2
C-3.è▲	The value of $\lim_{n \to \infty} \left(\frac{1}{1-1} \right)$	$\frac{1}{n^4} + \frac{8}{1 - n^4} + \dots + \frac{n^3}{1 - n^4}$	(i) is -	
	(1) 1	(2) 0	$(3)^{-\frac{1}{4}}$	$(4) -\frac{1}{2}$
C-4.ऄ	$\lim_{n \to \infty} \frac{1 + 5 + 5^2 + \dots + 5^n}{1 - 25^n}$	5 ⁿ⁻¹ =		
•	(1) 0	(2) –1	(3) 1	(4) ∞
C-5.⊾̀	If $n \in N$, then $\lim_{n \to \infty} \frac{(n+2)}{(n+2)}$	$\frac{(n+3)!}{(n+4)!} =$		4
	(1) 0	(2) ∞	(3) 1	(4) $\frac{1}{2}$
C-6.	$\lim_{n\to\infty} \left[\sqrt{x} \left(\sqrt{x+c} - \sqrt{x} \right) \right]$	=	(3) 1/c	(4) c
	$\lim_{x \to a} \left(\sqrt{(x + a)(x + b)} \right)$	$\overline{)} - \mathbf{x}$		(-) 0
C-7.	$\frac{a-b}{2}$	$\frac{a-b}{3}$	(3) $\frac{a+b}{2}$	$(4) \frac{a+b}{3}$
C-8.	$\lim_{n \to \infty} \frac{5^{n+1} + 3^n - 2^{2n}}{5^n + 2^n + 3^{2n+3}} =$			
	(1) 5	(2) 3	(3) 1	(4) zero
C-9.	$\lim_{x \to -\infty} \frac{x^4 \sin\left(\frac{1}{x}\right) + x^2}{1 + x ^3} =$			
	(1) 0	(2) 1	(3) – 1	(4) ∞
C-10.	$\lim_{x \to \infty} \sqrt{\frac{x - \sin x}{x + \cos^2 x}} =$			
	(1) – 1	(2) 1 (3) 0	(4) does not ex	ist

C-11.	$\lim_{x \to \infty} \left(\frac{(x+1)^{10} + (x+2)^1}{x^{10}} \right)^{10}$	$\left(\frac{1}{10}^{10}+\ldots+(x+100)^{10}\right)^{10}$		
	(1) 102	(2) 103	(3) ∞	(4) 104
Sectio	on (D) : Use of expa	ansion, L-Hospital r	ule	
D-1.ൔ	$\lim_{x \to 0} \frac{e^x + e^{-x} - 2\cos x}{x \sin x}$ (1) 1	= (2) 2	(3) –1	(4) – 2
D-2.函	$\lim_{x \to 0} \frac{1 + \sin x - \cos x}{x^3}$ (1) 1/2	$(x + \log_e (1 - x)) =$	(3) 0	(4) 1
D-3.	$\lim_{x \to 1} \frac{1 + \log_e x - x}{1 - 2x + x^2}$ (1) 1	= (2) – 1	(3) -1/2	(4) 1/2
D-4.	$\lim_{h\to 0} \left(\frac{h(8-1)}{h(1)}\right)$	$\frac{1}{(2)} - \frac{1}{2h} = \frac{1}{2h}$ is-	(3) –16/3	(4) –1/48
D-5.	$\lim_{\substack{f \ x \to 0 \\ (1) \ 12}} \frac{axe^{x} - b \ fn}{x^{2}s}$	$\frac{(1+x) + cxe^{-x}}{\sin x} = 2$, the (2) 24	en a + b + c = (3) 36	(4) –12
D-6.	$\lim_{x\to \pi/2} \tan x \log_e \sin x =$			1
	(1) 0	(2) 1	(3) – 1	(4) $\frac{1}{2}$
D-7.	$ \label{eq:lim} \begin{array}{l} \mbox{lim} \\ \mbox{The value of} & {}^{x\rightarrow 1} \mbox{ sec} \\ \mbox{(1)} \ \pi/2 \end{array} $	π/2x log _e x is - (2) 2/π	(3) –π/2	(4) –2/π
D-8.函	$\lim_{x\to 1}\frac{x+x^2+\ldots+x^n-r}{x-1}$	=	2	
	(1) n	(2) 0	(3) $\frac{11}{2}$	(4) $\frac{n(n+1)}{2}$
D-9.	$\lim_{x \to a} \frac{a^{x} - x^{a}}{x^{x} - a^{a}} = -1, \text{ the}$ (1) 0	n a equals - (2) 1	(3) e	(4) – 1
D-10.ᡈ	$\lim_{x \to 0} \frac{(a+x)^2 \sin(a+x) - x}{x}$ (1) a ₂ cos a + 2a sin a (3) a ₂ (cos a + 2 sin a)	e a² sin a =	(2) a(cos a + 2 sin a) (4) a₂ cos a – 2a sin a	

Sectio	on (E) : Limits of for	rm ∞ – ∞ , 0º, ∞º , 1∘	$\lim_{x \to \infty} \frac{x}{e^x} , \lim_{x \to \infty} \frac{\ln x}{x} $	Sandwitch theorem
E-1.	$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right) =$	(0) 4		(4) 2
F _2	$\lim_{x \to 0} \left(\frac{a}{x} - \cot \frac{x}{a} \right)_{-}$	(2) – 1	(3) 0	(4) 3
L-2.	(1) a	(2) 0	(3) ¹ / _a	(4) 1
E-3.	$\lim_{x\to\infty}\Bigl(\sqrt{x^2-5x+6}-x\Bigr)=$		5	5
	(1) 0 $(1) = \sqrt{(2 + 2)^2}$	(2) ∞	(3) 2	$(4)^{-\frac{3}{2}}$
E-4.	$\lim_{x \to \infty} \left[\sqrt{(a^2 x^2 + ax + 1)} - (1) \right]$	$\frac{\sqrt{(a^2 x^2 + 1)}}{(2) 2} =$	(3) 0	(4) 1/2
E-5.	$\lim_{x \to 0} (1 + \tan x)_{1/x} =$			1
	(1) 1 $\left(\frac{1+x}{x}\right)^{\frac{1}{x}}$	(2) e	(3) e ₂	(4) e
E-6.	$\lim_{x \to 0} (1-x) = (1) 1$	(2) e	(3) e ₂	(4) e ₋₂
E-7.	$\lim_{x \to \infty} \left(\frac{1 + \frac{2}{x^2}}{x^2} \right) =$ (1) 1	(2) e	(3) e ₂	(4) e ₋₂
E-8.№	$\lim_{x \to 0^{1}} (1 + \tan^{2} \sqrt{x})^{5/x} = (1) e_{5}$	(2) e ₂	(3) e	(4) e₃
E-0	$\lim_{x \to \infty} \left(\frac{x+1}{2x+1} \right)^{x^2}$	()		
L-J.	$(1) \frac{1}{2}$	(2) 1	(3) 0	(4) $\frac{1}{2}e$
E-10.	Lim ^{x→1} (1 +log₀x) ₁/₁₋x 1_			
	(1) e	(2) 1	(3) e	(4) e ₂
E-11₋ゐ	If α and β be the roots α	$fax_2 + bx + c = 0$ then	$\lim_{x \to \alpha} \left(1 + ax^2 + bx + c\right)^{\frac{1}{x - \alpha}}$	is equal to
	(1) a (α - β)	(2) In $ a(\alpha - \beta) $	(3) $e^{a(\alpha-\beta)}$	(4) $e^{a \alpha-\beta }$

