Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

PARABOLA

Section (A) : Elementary Concepts of Parabola

A-1.	A-1. The equation of the parabola whose focus is $(-3, 0)$ and the directrix is, $x + 5 = 0$ is:			x + 5 = 0 is:
	(1) $y^2 = 4(x-4)$	(2) $y^2 = 2(x+4)$	(3) $y^2 = 4(x-3)$	(4) $y^2 = 4(x+4)$
A-2.	If (2, 0) is the vertex &	y – axis is the directrix of	a parabola, then its focu	s is:
	(1) (2, 0)	(2) (-2, 0)	(3) (4, 0)	(4) (-4, 0)
A-3.	Length of the latus rect	tum of the parabola 25 [(;	$(x - 2)^2 + (y - 3)^2] = (3x - 3)^2$	4y + 7) ² is:
	(1) 4	(2) 2	(3) 1/5	(4) 2/5
A-4.	The point on the parab	ola y ² = 12x whose focal	distance is 4, are	
	(1) $(2, \sqrt{3}), (2, -\sqrt{3})$		(2) $(1, 2\sqrt{3}), (1, -2\sqrt{3})$	
	(3) (1, 2)		(4) none of these	
A-5.	The latus rectum of a p	oarabola whose directrix i	s x + y $- 2 = 0$ and focus	s is (3, – 4), is
	(1) −3 √2	(2) 3 √2	(3) 2 √2	(4) 3/√2
A-6.	A parabola is drawn wi	th its focus at (3, 4) and	vertex at the focus of the	parabola $y^2 - 12x - 4y + 4 = 0$.
	The equation of the pa $(1) x^2$	rabola is:	(2) y^2 0 y 0 y 0 y	0
	(1) $x^2 - 6x - 8y + 25 =$ (3) $x^2 - 6x + 8y - 25 =$	= 0 = 0	(2) $y^2 - 8x - 6y + 25 =$ (4) $x^2 + 6x - 8y - 25 =$	0
	(0) x 0 x 0 y 20		(1) x 1 0 x 0 y 20	
A-7.	The length of the side of point is at the vertex is	of an equilateral triangle in :	nscribed in the parabola,	$y^2 = 4x$ so that one of its angular
	(1) 8 ^{√3}	(2) 6 ^{√3}	(3) 4 \{3	(4) 2 \{3
A-8.	The ends of latus rectu	ım of parabola x² + 8y = 0) are	
	(1) (-4, -2) and (4, 2)	(2) (4, 2) and (-4, 2)	(3) (-4, -2) and (4, -2)	(4) (4, 2) and (4, -2)
A-9.	The equation of the late	us rectum of the parabola	$a x^2 + 4x + 2y = 0$ is	
	(1) $2y + 3 = 0$	(2) 3y = 2	(3) $2y = 3$	(4) $3y = -2$
A-10. \	Vertex of the parabola 9>	$x^2 - 6x + 36y + 9 = 0$ is		
	$\left(\frac{1}{3},-\frac{2}{9}\right)$	$\left(-\frac{1}{3},-\frac{1}{2}\right)$	$\left(-\frac{1}{3},\frac{1}{2}\right)$	$\left(\frac{1}{3},\frac{1}{2}\right)$
	(1) (0 0)	(2)	(3) () 2)	(4) (3 2)
A-11. ⊺	he focus of the parabola	is (1, 1) and the tangent $$	at the vertex has the eq	uation $x + y = 1$. Then:
	(1) length of the latus	rectum is $2\sqrt{2}$		

(2) equation of the parabola is $(x - y)^2 = 4(x + y - 1)$

	(3) the co-ordinates of the vertex are (1/2, 1/2)(4) All of these			
A-12.	The focal distance of a (1) 6	point on the parabola y ² (2) 8	= 16 x whose ordinate is (3) 10	twice the abscissa, is (4) 12
A-13.	Which one of the follow	ing equations parametric	cally represents equation	to a parabolic profile? t
	(1) $x = 3 \cos t$; $y = 4 \sin \frac{1}{2}$	t	(2) $x^2 - 2 = -2 \cos t$; y =	$= 4 \cos^2 \frac{1}{2}$
	(3) $\sqrt{x} = \tan t; \sqrt{y} = \sec t$	ct	(4) $x = \sqrt{1 - \sin t}$; $y = \sin t$	$\frac{1}{2} + \cos \frac{1}{2}$
A-14.	The latus rectum of a pa (1) 24/5	arabola whose focal cho (2)) 12/5	rd is PSQ such that SP = (3) 6/5	3 and SQ = 2 is given by: (4) none of these
Section	on (B) : Position of	point /Line, Chord		
B-1.	Point (2,3) lies (1) In side the parabola (3) On the parabola y ² =	y ² = 4x = 4x	(2) In side the parabola (4) On the parabola x ² =	x ² = 4y = 4y
B-2.	If the point $(\alpha - 1, \alpha)$ lies (1) (1, 5)	in side the parabola x ² = (2) (4, 7)	= 4(y–1) then range of va (3) (2, 9)	lues of α is (4) (0, 4)
B-3.	The length of chord inte (1) 5	ercepted on the line 2x + (2) 3	y = 2 by the parabola y ² (3) 2	= 4x, is (4) 1
B-4.	A variable chord PQ of points P & Q on the par (1) 1	the parabola, $y^2 = 4x$ is rabola be p & q respectiv (2) 1/2	drawn parallel to the line ely, then (p + q) equal to (3) 2	e y = x. If the parameters of the (4) 4
B-5.	The length of the chorc with the axis of x is: (1) 8	d of the parabola, $y^2 = 12$	2x passing through the v	ertex & making an angle of 60°
B-6.	If one end of a focal cher (1) $(1, -2)$	ord of the parabola $y^2 = 4$ (2) (2, 2)	(c) volution (x is (1, 2), the other end (3) (2, 1)	is (4) (-2, -1)
B-7.	In the parabola $y^2 = 6x$, (1) $y = 2x$	the equation of the chore (2) $y + 2x = 0$	d through vertex and neg (3) y + 3x = 0	gative end of latus rectum, is (4) x + 2y = 0
Sectio	on-(C) : Tangent of	Parabola		
C-1.	The value λ such that li (1) 2	ne y = x + λ is tangent to (2) 4	the parabola y ² = 8x (3) 6	(4) 8
C-2.	If $y = 2x - 3$ is a tanger	4a to the parabola $y^2 =$	$\left(x-\frac{1}{3}\right)_{, \text{ then ' a ' is equal}}$	al to: _ 14
	(1) 1	(2) – 1	(3) 3	(4) 3
C-3.	The equation of the tan	gent to the parabola y =	$(x - 3)^2$ parallel to the ch	ord joining the points (3, 0)

	and (4, 1) is:			
	(1) $2x - 2y + 6 = 0$	(2) 2y - 2x + 6 = 0	(3) 4y - 4x + 11 = 0	(4) $4x - 4y = 13$
C-4.	The value of a such tha	at line $\frac{y}{a+3} = \frac{x}{a} - 1$ is tang	ent to the parabola $y^2=6$	x, parallel to the line x+ y= 4.
	(1) – 4	(2) – 3	(3) 2	(4) – 2
C-5.	The tangent drawn at a which KP subtends at it	iny point P to the parabo ts focus is	la y ² = 4ax meets the dir	rectrix at the point K, then angle
	(1) 30°	(2) 45°	(3) 60°	(4) 90°
C-6.	Equation of a tangent to (1) $2x - 4y + 3 = 0$	o the parabola y ² = 12x v (2) x + 2y + 12 = 0	vhich make an angle of 4 (3) 4x + 2y + 3 = 0	5° with line y = 3x + 77 is (4) 2x + y - 12 = 0
C-7.	The point where the $4y - x + 3 = 0$ touches	tangent to the parab the parabola is	oola y² = 7x which is	parallel to the straight line
	(1) (28, 14)	(2) (2, 3)	(3) (-2, 1)	(4) (0, 1)
C-8.	The mirror image of the (1) $(x - 1)^2 = 4(y - 2)$	e parabola $y^2 = 4x$ in the (2) $(x + 3)^2 = 4(y + 2)$	tangent to the parabola a (3) $(x + 1)^2 = 4(y - 1)$	at the point (1, 2) is (4) $(x - 1)^2 = 4 (y - 1)$
C-9.	The equation of tangen (1) 4y = 9x + 4	t to the parabola $y^2 = 9x$ (2) $4y = x - 36$	which pass through the (3) $y = x + 36$	e point (4, 10) is (4) 4y = x + 32
Section	on-(D) : Normal, Pa given mid p	ir of tangents, Direo oint	ctor circle, Chord o	f conctact,chord with
D-1.	The equation of directo (1) $x^2 + y^2 - 2x - 4y + 4$ (3) $2x + 5 = 0$	r circle of the parabola y = 0	$2^{2} = 10(x - 1)$ (2) 2x + 3 = 0 (4) x ² + y ² - 4x + 2y + 2	2 = 0
D-2.	Equation of the normal (1) $y = -mx + 2am + and (3) y = mx + 2am + and (3)$	to the parabola, y² = 4ax n³ ₃	x at its point (am², 2am) i (2) y = mx − 2am − am² (4) none	S: 3
D-3.	At what point on the pa (1) (4, 4)	rabola y ² = 4x the norma (2) (9, 6)	ll makes equal angles wi (3) (4, – 1)	th the axes? (4) (1, 2)
D-4.	The line $2x + y + \lambda = 0$ (1) 12	is a normal to the parabo (2) – 12	bla $y^2 = -8x$, then λ is (3) 24	(4) – 24
D-5.	The distance between a 1 is :	a tangent to the parabola	$a y^2 = 4 A x (A > 0) and t$	he parallel normal with gradient
	(1) 4 A	(2) 2 √ ² A	(3) 2 A	(4) √2 A
D-6.	If a line $x + y = 1$ cut th The normal to the paral (1) (a, a,)	e parabola y² = 4ax in p bola from C other, than a (2) (2a, 2a)	oints A and B and norma above two meet the paral (3) (3a, 3a)	als drawn at A and B meet at C. pola in D, then point D is (4) (4a, 4a)
D-7.	Number of distinct norm (1) 0	nals of a parabola passir (2) 1	ng through the focus of th (3) 2	ne parabola is (4) 3
D-8.	If $y = 2x + c - 4$ is a nor	rmal to the parabola y ² =	= 4x, then value of 'c' is	

	(1) 8	(2) – 8	(3) 12	(4) – 12	
D-9. D-10. 7	The equation of tangent drawn from the point (2,3) to the parabola $y^2 = 4x$, are (1) $x-y+1 = 0$, $x+2y = 4$ (2) $x+y-1= 0$, $x+2y + 4 = 0$ (3) $x-y+1= 0$, $x-2y + 4 = 0$ (4) $x+y-1= 0$, $x+2y - 4 = 0$ The angle between the tangents drawn from a point (- a, 2a) to $y^2 = 4$ ax is				
	(1) $\frac{\pi}{4}$	(2) $\frac{\pi}{2}$	(3) $\frac{\pi}{3}$	(4) $\frac{\pi}{6}$	
D-11.	The angle between the	tangents drawn from a p	point $(-a, 2a)$ to $y^2 = 4a$	ix is	
	(1) $\frac{\pi}{4}$	(2) ^π / ₂	(3) $\frac{\pi}{3}$	(4) $\frac{\pi}{6}$	
D-12.	The line $4x - 7y + 10 =$ point of intersection of the constant $\left(\frac{7}{2}, \frac{5}{2}\right)$	= 0 intersects the parabolic the tangents drawn at the $\begin{pmatrix} -\frac{5}{2}, -\frac{7}{2} \end{pmatrix}$	bla, y ² = 4x at the points e points A & B are: (3) $\left(\frac{5}{2}, \frac{7}{2}\right)$	A & B. The co-ordinates of the (4) $\left(-\frac{7}{2}, -\frac{5}{2}\right)$	
D-13. 7	The feet of the perpendic (1) y + 4 = 0	ular drawn from focus up (2) y = 0	oon any tangent to the pa (3) y = - 2	arabola, y = x ² - 2x - 3 lies on (4) y + 1 = 0	
D-14 .⊤	the locus of the middle point $(1) y^2 = x - 1$	points of the focal chords of $(2) y^2 = 2 (x - 1)$	of the parabola, $y^2 = 4x$ is (3) $y^2 = 2(1 - x)$	s: (4) none of these	
D-15.	The equaton of chord c (1) $2x - 2y + 5 = 0$	f parabola y ² =4x whose (2) y=x	midpoint is (2,2) (3) 2y + 2x + 5= 0	(4) 2y – 2x + 5= 0	
		ELL	IPSE		
Section	on (A) : Standard				
A-1.	Eccentricity of the conic $\frac{\sqrt{2}}{3}$	$\frac{x^2}{4} + \frac{y^2}{9} = 1$ is $\frac{\sqrt{5}}{3}$	$(0) \frac{\sqrt{7}}{3}$	$(1)\frac{1}{2}$	
	(1) 3	(2) 3^{2} y^{2}	(3) 5	(4) 2	
A-2.	The focii of the ellipse (1) (±4, 0)	$\frac{1}{25} + \frac{1}{9} = 1$ are (2) (±3,0)	(3) (± 5,0)	(4) (±2,0)	
A-3.	The equation of the ellip $\frac{1}{2}$, is (1) $7x^2 + 2xy + 7y^2 - 10$	pse whose focus is (1, -7 0x + 10y + 7 = 0	1), directrix is the line x – (2) $7x^2 + 2xy + 7y^2 + 7$	y - 3 = 0 and the eccentricity is = 0	
	$(3) 7x^2 + 2xy + 7y^2 + 10$	0x - 10y - 7 = 0	(4) none of these		
A-4.	The eccentricity of the	ellipse 4x² + 9y² + 8x + 3	6y + 4 = 0 is		
	(1) $\frac{5}{6}$	$\frac{3}{5}$	(3) $\frac{\sqrt{2}}{3}$	(4) $\frac{\sqrt{5}}{3}$	

