Binomial Theorem

Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A) : Expansion of $(x + a)n$, general term, middle term and coefficient of xk							
A-1.	$^{15}C_{3r} = {}^{15}C_{r+3}$ then value (1) 3	of r is (2) 4	(3) 5	(4) 8			
A-2.	${}^{2n}C_3: {}^{n}C_2 = 44:3$ then v (1) 20	alue of ⁰C₃ is (2) 35	(3) 56	(4) 10			
A-3.	The value of ${}^{15}C_3 + {}^{15}C_3$ (1) ${}^{16}C_3$	13 is (2) ³⁰ C ₁₆	(3) ¹⁵ C ₁₀	(4) ¹⁶ C ₁₃			
A-4.	In the expansion of (3x (1) ¹⁷ C ₇ (3x) ⁷ (4y) ¹⁰	(2) ¹⁷ , 7 th term from be (2) ¹⁷ C ₆ (3x) ¹¹ (4y) ⁶	egining is (3) ¹⁷ C ₁₀ (3x) ¹⁰ (4y) ⁷	(4) ¹⁷ C ₈ (3x) ⁸ (4y) ⁹			
A-5.№	In the expansion of (2a (1) 2 $^{11}C_5 a^5 b^6$	$\left(\frac{b}{2}\right)^{11}$ the 6 th term from (2) $\frac{1}{2}$ ${}^{11}C_5 a^5 b^6$	the end is (3) 2 $^{11}C_5 a^6 b^5$	(4) $\frac{1}{2}_{11}C_6 a^{6}b^5$			
A-6.	In the expansion of (3) (1) ${}^{13}C_5(3)^8$	$(x + \frac{1}{x})^{13}$ coefficient of x ⁷ i (2) ¹³ C ₄ 3 ⁹	s- (3) ¹³ C ₃ 3 ¹⁰	(4) ¹³ C ₁₀ 3 ³			
A-7.	The coefficient of x^5 in t (1) ${}^{12}C_52^5.3^7$	the expansion of $(2 + 3x)$ (2) ${}^{12}C_62^6.3^6$	¹² is- (3) ¹² C ₅ 2 ⁷ .3 ⁵	(4) None of these			
A-8.	The term containing x in (1) 2 nd	n the expansion of $(x^2 + (2) 3^{rd})$	$\left(\frac{1}{x}\right)^{5}$ is - (3) 4 th	(4) 5 th			
A-9.ൔ	The term independent of (1) 3/2	of x in the expansion of (2) 5/4	$\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ is- (3) 5/2	(4) None of these			
A-10.¤̀	The $(m + 1)$ th term of (1) independent of x (3) dependent on the ratio	$\left(\frac{x}{y} + \frac{y}{x}\right)^{2m+1}$ is: atio x/y and m	(2) a constant (4) none of these				
A-11.è	The total number of terr (1) 50	ms in the expansion of, ((2) 202	x + a) ¹⁰⁰ + (x - a) ¹⁰⁰ aftei (3) 51	simplification is : (4) none of these			

A-12.ὰ	If the 6 th term in the exp (1) 10	ansion of the binomial (2) (2) 8	$\frac{1}{x^{8/3}} + x^2 \log_{10} x \bigg]^8$ is 560 (3) 11	0, then x = (4) 9
A-13.ൔ	In the expansion of , (1) positive integer (3) negative integer	$-\sqrt{\frac{17}{4}+3\sqrt{2}}$ ¹⁵ the 11th	n term is a: (2) positive irrational nu (4) negative irrational nu	mber umber.
A-14.è	If the second term of the (1) 4	e expansion $\begin{bmatrix} a^{1/13} + \frac{a}{\sqrt{a^{-7}}} \\ (2) 3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}^n$ is 14a ^{5/2} , then the val (3) 12	ue of $\frac{{}^{n}C_{3}}{{}^{n}C_{2}}$ is: (4) 6
A-15.⊾̀	In the expansion of (7 ^{1/3} (1) 730	⁶ + 11 ^{1/9}) ⁶⁵⁶¹ , the number (2) 729	of terms free from radica (3) 725	als is: (4) 750
A-16.	The middle term in the e (1) ${}^{18}C_{10}X^{10}$	expansion of (1 – 3x + 3x (2) ¹⁸ C ₉ (–x) ⁹	(3) ¹⁸ C ₉ x ⁹	$(4) - {}^{18}C_{10}x^{10}$
A-17.	If $k \in R$ and the middle (1) 3	term of $\begin{pmatrix} \frac{k}{2} + 2 \end{pmatrix}^8$ is 1 (2) 2	120, then value of k is: (3) - 3	(4) - 4
A-18.	The term with coefficien (1) T_1 and T_3	t 6C_2 in the expansion of (2) T ₂ and T ₄	(1 + x) ⁶ is- (3) T ₃ and T ₅	(4) None of these
A-19.è	The co-efficient of x in t (1) 56	he expansion of (1 - 2 x ³ (2) 65	(3) 154 $\left(1+\frac{1}{x}\right)^8$ is :	(4) 62
A-20.ൔ	Given that the term of th (1) 1100	ne expansion (x ^{1/3} – x ^{-1/2}) (2) 1010	¹⁵ which does not contair (3) 1001	n x is 5 m, where m∈ N,then m= (4) none
A-21.	The term independent of (1) – 3	of x in the expansion of (2) 0	$\left(x - \frac{1}{x}\right)^4 \left(x + \frac{1}{x}\right)^3$ is: (3) 1	(4) 3
A-22.ൔ	Let the co-efficients of x (1) 9	^{rn} in (1 + x) ²ⁿ & (1 + x) ^{2n -} (2) 27	¹ be P & Q respectively, (3) 81	then $\left(\frac{P + Q}{Q}\right)^{5} =$ (4) none of these
A-23.ൔ	lf (1 + by) ⁿ = (1+ 8y + 24 (1) 4, 2	4 y² +) where n∈N then (2) 2, – 4	n the value of b and n ar (3) 2, 4	e respectively- $(4) - 2, 4$
A-24.	The value of $3^{6} + 6$. 24 (1) 1	$\frac{18^3 + 7^3}{3 \cdot 2 + 15 \cdot 81 \cdot 4 + 20}$ (2) 2	+3.18.7.25 .27.8+15.9.16 (3)3	+ 6 . 3 . 32 + 64 (4) none
A-25.⊾̀	The coefficient of x^{52} in (1) ${}^{100}C_{47}$	the expansion $\sum_{m=0}^{100} C_m$ (2) ${}^{100}C_{48}$	$(x - 3)^{100-m}$. 2 ^m is : (3) $-^{100}C_{52}$	(4) - ¹⁰⁰ C ₁₀₀