	$(x^2, y^2, z^3)^{\times}$				
E_12 è	$\lim_{x \to \infty} \left(\frac{x - 2x + 1}{x^2 - 4x + 2} \right)$	_			
	(1) 1	_ (2) 2	(3) e ₂	(4) e	
E 42	$\lim_{x \to 0} (\sin x)^x =$				
E-13.	X-70		1		
	(1) 0	(2) 1	(3) 2	(4) 2	
E-14.	$\lim_{x\to 0^+}$ the value of $x\to 0^+$ (cos	ec x) _{1/ (n x} is			
	(1) 1	(2) – 1	(3) e	(4) 1/e	
	lim log	$\left(\mathbf{x}-\frac{\pi}{2}\right)$			
E-15.	The value of $x \rightarrow \frac{\pi^+}{2}$ ta	$\frac{2}{10}$ is -			
	(1) 0	(2) 1	(3) – 1	(4) 2	
F 40	$\lim_{x\to\infty}\frac{x^2}{a^x}$				
E-16.	(1) 0	(2) 1	(3) – 1	(4) limit does not exists	
	lim $\frac{\ell n x}{\ell}$				
E-17.	$ x \to \infty x^3 = $	(2) 1	(3) – 1	(4) limit does not exists	
	x [2	2]	(0)	(1)	
E-18.	The value of $x \to 0^+$ 5 \cdot	(where [.] denotes	the greatest integer func	tion) is	
	$\frac{2}{5}$	$\frac{-2}{5}$	(3) 0	(4) ∞	
	(1) _{0im} [1.2x]	(2) + [2.3x] + + [n.(n + 1)x]	(3) 0	(+)	
E-19.	The value of $n \to \infty$	n ³	(where [.] denotes the	greatest integer function) is	
	(1) x	$(2) \frac{x}{2}$	(3) 2x	$(4) \frac{x}{3}$	
Sectio	on (F) : Continuity a	t a point	(0)		
	$\int x \cos(1/x), x$	≠ 0 - 0			
F-1.	If $f(x) = \begin{bmatrix} k, \\ k > 0 \end{bmatrix}$	is continuous at x = $(2) k < 0$	= 0, then (3) k = 0	(4) k > 0	
		(2) ((< 0	(0) K = 0	(+) K = 0	
	$\left\{\frac{x^2 - (a+2)x + a}{x-2}\right\}$	$\frac{1}{x \neq 2}$			
F-2.	If $f(x) = \begin{bmatrix} 2, \\ \end{bmatrix}$	x = 2 is continuous at	x = 2, then a is equal to	-	
	(1) 0	(2) 1	(3) –1	(4) 2	
	$\int (\cos x)^{\frac{1}{x}}, x \neq 0$				
F-3.	If $f(x) = \begin{bmatrix} a, & x = \end{bmatrix}$	⁰ is continuous at $x = 0$	then the value of a is-		
	(1) 0	(2) 1	(3) – 1	(4) e	
^					

F-4. If f(x) =
$$\frac{1-\cos 7(x-\pi)}{x-\pi}$$
, (x = π) is continuous at x = π , then f(π) equals-
(1) 0 (2) -1 (3) 1 (4) 7
F-5. For function f(x) = $\int_{e^{4/5}}^{\left[\left(1+\frac{4x}{5}\right)^{3/4}} x \neq 0\right]} x \neq 0$, the correct statement is -
(1) f(0.) and f(0.) do not exist (2) f(0.) $\neq f(0.)$
(3) f(x) is continuous at x = 0 (4) $\lim_{x\to 0}^{1-\pi} f(x) \neq f(0)$
F-6. If f(x) = (tan x cot α) $x_{0} \neq \alpha$, $x \neq \alpha$ is continuous at x = α , then the value of f(α) is-
(1) $e_{2\pi} z_{\alpha}$ (2) $e_{2\pi} were z_{\alpha}$ (3) $e_{0were 2\alpha}$ (4) $e_{0wr 2\alpha}$
F-7. If function f(x) = $\left[\frac{\sin x}{\sin \alpha}\right]^{\frac{1}{2}(x-1)}$ for $x \neq \alpha$ where, $\alpha \neq m\pi$ (m \in 1) is continuous at x = α then -
(1) f(α) = $e_{0wr \alpha}$ (2) $f(\alpha) = e_{0xr \alpha}$ (3) $f(\alpha) = e_{2xr \alpha}$ (4) $f(\alpha) = \cot \alpha$
F-7. If function f(x) = $\left[\frac{x^2 - 4x + 3}{x^2 - 1}\right]$ is -
(1) Continuous at x = 1 (2) Continuous at x = -1
(3) Continuous at x = 1 (2) Continuous at x = -1
(3) Continuous at x = 1 (4) Discontinuous at x = 1 and x = -1
 $\left[\frac{ax^2 - b \quad when \quad 0 \le x < 1}{x^2 - 1}\right]$ is continuous at x = 1 and x = -1
(3) Continuous at x = 1 and x = -1
(4) Discontinuous at x = 1 and x = -1
(5) Continuous at x = 1 and x = -1
(6) Continuous at x = 1 and x = -1
(7) $a = 2, b = 0$ (2) $a = 1, b = -1$ (3) $a = 4, b = 2$ (4) All the above
(1) $a = 2, b = 0$ (2) $a = 1, b = -1$ (3) $a = 4, b = 2$ (4) All the above
(1) $a = 3/2, c = -1/2, b \in R - (0)$ (2) $a = -3/2, c = 1/2, b \in R - (0)$
(3) $a = 3/2, c = -1/2, b \in R - (0)$ (4) $a \in R, c = 1/2, b \in R - (0)$
(3) $a = 3/2, c = -1/2, b \in R - (0)$ (4) $a = R, c = 1/2, b \in R - (0)$
(5) $a = -3/2, c = 1/2, b \in R - (0)$
(6) $a = 3/2, c = -1/2, b \in R - (0)$ (7) $a = -3/2, c = 1/2, b \in R - (0)$
(7) $a = -3/2, c = 1/2, b \in R - (0)$
(8) $a = 3/2, c = -1/2, b \in R - (0)$
(9) $a = -3/2, c = 1/2, b \in R - (0)$
(9) $a = -3/2, c = 1/2, b \in R - (0)$
(1) $\lim_{x \to 0} f(x) = 1$ (2) $\lim_{x \to 0} f(x) = -1$ (3) $f(0) = 0$ (4) continuous at $x = 0$
F-12. Let f(x) = [x] + [-x] and m is any integer, then correct statement is.

([.] denotes greatest integer function) -

(1) $\lim_{x\to m} f(x)$ does not exist (2) f(x) is continuous at x = m(4) $\lim_{x \to m^+} f(x) = 1$ (3) $x \to m f(x)$ exists Section (G) : Continuity in an interval, Theorems on continuity, Continuity of composite functions, intermediate mean value theorem G-1. Let $f(x) = 3 - |\sin x|$, then f(x) is-(1) Everywhere continuous (2) Everywhere discontinuous (3) Continous only at x = 0(4) Discontinous only at x = 0 $\left(\begin{array}{c} \frac{\tan x}{\sin x}, \ x \neq 0 \end{array} \right)$ If $f(x) = \begin{bmatrix} 0 & x = 0 \\ 1, & x = 0 \end{bmatrix}$, then f(x) is-G-2. (1) Continuous everywhere (2) Continuous nowhere (3) Continuous at x = 0(4) Continuous only at x = 0|x|, when x < 0x, when $0 \le x < 1$ If $f(x) = \begin{bmatrix} 1, when \\ x > 1 \end{bmatrix}$ then f is-G-3.ऄ (1) Continuous for every real number x (2) Discontinuous at x = 0(3) Discontinuous at x = 1(4) Discontinuous at x = 0, x = 1 $\text{If } f(x) = \begin{cases} x^2+2 & , \ x \geq 2 \\ 1-x & , \ x < 2 \\ \end{array} \text{ and } g(x) = \begin{cases} 2x & , \ x > 1 \\ 3-x & , \ x \leq 1 \\ \end{cases}, \text{ then } f (g(x)) \text{ is }$ G-4. (1) continuous $x \in R - \{2\}$ (2) continuous at $x \in R - \{1\}$ (3) continuous at $x \in R$ (4) continuous at $x \in R - \{0, 1, 2\}$ ∫sin(1/x), x ≠ 0 If $f(x) = \begin{bmatrix} 0, & x = 0 \\ (1) x = 0 & (2) \text{ All points} & (3) \text{ Notes } \end{bmatrix}$ G-5. (1) x = 0(2) All points (3) No point (4) all natural numbers $\begin{cases} -x^2, & x \le 0 \\ 5x-4, & 0 < x \le 1 \\ 4x^2-3x, & 1 < x < 2 \end{cases}$ If $f(x) = \begin{bmatrix} 3x + 4, & x \ge 2 \\ & x + 4, & x \ge 2 \end{bmatrix}$, then f(x) is-G-6. (1) Continuous at x = 0 but not at x = 1(2) Continuous at x = 2 but not at x = 0(4) Discontinuous at x = 0, 1, 2(3) Continuous at x = 0, 1, 2 $\begin{array}{ll} \frac{x}{a} & 0 \leq x < 1 \\ a, & 1 \leq x < \sqrt{2} \end{array}$ $\frac{\left(2b^2-4b\right)}{2}, \sqrt{2} \le x < \infty$ **G-7.** △ If f(x) = is continuous in the interval [0, ∞) then values of a and b are respectively-