A-5.	If distance between the directrices be thrice the distance between the focii, then eccentricity of ellipse is			
	1	2		4
	(1) 2	(2) 3	(3) ^{√3}	(4) 5
A-6.	The length of the latus	rectum of the ellipse 9x ²	+ $4y^2 = 1$, is	
	3	8	$\frac{4}{2}$	8
	(1) 2	(2) ³	(3) ⁹	(4) 9
			$\frac{x}{z}$ $\frac{y}{z}$	
A-7.	The eccentricity of the	ellipse which meets the	straight line $7 + 2 = 1$	on the axis of x and the straight
	$\frac{x}{2}$ $\frac{y}{5}$			
	line $3^{-5} = 1$ on the a	axis of y and whose axes	ilie along the axes of co	ordinates is
	$\sqrt{6}$	$4\sqrt{6}$	$\frac{2\sqrt{6}}{\sqrt{6}}$	$2\sqrt{6}$
	(1) 7	(2) 7	(3) 5	(4) 7
		x ²	y ²	
A-8.	Let P be a variable poi	nt on the ellipse $\frac{1}{25}$ +	$\overline{16}$ = 1 with focii at S an	d S'. If A be the area of triangle
	PSS', then the maximu	m value of A is		
	(1) 24 sq. units	(2) 12 sq. units	(3) 36 sq. units	(4) none of these
	Equation of the allines	where facility (2, 2) and	(4, 0) and the major evi	a ia af lanath 40 ia
A-9.	Equation of the ellipse $(1 - 2)^2$	whose foct are $(2, 2)$ and	(4, 2) and the major axi	s is of length 10 is
	$\frac{(x+3)^2}{4} = \frac{(y+2)}{5}$		$\frac{(x+3)^2}{24} = \frac{(y+2)}{25}$	
	(1) $4 + 5$	= 1	(2) $24 + 25$	= 1
	$\frac{(x+3)^2}{25} = \frac{(y+2)^2}{24}$		$\frac{(x-3)^2}{25} = \frac{(y-2)^2}{24}$	
	(3) 25 + 24	= 1	(4) 23 + 24	= 1
A-10.	The length of the axes	of the conic $9x^2 + 4y^2 - 6$	6x + 4y + 1 = 0, are	
	1	2	2	
	(1) 2, 9	(2) 3, 5	(3) 1, 3	(4) 3, 2
		0		
	$\frac{x^2}{2}$	<u>y²</u>		
A-11.	The equation $2-r + r$	$^{-5}$ +1 = 0 represents an	ellipse, if -	
	(1) r > 2	(2) 2< r < 5	(3) r > 5	(4) r ∈ {2, 5}
A-12.	An ellipse has OB as s	emi-minor axis. F and F	are its foci and $\angle FBF'$	is a right angle then eccentricity
	of the ellipse is			
	1	1	2	1
	(1) 2	(2) $\sqrt{2}$	(3) 3	(4) 3
A-13.	The eccentricity of an	n ellipse in which dista ان 15 ان	nce between their focii	is 10 and that of focus and
		1	1	1
	(1) 3	$(2) \frac{1}{2}$	$(3) \frac{1}{4}$	(1) $\sqrt{2}$
	(1) -	(2) -	(\mathbf{J})	(ד) · -
A-14.	If $P = (x, y), F_1 = (3, 0),$	$F_2 = (-3, 0)$ and $16x^2 + 3$	25y ² = 400, then PF1 + P	PF2 equals
	(1) 8	(2) 6	(3) 10	(4) 12

1 If focus and corresponding directrix of an ellipse are (3, 4) and x + y - 1 = 0 and eccentricity 2 is then A-15. the co-ordinates of extremities of major axis are (3) (1, 3), (2, 3) (1) (2, 3), (4, 7)(2) (6, 7), (2, 3)(4) (4, 7), (6, 7)The equation, $3x^2 + 4y^2 - 18x + 16y + 43 = C$. A-16. (1) cannot represent a real pair of straight lines for any value of C (2) represents an ellipse, if C > 0(3) no locus, if C < 0(4) all of these The distance of the point ' θ ' on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (1) a(e + cos A) from a focus is A-17. (2) $a(e - \cos \theta)$ (3) $a(1 + e \cos \theta)$ (4) $a(1 + 2e \cos \theta)$ A-18. The curve represented by $x = 3 (\cos t + \sin t)$, $y = 4 (\cos t - \sin t)$, is (2) parabola (4) circle (1) ellipse (3) hyperbola Section (B) : Position of Point, Chord/Tangent of Ellipse The position of point (4, 3) with respect to the ellipse $\frac{x^2}{8} + \frac{y^2}{9} = 1$ is (1) Out side the ellipse B-1. (2) In side the ellipse (4) On the major axis of ellipse (3) On the ellipse The position of the point (1, 3) with respect to the ellipse $4x^2 + 9y^2 - 16x - 54y + 61 = 0$ is B-2. (1) outside the ellispe (2) on the ellipse (3) on the major axis (4) on the minor axis If the line y = 2x + c be a tangent to the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$, then c is equal to B-3. $(1) \pm 4$ $(4) \pm 8$ $(2) \pm 6$ $(3) \pm 1$ If the line $3x + 4y = -\sqrt{7}$ touches the ellipse $3x^2 + 4y^2 = 1$ then, the point of contact is B-4. $(1) \left(\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}\right) \qquad (2) \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right) \qquad (3) \left(\frac{1}{\sqrt{7}}, \frac{-1}{\sqrt{7}}\right) \qquad (4) \left(\frac{-1}{\sqrt{7}}, \frac{-1}{\sqrt{7}}\right)$ The equation of tangent to the ellipse $\frac{x^2}{50} + \frac{y^2}{32} = 1$ which passes through a point (15, - 4) is B-5 (3) 4x - 5y = 40(1) 4x + 5y = 40(4) none of these (2) 4x + 35y = 200The tangents at the point P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and its corresponding point Q on the auxiliary B-6. circle meet on the line : (1) x = a/e(3) y = 0(2) x = 0(4) x = -a/eIf $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at a point P, then eccentric angle of P is B-7. (1) 0 (2) 45° $(3) 60^{\circ}$ (4) 90°

B-8.	The equation of the tan	ngents drawn at the ends	of the major axis of the e	ellipse $9x^2 + 5y^2 - 30y = 0$, are
	(1) $y = \pm 3$	(2) x = $\pm \sqrt{5}$	(3) y = 0, y = 6	(4) none of these
			x ²	y ²
B-9.	The minimum area of the	riangle formed by the tan	igent to the ellipse $\overline{a^2}$ +	$\overline{b^2}$ =1 and coordinate axes is
			$a^2 + b^2$	
	(1) ab sq. units		(2) 2 sq. unit	
	$(a+b)^{2}$		$a^2 + ab + b^2$	
	(3) 2^{-2} sq. units		(4) 3 sq. unit	ts
Sectio	on (C) : Normal, Pa	ir of Tangents, Dire	ctor circle, Chord o	of conctact.
cho	rd with given mid p	point of ellipse	,	,
		8		v ²
C-1.	The value of λ , for which	ch the line $2x - \frac{3}{3}\lambda v = -$	3 is a normal to the coni	$c x^{2} + \frac{3}{4} = 1$ is
-	$\sqrt{3}$	1	$\sqrt{3}$	3
	$(1) + \frac{\sqrt{3}}{2}$	$(2) + \frac{1}{2}$	$(3) - \frac{\sqrt{6}}{4}$	$(4) + \frac{1}{8}$
	(') -	(<i>2</i>) ÷	(0)	$x^2 y^2$
C-2.	The eccentric angle of	the point where the line.	$5x - 3y = 8\sqrt{2}$ is a norm	nal to the ellipse $\frac{7}{25} + \frac{9}{9} = 1$ is
	π	π	π	π
	(1) 4	(2) 2	(3) 3	(4) 6
		x ²	v ²	
C-3	The equation of the nor	rmal to the ellipse $\overline{a^2}$ +	$\frac{b^2}{b^2}$ = 1 at the positive e	nd of latus rectum is
00.	(1) $x + ey + e^2a = 0$	(2) $x - ey - e^3a = 0$	(3) $x - ey - e^2a = 0$	(4) none of these
		v ²	v^2	
C 4	If the normal at the pair	nt $\mathcal{D}(\mathcal{A})$ to the allings $\frac{\Lambda}{14}$	$+\frac{y}{5}$ - 1 interprete it age	in at the point $O(2A)$ then $aaaA$
C-4.	is equal to	TILF(0) to the enipse		$\lim_{n \to \infty} a_n \ln e point Q(20), \ \ln e n \cos \theta$
	2	2	3	3
	(1) 3	(2) - 3	(3) 2	$(4) - \frac{1}{2}$
			$x^2 y^2$	
C-5	If the normal at an end	of a latus-rectum of an ($\frac{a^2}{a^2} \pm \frac{b^2}{b^2} = 1$ pase	es through one extremity of the
0-5.	minor axis, then the ec	centricity of the ellipse is	given by the relation	
	,		3	
	(1) $e^4 + 2e^2 - 4 = 0$	(2) $e^4 + e^2 - 1 = 0$	$(3) e^4 + e^2 - \overline{2} = 0$	$(4) e^4 - e^2 - 1 = 0$
			$x^2 y^2$	
C-6.	The pair of tangents dr	awn from the point (4.3)	to the ellipse $\frac{16}{16} + \frac{3}{9} = 1$	is
(1) $3x + 4y - xy - 12 = 0$ (2) $x^2 + y^2 - 3x + 4y - 12 = 0$			2 = 0	
	(3) $4x + 3y + xy + 12 =$	0	(4) $x^2 + y^2 + 2xy + 2x + 2y$	y+1= 0
		x ² y ²	_ 1	
C-7.	Equation of director cire	cle of the ellipse $\frac{\overline{25}}{\overline{25}} + \frac{\overline{16}}{\overline{16}}$	- = 1	
	(1) $x^2 + y^2 = 25$	(2) $x^2 + y^2 = 16$	(3) $x^2 + y^2 = 41$	(4) $x^2 + y^2 = 9$

- A triangle ABC right angled at 'A' moves so that its sides touch the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ all the time. The C-8. locus of the point 'A' is (2) $x^2 + y^2 = 2b^2$ (3) $x^2 + y^2 = a^2 + b^2$ (1) $x^2 + y^2 = 2a^2$ (4) none of these If 3x + 4y = 12 intersect the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ at P and Q, then the point of intersection of tangents at C-9. P and Q is $(3) \left(\frac{25}{4}, \frac{16}{3}\right)$ (4) $\left(-\frac{25}{4}, \frac{16}{3}\right)$ (1)(0, 1)(2)(1, -2)The angle between the pair of tangents drawn to the ellipse $3x^2 + 2y^2 = 5$ from the point (1, 2) is C-10. (3) $\tan^{-1}\left(\frac{12}{\sqrt{5}}\right)$ (2) tan⁻¹ (6√5) (4) tan^{₋1} (12√5) C-11. If F1 & F2 are the feet of the perpendiculars from the focii S1 & S2 of an ellipse $\frac{1}{3}$ = 1 on the tangent at any point P on the ellipse, then (S₁F₁). (S₂F₂) is equal to : (1) 2(2)3(3) 4(4)5 $\frac{(x-1)^2}{45} + \frac{(y-2)^2}{20} = 1 \text{ at } (4, 6).$ The equation of A ray emanating from (6, 2) is incident on ellipse C-12. reflected ray (after 1st reflection) is $(3) x + 2y - 8 = 0 \qquad (4) x - 2y - 8 = 0$ (1) x - 2y + 8 = 0(2) x + 2y + 8 = 0 $(\frac{1}{2},1)$ The equation of chord of the ellipse $2x^2+y^2= 2$ whose midpoint is C-13. (3) x+2y = $\frac{5}{2}$ 3 (2) $2x+y = \frac{1}{2}$ (4) $x+y = \frac{1}{2}$ (1) $x+y = \frac{1}{2}$ **HYPERBOLA** (A) : Elementary Concepts of Hyperbola/Conjugate/ Section-Rectangular Hyperbola($xy = c_2$) The eccentricity of the conic represented by $x^2 - y^2 - 4x + 4y + 16 = 0$ is A-1. (2) $\sqrt{2}$ (1) 1(3) 2 (4) 1/2 A-2. Which of the following pair, may represent the eccentricities of two conjugate hyperbolas, for all $\alpha \in (0, \pi/2)$? (1) sin α , cos α (2) tan α , cot α (3) sec α , cosec α (4) 1 + sin α , 1 + cos α
- A-3. The length of latus rectum of the hyperbola $\frac{x^2}{9} \frac{y^2}{16} = 1$, is $\begin{pmatrix} \frac{16}{3} & \frac{32}{3} \\ (1) & 3 \end{pmatrix}$ (3) 8
- **A-4.** The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the focii, is :