	(1) 1, – 1	(2) −1, 1+ √ ²	(3) –1, 1	(4) 1, 1+ √ 2		
G-8.è▲	If $f(x)$ is continous function (1) $f(x) + g(x)$ is a continue (3) $f(x) + g(x)$ is a discontinue	on and g(x) is discontinu nuous function ntinuous function	ous function, then correc (2) f(x) – g(x) is a contin (4) f(x) g(x) is a continue	ct statement is- nuous function ous function		
G-9.	Function $f(x) = 4x_3 + 3x_2$	$x_{2} + e_{\cos x} + x - 3 + \log (a_{x})$	a – 1) + x₁/₃ (a > 1) is disc	ontinuous at -		
	(1) x = 0	(2) x = 1	(3) x = 2	$(4) x = \frac{\pi}{2}$		
G-10.	If $f(x) = x - 2 + \frac{x^2 - 5x}{x - 1}$ (1) Only one point	$\frac{x+6}{1} + \tan x \text{ then f } (x) \text{ is}$ (2) Two integral point	discontinuous in domair (3) Three integral point	at (4) Allways continuous		
G-11.⊉	Let $f(x) = \left \left(x + \frac{1}{2} \right) [x] \right $ (1) $f(x)$ is continuous at (3) $f(x)$ is continuous at	, when – 2 ≤ x ≤ 2. where x = 2 x = – 1	e [.] represents greatest (2) f(x) is continuous at (4) f(x) is discontinuous	integer function. Then x = 1 at $x = 0$		
G-12.	If $f(x) = \frac{1}{(1 - x)}$ and $g(x)$ (1) $x = 3$	<) = f[f{f(x))}], then g(x) is (2) x = 2	discontinuous at- (3) x = 0	(4) x = 4		
G-13.	If y = $\frac{1}{t^2 + t - 2}$ where t (1) 1	$=$ $\frac{1}{x-1}$, then the numbe (2) 2	r of points of discontinuit (3) 3	ies of y = f(x), x ∈ R is (4) infinite		
G-14.⊉	If f(x) = $\frac{\frac{x^2 + 1}{x^2 - 1}}{\frac{\pi}{x^2}}$ and g(x)	= tan x, then fog (x) is d	iscontinuous at x = $\frac{\pi}{2}$			
	(1) $n\pi \pm 4$, $n \in I$ (3) $(2n - 1)^{\frac{\pi}{2}}$, $n \in I$		 (2) (2n + 1) ∠, n ∈ I (4) All of these 			
G-15.	The equation 2 tan x + $\frac{4}{3}$ (1) no solution in [0, $\pi/4$ (3) two real solution in [4]	5x – 2 = 0 has ·] 0, π/4]	(2) at least one real solution(4) None of these	ution in [0, π/4]		
Sectio	Section (H) : Derivability at a point, Derivability in intervals, Relation between continuity					

and differentiability

H-1. If f(x)=|x| then RHD of f(x) at x = 0 is

(1) 1 (2) - 1 (3) 0 (4) $\frac{1}{2}$ (0, x < 0

H-2. If $f(x) = \begin{cases} x^2, & x \ge 0 \\ x^2, & x \ge 0 \end{cases}$ then L.H.D. of f(x) at x = 0 is

	(1) 1	(2) – 1	(3) 0	(4) 2
H-3.	$\begin{cases} \frac{\tan x}{x} , x \neq 0\\ 1 , x = 0\\ (1) \text{ continuous and differentiation} \end{cases}$	then $f(x)$ at $x = 0$ is erentiable	(2) continuous but not c	lifferentiable
	(3) neither continuous r	nor differentiable	(4) f(0) does not exists	
H-4.	(1) $x x $	(2) x ₃	(3) e_{-x}	(4) x + x
H-5.	$\begin{cases} x^{3} - 1 & x > \\ x - 1 & , x \le \end{cases}$ If f(x) = $\begin{cases} x - 1 & , x \le \\ (1) \text{ continuous and differentiation} \\ (3) \text{ discontinuous and continuous} \end{cases}$	1 ¹ then at x = 1, f(x) is erentiable lifferentiable	(2) continuous but not c (4) nither continuous no	lifferentiable or differentiable
	$\int e^x + ax x < 0$	0		
H-6	If $f(x) = {b(x-1)^2 x \ge (1) (-3, 1)}$	⁰ is differentiable at $x = (2) (-3, -1)$	0, then (a,b) is (3) (3, 1)	(4) (-3,2)
H-7.	The function $f(x) = \sqrt{1}$ - (1) continuous and diffe (3) differentiable	e^{-x^2} at x = 0 is eventiable	(2) discontinuous (4) non differentiable	
H-8.	Function f(x) = $\begin{cases} x^2, & x \\ 1, & 0 < \\ 1/x, \\ (1) \text{ Differentiable at } x = \\ (3) \text{ Differentiable at only} \\ \int \frac{x(3e^{1/x} + 4)}{2 - e^{1/x}}, \end{cases}$	$x \le 0$ $x \le 1$ x > 1 is- 0, 1 y x = 1 $x \ne 0$	(2) Differentiable only a (4) Not differentiable at	t x = 0 x = 0, 1
H-9. ₼	If $f(x) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	x = 0 , then f(x) is		
	(1) continuous as well of(2) continuous but not of(3) neither differentiable(4) none of these	differentiable at $x = 0$ differentiable at $x = 0$ e at $x = 0$ nor continuous	at x = 0	
H-10.⊾	If $f(x) = x \left(\sqrt{x} - \sqrt{x+1}\right)$ (1) $f(x)$ is continuous bu (2) $f(x)$ is differentiable (3) $f(x)$ is not differentia (4) $f(x)$ is discontinuous a	, then indicate the correc at not differentiable at x = at x = 0 ble at x = 0 at x = 0	t alternative(s): 0	
H-11.	Let $f : R \rightarrow R$ be such the	hat $f(1) = 3$ and $f'(1) = 6$.	Then $\lim_{x\to 0} \left(\frac{f(1+x)}{f(1)}\right)^{\frac{1}{x}}$ equ	uals
	(1) 1	(2) $e^{\frac{1}{2}}$	(3) e ₂	(4) e ₃
H-12.	Which of the following i	s differentiable function e	every where -	

٠

5

	(1) x ₂ sinx	(2) x x	(3) cos x	(4) all of these
H-13.№	$ If f(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, & x \neq 0\\ 0, & x = 0\\ (1) & x \in R_{+} \end{cases} $, then the function $f(x)$ is (2) $x \in R$	differentiable for- (3) $x \in R - \{0\}$	(4) x ∈ R – {0,1}
H-14.	Function $f(x) = x - 1 + (1) x = 0$ and $x = 3$	x - 2 is differentiable in (2) x = 1	n [0, 3], except at - (3) x = 2	(4) x = 1 and x = 2
H-15.₼	$\begin{cases} x \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \\ 0, \end{cases}$ (1) f is continuous at a (2) f is continuous at ev (3) f is differentiable at (4) f is differentiable or	$x \neq 0$ x = 0, then correct state Il points except at $x = 0$ very point but not different every point hly at the origin	ment is- ntiable at x = 0	
H-16.ൔ	Let f(x) = $\begin{cases} x^{n} \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \\ (1) n \in (0, 1] \end{cases}$	^{: 0} ^{: 0} . Then f(x) is continuo (2) n ∈ [0, ∞)	ous but not differentiable (3) n ∈ (–∞, 0)	at x = 0 if - (4) n = 0
H-17.	Number of points where (1) 1	e f(x) = x sgn (1 − x₂) i (2) 2	is non-differentiable is (3) 3	(4) 4
H-18.⊉	The set of all points, wh (1) (–∞, 0) ∪ (0, ∞)	here the function $\sqrt[3]{x^2 x}$ (2) (-∞, ∞)	_ is differentiable is (3) (0, ∞)	(4) (−∞, 0)
H-19.	If $f(x) = \cos_{-1} (\cos x)$, th (1) 1	en at the points, where f (2) – 1	is differentiable, f'(x) eq (3) sgn (sinx)	uals (4) – sgn (sinx)
Section	on (I) : Theorems ir	derivability, functi	ional equations	
I-1.	If f (x) is differentiable e	everywhere, then:		
	 (1) □f □ is differentiable (3) f □f□ is not differentiable 	e everywhere tiable at some point	(2) $ f ^2$ is differentiab (4) f + \Box f \Box is differentia	le everywhere able everywhere
I-2.	The number of points a in the interval (0, 2) are	t which the function, f(x)	= 🛛 x - 0.5🖛 + 🗠 x - 1🗆 +	tan x does not have a derivative
	(1) 1 $\sum_{k=1}^{n} 2^{k} x ^{k}$	(2) 2	(3) 3	(4) 4
I-3. r≜	If $f(x) = \sum_{k=1}^{k} a_k x $, when (1) continuous at $x = 0$ (3) differentiable at $x =$	ere a_i 's are real constant for all a_i only if $a_{2k} = 0$ 0 for all $a_{2k-1} = 0$	s, then f(x) is (2) differentiable at x = (4) none of these	0 for all $a_i \in R$
I-4.	Which of the following f (1) cos(x) + x	functions is differentiable (2) cos(x)- x	e at x = 0? (3) sin(x) + x	(4) sin(x) – x

I-5.	If $f(x)$ be a differentiable function such that $f(x+y) = f(x) + f(y)$ and $f(1) = 2$ then $f'(2)$ is equal to			
	(1) 1	(2) 1/2	(3) – 1	(4) 2
I-6.	If f(x) be a differentiable	e function such that f(x+y	$\forall f = f(x).f(y) \forall x, y \in R $ ar	$\sum_{r=0}^{9} f(r) =$
			1025	1023
	(1) 1025	(2) 1023	(3) 2	(4) 2
I-7.	If f(x) be a differentiable $\lim_{x \to 0} \frac{f(x+1)}{2x}$	e function for all positive	numbers such that f(x.y)	= f(x) + f(y) and $f(e) = 1$
	(1) 2	(2) 1	(3) 1/2	(4) –1
I-8. ≧	Let $f(x + y) = f(x) f(y) f(x)$	or all x, y, ∈ R, suppose t	hat f(3) = 3 and f '(0) = 2	then f '(3) is equal to-
	(1) 22	(2) 44	(3) 28	(4) 33
			$\left(\underline{1}\right)$	$\left(\underline{1}\right)$
I-9.	If f(x) is a polynomial fu	nctions satisfying the co	ndition f(x) + f (x) = f(x)	. $f^{(x)}$, find f(2) if f(3) = -80.
	(1) 15	(2) 17	(3) –15	(4) 0

Exercise-2

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : OBJECTIVE QUESTIONS

	$\sin(6x^2)$			
1.	$\lim_{x\to 0} \ln \cos(2x^2 - x)$ is	s equal to		
	(1) 12	(2) - 12	(3) 6	(4) - 6
2.	$\lim_{x \to 0^{1}} \frac{\cos^{-1}(1-x)}{\sqrt{x}}$ is equal	al to		
	(1) $\sqrt[1]{\sqrt{2}}$	(2) $\sqrt{2}$	(3) 1	(4) 0
3.函	$\lim_{n\to\infty} \ \operatorname{ncos}\left(\frac{\pi}{4n}\right)_{\sin}\left(\frac{\pi}{4n}\right)_{\pi}\left(\frac{\pi}{4n}\right)_{\pi}\left(\frac{\pi}{4n}\right$) has the value equal to	:	
	(1) π/3	(2) π/4	(3) π/6	(4) π/2
	$\lim_{k \to 1} \frac{\left(\sum_{k=1}^{100} x^{k}\right) - 100}{x - 1}$			
4.¤	(1) 0	equal to (2) 5050	(3) 4550	(4) - 5050
	(.) • (
5.	$\int_{x^{-}+4, x^{-} \leq x^{-}} f f(x) = \begin{cases} x^{-}+4, x^{-} \leq x^{-} \\ x^{-}+2, x^{-} > \\ x^{-}+2, x^{-} > \end{cases}$ (1) 64	2 x^{-}, x^{-} 2 and $g(x) = \begin{cases} 8, x \\ 8, x \end{cases}$ (2) 32	≤ 2 fim > 2 then $x \to 2 = f(x) g(x)$ (3) 4) equals- (4) 16
6.函	$\int_{-x}^{x \text{ when } x} x \text{ when } x$	$\in \mathbb{Q}$ $\notin \mathbb{Q}$, then $x \to 0$ f(x) equations f(x) equations f(x) f(x) f(x) equations f(x) f(x) equations f(x	quals-	
	(1) 0	(2) 1	(3) – 1	(4) Does not exist
7.	If f is an odd function a	tim ل ۲ nd ^{x→0} f(x) exists then	im ^{→0} f(x) equals-	
	(1) 0	(2) 1	(3) – 1	(4) $\frac{1}{2}$
8.函	$\lim_{x\to\infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}} =$			
	(1) 0	(2) 1	(3) ∞	(4) 2
9.ൔ	$\lim_{x \to \pi/2} \left[\frac{x - \frac{\pi}{2}}{\cos x} \right]$ is equal	to (where [.] represents	greatest integer function)
•	(1) – 1	(2) 0	(3) – 2	(4) does not exist

10.¤	$\lim_{x \to a^{-}} \left(\frac{ x ^{3}}{a} - \left[\frac{x}{a} \right]^{3} \right) $ (1) a2 + 1	a < 0), where [x] denotes t (2) – a2 – 1	he greatest integer less t (3) a₂	han or equal to x is (4) – a₂
11.ဲ	$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{x^3}{\sqrt{a + x} (bx - s)}$ (1) b = 1, a = 36	^{sin x)} = 1, then the consta (2) a = 1, b = 6	nts 'a' and 'b' are (where (3) a = 1, b = 36	a > 0) (4) b = 1, a = 6
12.മ	$\lim_{\substack{x \to 0 \\ (1) \ 0}} \frac{a + b \sin x - c}{x^3}$	$\frac{\cos x + ce^{x}}{exists, then the}$ (2) 1	value of a + b + c is (3) 2	(4) 10
13.	$ \int_{\pi} \lim_{x \to 0} \left[1 + x \ln(1 + b^2) \right]_{\pi} $	$\int_{-\frac{\pi}{2}}^{\frac{1}{x}} = 2b \sin_2 \theta, b > 0 \text{ and } \theta$	$\theta \in (-\pi, \pi]$, then the value $\frac{\pi}{2}$	e of θ is π
14.¤	(1) $\pm \overline{4}$ If $\ell = \sum_{x \to 0}^{\ell \text{im}} \frac{x(1 + a \cos \theta)}{x + b}$ (1) (a, b) = (-1, 0) (3) (a, b) = (1, 0)	$(2) \pm \overline{3}$ $\frac{5x) - b \sin x}{x^3} = \lim_{x \to 0} \frac{1 + a \cos x}{x^2}$	(3) $\pm \overline{6}$ $5x - \lim_{x \to 0} \frac{b \sin x}{x^3}$, where (2) a & b are any real r (4) (a, b) = (0, 1)	(4) $\pm \overline{2}$ $\ell \in \sigma \sigma R$, then numbers
15.	Let $f(x) = \frac{x^2 - 9x}{x - 5}$	+ 20 (where [.] represent (2) 1	s greatest integer functio (3) 2	lim n), then ^{x→5} f(x) = (4) does not exist
16.	$\lim_{x \to 1/\sqrt{2}} \frac{x - \cos(\sin^{-1} x)}{1 - \tan(\sin^{-1} x)}$ $\frac{1}{\sqrt{2}}$	$\frac{1}{2} = \frac{1}{\sqrt{2}}$	(3) ¹ / ₂	(4) - 1/2
17.	$ \ \ \ \ \ \ \ \ \ \ \ \ \$	+ e _x) _{2/x} is- (2) 2	(3) e	(4) e ₂
18.	$\ell_{x \to \infty} \frac{e^{x} \left(\left(2^{x^n} \right)^{\frac{1}{e^x}} - \left(x^n \right)^{\frac{1}{e^x}} \right)}{x^n}$ (1) 0	$\frac{3^{x^{n}})^{\frac{1}{e^{x}}}}{n \in N \text{ is equal to}}$, $n \in N$ is equal to (2) $\ln \frac{2}{3}$: (3) ln ³ / ₂	(4) ℓn ¹ /2
19.🖄	x^{\downarrow} Lim— The value of $x \rightarrow \infty$ (1) 1	$\frac{\ln\left(1+\frac{\ln x}{x}\right)}{\ln x}$ is (2) 0	(3) – 1	(4) limit does not exist