(4) 6

	(1) $\frac{4}{3}$	(2) $\frac{4}{\sqrt{3}}$	(3) $\frac{2}{\sqrt{3}}$	(4) none of these
A-5.	The equation of the hyp (1) $25x^2 - 144 y^2 = 900$ (3) $144 x^2 + 25 y^2 = 990$	perbola whose conjugate	axis is 5 and the distant (2) $144 x^2 - 25 y^2 = 900$ (4) $25x^2 + 144 y^2 = 900$	ce between the focii is 13, is 0)
A-6.	The length of the transv of the hyperbola is (1) $\frac{4}{49} x^2 - \frac{196}{51} y^2 = 1$	erse axis of a hyperbola (2) $\frac{4}{49} x^2 - \frac{196}{51} y^2 = 1$	is 7 and it passes throug (3) $\frac{4}{49}x^2 - \frac{51}{196}y^2 = 1$	h the point (5, –2). The equation (4) None of these
A-7.	The equation of the hyp (1) $x^2 - 16xy - 11 y^2 - 1$ (3) $3x^2 + 16xy + 11 y^2 - 1$	perbola whose directrix is 2x + 6y + 21 = 0 • 12x - 6y + 21 = 0	3x + 2y = 1, focus (2,1) a (2) $3x^2 + 16xy + 15y^2 - (4)$ None of these	and eccentricity 2 will be $-4x - 14y - 1 = 0$
A-8.	The vertices of a hyperbola is $\frac{x^2}{25} - \frac{y^2}{144} = 1$	bola are at (0, 0) and (10 (2) $\frac{(x-5)^2}{25} - \frac{y^2}{144} = 1$	(3) $\frac{x^2}{25} - \frac{(y-5)^2}{144} = 1$	s at (18, 0). The equation of the (4) $\frac{(y-5)^2}{25} - \frac{y^2}{144} = 1$
A-9.	I he equation of the dire	ectrices of the conic x^2 +	$2x - y^2 + 5 = 0$ are	(4) $x = \pm \sqrt{3}$
	$(1) X = \pm 1$	$(z) y = \pm z$	$(3) y = \pm v -$	$(4) X = \pm 2$
A-10.	If e and e' are the eccentricities of the ellipse $5x^2 + 9y^2 = 45$ and the hyperbola $5x^2 - 4y^2 = 45$ respectively then ee' –			
	(1) – 1	(2) 1	(3) – 4	(4) 9
A-11.	The equation of auxilary (1) $x^2 + y^2 = 9$	y circle of hyperbola $\frac{x^2}{9}$ (2) $x^2 + y^2 = 16$	$-\frac{y^2}{16} = 1$ (3) x ² + y ² = 41	(4) $x^2 + y^2 = 7$
A-12.	An ellipse and a hyperb	oola have the same cent	re origin, the same foci	and the minor-axis of the one is
	the same as the conjug (1) 1	ate axis of the other. If e (2) 2	1, e_2 be their eccentricitie (3) 4	es respectively, then $\frac{1}{e_1^2} + \frac{1}{e_2^2} =$ (4) none of these
A-13.	If e and e' are the eccer lies on the circle :	ntricities of the hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{b^2} - \frac{y^2}{b^2}$	$\frac{x^2}{a^2} = 1$, then the point $\left(\frac{1}{e}, \frac{1}{e'}\right)$
	(1) $x^2 + y^2 = 1$	(2) $x^2 + y^2 = 2$	(3) $x^2 + y^2 = 3$	(4) $x^2 + y^2 = 4$
A-14.	If P ($\sqrt{2} \sec \theta$, $\sqrt{2} \tan \theta$ the first quadrant then θ	Θ) is a point on the hyper $\Theta =$	rbola whose distance fro	m the origin is $\sqrt{6}$ where P is in
	(1) $\frac{\pi}{4}$	(2) $\frac{\pi}{3}$	(3) $\frac{\pi}{6}$	(4) None of these
A-15.	Foci of the hyperbola $\frac{x}{1}$ (1) (5, 2), (-5, 2)	$\frac{1}{6} - \frac{(y-2)}{9} = 1$ are (2) (5, 2), (52)	(3) (5, 2), (-5, -2)	(4) None of these

	x^2 y^2	x ²	y^2	
A-16.	The ellipse $\frac{1}{25} + \frac{1}{16} = 1$	and the hyperbola $\frac{1}{25}$	$\frac{1}{16} = 1$	
	(1) centre only		(2) centre, foci and dire	ctries
	(3) Centre, foci and vert	ices	(4) centre and vertices (only
			(),	
	$\left(\operatorname{ct.} \frac{c}{c} \right)$			
A-17.lf	the normal at $\begin{pmatrix} c, t \end{pmatrix}$ on	the curve $xy = c^2$ meets	the curve again at t', the	en
	1	1	1	1
	$\frac{1}{t^3}$	$\frac{1}{t}$	$\frac{1}{t^2}$	$\frac{1}{t^2}$
	(1) $t' = -t'$	(2) $t' = t'$	(3) $t' = t$	(4) $t^{2} = -t$
A-18. If	$(\lambda, 4)$ is the orthocentre	of the triangle whose	vertices lie on the recta	ngular hyperbola xy = 16, then
	λ is equal to	J J		5 , , , , ,
	(1) 3	(2) 4	(3) 12	(4) 8
	(1) 0	(_)	(0) 12	
A-19.	If (5, 12) and (24, 7) are	the focii of a conic pass	ing through the origin the	en the eccentricity of conic is
	$(4) \sqrt{386}$ (40)	·	$\sqrt{386}$ (4.2	-
	(1) vooo /12		(2) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	=
	(3) ^{√386} /25		(4) $\sqrt{386}$ /38 or ;k $\sqrt{386}$	³ /12
Sectio	on-(B) : Position of	Point/Line, Tangen	t, Chord of hyperbo	bla
	—			
B-1.	The line $x + y = a$ touch	es the hyperbola $x^2 - 2y^2$	2 = 18, if a is equal to ± b	b, then value of b is
	(1) 3	(2) 4	(3) 12	(4) 8
B _2	Equation of a tangent p	assing through $(2, 8)$ to t	he hyperbola 5 $x^2 - y^2 - y^2$	5 is ·
D-2.				
	(1) $3x - y + 2 = 0$	$(2) \ 3x + y - 14 = 0$	(3) 23 x + 3 y - 22 = 0	$(4) \ 3x - 23y + 178 = 0$
		² ²		
		$\frac{x}{x^2}$ $\frac{y}{x^2}$		
B-3.	Tangent at any point on	the hyperbola a ⁻ - b ⁻	= 1 cut the axes at A and	d B respectively. If the rectangle
	OAPB (where O is original	n) is completed then locu	us of point P is given by	
	$a^2 \frac{b^2}{b^2}$	$a^2 \frac{b^2}{b^2}$	$\underline{a^2}$ b^2	
	(1) $\overline{x^2} - \overline{y^2} - 1$	(2) $\overline{x^2} + \overline{y^2} = 1$	(3) $y^2 - \overline{x^2} = 1$	(4) none of these
	(1) = 1			
B-4.	The number of possible	tangents which can be di	rawn to the curve $4x^2 - 9y$	y² = 36, which are perpendicular
	to the straight line 5x + 2	2y −10 = 0 is :		
	(1) zero	(2) 1	(3) 2	(4) 4
B-5.	The equation of the tang	gent lines to the hyperbo	$la x^2 - 2y^2 = 18 which ar$	e perpendicular to the line $y = x$
	are :			
	(1) $y = -x + 7$	(2) $y = x + 3$	(3) $y = -x - 4$	(4) $y = -x \pm 3$
B-6	Number of non-negative	e integral values of b for	r which tangent parallel t	o line v = x + 1 can be drawn to
B 0.	hyperbola		which tangent parallel t	
	u^2 u^2			
	$\frac{x}{F} - \frac{y}{r^2}$			
	$b^{-} = 1$ is			
	(1) 16	(2) 2	(3) 3	(4) 4

B-7.	An equation of a tanger	nt to the hyperbola, 16x²	– 25y² – 96x + 100y – 35	$56 = 0$ which makes an angle $\frac{\pi}{4}$
	with the transverse axis	s is y = x + λ , (λ > 0), then	n 2λ is	
	(1) 16	(2) 4	(3) 3	(4) 9
B-8.	If (a sec θ, b tan θ) and	l (a secφ, b tan φ) are th	ne ends of a focal chord o	of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $\tan \frac{\theta}{2}$ tan
	$\frac{\Psi}{2}$ equals to			
		0 1	1.0	
	$\frac{e-1}{e+1}$	$\frac{e+1}{e-1}$	$\frac{1+e}{1-e}$	
	(1) 0 + 1	(2) e^{-1}	(3) 1-6	(4) none of these
B-9.	The locus of the middle (1) $3x - 4y = 4$	points of chords of hype (2) $3y - 4x + 4 = 0$	erbola 3x ² – 2y ² + 4x – 6y (3) 4x – 4y = 3	y = 0 parallel to y = 2x is (4) 3x - 4y = 2
			$\underline{x^2}$ $\underline{y^2}$	
B-10.	The chords passing throad and Q intersects at R the	ough L(2, 1) intersects th nen Locus of R is	e hyperbola ¹⁶ – ⁹ =1	at P and Q. If the tangents at P
	(1) $x - y = 1$	(2) $9x - 8y = 72$	(3) $x + y = 3$	(4) None of these
Section	on- (C): Normal/Dire	ector Circle / Chord	of Contact/Chord	with given midpoint/ pair
	of tangent of hype	rbola		
C-1.	The tangents from (1, 2 to:	$2^{-\sqrt{2}}$) to the hyperbola 1	$16x^2 - 25y^2 = 400$ include	e between them an angle equal
	$\frac{\pi}{2}$	$\underline{\pi}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$
	(1) 6	(2) 4	(3) 3	(4) 2
C-2.	The number of points $x^2 \sec^2 \alpha - y^2 \csc^2 \alpha$	from where a pair of p = 1, $\alpha \in (0, \pi/4)$, is :	erpendicular tangents ca	an be drawn to the hyperbola,
	(1) 0	(2) 1	(3) 2	(4) infinite
C-3.	The product of the leng	ths of the perpendiculars	s from the two focii on an	y tangent to the hyperbola $\frac{x^2}{25}$
	<u>y²</u>			
	$-3 = 1$ is \sqrt{k} , then k (1) 16	c is (2) 4	(3) 3	(4) 9
C-4.	The equation to the $4x^2 - 9y^2 = 36$ upon any	locus of the feet of of its tangent has the e	the perpendicular from quation	the focus of the hyperbola
	(1) $x^2 + y^2 = 9$	(2) $x^2 + y^2 = 4$	(3) $x^2 + y^2 = 1$	(4) $x^2 + y^2 = 16$
C-5.	From Point p(2,3) two ta	angents PA and PB are o	drawn to the hyperbola x	² –y ² – 4x+4y + 16 = 0. The
	(1) $y = 3$	(2) y = 2	(3) x = 1	(4) x = 3
C-6.	The equation of chord c (1) $3x - 2y+7 = 0$	of the hyperbola $x^2-2y^2 =$ (2) 2x -3y+7 = 0	2 whose midpoint is (3,7 (3) 2x -3v=7	1) (4) 3x –2v=7

Exercise-2

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : OBJECTIVE QUESTIONS

1.	The focus of the parabola $x^2 + 2y - 3x + 5 = 0$ is			
	$(1)\left(\frac{3}{2},-\frac{15}{8}\right)$	$(2)\left(\frac{3}{2},\frac{15}{8}\right)$	$(3)\left(-\frac{3}{2},\frac{15}{8}\right)$	$(4)\left(-\frac{3}{2},-\frac{15}{8}\right)$