20 क	$\lim_{x \to 0} \left(\frac{1^{x} + 2^{x} + 3^{x} + \dots}{n} \right)$	$\left(\frac{1}{2} + n^x \right)^{1/x}$							
20.	(1) (n!)n	(2) (n!) _{1/n}	(3) n!	(4) In (ns!)					
21.ऄ	lim ×→1 (loq₅ 5x) _{logx 5} =								
	(1) 1	(2) e	(3) – 1	(4) does not exist					
22.函	$\lim_{\theta \to 0} \left(\left[\frac{n \sin \theta}{\theta} \right] + \left[\frac{n \tan \theta}{\theta} \right] \right)$	$\left. rac{ heta}{ extsf{D}} ight ceil ight ceil ight ceil ceil$	eatest integer function ar	nd $n \in N$, is					
	(1) 2n	(2) 2n + 1	(3) 2n – 1	(4) does not exist					
		$\cos(\sin x) - \cos(\sin x)$	cosx						
23.	A function f(x) is define if 'a' equals	d as $f(x) = x^2$, x ≠ 0 and f(0) = a	then $f(x)$ is continuous at $x = 0$					
	(1) 0	(2) 4	(3) 5	(4) 6					
24.	Let $f(x) = \frac{1-\sin x}{(\pi-2x)^2}$. $\frac{\ln(\sin x)}{\ln(1+\pi^2-4\pi x+4x^2)}$, $x \neq \frac{\pi}{2}$. The value of $f(\frac{\pi}{2})$ so that the function is continuous at								
	x = 102 is: (1) 1/16	(2) 1/32	(3) – 1/64	(4) 1/128					
25.ເ≧	Which of the following f	unction(s) defined below	do not have single point	continuity.					
	$\begin{bmatrix} 1 & \text{if } x \in Q \end{bmatrix}$		Γ x if x ∈	Q					
	(1) $f(x) = \begin{bmatrix} 0 & \text{if } x \notin Q \end{bmatrix}$		(2) $g(x) = \begin{bmatrix} 1-x & \text{if } x \notin x \end{bmatrix}$	Q					
	$\begin{bmatrix} x & \text{if } x \in Q \end{bmatrix}$		$\begin{bmatrix} x & \text{if } x \in Q \end{bmatrix}$						
	(3) $h(x) = \begin{bmatrix} 0 & \text{if } x \notin Q \end{bmatrix}$		(4) $k(x) = \begin{bmatrix} -x & \text{if } x \notin C \end{bmatrix}$	1					
26.	If $f(x) = x + \{-x\} + [x], w$	/here [.] is the integral p	part & $\{ . \}$ is the fractiona	I part function, then the number					
	of points of discontinuity	y of f in [-2, 2] is/are	(3) 5	(4) 7					
	(.) •	(~ / ⁻		\' <i>'</i> / '					
27.🖻	Let $f(x) = [x] + \sqrt{x - [x]}$,	where [.] denotes the g	greatest integer function.	Then					
	(1) $f(x)$ is discontinuous	on R+	(2) $f(x)$ is continuous on	R 1					
		01 K – 1	(4) discontinuous at $x =$	I					
		<u>x³</u>							
28	The value of λ for which	$4 - \sin \pi x + 3 = \lambda, x \in$	[-2,2] has atleast a solu	tion					
	$(1)^{-\frac{1}{2}}$	(2) $\frac{1}{2}$	$(3)^{\frac{7}{3}}$	(4) 6					
	$\int a x^2 - b$ if	x < 1							
	$\begin{cases} -\frac{1}{1} & \text{if } 1 \end{cases}$	<l 1<="" th="" ≥=""><th></th><th></th></l>							
29.	If $f(x) = \begin{bmatrix} x \\ (1) 0 \end{bmatrix}$	is derivable at x = (2) 1	= 1 , then the values of a (3) 2	a + b is (4) 3					

	X ////////////////////////////////////			
30.	If $f(x) = \sqrt{x + 1} - \sqrt{x}$ b (1) $f(x)$ is continuous, (3) $f(x)$ is not continuo	e a real valued function, but f'(0) does not exist us at x = 0	then (2) f(x) is differentiab (4) f(x) is not differen	tiable at $x = 0$
	∫xtan	$x^{-1}(1/x), x \neq 0$		
31.	Function $f(x) = \begin{bmatrix} 0, \\ 0 \end{bmatrix}$	x = 0 at $x = 0$ is- (2) Continuous	(3) Differentiable	(4) None of these
32.🖎	Let $f(x) = \begin{cases} \sin 2x, & 0 \\ ax + b, & \pi \end{cases}$	$< x \le \pi/6$ /6 < x < 1. If f(x) and f '(x	are continuous, then-	
	(1) a = 1, b = $\frac{1}{\sqrt{2}} + \frac{\pi}{6}$	(2) a = $\frac{1}{\sqrt{2}}$, b = $\frac{1}{\sqrt{2}}$	(3) a = 1, b = $\frac{\sqrt{3}}{2}$ –	$\frac{\pi}{6}$ (4) a =1, b = $\frac{\sqrt{3}}{2} + \frac{\pi}{6}$
33.ເ≧	For what triplets of real $\int x$,	al numbers (a, b, c) with a $x \le 1$	$a \neq 0$ the function	
	$f(x) = \int ax^2 + bx + c$, otherwise is differenti	able for all real x?	
	(1) {(a, 1−2a, a) a ∈	R, a ≠ 0 }	(2) {(a, 1-2a, c) a,	c ∈ R, a ≠ 0 }
	(3) {(a, b, c) a, b, c	∈ R, a + b + c = 1 }	(4) {(a, 1-2a, 0) a	∈ R, a ≠ 0}
		$\int ax^2 + I$	o, x < −1	
34.⊾	If the derivative of the $(1) a = 2, b = 3$	function f(x) = $bx^2 + ax$ (2) a = 3, b = 2	+ 4, x ≥ −1 is everywhe (3) a = − 2, b = − 3	ere continuous, then- (4) $a = -3$, $b = -2$
35.⊾	 [x] denotes the greate (1) continuous at x = 0 (3) differentiable in (- 	st integer less than or eq) 1,1)	ual to x. If f(x) = [x] [sin (2) continuous in (-1 (4) none of these	πx] in (−1,1), then f(x) is: , 0)
36.	The number of points differentiable is:	at which the function f(x) = max. {a - x, a + x, b	}, -∞ < x < ∞, 0 < a < b cannot be
	(1) 1	(2) 2	(3) 3	(4) 4
37.	Let $f : \mathbb{R} \to \mathbb{R}$ be a func	tion defined by $f(x) = max$. {x, x ₃ }. The set of all p	oints where f(x) is not differentiable
	(1) {-1, 1}	(2) {-1, 0}	(3) {0, 1}	(4) {-1, 0, 1}
		$\int \max(\sqrt{4})$	$(-x^2)$, $(\sqrt{1+x^2})$, -	$2 \leq x \leq 0$
		$\int \min(\sqrt{4})$	$(-x^2)$, $(\sqrt{1+x^2})$,	$0 < x \leq 2$
38.	Let f(x) be defined in [$[-2, 2]$ by $f(x) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$)	, then f(x) :
	 (1) is continuous at all (2) is not continuous at (3) is not differentiable (4) is not differentiable 	at more than one point e only at one point e at more than one point		
	$\left(\frac{1+x^2}{x^2}\right)$			
39.	$f(x) = \sin_{-1} \begin{pmatrix} 2x \end{pmatrix}$ is:			
	(1) continuous but not	differentiable at x - 1		
	(1) continuous but not			

(4) continuous everywhere										
		$\begin{cases} \tan^{-1} \mathbf{x} , \\ 1 & \dots \end{cases}$	if x ≤1							
The domain of the derivative $(1) R - \{0\}$ (2)	e of the function $f(x) = R - \{1\}$	= 2 (x −1) , (3) R − {−1}	if x > 1 is (4) R – {–1, 1}							
Lef f: $R \rightarrow R$ be any function (1) onto if f is onto (3) continuous if f is continuous	n. Define g : R \rightarrow R bous	by g(x) = f(x) for all x. Then g is (2) one-one if f is one-one (4) differentiable if f is differentiable								
Let f''(x) be continuous at x = (1) 11 (2) 2	= 0 and f''(0) = 4 the 2	lim n value of ^{x→0} (3) 12	$\frac{f(x) - 3f(2x) + f(4x)}{x^2}$ is (4) 9							
Let $f : R \rightarrow R$ be a function s $\frac{f(x)}{f(x)}$	such that $f\left(\frac{x+y}{3}\right) =$	$\frac{f(x) + f(y)}{3}$, f(0)	= 0 and f'(0) = 3, then							
 (1) X is differentiable in R (3) f(x) is continuous in R 	R	(2) f(x) is continue(4) f(x) is bound	uous but not differentiable in R ed in R							
Suppose that f is a differenti $\lim_{h\to 0} \frac{1}{h} f(h) = 3$, then (1) f is a linear function	iable function with th	e property that f((2) f(x) = 3x + x ₂	(x + y) = f(x) + f(y) + xy and							
(3) $f(x) = 3x + \frac{x^2}{2}$		(4) $f(x) = 3x - \frac{x}{2}$	2/2							
If a differentiable function f s (1) $\frac{1}{7}$ (2)	satisfies $f\left(\frac{x+y}{3}\right) = \frac{4}{7}$	$\frac{-2(f(x)+f(y))}{3} \forall$ $(3) \frac{8}{7}$	T x, y \in R, then f(x) is equal to (4) $\frac{4}{7}$							
	(4) continuous everywhere The domain of the derivative (1) $R - \{0\}$ (2) Lef f: $R \rightarrow R$ be any function (1) onto if f is onto (3) continuous if f is continuous Let f''(x) be continuous at x (1) 11 (2) Let f : $R \rightarrow R$ be a function s $\frac{f(x)}{x}$ is differentiable in R (3) f(x) is continuous in R Suppose that f is a different $\lim_{h \rightarrow 0} \frac{1}{h} f(h) = 3$, then (1) f is a linear function (3) f(x) = 3x + $\frac{x^2}{2}$ If a differentiable function f s (1) $\frac{1}{7}$ (2)	(4) continuous everywhere The domain of the derivative of the function $f(x)$ (1) $R - \{0\}$ (2) $R - \{1\}$ Lef f: $R \rightarrow R$ be any function. Define $g: R \rightarrow R$ forms for the form of the	(4) continuous everywhere (4) continuous everywhere The domain of the derivative of the function $f(x) = \begin{cases} \tan^{-1}x & , \\ \frac{1}{2}(x -1) & , \end{cases}$ (1) $R - \{0\}$ (2) $R - \{1\}$ (3) $R - \{-1\}$ Lef f: $R \rightarrow R$ be any function. Define g: $R \rightarrow R$ by $g(x) = f(x) $ for (1) onto if f is onto (2) one-one if f is (3) continuous if f is continuous (4) differentiable Let f''(x) be continuous at $x = 0$ and f''(0) = 4 then value of $\left \lim_{x \rightarrow 0} \frac{2}{x} \right ^{2}$ Let f : $R \rightarrow R$ be a function such that $f\left(\frac{x+y}{3}\right) = \frac{f(x)+f(y)}{3}$, $f(0)$ $\frac{f(x)}{x}$ is differentiable in R (2) $f(x)$ is contin (3) $f(x)$ is continuous in R (4) $f(x)$ is bound Suppose that f is a differentiable function with the property that $f(1)$ $\lim_{h \rightarrow 0} \frac{1}{h} f(h) = 3$, then (1) f is a linear function f satisfies $f\left(\frac{x+y}{3}\right) = \frac{4-2(f(x)+f(y))}{3}$ or (1) $\frac{1}{7}$ (2) $\frac{2}{7}$ (3) $\frac{8}{7}$							

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING DIRECTIONS :

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

$$\lim_{n \to \infty} \left(\tan \left(\frac{\pi}{4} + \mathbf{x} \right) \right)$$

A-1. A Statement-1: $x \to 0$ (4) = e

A-2.ເ≧

Statement-2: $\lim_{x \to a} (1 + f(x))_{g(x)} = e^{\lim_{x \to a} f(x) \cdot g(x)} , \text{ if } \lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} g(x) = \infty.$ Statement-1: $\lim_{x \to \infty} \frac{2x^4 + 3x^3 + 7x}{3x^4 + 2x^2 + 3x} = \frac{2}{3}.$

Statement-2: If P(x) and Q(x) are two polynomials with rational coefficients, then

$$\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \frac{\text{coefficient of highest power of } x \text{ in } P(x)}{\text{coefficient of highest power of } x \text{ in } Q(x)}$$

π

A-3. A Statement - 1 f (x) = $|x| \cos x$ is not differentiable at x = 0 Statement - 2 Every absolute value function is not differentiable.

A-4. Arr Statement - 1 $f(x) = \{\tan x\} - [\tan x]$ is continuous at $x = \overline{3}$, where [.] and {.} represent greatest integral function and fractional part function respectively.

Statement - 2 If y = f(x) & y = g(x) are continuous at x = a then $y = f(x) \pm g(x)$ are continuous at x = a

Section (B) : MATCH THE COLUMN

B-1	Colu	Column-II					
	lir (P) ×-	m tan x - →0 x	(1)	$\frac{1}{2}$			
	li (Q) ×-	$m_{\to\infty}\sqrt{\frac{x-x}{x+x}}$	$\frac{-\sin x}{\cos^2 x} =$:		(2)	1
	(R) Le	et G(x)= en valu	(3)	6			
	(S) If	$\lim_{x\to 0} \left(\frac{ta}{t}\right)$	$\left(\frac{x}{x}\right)^{1/x^2}$	$= e^{1/\lambda}$ th	en value of λ =	(4)	3
	Code	s :					
		Р	Q	R	S		
	(A)	1	3	2	4		
	(B)	4	2	3	1		
	(C)	1	2	3	4		

	(D)	4	2	3	1			
B-2.ൔ	Match	the colu	ımn					
	Colum	n I						Column II
	(P) x	x					(1)	continuous in (– 1, 1)
	(Q) √	x					(2)	differentiable in (- 1, 1)
	(R) x +	[x]					(3)	strictly increasing in $(-1, 1)$
	(S) x – 1 + x + 1						(4)	not differentiable at least at one point in $(-1, 1)$
	Codes	::						
		Р		Q		R		S
	(A)	1, 2,3		1,3		3,4		1,2
	(B)	1,3,4		1,4		1,4		1,2,3
	(C)	1,2,3		1,4		3,4		1,2
	(D)	1,3,4		1,2,3		1,4		1,3,4
Section	on (C)	: ONE	OR MC	RE TI		NE OP	TIONS	CORRECT
	. ,							
		(a+2x)	$\frac{1}{x}$					
C-1.⊾	Lim If ^{x→0}	$\left(\frac{\mathbf{c}+\mathbf{x}}{\mathbf{c}+\mathbf{x}}\right)$) =ℓ. w	here a.	c > 0			
-			,	,				
	2	1						<u>a</u>
	(1) If C	[;] > 1. the	en ℓ → ∝	b			(2) If 0	$0 < C < 1$, then $\ell = 0$

C-1.	$\lim_{x \to 0} \left(\frac{a+2x}{c+x} \right)^{\frac{1}{x}} =$	ℓ , where a, c > 0		
	(1) If ^c > 1, then <i>l</i>	→ ∞	(2) If 0 < ^c < 1, th	then $\ell = 0$
	(3) If $\frac{a}{c} = 1$, then ℓ	= non zero finite	(4) none of these	
C-2.ൔ	$\lim_{x \to 0} \frac{(\tan x - x)}{x + x}$	$\frac{(e^{x} - \sin x - 1)}{x^{n}} = \ell = \operatorname{non}$	zero finite, then	
	(1) n = 5	(2) n = 4	(3) $\ell = \frac{5}{6}$	$(4) \ \ell = \frac{1}{6}$
C-3.	For f(x) = [cos₋₁x],	which is true (where [•] d	enotes greatest integer	function.)
	$\lim_{(1)^{x \to (\cos 2)^{+}}} f(x) = 1$		$\lim_{(2)^{x \to (\cos 2)^{-}}} f(x) =$	2
	$\lim_{x\to\cos 2} f(x) = 2$		$\lim_{x\to\cos 2} f(x) = d$	oes not exist.
C-4.	$\lim_{x\to 0} \frac{\sin 2x + x^3}{x^3}$	a sinx = p (finite), ther	ı	
	(1) a = – 2	(2) a = -1	(3) p = - 2	(4) p = −1

C-5. Let
$$f(x) = \begin{cases} 1 + \frac{2x}{a}, & 0 \le x < 1 \\ ax, & 1 \le x < 2 \\ (1) 2 & (2) -1 \end{cases}$$
 f(x) exists, then values of a is/are (3) -2 (4) 1

C-6. Let f(x) = min {x, x₂} for every real x, then
(1) f is continuous for all x
(3) f '(x) = 0 ∀ x > 1

(2) f is differentiable for all x(4) f is not differentiable at x = 0, 1

- **C-7.** x + |y| = 2y, then y as a function of x is (1) defined for all real x
 - (3) differentiable for all x

(2) continuous at x = 0
(4) such that
$$\frac{dy}{dx} = \frac{1}{3}$$
 for x < 0.

C-8. Let
$$f(x) = \begin{bmatrix} \frac{x^2}{2}, & 0 \le x < 1\\ 2x^2 - 3x + \frac{3}{2}, & 1 \le x \le 2\\ & & , \text{ then } \end{bmatrix}$$

- (1) f is continuous in [0, 2]
- (3) f " is continuous in [0, 2]

(2) f ' is continuous in [0, 2](4) f ' is differentiable in [0, 2]