2. Length of the focal chord of the parabola $y^2 = 4ax$ at a distance p from the vertex is:

	2a ²	a ³	4a ³	p²
(1)	p	(2) p^{2}	(3) p ²	(4) a

3.	If the segment intercepted by the parabola $y^2 = 4ax$ with the line $\ell x + my + n = 0$ subtends a right angle			
	at the vertex, then			
	(1) 4aℓ + n = 0	(2) $4a\ell + 4am + n = 0$	(3) 4am + n = 0	(4) None of these
4.	The tangents at the ex (1) intersect at the ver (3) intersect on the dir	ktremities of a focal chord tex rectrix	of a parabola (2) are parallel (4) none of these	
5.	The locus of the mid point of the focal radii of a variable point moving on the parabola, y ² = 4ax is a parabola whose (1) Latus rectum is half the latus rectum of the original parabola (2) Vertex is (a/2, 0) (3) Directrix is y-axis (4) All of these			
6.	Let $y^2 = 4ax$ be a par externally then:	(2) as $0 + y^2 + 2$ bx	a = 0 be a circle. If parab	oola and circle touch each other
	(1) a > 0, b > 0	(2) a > 0, b < 0	(3) a < 0, b > 0	(4) ab > 0
7.	Length of common ch	ord of the parabolas $x^2 =$	4y and $y^2 = 4x$ is	
	(1) 4	(2) ⁴ √3	(3) 4√2	(4) 2
8.	The circle $x^2 + y^2 = 5$ meets the parabola $y^2 = 4x$ at P & Q. Then the length PQ is equal to (1) 1 (2) 2 (3) 3 (4) 4			
9.	The circles on focal ra (1) the tangent at the (3) the directrix	idii of a parabola as diamo vertex	eter touch: (2) the axis (4) none of these	
10.	A circle described on any focal chord of the parabola, y ² = 4ax as its diameter will touch (1) the axis of the parabola (2) the directrix of the parabola (3) the tangent drawn at the vertex of the parabola (4) latus rectum			
			x^2 y^2	
11.	The distance between	the directrices of the ellip	$\frac{36}{36} + \frac{20}{20} = 1$ is	
	(1) 18	(2) 9	(3) 27	(4) 5
		5		
12.	If the eccentricity of a	n ellipse be $\overline{8}$ and the dis	stance between its focii b	e 10, then its latus rectum is
	39	<u>39</u>	39	$\sqrt{39}$
	(1) 4	(2) 8	(3) 2	(4) 2
13.	If the distance betwee	en a focus and correspond	ding directix of an ellipse	be 8 and the eccentricity be $\frac{1}{2}$,
	8	4		
	(1) $\overline{\sqrt{3}}$	(2) $\overline{\sqrt{3}}$	(3) $8\sqrt{3}$	(4) $4\sqrt{3}$
14	Sum of distances of a	point on the ollings $\frac{X^2}{9}$	$\frac{y}{16} = 1$ from the facilitie	
· · ·	Sum of distances of a	Point on the empse 3 +		

	(1) 2	(2) 4	(3) 8	(4) 16		
15.	Equation of circle center $\frac{x^2}{10}$	red at extremity of positiv	ve minor axis and passing	g through the focus (on positive		
	x-axis) of the ellipse 16 (1) $x^2 + y^2 - 6y - 7 = 0$ (3) $x^2 + y^2 - 6y - 16 = 0$	9 + ⁹ = 1 is	(2) $x^2 + y^2 - 6y = 0$ (4) $x^2 + y^2 - 3x - 3y = 0$	1		
		$\frac{x^2}{2}$ $\frac{y^2}{25}$				
16.	If a point P(x1, y1) lies of 4	on ellipse $9 + 25 = 1$, 4	then focal distance of P 4	is 4		
	(1) 4 + $\overline{5}_{y_1}$	(2) 3 + 5_{y_1}	(3) $4 - 5 y_1$	(4) $5 - \frac{1}{5} y_1$		
17.	A latus rectum of an elli (1) passing through a for (3) perpendicular to the	pse is a line ocus minor axis	(2) parallel to the major(4) all of these	axis		
	x ² y ²					
18.	$r^2 - r - 6 + r^2 - 6r + 5$	=1 will represents the elli	pse, if r lies in the interva	al :		
	(1) (– ∞, ∞)	(2) (3, ∞)	(3) (5, ∞)	(4) (1, ∞)		
19.	The equations of the co	mmon tangent to the elli	pse, $x^2 + 4y^2 = 8$ & the p	arabola $y^2 = 4x$ is		
	(1) $2y - x = 8$	(2) 2y + x = 4	(3) 2y + x + 4 = 0	(4) $2y + x = 0$		
20.	The total number of rea $25x^2 + 9y^2 = 450$ passir	l common tangents that	can be drawn to the ellip	se $3x^2$ + $5y^2$ = 32 and		
	(1) 1	(2) 2	(3) 0	(4) 3		
		x ² y	2			
21.	If the mid point of a cho	rd of the ellipse $\frac{16}{16} + \frac{1}{2}$	$\overline{5}$ = 1 is (0, 3), then lenge	gth of the chord is		
	$\frac{32}{2}$	$\frac{32}{5}$	8	$\frac{16}{5}$		
	(1) 3	(2) 5	(3) 5	(4) 5		
22.	A ray emanating from tabscissa 3. The equation	the point (- 4, 0) is incident of the reflected ray after	lent on the ellipse 9x ² + er first reflection is	$25y^2 = 225$ at the point P with		
	(1) 12 x + 5 y = 48	(2) 5x - 12 y = 48	(3) $12 x - 5 y = 24$	(4) all of these		
23.	Identify the correct state	ement(s) -	ollings $E_{12}^{2} + \Omega_{12}^{2} = 4E$ is	<u>2 2 . 4 / </u>		
	(1) the equation of		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$x^2 + y^2 = 14.$		
	(2) the sum of the focal distances of the point (0, 6) on the ellipse $\frac{1}{25} + \frac{1}{36} = 1$ is 10.					
	(3) the point of interview directrix	ersection of any tangent	to a parabola & the pe	rpendicular to it from the focus		
	(4) all of these					
		$(x + y - 1)^2$ $(x - 1)^2$	$(y + 2)^2$			
24.	Find the centre of the e	llipse 2 +	$\frac{1}{3}$ = 1			

	$(1)\left(-\frac{1}{2},\frac{3}{2}\right)$	$(2)\left(\frac{3}{2}\frac{1}{2}\right)$	$(3) \left(-\frac{1}{2},-\frac{3}{2}\right)$	$(4)\left(\frac{1}{2},-\frac{3}{2}\right)$
25.	The centre of ellipse 5x (1) (–1, 2)	² +5y ² - 2xy +8x+8y+2=0 (2) (-2, 1)	is (3) (–2,–2)	(4) (-1,-1)
26.	The foci of a hyperbola if its eccentricity is 2 is (1) $3x^2 - y^2 - 4 = 0$ (3) $3x^2 - y^2 - 12 = 0$	coincide with the foci of	the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ (2) $3x^2 - y^2 - 16 = 0$ (4) $- 3x^2 + y^2 + 20 = 0$. The equation of the hyperbola
27.	The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$	= 1 passes through the	point of intersection of th	ne lines,
	7x + 13y - 87 = 0 & 5x	- 8y + 7 = 0 & the latus	rectum is 32 $\sqrt{2}$ /5. The v	alue of ab is
	(1) 10√2	(2) 5√2	(3) ^{10√3}	(4) 200
28.	The one which does no (1) xy = 1	t represent a hyperbola i (2) $x^2 - y^2 = 5$	s (3) (x –1) (y – 3) = 3	(4) $x^2 - y^2 = 0$
29.	The latus rectum of the $9x^2 - 16y^2 - 18x - 32y$ $\frac{9}{4}$	hyperbola / – 151 = 0 is (2) 9	(3) $\frac{3}{2}$	(4) $\frac{9}{2}$
30. 31.	The co-ordinates of a for (1) (-1, 1), (4, 1) The equation of the hyp $4x^2 = 3x^2 = 4k$ then $k = 1$	ocus of the hyperbola 9x ² (2) (6, 1), (–6, 1) perbola with vertices (3, 0	² – 16y ² + 18 x + 32y – 1 (3) (4, 1), (6, 1))) and (–3, 0) and semi-la	51 = 0 are (4) (– 6, 1), (4, 1) atusrectum 4, is given by is
	(1) 16	(2) 4	(3) 3	(4) 9
32.	If the eccentricity of t $x^2 \sec^2 \alpha + y^2 = 25$, ther (1) $\pi/2$	he hyperbola x ² - y ² s n a value of α is (2) π/3	$\sec^2 \alpha = 5$ is $\sqrt{3}$ times	the eccentricity of the ellipse (4) $\pi/6$
			$x^2 y^2$	
33.	The length of the latus	rectum of the hyperbola	$\frac{x}{a^2} - \frac{y}{b^2} = -1$ is	
	2a ²	a ²	a ²	а
	(1) b	(2) b	(3) 2b	(4) $2b^2$
	x^2 y^2		x^2 y^2	
34.	If hyperbola b ² _ a ² ₌ is.	1 passes through the fo	cus of ellipse $a^2 + b^2 =$	1 then eccentricity of hyperbola
	(1) ^{√3}	(2) $\sqrt{2}$	(3) ^{√5}	(4) 2
		<u>(</u>	$(y-2)^2$	
35.	The co-ordinates of the (1) (6, 2) and (-6, 2)	focii of the hyperbola (2) (- 6, 2) and (4, 2)	9 $-$ 16 $=$ 1 a (3) (6, 2) and (- 4, 2)	re (4) (6, – 2) and (–4, 2)
36.	The equation $x^2 + 4 xy$	$+ y^2 + 2x + 4y + 2 = 0$		

(2) A pair of straight lines (3) A hyperbola (1) An ellipse (4) None of these

37. A rectangular hyperbola circumscribe a triangle ABC, then it will always pass through its (1) orthocenter (2) circumcentre (3) centroid (4) incentre

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct. (1) Both the statements are true.

- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- A-1. **STATEMENT-1**: Normal chord drawn at the point (8, 8) of the parabola $y^2 = 8x$ subtends a right angle at the vertex of the parabola.

STATEMENT-2: Every chord of the parabola $y^2 = 4ax$ passing through the point (4a, 0) subtends a right angle at the vertex of the parabola.

A-2. Statement -1: The circle on any focal distance as diameter touches the director circle

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a < b) with S & S' as its focii, then Statement - 2 : If P be any point on the ellipse $\ell(SP) + \ell(S'P) = 2b$ $\ell(SP) + \ell(S'P) = 2b$

 $\frac{x^2}{9} - \frac{y^2}{4} = 1$ that are perpendicular STATEMENT-1 : Total number of tangents of the hyperbola A-3. to the line 5x + 2y - 3 = 0 is 2.

STATEMENT-2: The equation of tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ 1 in terms of its slope m is 2^{2}

$$y = mx \pm \sqrt{a^2 m^2 - b^2}$$
, if $a^2 m^2 - b^2 > 0$

Section (B) : MATCH THE COLUMN

B-1. Column - II Column - I (P) Number of positive integral values of b for which tangent (1) 16 parallel to line y = x + 1 can be drawn to hyperbola $\frac{y^2}{b^2} = 1$ is (Q) The equation of the hyperbola with vertices (3, 0) and (2) 2 (-3, 0) and semi-latusrectum 4, is given by is $4x^2 - 3y^2 = 4k$, then k = (R) The product of the lengths of the perpendiculars (3) 4 from the two focii on any tangent to the hyperbola $\frac{x^2}{25} - \frac{y^2}{3} = 1$ is \sqrt{k} , then k is (S) An equation of a tangent to the hyperbola, (4) 9

	16x ²	- 25y ² -	- 96x + 1	00y – 3	56 = 0 which makes an	
	angle	$e^{\frac{\pi}{4}}$ with	n the trar	sverse a	axis is y = x + λ , (λ > 0), then 2 λ is	5
	Cod	es :				
	Р	Q	R	S		
(1)	1	4	3	4		
(2)	2	4	3	3		
(3)	2	4	4	3		
(4)	4	2	3	1		

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

- **C-1.** If one end of a focal chord of the parabola $y^2 = 4x$ is (1, 2), the other end lies on (1) $x^2 y + 2 = 0$ (2) xy + 2 = 0 (3) xy - 2 = 0 (4) $x^2 + xy - y - 1 = 0$
- **C-2.** The equation, $3x^2 + 4y^2 18x + 16y + 43 = C$. (1) cannot represent a real pair of straight lines for any value of C
 - (2) represents an ellipse, if C > 0
 - (3) no locus, if C < 0
 - (4) a point, if C = 0
- **C-3.** If the distance between the focii of an ellipse is equal to the length of its latus rectum, then eccentricity of the ellipse is :

(1) $\frac{\sqrt{5}+1}{2}$ (2) $\frac{\sqrt{5}-1}{2}$ (3) $\frac{\sqrt{5}-2}{2}$ (4) $\frac{2}{\sqrt{5}+1}$

C-4.The co-ordinates of a focus of the hyperbola $9x^2 - 16y^2 + 18x + 32y - 151 = 0$ are
(1) (-1, 1)(2) (6, 1)(3) (4, 1)(4) (-6, 1)

Exercise-3

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. Let P be the point (1, 0) and Q be a point on the curve $y^2 = 8x$. The locus of midpoint of PQ is

[AIEEE 2005 (3, -1), 225](1) $x^2 - 4y + 2 = 0$ (2) $x^2 + 4y + 2 = 0$ (3) $y^2 + 2x + 2 = 0$ (4) $y^2 - 4x + 2 = 0$