Exercise-3

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.	Let α and β be the distination $(1) \frac{1}{2} (\alpha - \beta)_2$	nct roots of $ax_2 + bx + c =$ (2) $-\frac{a^2}{2}(\alpha - \beta)_2$	$= 0, \text{ then } \frac{\lim_{x \to \alpha} \frac{1 - \cos(ax^2)}{(x - ax^2)}}{(x - ax^2)}$	$\frac{a^{2} + bx + c}{\alpha)^{2}}$ is equal to : [AIEEE 2005 (3, -1), 225] (4) $\frac{a^{2}}{2} (\alpha - \beta)_{2}$
2.	If f is a real-valued differ equals : (1) 1	rentiable function satisfyi (2) 2	ng f(x) – f(y) ≤ (x – y)₂ , [AIEE (3) 0	x,y ∈ R and f(0) = 0, then f(1) E 2005 (3, −1), 225] (4) − 1
3.	Suppose f(x) is different	tiable at x = 1 and $\frac{\text{Lim}}{h \to 0} \frac{1}{h}$ (2) 5	f(1+h) = 5, then f'(1) ec (3) 4	juals : [AIEEE 2005 (3, −1), 225] (4) 3.
4.	The set of points, where (1) $(-\infty, -1) \cup (-1, \infty)$	$e f(x) = \frac{x}{1 + x }$ is different (2) $(-\infty, \infty)$	entiable, is : (3) (0, ∞) 2	[AIEEE 2006, (3, −1), 120] (4) (− ∞, 0) ∪ (0, ∞)
5.	The function f : R – $\{0\}$ f(0) as	\rightarrow R given by f(x) = $\frac{1}{x}$	$-\frac{z}{e^{2x}-1}$ can be made	continuous at x = 0 by defining [AIEEE 2007, (3, -1), 120]
	(1) 2	(2) – 1	(3) 0	(4) 1
6.	Let $f : R \rightarrow R$ be a function $f(x) \ge 1$ for all $x \in R$	tion defined by f(x) = Mir	(x + 1, x + 1). Then w (2) f(x) is not differentia	hich of the following is true? [AIEEE 2007, (3, –1), 120] ble at x = 1
7.	(3) f(x) is differentiable $\begin{cases} (x-1)\sin\frac{1}{x-1} \\ 0 \end{cases}$ Let f(x) =	everywhere $\overline{1}, x \neq 1$ x = 1 Then which one	(4) f(x) is not differentia	Albe at x = 0 P [AlEEE 2008, (3, -1), 105]
	(1) f is differentiable at x(3) f is differentiable at x	x = 0 and at $x = 1x = 1$ but not at $x = 0$	(2) f is differentiable at(4) f is neither differentiable	x = 0 but not at x =1 able at x = 0 nor at x = 1
8.	Let $f(x) = x x $ and $g(x) =$ Statement-1 gof is different Statement-2 gof is twice (1) Statement-1 is True (2) Statement-1 is True (3) Statement-1 is True (4) Statement-1 is False	= sin x erentiable at $x = 0$ and its e differentiable at $x = 0$. , Statement-2 is True; St , Statement-2 is True; St , Statement-2 is False e, Statement-2 is True	atement-2 is a correct exact atement-2 is a correct exact atement-2 is NOT a corr	[AIEEE 2009, (8, –2), 144] at that point. xplanation for Statement-1. rect explanation for Statement-1

Let $f : \mathbf{R} \to \mathbf{R}$ be a positive increasing function with $\lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1$. Then $\lim_{x \to \infty} \frac{f(2x)}{f(x)}$ is equal to . 9.🖎 [AIEEE- 2010, (8, -2), 144] 3 (2) 2 (1) 3 (3) 3 (4) 1 Let $f : \mathbf{R} \to \mathbf{R}$ be a continuous function defined by $f(x) = \frac{1}{e^x + 2e^{-x}}$ [AIEEE 2010 (4, -1), 144] 10.🖎 1 **Statement -1 :** $f(c) = \overline{3}$, for some $c \in \mathbb{R}$. 1 Statement -2: $0 < f(x) \le \overline{2\sqrt{2}}$, for all $x \in \mathbb{R}$. (1) Statement -1 is true. Statement-2 is true ; Statement -2 is not a correct explanation for Statement -1 (2) Statement-1 is true, Statement-2 is false. (3) Statement -1 is false, Statement -2 is true. (4) Statement -1 is true, Statement -2 is true; Statement-2 is a correct explanation for Statement-1. $\sqrt{1-\cos \{2(x-2)\}}$ x – 2 lim 11. [AIEEE- 2011, I, (4, -1), 120] (3) equals $-\sqrt{2}$ (4) equals $\sqrt{2}$ (1) does not exist (2) equals $\sqrt{2}$ Let f: $R \to [0,\infty)$ be such that $\lim_{x\to 5} f(x)$ exists and $\lim_{x\to 5} \frac{(f(x))^2 - 9}{\sqrt{|x-5|}} = 0$. Then $\lim_{x\to 5} f(x)$ equals : 12. [AIEEE- 2011, II,(4, -1), 120] (1) 0(2) 1 (3) 2 (4) 3 The value of p and q for which the function $f(x) = \begin{bmatrix} \sin(p+1)x + \sin x \\ x \\ q \\ x \end{bmatrix}$, x < 0 $\begin{cases} \frac{\sin(p+1)x + \sin x}{x} \\ q \\ \frac{\sqrt{x+x^2} - \sqrt{x}}{x^{3/2}} \\ \frac{\sqrt$ is continuous for all x in R, 13.🖎 [AIEEE 2011, I,(4, -1), 120] 14.🖎 as follows : $\begin{bmatrix} f_1(x) & f_2(x) & f_1(x) & f_2(x) \end{bmatrix}$, If $x \neq 0$ 0, If x = 0F(x) =[AIEEE 2011, II,(4, -1), 120] **Statement - 1 :** F(x) is continuous on R. **Statement - 2 :** $f_1(x)$ and $f_2(x)$ are continuous on R. (1) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is true. Statement-2 is true: Statement-2 is NOT a correct explanation for Statement-1 (3) Statement-1 is true, Statement-2 is false (4) Statement-1 is false, Statement-2 is true

			$x^2f(a)-a^2f(x)$	
15.	If function f(x) is d (1) –a₂f′(a)	ifferentiable at $x = a$, th (2) af(a) - a ₂ f' (a	$\lim_{x \to a} \frac{x - a}{x - a}$ $(3) 2af(a) - a2f(a) - a2f(a)$	is : [AIEEE 2011, II,(4, -1), 120] f'(a) (4) 2af(a) + a2f'(a)
16.	If f : $R \rightarrow R$ is a fun then f is :	ction defined by f(x) = [›	$(\cos\left(\frac{2\lambda-1}{2}\right)\pi$, where	e[x] denotes the greatest integer function, [AIEEE- 2012, (4, −1), 120]
	 (1) continuous for (2) discontinuous (3) discontinuous (4) continuous onl 	every real x. only at x = 0. only at non-zero integra y at x = 0.	al values of x.	
17.	Consider the func Statement-1 : f'(Statement-2 : f i	tion, $f(x) = x - 2 + x - 4 = 0$ s continuous in [2, 5], c	5 , $x \in R$. lifferentiable in (2, 5) a	[AIEEE- 2012, (4, −1), 120] nd f(2) = f(5).
	 (1) Statement-1 is (2) Statement-1 is (3) Statement-1 is (4) Statement-1 is 	true, statement-2 is fall	rue. ie; statement-2 is a coi ie; statement-2 is not a se.	rrect explanation for Statement-1. a correct explanation for Statement-1.
18.	$\lim_{x\to 0} \frac{(1-\cos 2x)(3+x)}{x\tan 4x}$	is equal to		[AIEEE - 2013, (4, –1),360]
	$(1) - \frac{1}{4}$	(2) 1/2	(3) 1	(4) 2
19.	$\lim_{x\to 0} \frac{\sin(\pi\cos^2 x)}{x^2}$	s equal to :	(3) \\\\\/2	[JEE(Main) 2014, (4, – 1), 120]
00	$\lim_{x \to 0} \frac{(1 - \cos 2x)(3 + \cos 2x)}{x \tan 4x}$	- <u>cos x)</u>	(3) 102	
20.	Additax	is equal to		[JEE(Main) 2015, (4, - 1), 120] 1
	(1) 4		(3) 2 3	(4) 2
21.	If the function g(x)	$= (mx+2), 3 < x \le$	⁵ is differentiable, the	n the value of k+ m is; [JEE(Main) 2015, (4, – 1), 120]
	(1) 2	(2) $\frac{16}{5}$	(3) $\frac{10}{3}$	(4) 4
22.	Let $p = \lim_{x \to 0^+} (1 + ta)$	$an^2 \sqrt{x} e^{2x}$ then log p is 1	equal to: 1	[JEE(Main) 2016, (4, – 1), 120]
23	(1) 1 For x∈R, f(x) = log (1) g'(0) = cos(log	(2) $\overline{2}$ g2 – sinx and g(x) = f(f 2)	(3) 4 (x)), then	(4) 2 [JEE(Main) 2016, (4, – 1), 120]
	(2) $g'(0) = -\cos(lo$ (3) g is differential (4) g is not differential	g^{2}) ble at x = 0 and g'(0) = ntiable at x = 0	-sin(log2)	
24.	$\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{(\pi - 2x)^3}$	equals		[JEE(Main) 2017. (4. – 1). 1201
	_1	1		<u>1</u>
	(1) 24	(2) 16	(3) 8	(4) 4