- An ellipse has OB as semi minor axis, F and F' as foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is : [AIEEE 2005 (3, -1), 225]
 - (1) $\frac{1}{\sqrt{3}}$ (2) $\frac{1}{4}$ (3) $\frac{1}{2}$ (4) $\frac{1}{\sqrt{2}}$

Conic Section

				1
3.	A focus of an ellipse the semi major axis i	at the origin. The directri s	ix is the line x = 4 and	eccentricity is $\overline{2}$, then the length of [AIEEE 2005 (3, -1), 225]
	8	2	4	5
	(1) 3	(2) 3	(3) 3	(4) 3
4.	The locus of a point F x^2 y^2	$P(\alpha,\beta)$ moving under the c	condition that the line y	= $\alpha x + \beta$ is a tangent to the hyperbola
	$\frac{a^2}{b^2} - \frac{b^2}{b^2} = 1$ is :		[AIEEE 20	05 (3. –1). 2251
	(1) a hyperbola	(2) a parabola	(3) a circle	(4) an ellipse
			a^3x^2 a^2x	
5.	The locus of the vert	ices of the family of paral	bolas v = $\frac{\frac{d}{3}}{3} + \frac{d}{2}$	– 2a is :
•••				[AIEEE-2006 (3, -1), 165]
	3	35	64	105
	(1) $xy = \overline{4}$	(2) $xy = 16$	(3) $xy = 105$	(4) $xy = 64$
6.	In an ellipse, the dist	ances between its foci is	6 and minor axis is 8.	Then its eccentricity is :
				[AIEEE 2006 (3, -1), 120]
	<u>1</u>	4	1	3
	(1) 2	(2) 5	(3) ^{√5}	(4) 5
7.	The equation of a tar tangent to the parabo	ngent to the parabola $y^2 =$ ola is perpendicular to the	= 8x is y = x + 2. The p e given tangent is [A	oint on this line from which the other IEEE 2007 (3, -1), 120]
	(1) (–1, 1)	(2) (0, 2)	(3) (2, 4)	(4) (-2, 0)
	_	x ² y ²		
8.	For the hyperbola ^C	$\cos^2 \alpha = \sin^2 \alpha = 1$, which	h of the following rema	ins constant when α varies ? [AIEEE 2007 (3, -1), 120]
	(1) Eccentricity(3) Abscissae of vert	ices	(2) Directrix(4) Abscissae of fo	ci
9.	The ellipse $x^2 + 4y^2$ inscribed in another of	= 4 is inscribed in a rec ellipse that passes throug	ctangle alingent with th gh the point (4, 0). The	ne coordinate axes, which in turn is n the equation of the ellipse is : [AIEEE 2009 (4, -1), 144]
10*.	(1) $x^2 + 12y^2 = 16$ Equation of the ellips	(2) $4x^2 + 48y^2 = 48$ se whose axes are the ax $\sqrt{2}$	(3) $4x^2 + 64y^2 = 48$ ses of coordinates and	(4) $x^2 + 16y^2 = 16$ which passes through the point
	(-3, 1) and has ecce (1) $3x^2 + 5y^2 - 32 = 0$	ntricity $\sqrt{\frac{1}{5}}$ is :	(2) $5x^2 + 3y^2 - 48 - $	[AIEEE 2011, I, (4, –1), 120]
	$(1) 3x^2 + 5y^2 - 3z = 0$ $(3) 3x^2 + 5y^2 - 15 = 0$)	$(2) 5x^{2} + 3y^{2} - 32 = (4) 5x^{2} + 3x^{2} + 3x^{2}$	= 0
11.	The equation of the h	nyperbola whose foci are	(-2, 0) and (2, 0) and	eccentricity is 2 is given by : [AIEEE 2011, II, (4, –1), 120]
	(1) $x^2 - 3y^2 = 3$	(2) $3x^2 - y^2 = 3$	$(3) - x^2 + 3y^2 = 3$	$(4) - 3x^2 + y^2 = 3$
12.	An ellipse is drawn by of the circle $x^2 + (y - x^2)$	y taking a diameter of the $2)^2 = 4$ is semi-major axis	circle $(x - 1)^2 + y^2 = 1$ as if the centre of the e	as its semi-minor axis and a diameter llipse is at the origin and its axes are

the coordinate axes, then the equation of the ellipse is : [AIEEE-2012, (4, -1)/120]

(1) $4x^2 + y^2 = 4$ (2) $x^2 + 4y^2 = 8$ (3) $4x^2 + y^2 = 8$ (4) $x^2 + 4y^2 = 16$

13. **Statement-1**: An equation of a common tangent to the parabola $y^2 = x$ and the ellipse $2x^2 + y^2 = 4$ is $y = 2x + \frac{2\sqrt{3}}{3}$

[AIEEE - 2013, (4, - 1) 120]

Statement-2: If the line $y = mx + \frac{m}{m}$, $(m \neq 0)$ is a common tangent to the parabola $y^2 = \frac{16\sqrt{3}}{3}x$ and the ellipse $2x^2 + y^2 = 4$, then m satisfies $m^4 + 2m^2 = 24$.

(1) Statement-1 is false, Statement-2 is true.

(2) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.

(3) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.

(4) Statement-1 is true, statement-2 is false.

14.	The equation of the circle passing th	rough the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having centre at
	(0, 3) is	[AIEEE - 2013, (4, – 1)]
	(1) $x^2 + y^2 - 6y - 7 = 0$	$(2) x^2 + y^2 - 6y + 7 = 0$
	$(3) x^2 + y^2 - 6y - 5 = 0$	$(4) x^2 + y^2 - 6y + 5 = 0$

The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to 15. it is:

$(1) (x^2 + y^2)^2 = 6x^2 + 2y^2$	$(2) (x^2 + y^2)^2 = 6x^2 - 2y^2$
$(3) (x^2 - y^2)^2 = 6x^2 + 2y^2$	$(4) (x^2 - y^2)^2 = 6x^2 - 2y^2$

The slope of the line touching both the parabolas $y^2 = 4x$ and $x^2 = -32y$ is : 16.

			[JEE(Main) 2014, (4, – 1), 120]
1	2	1	3
(1) 8	(2) $\overline{3}$	(2) $\frac{1}{2}$	$(4) \frac{1}{2}$
(1) 0	(2) 0	(3) 2	(4) 2

17. The area (in sq.units) of the quadrilateral formed by the tangents at the end points of the latera recta to $x^2 v^2$

the ellipse 9	$\frac{1}{5} = 1$, is		[JEE(Main) 2015, (4, – 1), 120]
27		27	
(1) 4	(2) 18	(3) 2	(4) 27

18. Let O be the vertex and Q be any point on the parabola, $x^2 = 8y$. If the point P divides the line segment OQ internally in the ratio 1 : 3, then the locus of P is [JEE(Main) 2015, (4, -1), 120] (2) $y^2 = x$ (3) $y^2 = 2x$ (4) $x^2 = 2y$ (1) $x^2 = y$

Let P be the point on the parabola, $y^2 = 8x$ which is at a minimum distance from the centre C of the circle, 19. $x^{2} + (y + 6)^{2} = 1$. Then the equation of the circle, passing through C and having its centre at P is :

	[JEE(Main) 2016, (4, – 1), 120]%
(1) $x^2 + y^2 - x + 4y - 12 = 0$	$(2) x^2 + y^2 - + 2y - 24 = 0$
$(3) x^2 + y^2 - 4 x + 9y + 18 = 0$	$(4) x^2 + y^2 - 4x + 8y + 12 = 0$

20. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is :

[JEE(Main) 2016, (4, -1), 120] (2) $\overline{\sqrt{3}}$ (4) 3 (1) √3 (3) $\sqrt{3}$

21.	The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$. If one of its directrices is x = – 4, then the $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$			
	equation of the normal (1) $2y - x = 2$	to it at $\begin{pmatrix} 1, \overline{2} \end{pmatrix}$ is (2) $4x - 2y = 1$	[JEE(Main) 2 (3) 4x + 2y = 7	2017, (4, - 1), 120] (4) x + 2y = 4
22.	A hyperbola passes th hyperbola at P also pas	nrough the point $P(\sqrt{2},$ sses through the point :	$\sqrt{3}$) and has foci at (= [JEE(£2, 0). Then the tangent to this Main) 2017, (4, – 1), 120]
	(1) $(3\sqrt{2}, 2\sqrt{3})$	(2) $(2\sqrt{2}, 3\sqrt{3})$	(3) ($\sqrt{3}$, $\sqrt{2}$)	(4) $(-\sqrt{2}, -\sqrt{3})$
23.	If the tangent at (1, 7) to of c is : (1) 85	the curve $x^2 = y - 6$ tou	iches the circle x ² + y ² + [JEE(Main) 2	- 16x + 12y + c = 0 then the value 018 , (4 , - 1) , 120] (4) 185
24	Tongonto oro drown to	(z) 35	- 26 at the points B and	(4) 105
24.	the point T(0, 3) then the	The hyperbola $4x^2 - y^2 =$ the area (in sq. units) of Δ	PTQ is : [JEE(Main) 2018, (4, – 1), 120]
	(1) 60 ^{√3}	(2) 36 ^{√5}	(3) 45 √5	(4) $54\sqrt{3}$
25.	Tangent and normal a parabola at A and B, re	re drawn at P(16,16) or spectively. If C is the cer	the parabola $y^2 = 16x$ the of the circle through	a, which intersect the axis of the the points P, A and B and ∠CPB
	$= \theta$, then a value of tail	ηθis: 4	[JEE(Main) 2	018, (4, – 1), 120]
	(1) 3	(2) $\frac{1}{3}$	(3) 2	(4) 2
	PART - II : JEE (A	DVANCED) / IIT-JE	EE PROBLEMS (P	REVIOUS YEARS)
1.	The locus of the mid po y ² = 4ax is another par	bint of the line segment jo abola with directrix	pining the focus to a mo [ווד-Ji]	ving point on the parabola EE 2002, Scr.(3, –1), 90]
	$(\Lambda) \times - 2$	$(B) = -\frac{a}{2}$	$(\mathbf{C}) \times -0$	(D) $X = \frac{a}{2}$
2.	(A) x = -a	(B) X = -	$(\mathbf{C}) \mathbf{X} = 0$	(D) =
	(A) $3y = 9x + 2$	mmon tangent to the cur (B) y = 2x + 1	ves y ² = 8x and xy = - 1 (C) 2y = x + 8	is : [IIT-JEE 2002 , Scr.(3, -1), 90] (D) y = x + 2
3.	(A) $3y = 9x + 2$ (i) The area of the qua $x^2 + y^2$	mmon tangent to the cur (B) y = 2x + 1 Idrilateral formed by the	ves y ² = 8x and xy = - 1 (C) 2y = x + 8 tangents at the end poi	is : [IIT-JEE 2002, Scr.(3, -1), 90] (D) y = x + 2 nts of latus rectum to the ellipse
3.	(A) $3y = 9x + 2$ (i) The area of the quantum $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is :	mmon tangent to the cur (B) y = 2x + 1 Idrilateral formed by the	ves y ² = 8x and xy = - 1 (C) 2y = x + 8 tangents at the end poi [IIT-JI	 is : [IIT-JEE 2002, Scr.(3, -1), 90] (D) y = x + 2 nts of latus rectum to the ellipse EE-2003, Scr.(3, -1) /84]
3.	(A) $3y = 9x + 2$ (i) The area of the quantum $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is : (A) 27/4 sq. units	mmon tangent to the cur (B) y = 2x + 1 Idrilateral formed by the (B) 9 sq. units	ves y ² = 8x and xy = - 1 (C) 2y = x + 8 tangents at the end poi [IIT-JI (C) 27/2 sq. units	is : [IIT-JEE 2002 , Scr.(3 , -1), 90] (D) y = x + 2 nts of latus rectum to the ellipse EE-2003 , Scr.(3 , -1) /84] (D) 27 sq. units
3.	(A) $3y = 9x + 2$ (i) The area of the quadratic formula $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is : (A) 27/4 sq. units (ii) Tangent is drawn to	mmon tangent to the cur (B) y = 2x + 1 idrilateral formed by the (B) 9 sq. units b ellipse $\frac{x^2}{27} + y^2 = 1$ at	ves $y^2 = 8x$ and $xy = -1$ (C) $2y = x + 8$ tangents at the end poi [IIT-JI (C) 27/2 sq. units $(3\sqrt{3} \cos \theta, \sin \theta)$ wher	is : [IIT-JEE 2002 , Scr.(3, -1), 90] (D) $y = x + 2$ ints of latus rectum to the ellipse EE-2003 , Scr.(3, -1) /84] (D) 27 sq. units $e \ \theta \in \left(0, \frac{\pi}{2}\right)$. Then the value of
3.	(A) $3y = 9x + 2$ (i) The area of the quantum $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is : (A) 27/4 sq. units (ii) Tangent is drawn to θ such that sum of interval	mmon tangent to the cur (B) y = 2x + 1 adrilateral formed by the (B) 9 sq. units b ellipse $\frac{x^2}{27} + y^2 = 1$ at rcepts on axes made by	ves $y^2 = 8x$ and $xy = -1$ (C) $2y = x + 8$ tangents at the end poi [IIT-JI (C) $27/2$ sq. units $(3\sqrt{3} \cos \theta, \sin \theta)$ wher this tangent is minimum [IIT-JI	is : [IIT-JEE 2002, Scr.(3, -1), 90] (D) y = x + 2 ints of latus rectum to the ellipse EE-2003, Scr.(3, -1) /84] (D) 27 sq. units $e \ \theta \in \left(0, \frac{\pi}{2}\right)$. Then the value of is : EE-2003, Scr.(3, -1) /84]
3.	The equation of the color (A) $3y = 9x + 2$ (i) The area of the quantum $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is : (A) 27/4 sq. units (ii) Tangent is drawn to θ such that sum of interpret $\frac{\pi}{2}$	mmon tangent to the cur (B) y = 2x + 1 adrilateral formed by the (B) 9 sq. units b ellipse $\frac{x^2}{27} + y^2 = 1$ at rcepts on axes made by $\frac{\pi}{2}$	ves $y^2 = 8x$ and $xy = -1$ (C) $2y = x + 8$ tangents at the end poi [IIT-JI (C) 27/2 sq. units $(3\sqrt{3} \cos \theta, \sin \theta)$ wher this tangent is minimum [IIT-JI $\frac{\pi}{2}$	is : [IIT-JEE 2002, Scr.(3, -1), 90] (D) y = x + 2 ints of latus rectum to the ellipse EE-2003, Scr.(3, -1) /84] (D) 27 sq. units $e \ \theta \in \left(0, \frac{\pi}{2}\right)$. Then the value of is : EE-2003, Scr.(3, -1) /84] $\frac{\pi}{2}$
3.	(A) $3y = 9x + 2$ (i) The area of the quantum $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is : (A) 27/4 sq. units (ii) Tangent is drawn to θ such that sum of interval $\frac{\pi}{3}$	mmon tangent to the cur (B) y = 2x + 1 adrilateral formed by the (B) 9 sq. units b ellipse $\frac{x^2}{27} + y^2 = 1$ at rcepts on axes made by (B) $\frac{\pi}{6}$	ves $y^2 = 8x$ and $xy = -1$ (C) $2y = x + 8$ tangents at the end poi [IIT-JI (C) 27/2 sq. units $(3\sqrt{3} \cos \theta, \sin \theta)$ wher this tangent is minimum [IIT-JI (C) $\frac{\pi}{8}$	is : [IIT-JEE 2002, Scr.(3, -1), 90] (D) y = x + 2 ints of latus rectum to the ellipse EE-2003, Scr.(3, -1) /84] (D) 27 sq. units $e \ \theta \in \left(0, \frac{\pi}{2}\right)$. Then the value of is : EE-2003, Scr.(3, -1) /84] (D) $\frac{\pi}{4}$
3. 4.	The equation of the color (A) $3y = 9x + 2$ (i) The area of the quantum $\frac{x^2}{9} + \frac{y^2}{5} = 1$ is : (A) 27/4 sq. units (ii) Tangent is drawn to θ such that sum of interval $\frac{\pi}{3}$ If tangents are drawn to the tangents between t	mmon tangent to the cur (B) y = 2x + 1 adrilateral formed by the (B) 9 sq. units b ellipse $\frac{x^2}{27} + y^2 = 1$ at rcepts on axes made by (B) $\frac{\pi}{6}$ b the ellipse x ² + 2y ² = 2, he coordinate axes, is -	ves $y^2 = 8x$ and $xy = -1$ (C) $2y = x + 8$ tangents at the end poi [IIT-JI (C) $27/2$ sq. units $(3\sqrt{3} \cos \theta, \sin \theta)$ wher this tangent is minimum [IIT-JI (C) $\frac{\pi}{8}$, then the locus of the m [IIT-JI	is : [IIT-JEE 2002, Scr.(3, -1), 90] (D) y = x + 2 ints of latus rectum to the ellipse EE-2003, Scr.(3, -1) /84] (D) 27 sq. units (D) 27 sq. units $e \ \theta \ \in \left(0, \frac{\pi}{2}\right)$. Then the value of is : EE-2003, Scr.(3, -1) /84] (D) $\frac{\pi}{4}$ id-point of the intercept made by EE-2004, Scr.(3, -1) /84]