Limits, Continuity & Derivability

25.	For each t∈R let [t] be	the greatest integer less	than or equal to t	$\lim_{x \to 0^+} x\left(\left[\frac{1}{x}\right] + \left[\frac{2}{x}\right] + \dots + \left[\frac{15}{x}\right]\right)$ [JEE(Main) 2018, (4, -1), 120]
20	(1) is equal to 120	(2) does not exist (in F	(3) is equal to (0 (4) is equal to 15
20.	Let $S = \{I \in R : I(X) =$	$ x - 11 $. $(e^{ x } - 1) \sin x $ is in		[JEE(Main) 2018, (4, – 1), 120]
	$(1) \{\pi\}$		(3) φ (an empty	
F/	ART-T: JEE (AL	JVANCED)/III-JI		WIS (PREVIOUS TEARS)
1.	The integer ' n ' for wh	$\lim_{x \to 0} \frac{(\cos x - 1)}{x^n}$	$(3x - e^x)$ is a finite	non-zero number, is [IIT-JEE-2002, Scr. (3, –1), 90]
	(A) 1	(B) 2	(C) 3	(D) 4
			∫ tan ⁻¹ x ,	if x ≤ 1
•	The demois of the de		$\int \frac{1}{2} (x - 1)$,	if x > 1
Ζ.	The domain of the de	nvalive of the function I(x)) = (-	IS [IIT-JEE 2002 , Scr, (3, −1), 90]
	(A) R - {0}	(B) R - {1}	(C) R - {-1}	(D) R - {-1, 1}
3.	Let f : R \rightarrow R be such (A) 1	that f(1) = 3 and f'(1) = 6 (B)	Then $\lim_{x\to 0} \left(\frac{f(1+x)}{f(1)} \right)$ (C) e ₂	x)) ¹ / _x equals [IIT-JEE 2002, Scr, (3, −1), 90] (D) e ₃
4.	$\lim_{\ f\ _{x\to 0}} \frac{((a-n)nx-tan)}{x^2}$	= 0, where n is a	a non-zero real nu	imber, then a is equal to
				[IIT-JEE-2003, Scr. (3, –1), 84]
	(A) 0	(B) $\frac{n+1}{n}$	(C) n	(D) n + $\frac{1}{n}$ f(x ²) - f(x)
5.	If f(x) is differentiable	and strictly increasing fur	nction, then the va	lue of $x \to 0$ $f(x) - f(0)$ is
	(A) 1	(B) 0	(C) –1	[IIT-JEE 2004, Scr, (3, –1), 84] (D) 2
	_{₽im} (sin x	$\left(\frac{1}{x} + \left(\frac{1}{x}\right)^{\sin x}\right)$		
6.	For $x > 0$, $x \to 0$	(X) is equal to		[IIT-JEE-2006, (3, –1), 184]
	(A) 0 $(x-1)^n$	(B) — 1	(C) 1	(D) 2
7.	Let $g(x) = \overline{\log \cos^{m}(x)}$	(-1); 0 < x < 2, m and	n are integers, n	$n \neq 0$, $n > 0$, and let p be the left hand
	derivative of $ x - 1 $ at (A) n = 1, m = 1	$ \begin{array}{l} \lim_{x \to 1^+} g(x) = p, \ \text{th} \\ (B) \ n = 1, \ m = -1 \end{array} $	en (C) n = 2, m = 2	[IIT-JEE 2008, P-2, (3, -1), 82] 2 (D) n > 2, m = n
	(2 4			
Q	$\lim_{x \to \infty} \left(\frac{x^2 + x + 1}{x + 1} - ax \right)$	(-b) = 4 then		[IIT_ IEE 2012 Banar 1 /2 1) 70]

Let f(x) =
$$\begin{cases} x^2 \left| \cos \frac{\pi}{x} \right| , & x \neq 0 \\ 0, & x = 0 \end{cases}$$

9.

Let $f(x) = \begin{bmatrix} 0, & x = 0 \\ 0, & x = 0 \end{bmatrix}$, then f is (A) differentiable both at x = 0 and at x = 2

(B) differentiable at x = 0 but not differentiable at x = 2

 $x\in IR$

- (C) not differentiable at x = 0 but differentiable at x = 2
- (D) differentiable neither at x = 0 nor at x = 2

[IIT-JEE 2012, Paper-1, (3, -1), 70]

		ISW	ers			EXERC	SISE #	1					
Secti	on (A)												
A-1. A-8.	(1) (4)	A- 2. A-12.	(4) (4)	A-3.	(4)	A-4.	(4)	A-5. A-9.	(4) (1)	A-6. A-10.	(4) (3)	A-7. A-11.	(4) (4)
Secti	on (B)		. ,										
B-1. B-8. B-15. B-22.	(2) (4) (2) (1)	B-2. B-9. B-16. B-23	 (3) (3) (2) (1) 	B-3. B-10. B-17. B-24.	(3) (3) (3) (2)	B-4. B-11. B-18. B-25.	(4) (3) (4) (2)	B-5. B-12. B-19.	(1) (2) (4)	B-6. B-13. B-20.	(2) (3) (3)	B-7. B-14. B-21.	(2) (2) (2)
Secti	on (C)												
C-1. C-8.	(1) (4)	C-2. C-9.	(4) (3)	C-3. C-10.	(3) (2)	C-4. C-11.	(1) (1)	C-5.	(1)	C-6.	(1)	C-7.	(3)
Secti	on (D)												
D-1. D-8.	(2) (4)	D-2. D-9.	(2) (2)	D-3. D-10.	(3) (1)	D-4.	(4)	D-5.	(2)	D-6.	(1)	D-7.	(2)
Secti	on (E)												
E-1. E-8. E-15.	(2) (1) (1)	E-2. E-9. E-16.	(2) (3) (1)	E-3. E-10. E-17.	(4) (1) (1)	E-4. E-11. E-18.	(4) (3) (1)	E-5. E-12. E-19.	(2) (3) (4)	E-6. E-13.	(3) (2)	E-7. E-14.	(3) (4)
Secti	on (F)												
F-1. F-8.	(3) (4)	F-2. F-9.	(1) (4)	F-3. F-10.	(2) (2)	F-4. F-11.	(1) (1)	F-5. F-12.	(3) (3)	F-6.	(2)	F-7.	(2)
Secti	on (G)												
G-1. G-8. G-15.	(1) (3) (2)	G-2. G-9.	(3) (1)	G-3. G-10.	(3) (4)	G-4. G-11.	(3) (4)	G-5. G-12.	(1) (3)	G-6. G-13.	(2) (3)	G-7. G-14.	(3) (4)
Secti	on (H)												
H-1. H-8. H-15.	(1) (4) (2)	H-2. H-9. H-16.	(3) (2) (1)	H-3. H-10. H-17.	(1) (2) (3)	H-4. H-11. H-18.	(4) (3) (1)	H-5. H-12. H-19.	(2) (4) (3)	H-6 H-13.	(1) (3)	H-7. H-14.	(4) (4)
_													

Section (I)

						,					<u> </u>		
	(0)		(0)		(0)		()		(1)		(0)		(2)
I-1. I-8	(2) (4)	I-2. I-9	(3) (3)	I-3.	(3)	I-4.	(4)	I-5.	(4)	I-6.	(2)	I-7.	(3)
1-0.	(4)	-5.	(3)										
						EXER	CISE #	2					
						PA	RT - I						
1.	(2)	2.	(2)	3.	(2)	4.	(2)	5.	(2)	6.	(1)	7.	(1)
8.	(2)	9.	(3)	10.	(2)	11.	(1)	12.	(3)	13.	(4)	14.	(1)
15.	(4)	16.	(2)	17.	(4)	18.	(2)	19.	(1)	20.	(2)	21.	(2)
22.	(3)	23.	(1)	24.	(3)	25.	(1)	26.	(3)	27.	(2)	28.	(3)
29.	(3)	30.	(2)	31.	(2)	32.	(3)	33.	(1)	34.	(1)	35.	(2)
36.	(2)	37.	(4)	38.	(4)	39.	(3)	40.	(4)	41.	(3)	42.	(3)
43.	(3)	44.	(3)	45.	(4)								
						PAF	хт - II						
Sect	ion (A)												
A-1.	(3)	A-2.	(2)	A-3.	(2)	A-4.	(1)						
Sect	ion (B)		()	-	()		()						
B-1.	(C)	B-2.	(C)										
Sect	ion (C)												
C-1.	(1.2.3)	C-2.	(1, 4)	C-3.	(1. 2.	4) C-4 .	(1, 4)	C-5.	(1, 2)	C-6.	(1, 4)	C-7.	(1.2.4)
C-8.	(1, 2)		(1, 1)		(, _,	.,	(,,,,,		(, _)		(1, 1)		(-,_, -, -,
						EXER	CISE #	3					
						PA	RT - I						
1.	(4)	2.	(3)	3.	(2)	4.	(2)	5.	(4)	6.	(3)	7.	(2)
8.	(3)	9.	(4)	10.	(4)	11.	(1)	12.	(4)	13.	(3)	14.	(3)
15.	(3)	16.	(1)	17.	(3)	18.	(4)	19.	(2)	20.	(3)	21.	(1)
22.	(2)	23	(1)	24.	(2)	25.	(1)	26.	(3)				
						₽ΔF	RT - II						
1.	(C)	2.	(D)	3.	(C)	4.	(D)	5.	(C)	6.	(C)	7.	(C)
8.	(B)	9.	(B)	-	(-)	-	· /	-	√ - <i>′</i> /	-	x = 7	-	(-)
э.	(0)	э.	(0)										

MATHEMATICS Limits, Continuity & Derivability