- 5. A parabola has its vertex and focus in the first quadrant and axis along the line y = x. If the distances of the vertex and focus from the origin are respectively $\sqrt{2}$ and 2 $\sqrt{2}$, then an equation of the parabola is [IIT-JEE 2006, (3, -1), 184]
 - (A) $(x + y)^2 = x y + 2$ (B) $(x - y)^2 = x + y - 2$ (C) $(x - y)^2 = 8(x + y - 2)$ (D) $(x + y)^2 = 8(x - y + 2)$ $-x^2$

6. **STATEMENT - 1 :** The curve y = 2 + x + 1 is symmetric with respect to the line x = 1. **because**

- STATEMENT 2 : A parabola is symmetric about its axis. [IIT-JEE 2007, Paper-2, (3, -1), 81]
- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement - 1
- (B) Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement - 1
- (C) Statement 1 is True, Statement 2 is False
- (D) Statement 1 is False, Statement 2 is True

Comprehension (7 to 9)

Consider the circle $x^2 + y^2 = 9$ and the parabola $y^2 = 8x$. They intersect at P and Q in the first and the fourth quadrants, respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents to the parabola at P and Q intersect the x-axis at S.

7.	7. The ratio of the areas of the triangles PQS and PQR is			
	(A) 1 : √2	(B) 1 : 2	(C) 1 : 4	(D) 1 : 8
8.	The radius of the circumcircle of the triangle PRS is			
	(A) 5	(B) 3 ^{√3}	(C) 3 $\sqrt{2}$	(D) 2 ^{√3}
9.	The radius of the incircle	e of the triangle PQR is		
			8	
	(A) 4	(B) 3	(C) 3	(D) 2
10.	A hyperbola, having the	transverse axis of length	$12 \sin \theta$, is confocal with	the ellipse $3x^2 + 4y^2 = 12$. Then
	its equation is		[IIT-JEE-2007, Paper-1(3, -1)/81]	
	(A) $x^2 \csc^2\theta - y^2 \sec^2\theta = 1$		(B) $x^2 \sec^2\theta - v^2 \csc^2\theta = 1$	
	(C) $x^2 \sin^2\theta - y^2 \cos^2\theta =$	= 1	(D) $x^2 \cos^2 \theta - y^2 \sin^2 \theta =$	= 1

11. Consider the two curves $C_1 : y^2 = 4x$, $C_2 : x^2 + y^2 - 6x + 1 = 0$. Then,

[IIT-JEE 2008, Paper-1, (3, -1), 82]

[IIT-JEE 2007, Paper-1, (4, -1), 81]

- $(A) \qquad C_1 \text{ and } C_2 \text{ touch each other only at one point}$
- (B) C₁ and C₂ touch each other exactly at two points
- (C) C1 and C2 intersect (but do not touch) at exactly two points
- (D) C_1 and C_2 neither intersect nor touch each other

12. Consider a branch of the hyperbola $x^2 - 2y^2 - 2\sqrt{2}x - 4\sqrt{2}y - 6 = 0$

[IIT-JEE-2008, Paper-2(3, -1)/81]

with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of the triangle ABC is

56 |

	(A) $1 - \sqrt{\frac{2}{3}}$	(B) $\sqrt{\frac{3}{2}} - 1$	(C) 1 + $\sqrt{\frac{2}{3}}$	(D) $\sqrt{\frac{3}{2}} + 1$
13.	Let (x, y) be any point of (0, 0) to (x, y) in the rational (A) $x^2 = y$	on the parabola $y^2 = 4x$. to 1 : 3. Then the locus of (B) $y^2 = 2x$	Let P be the point that div of P is [IIT-JEE 2011 (C) $y^2 = x$	vides the line segment from , Paper-2 , (3 , –1) , 80] (D) x ² = 2y
14.	Let P(6, 3) be a point o (9, 0), then the eccentri $\sqrt{\frac{5}{2}}$	on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ city of the hyperbola is $\sqrt{\frac{3}{a^2}}$	$\frac{2}{2} = 1$. If the normal at the [IIT-JEE 2011	e point P intersects the x-axis at , Paper-2, (3, –1), 80]
	(A) $\sqrt{2}$	(B) V 2 ₂	(C) √2	(D) ^{√3}
15.	The ellipse E_1 : $\frac{x}{9} + \frac{y}{4}$ Another ellipse E_2 pass ellipse E_2 is	- = 1 is inscribed in a rec ing through the point (0,	ctangle R whose sides are 4) circumscribes the rec [IIT-JEE 2012, Paper-1	e parallel to the coordinate axes. tangle R. The eccentricity of the I, (3, –1), 70]
	(A) $\frac{\sqrt{2}}{2}$	(B) $\frac{\sqrt{3}}{2}$	(C) $\frac{1}{2}$	(D) $\frac{3}{4}$
16.	If a tangent to a suitable which of the following o	e conic (Column 1) is fou ptions is the only CORR	und to be y = x + 8 and its RECT combination?	s point of contact is (8, 16), then
	C C		[JEE(Advance	ed) 2017, Paper-1,(3, –1)/61]
	(A) (III) (i) (P)	(B) (I) (ii) (Q)	(C) (II) (iv) (R)	(D) (III) (ii) (Q)

		lew	ore										
		19 M	UI 3			FXFR	ISE #	£ 1					
								۲ I ۸					
Secti	on (A)					FARA	BUL	A					
A-1. A-8.	(4) (3)	A-2. A-9.	(3) (3)	A-3. A-10.	(4) (1)	A-4. A-11.	(2) (4)	A-5. A-12.	(2) (2)	A-6. A-13.	(1) (2)	A-7. A-14.	(1) (1)
Secti ^{B-1.}	on (B)	B-2.	(1)	B-3.	(1)	B-4.	(3)	B-5.	(1)	B-6.	(1)	B-7.	(2)
Secti	on-(C)		()		()		()		()		()		()
C-1.	(1)	C-2.	(4)	C-3.	(4)	C-4.	(3)	C-5.	(4)	C-6.	(3)	C-7.	(1)
C-8. Secti	(3) on-(D)	C-9.	(1)										
D-1.	(2)	D-2.	(1)	D-3.	(4)	D-4.	(3)	D-5.	(2)	D-6.	(4)	D-7.	(2)
D-8.	(2)	D-9.	(3)	D-10.	(2)	D-11.	(2)	D-12.	(3)	D-13.	(1)	D-14.	(2)
D-15.	(2)												
						ELL	IPSE						
Secti	on (A)												
A-1.	(2)	A-2.	(1)	A-3.	(1)	A-4.	(4)	A-5.	(3)	A-6.	(3)	A-7.	(4)
A-8.	(2)	A-9.	(4)	A-10.	(3)	A-11.	(2)	A-12.	(2)	A-13.	(2)	A-14.	(3)
A-15.	(2)	A-16.	(4)	A-17.	(3)	A-18.	(1)						
Secti	on (B)	:											
B-1.	(1)	B-2.	(3)	B-3.	(2)	B-4.	(4)	B-5.	(1)	B-6.	(3)	B-7.	(2)
B-8.	(3)	B-9.	(1)										
Secti	on (C)	:											
C-1.	(1)	C-2.	(1)	C-3.	(2)	C-4.	(2)	C-5.	(2)	C-6.	(1)	C-7.	(3)
C-8.	(3)	C-9.	(3)	C-10.	(3)	C-11.	(2)	C-12.	(1)	C-13.	(1)		
						HYPE	RBOL	.Α					
Secti	on- (A)):											
A-1.	(2)	A-2.	(3)	A-3.	(2)	A-4.	(3)	A-5.	(1)	A-6.	(3)	A-7.	(1)
A-8.	(2)	A-9.	(3)	A-10.	(2)	A-11.	(1)	A-12.	(2)	A-13.	(1)	A-14.	(1)
A-15.	(1)	A-16.	(4)	A-17.	(1)	A-18.	(2)	A-19.	(4)				
Secti	on-(B)												
B-1.	(1)	B-2.	(1)	B-3.	(1)	B-4.	(1)	B-5.	(4)	B-6.	(2)	B-7.	(2)
B-8.	(3)	B-9.	(1)	B-10.	(2)								

Section	on- (C)	:											
C-1.	(4)	C-2.	(4)	C-3.	(4)	C-4.	(1)	C-5.	(2)	C-6.	(4)		
Section	on-(D):												
D-1.	(1)	D-2.	(1)	D-3.	(4)	D-4.	(4)	D-5.	(4)	D-6.	(3)	D-7.	(4)
D-8.	(1)												
					E	EXERC	ISE # 2	2					
						PAR	RT - I						
1.	(1)	2.	(3)	3.	(1)	4.	(3)	5.	(4)	6.	(4)	7.	(3)
8.	(4)	9.	(1)	10.	(2)	11.	(1)	12.	(1)	13.	(1)	14.	(3)
15.	(1)	16.	(4)	17.	(1)	18.	(3)	19.	(3)	20.	(3)	21.	(2)
22.	(1)	23.	(1)	24.	(1)	25.	(4)	26.	(3)	27.	(1)	28.	(4)
29.	(4)	30.	(4)	31.	(4)	32.	(3)	33.	(1)	34.	(1)	35.	(3)
36.	(3)	37.	(1)										
						PAR	T - II						
A-1.	(3)	A-2.	(3)	A-3.	(3)								
Section	on (B)	:											
B-1.	(3)												
Section	on (C)	:											
C-1.	(1,2,4)		C-2.	(1,2,3,4	l)	C-3.	(2,4)		C-4.	(3,4)			
					E	EXERC	ISE # :	3					
						PAR	RT - I						
1.	(4)	2.	(4)	3.	(1)	4.	(1)	5.	(4)	6.	(4)	7.	(4)
8.	(4)	9.	(1)	10.	(1,2)	11.	(2)	12.	(4)	13.	(2)	14.	(1)
15.	(1)	16.	(3)	17.	(4)	18.	(4)	19.	(4)	20.	(2)	21.	(2)
22.	(2)	23.	(2)	24.	(3)	25.	(4)						
						PAR	T - II						
1.	(C)	2.	(D)	3.	(i) (D)	(ii) (B)	4.	(C)	5.	(C)	6.	(A)	
7.	(C)	8.	(B)	9.	(D)	10. (A)	11.	(B)	12.	(B)	13.	(C)	
14.	(B)	15.	(C)	16.	(A)								

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists **30** questions, **4 marks** each.
- **3.** Only one choice is correct **1 mark** will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1.	The equation of the conic with focus at (1,-1),	directrix along x – y + 1 = 0 and with eccentricity $\sqrt{2}$ is
	(1) $x^2 - y^2 = 1$	(2) xy = 1
	(3) 2xy - 4x + 4y + 1 = 0	(4) 2xy + 4x - 4y - 1 = 0

2. The length of latus rectum of a parabola whose directrix is x + y - 2 = 0 and focus is (3,-4) is

		3	3
(1) 6√2	(2) $3\sqrt{2}$	(3) $\overline{\sqrt{2}}$	(4) $\overline{2\sqrt{2}}$

3. The equation of parabola whose vertices is (-1,-2), axis is vertical and which passes through the point (3,6) is

1

(1) $x^2 + 2x - 2y - 3 = 0$	(2) $2x^2 = 3y$
$(3) x^2 - 2x - y + 3 = 0$	(4) $x^2 = 3y$

- 4. Equation of tangent to the parabola $x^2 = 4ay$ is (1) $ty = x + at^2$ (2) $ty = -x + at^2$ (3) $tx + y = at^2$ (4) $tx - y = at^2$
- 5. If slope of the tangent to the parabola $y^2 = -8x$ is $\overline{2}$ then equation of the tangent is (1) x + 2y + 8 = 0 (2) x - 2y + 8 = 0 (3) x - 2y - 8 = 0 (4) 2x - y - 8 = 0
- 6. The equation of the tangent to the parabola $y^2 = 16 x$, which is perpendicular to the line y = 3x + 7 is (1) y - 3x + 4 = 0 (2) 3y - x + 36 = 0 (3) 3y + x - 36 = 0 (4) 3y + x + 36 = 0
- 7. Equation of the tangent common to the parabola $y^2 = 4x$ and $x^2 = -32y$ is (1) 2x + y - 4 = 0 (2) x + 2y - 4 = 0 (3) x - 2y + 4 = 0 (4) x - 2y - 4 = 0
- 8. Two perpendicular tangents to $y^2 = 4ax$ always intersect on the line-(1) x = a (2) x + a = 0 (3) x + 2a = 0 (4) x + 4a = 0
- 9. The equation of the normal at the point $\left(\frac{a}{4}, a\right)$ to the parabola $y^2 = 4ax$, is (1) 4x + 8y + 9a = 0 (2) 4x + 8y - 9a = 0 (3) 4x + y - a = 0 (4) 4x - y + a = 0

Max. Time : 1 Hr.

(3) $x^2 + y^2 + 2x + 10y - 24 = 0$ (4) $x^2 + y^2$	$y^2 - 2x + 10y + 24 = 0$
11. The locus of the mid point of all chord parallel to the line y (1) $y = 2$ (2) $y = -2$ (3) $2y + $	$y = 2x + 3$ to the parabola $y^2 = 8x$ is 1 = 0 (4) y = 8
12. If the latus rectum of an ellipse be equal to half of its mind	or axis, then its eccentricity is
(1) $\frac{1}{2}$ (2) $\frac{\sqrt{3}}{2}$ (3) $\frac{2}{3}$	(4) $\frac{\sqrt{2}}{3}$
13. The equation of the ellipse whose one of the vertex is (0, (1) $95x^2 + 144y^2 = 4655$ (3) $144x^2 + 95y^2 = 4750$ (2) $144x$ (4) $95x^2$	7) and the corresponding directrix is $y = 12$ is $x^{2} + 95y^{2} = 4655$ $+ 144y^{2} = 13685$
14. Equation of the ellipse whose focii are (2,2) and (4,2) and (1) $25 (x - 3)^2 + 24 (y - 2)^2 = 600$ (2) $25 (x - 3)^2 + 25 (y - 2)^2 = 600$ (3) $24 (x - 3)^2 + 25 (y - 2)^2 = 600$ (4) $24 (x - 3)^2 + 25 (y - 2)^2 = 600$	the major axis is of the length 10 is $(x + 3)^2 + 24 (y + 2)^2 = 600$ $(x + 3)^2 + 25 (y + 2)^2 = 600$
15. The equation of the tangent to the ellipse $x^2 + 16y^2 = 16$ r (1) $y = \sqrt{3}x + \sqrt{47}$ (2) $y = \sqrt{3}x - \sqrt{13}$ (3) $y = \sqrt{3}x - \sqrt{13}$	making an angle of 60° with x-axis may be $\sqrt{3}x + 16$ (4) y = $\sqrt{3}x + 7$
16. Equations of the tangent lines of the ellipse $9x^2 + 16y^2 = 1000$ (1) $y = -3$ and $x + y = 5$ (2) $x - y$ (3) $x - y = -1$ and $y = 3$ (4) $y = 3$	144 which passes through the point (2,3) is = -1 and x + y = 5 and x + y = 5
17. The angle between pair of tangents drawn to the ellipse 3 (1) $\tan^{-1}\left(\frac{12}{5}\right)$ (2) $\tan^{-1}\left(\frac{12}{\sqrt{5}}\right)$ (3) \tan^{-1}	$4x^{2} + 2y^{2} = 5$ from the point (1,2) is (6 $\sqrt{5}$) (4) tan ⁻¹ (12 $\sqrt{5}$)
18. Equation of the normal at the point (2,3) on the ellipse 9x (1) $3y = 8x - 10$ (2) $3y = 8x - 7$ (3) $3x + 3x - 7$	$x^{2} + 16y^{2} = 180$ is 8y - 30 = 0 (4) 3x - 8y + 18 = 0
19. For each point (x,y) on an ellipse , the sum of the distant Then the positive value of x so that $(\alpha,3)$ lies on the elliptical terms of the sum of the distance of x so that $(\alpha,3)$ lies on the elliptical terms of the sum of x so that $(\alpha,3)$ lies on the elliptical terms of x so that $(\alpha,$	ce from (x,y) to the points (2,0) and (-2,0) is 8. pse is -
(1) 2 (2) $2\sqrt{3}$ (3) $\frac{1}{\sqrt{3}}$	(4) 4
20. An ellipse is described by using an endless string which is and 4 cm, the necessary length of the string and the distance (1) 6, $-2\sqrt{5}$ (2) 6 + $2\sqrt{5}$, $2\sqrt{5}$ (3) 6,2 +	s passed over two points. If the axes are 6 cm ince between the pins respectively in cm, are $\sqrt{5}$ (4) 6. $\sqrt{5}$
21. The line passing through the extremity A of the major axis $x^2 + 9y^2 = 9$ meets its auxiliary circle at the point M, then t the origin O is	and extremity B of the minor axis of the ellipse he area of the triangle with vertices at A,M and
(1) $\frac{31}{10}$ (2) $\frac{29}{10}$ (3) $\frac{21}{10}$	(4) $\frac{27}{10}$
22. If P is a point on the hyperbola $16x^2 - 9y^2 = 144$ whose for (1) 4 (2) 6 (3) 8	cii are S ₁ and S ₂ then $ PS_1 - PS_2 $ is equal to (4) 12
23. The locus of the point of intersection of the lines bxt – ayt	= ab and bx + ay = abt is
◆ 61 l	•

24.	(1) Th	A par e equ	abol atior	a i of the hy	(2) An e vperbola i	llipse n the stand	(3) A lard form (hyperbola with transv	(4 verse axis) A straigh along the	it line x-axis) ha	ving the
	len (1)	gth of $\frac{x^2}{64}$ –	latu <u>y²</u> 36	s rectum = = 1	= 9 units a (2) $\frac{x^2}{36}$ -	and eccentri - $\frac{y^2}{64} = 1$	icity = $\frac{5}{4}$ is (3)	$\frac{x^2}{36} + \frac{y^2}{64} =$	1 (4	$-\frac{x^2}{64}+\frac{y}{36}$	$\frac{2}{6} = 1$	
25.	Th (1)	e locu circle	s of	the centre	of a circl (2) para	e, which tou bola	uches exter (3) el	rnally the g lipse	iven two c (4	ircle's is) hyperbol	а	
26.	Let	: 16x²	– 3y	² – 32x – ¹	12y – 44 :	= 0 be a hyp	perbola, th	en which o	f the follow	ving does r	not hold	
	(1)	Leng	th of	the transv	verse axis	is 2√3	(2) Le	ength of lat	us rectum	is $\frac{32}{\sqrt{3}}$		
	(3)	Eccei	ntrici	ity is √ 3			(4) E	quation of a	a directrix i	is $x = \sqrt{19}$	-	
27.	lf F the	PQ is a n the	i dou ecce	ible ordina entricity e s	ate of the l satisfies	د hyperbola 6	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	such that <i>L</i>	OPQ is ec	quilateral, C	D being the	e centre,
	(1)	e ∈ ($1, \frac{2}{\sqrt{3}}$	$\overline{}$	(2) e =	<u>11</u> 10	(3) e	$=\frac{\sqrt{3}}{2}$	(4	$e > \frac{2}{\sqrt{3}}$		
28.	28. Equation of common tangent to the parabola $y^2 = 8x$ and hyperbola $3x^2 - y^2 = 3$ is/are (1) $2x \pm y + 1 = 0$ (2) $2x \pm y - 1 = 0$ (3) $x \pm 2y + 1 = 0$ (4) $x \pm 2y - 1 = 0$											
29.	29. If the two tangents drawn on hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (1) $y^2 + b^2 = c^2 (x^2 - a^2)$ (3) $ax^2 + by^2 = c^2$ (2) $y^2 + b^2 = c^2 (x^2 + a^2)$ (4) $x^2 + y^2 = c^2 (y^2 + b^2)$											
30.	30. Let C be the centre of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The tangents at any point P on this hyperbola meets the straight line bx – ay = 0 and bx + ay = 0 in the point Q and P respectively, then CQ . CR = $1 \cdot 1 = 1 + 1 = 1 + 1 = 1 = 1$											
	(1)	a² + t) ²		(2) a²- Practi	b² ce Test	(3) ^a	² [°] b² Iain Pat	(4 (4) a² b²		
OBJECTIVE RESPONSE SHEET (ORS)												
Qı	le.	1		2	3	4	5	6	7	8	9	10
Ar	ns.											
Qı	ıe.	11		12	13	14	15	16	17	18	19	20
Ar	ns.											
Qu	ıe.	21		22	23	24	25	26	27	28	29	30

Ans.

PART - II : PRACTICE QUESTIONS

At any point P on the parabola $y^2 - 2y - 4x + 5 = 0$ a tangent is drawn which meets the directrix at Q. The 1. locus of point R, which divides QP externally in the ratio 2:1 is (1) $(x + 1) (y - 1)^2 + 4 = 0$ (2) $(x + 1) (y - 1)^2 + 2 = 0$ (3) $(x + 1) (y - 1)^2 - 4 = 0$ (4) $(x + 1) (y + 1)^2 - 4 = 0$ 2. Let S be the focus of the parabola $y^2 = 8x$ and let PQ be the common chord of the circle $x^2 + y^2 - 2x - 4y$ = 0 and the given parabola. The area of the triangle PQS is (1) 2(2) 4(3) 6(4) 8The equation of the common tangent touching the circle $(x - 3)^2 + y^2 = 9$ and the parabola $y^2 = 4x$ above 3. the x-axis is (2) $\sqrt{3}y = -(x+3)$ (3) $\sqrt{3}y = x+3$ (4) $\sqrt{3}y = -(3x+1)$ (1) $\sqrt{3y} = 3x + 1$ The equation of the directrix of the parabola $y^2 + 4y + 4x + 2 = 0$ is: 4. (1) x = -1(2) x = 1(3) x = -3/2(4) x = 3/2The locus of the mid point of the line segment joining the focus to a moving point on the parabola $y^2 =$ 5. 4ax is another parabola with directrix $(4) \quad x = \frac{a}{2}$ (2) x = (3) x = 0(1) x = -aThe equation of the common tangent to the curves $y^2 = 8x$ and xy = -1 is 6. (4) y = x + 2(1) 3y = 9x + 2(2) y = 2x + 1(3) 2y = x + 8Normals are drawn from the point P with slopes m_1 , m_2 , m_3 to the parabola $y^2 = 4x$. If locus of P with m_1 7. $m_2 = \alpha$ is a part of the parabola itself then $\alpha =$ (3) 2(4) 3(1) 0(2)1Find the point on $x^2 + 2y^2 = 6$, which is nearest to the line x + y = 78. (3)(-2, -1)(4)(2,-1)(1)(2,1)(2) (-2, 1) $\left(0, \frac{\pi}{2}\right)$. Then the value of θ Tangent is drawn to ellipse $\frac{x^2}{27} + y^2 = 1$ at $(3\sqrt{3} \cos \theta, \sin \theta)$ where $\theta \in 0$ 9. such that sum of intercepts on axes made by this tangent is minimum is : (4) $\frac{\pi}{4}$ (3) 8 (1) 3 (2) 6 The normal at a point P on the ellipse $x^2 + 4y^2 = 16$ meets the x-axis at Q. If M is the mid point of the line 10. segment PQ, then the locus of M intersects the latus rectum of the given ellipse at the points (2) $\left(\pm\frac{3\sqrt{5}}{2},\pm\frac{\sqrt{19}}{4}\right)$ (3) $\left(\pm2\sqrt{3},\pm\frac{1}{7}\right)$ (4) $\left(\pm2\sqrt{3},\pm\frac{4\sqrt{3}}{7}\right)$ In a triangle ABC with fixed base BC, the vertex A moves such that $\cos B + \cos C = 4 \sin^2 2$. If a, b 11*. and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then (2) b + c = 2a(1) b + c = 4a(3) locus of points A is an ellipse (4) locus of point A is a pair of straight lines

- **12.** The line 2x + y = 1 is tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is (1) 3/2 (2) 2 (3) 5/2 (4) 3
- **13.** Tangents are drawn from any point on the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ to the circle $x^2 + y^2 = 9$. The locus of mid-point of the chord of contact is (1) $x^2 + y^2 = 5$ (2) $x^2 - y^2 = 5$

(3) $\frac{x^2}{9} + \frac{y^2}{4} = \left(\frac{x^2 - y^2}{9}\right)^2$ (4) $\frac{x^2}{9} - \frac{y^2}{4} = \left(\frac{x^2 + y^2}{9}\right)^2$	• •	-			
	(3)	$\frac{x^2}{9} + \frac{y^2}{4}$	$\left(\frac{x^2 - y^2}{9}\right)^2$	(4) $\frac{x^2}{9} - \frac{y^2}{4} = ($	$\left(\frac{x^2+y^2}{9}\right)^2$

14. The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse $x^2 + 9y^2 = 9$ meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin O is

31	29	21	27
(1) 10	(2) 10	(3) 10	(4) 10

15. The common tangents to the circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$ touch the circle at the points P, Q and the parabola at the points R, S. Then the area of the quadrilateral PQRS is (1) 3 (2) 6 (3) 9 (4) 15

COMPREHENSION

Comprehension # 1 (Q. 16 to 18)

Normals are drawn at point P, Q and R lying on the parabola $y^2 = 4x$ which intersect at (3, 0). Then

16.	Area of ΔPQR is			
	(1) 2	(2) 3	(3) 5	(4) 5/2
17.	Centroid of Δ PQR is (1) (2, 0)	(2)(2/3,0)	(3) (5/2 0)	(1) (0 5/2)
	(1) (2, 0)	(2) (2/3, 0)	(3) (3/2, 0)	(4) (0, 5/2)
18.	Circumcentre of ΔPQR	is		
	(1) (2, 0)	(2) (2/3, 0)	(3) (5/2, 0)	(4) (0, 5/2)

Comprehension # 2 (Q.19 to 21)

Let ABCD be a square of side length 2 units. C_2 is the circle through vertices A, B, C, D and C_1 is the circle touching all the sides of the square ABCD. L is a line through A.

			F	$PA^2 + PB^2 + PC^2 + PD^2$	
19.	If P is a point on C1 and	Q is another point on C2	2 then Q	$QA^2 + QB^2 + QC^2 + QD^2$	is equal to
	(1) 0.75	(2) 1.25	(3) 1	(4) 0.5	

- 20. A circle touch the line L and the circle C₁ externally such that both the circles are on the same side of the line, then the locus of centre of the circle is
 (1) ellipse
 (2) hyperbola
 (3) parabola
 (4) parts of straight line
- **21.** A line M through A is drawn parallel to BD. Point S moves such that its distances from the line BD and the vertex A are equal. If locus of S cuts M at T_2 and T_3 and AC at T_1 , then area of $\Delta T_1T_2T_3$ is

<u>1</u>	2		
(1) ² sq. units	(2) ³ sq. units	(3) 1 sq. units	(4) 2 sq. units

Comprehension # 3 (22-24)

Tangents are drawn from the point P(3, 4) to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ touching the ellipse at point A and B.

(4) (3, 0) and

22. The coordinates of A and B are

(1) (3, 0) and (0, 2)
(3)
$$\left(-\frac{8}{5}, \frac{2\sqrt{161}}{15}\right)$$
 and

(3) and (0, 2) (3) The orthocentre of the triangle PAB is

(1)
$$\left(5,\frac{8}{7}\right)$$
 (2) $\left(\frac{7}{5},\frac{25}{8}\right)$ (3) $\left(\frac{11}{5},\frac{8}{5}\right)$ (4) $\left(\frac{8}{25},\frac{7}{5}\right)$

- 24. The equation of the locus of the point whose distances from the point P and the line AB are equal, is
 - (1) $9x^2 + y^2 6xy 54x 62y + 241 = 0$

$$(3) \ 9x^2 + 9y^2 - 6xy - 54x - 62y - 241 = 0$$

(2)
$$x^2 + 9y^2 + 6xy - 54x + 62y - 241 = 0$$

(4) $x^2 + y^2 - 2xy + 27x + 31y - 120 = 0$

 $\left(-\frac{8}{5},\frac{2\sqrt{161}}{15}\right)_{\text{and}}\left(-\frac{9}{5},\frac{8}{5}\right)$

 $\left(-\frac{9}{5},\frac{8}{5}\right)$

Comprehension # 4 (25-26)

23.

The circle $x^2 + y^2 - 8x = 0$ and hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ intersect at the points A and B.

25. Equation of a common tangent with positive slope to the circle as well as to the hyperbola is

(1) $2x - \sqrt{5}y - 20 = 0$ (2) $2x - \sqrt{5}y + 4 = 0$ (3) 3x - 4y + 8 = 0(4) 4x - 3y + 4 = 0

26. Equation of the circle with AB as its diameter is (1) $x^2 + y^2 - 12x + 24 = 0$ (2) $x^2 + y^2 + 12x + 24 = 0$ (3) $x^2 + y^2 + 24x - 12 = 0$ (4) $x^2 + y^2 - 24x - 12 = 0$

Comprehension # 5 (27-28)

Let PQ be a focal chord of the parabola $y^2 = 4ax$. The tangents to the parabola at P and Q meet at a point lying on the line y = 2x + a, a > 0.

27. Length of chord PQ is (1) 7a

(3) 2a (4

(4) 3a

28. If chord PQ subtends an angle θ at the vertex of $y^2 = 4ax$, then tan $\theta =$

(2) 5a

$\frac{2}{\sqrt{7}}$	$\frac{-2}{\sqrt{7}}$	$\frac{2}{\sqrt{5}}$	$\frac{-2}{\sqrt{5}}$
(1) 3 *	(2) 3	(3) 3	(4) 3

Comprehension # 6 (29-30)

Let a, r, s, t be nonzero real numbers. Let P(at², 2at), Q, R (ar², 2ar) and (as², 2as) be distinct points on the parabola $y^2 = 4ax$. Suppose that PQ is the focal chord and lines QR and PK are parallel, where K is the point (2a, 0)

29. The value of r is

1	$t^{2} + 1$	1	$t^2 - 1$			
(1) – ^t	(2) t	(3) t	(4) t			

30. If st = 1, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is

	$\frac{(t^2+1)^2}{2t^3}$	$\frac{a(t^2+1)^2}{2t^3}$	$\frac{a(t^2+1)^2}{t^3}$	$\frac{a(t^2+2)^2}{t^3}$							
	(1) 21	(2) 21	(3)	(4) (4)							
Comp	Comprehension # 7 (31-33)										
	$y = x$ is tangent to the parabola $y = ax^2 + c$.										
31.	If $a = 2$, then the value of c is										
	$\frac{1}{2}$	<u>1</u>	<u>1</u>								
	(1) 8	(2) – 2	(3) 2	(4) 1							
32.	If (1, 1) is point of con	tact then a is									
	$\frac{1}{2}$	$\frac{1}{2}$	<u>1</u>	$\frac{1}{2}$							
	(1) 2	(2) 3	(3) 4	(4) 6							
33.	If $c = 2$, then point of (1)	contact is									
	(1) (2, 2)	(2) (4, 4)	(3) (6, 6)	(4) (3, 3)							
Comp	rehension # 8 (34-36)										
	$(3x - 4y + 10)^2$ (4x	$+3y-15)^{2}$									
	2 +	3 = 1 is an ellip	ose								
34.	Major and minor axes	of the ellipse are									
				$2\sqrt{3}$ $2\sqrt{2}$							
	(1) 6 and 4	(2) 150 and 100	(3) $10\sqrt{3}$ and $10\sqrt{2}$	(4) $\frac{5}{3}$ and $\frac{5}{5}$							
35.	Eccentricity of the ellips	se is									
	_1	$\sqrt{3}$	$\sqrt{2}$								
	(1) \{3	(2) 5	(3) 5	(4) none of these							
36.	Centre of the ellipse is	. ,									
		(6 17)	$\left(\sqrt{2} \sqrt{3}\right)$								
	(4) (0, 0)	$\left(\frac{3}{5},\frac{1}{5}\right)$	$\left(\frac{1}{5}, \frac{1}{5}\right)$								
Comp	(1) (0, 0) rehension # 9 (37-38)	(2)	(3)	(4) none of these							
comp	The general second	degree equation repres	sent a hyperbola if h ²	- ab > 0 and $\Delta \neq$ 0 where							
	a h q										
	h b f										
	A_gfc	and H' ha two hypothele	as. They are said to be	conjugate to one another if the							
	$\Delta = \frac{1}{2}$ transverse and conjuga	and H be two hyperbold	as. They are salu to be	d transverse axes of the other							
	Now answer the follow	ing questions.	servery the conjugate an								
		$x^2 y^2$									
07		$\frac{\lambda}{a^2} \frac{y}{b^2}$	- 4 and DN baths as								
37.	Let P be any point o	n the hyperbola a - b	=1 and PN be the pe DV^2	rpendicular on transverse axis.							
			$\frac{PN^2}{NA NA'}$								
	Let A and A' be the ver	rtices of hyperbola, then									
	$\frac{a^2}{a}$	$\frac{b^2}{2}$									
	(1) ^{b²}	(2) a ²	(3) a ²	(4) b ²							
38.	The director circle of th	ne hyperbola x² – y² = a² i	is								
		-									

	a ²			
(1) $x^2 + y^2 = ax^2$	(2) $x^2 + y^2 = 2$	(3) $x^2 + y^2 = a^2$	(4) none of these	

	AP	SP /	Ansv	wers									
						PA	RT - I						
1.	(3)	2.	(2)	3.	(1)	4.	(4)	5.	(3)	6.	(4)	7.	(3)
8.	(2)	9.	(2)	10.	(4)	11.	(1)	12.	(2)	13.	(2)	14.	(3)
15.	(4)	16.	(4)	17.	(2)	18.	(2)	19.	(1)	20.	(2)	21.	(4)
22.	(2)	23.	(3)	24.	(1)	25.	(4)	26.	(4)	27.	(4)	28.	(1)
29.	(1)	30.	(1)										
						PA	RT - II						
1.	(1)	2.	(2)	3.	(3)	4.	(4)	5.	(3)	6.	(4)	7.	(3)
8.	(1)	9.	(2)	10.	(3)	11.	(2,3)	12.	(2)	13.	(4)	14.	(4)
15.	(4)	16.	(1)	17.	(2)	18.	(3)	19.	(1)	20.	(3)	21.	(3)
22.	(4)	23.	(3)	24.	(1)	25.	(2)	26.	(1)	27.	(2)	28.	(4)
29.	(4)	30.	(2)	31.	(1)	32.	(1)	33.	(2)	34.	(4)	35.	(1)
36.	(2)	37.	(1)	38.	(4)								