A-26.ൔ	4-26. The co-efficient of x^5 in the expansion of $(1 + x)^{21} + (1 + x)^{22} + \dots + (1 + x)^{30}$ is :											
	(1) ⁵¹ C ₅	(2) ⁹ C ₅	(3) ${}^{31}C_6 - {}^{21}C_6$	(4) ${}^{30}C_5 + {}^{20}C_5$								
A-27.è	A-27. The term independent of x in $(1 + x)^m \left(1 + \frac{1}{x}\right)^n$ is											
	(1) ···· ·Cn	(2) Cn	(3) Cn	(4)								
A-28.	$(1 + x) (1 + x + x^2) (1 + then the highest expon$	$x + x^2 + x^3$) (1 + x + 1) ent of x is (2) 5020	x ² + + x ¹⁰⁰) when writ	tten in the ascending power of x								
	(1) 5000	(2) 5050	(3) 5050	(4) 5040								
Section	on (B) : Remainder	and Divisibility pro	blems									
B-1.⊵	The remainder when 1	7 ¹⁰ is divided by 9 is :										
	(1) 8	(2) 7	(3) 2	(4) 1								
B-2.	The remainder when 7 ⁹ (1) 4	⁹⁸ is divided by 5 is (2) 0	(3) 2	(4) 3								
B-3.è⊾	The remainder when 2 ² (1) 1	²⁰⁰³ is divided by 17 is : (2) 2	(3) 8	(4) none of these								
B-4.≧	If { x } denotes the fract	ional part of 'x', then $\begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases}$	$\left. \frac{3^{1001}}{82} \right\}_{=}$									
	(1) 9/82	(2) 81/82	(3) 3/82	(4) 1/82								
B-5.ൔ	The last three digits of	3 ⁵⁰ will be										
	(1) 249	(2) 259	(3) 349	(4) 241								
B-6.	The last two digits of th	e number 3 ⁴⁰⁰ are:										
	(1) 81	(2) 43	(3) 29	(4) 01								
B-7.	The last three digits in (1) 800	10 ! are : (2) 700	(3) 500	(4) 600								
B-8.	If n∈N then 10 ⁿ + 5 is d (1) 3	ivisible by- (2) 7	(3) 9	(4) 2								
Section	Section (C) : Sum of series, Product and division of binomial coefficients, Reverse											

Expansion

- **C-1.** If $(1 + x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + \dots + C_nx^n$, then the value of $C_1 + C_2 + C_3 + \dots + C_n$ is-(1) 2^{n+1} (2) 2^{n-1} (3) $2^n + 1$ (4) $2^n - 1$
- **C-2.** If $(1 + x)^n = C_0 + C_1x + C_2x^2 + ... + C_n.x^n$ then the value of $C_0 + 3C_1 + 5C_2 + + (2n + 1) C_n$ is-(1) $n.2^n$ (2) $(n - 1).2^n$ (3) $(n + 2).2^{n-1}$ (4) $(n + 1).2^n$

C-3.ւ̀à	$\sum_{r=1}^{10} r \cdot \frac{{}^{n}C}{{}^{n}C_{r}}$ (1) 5 (2n - 9)	 -1 is equal to (2) 10 n	(3) 9 (n – 4)	(4) none of these
C-4.ங	If $(1 + x)^n = \sum_{r=0}^n a_r x^r$ and (1) 99	d b _r = 1 + $\frac{a_r}{a_{r-1}}$ and $\prod_{r=1}^{n}$ (2) 100	$b_r = \frac{(101)^{100}}{100!}$, then n equ (3) 101	als to : (4) none of these
C-5.ൔ	$\sum_{r=0}^{n-1} \frac{{}^{n}C_{r}}{{}^{n}C_{r} + {}^{n}C_{r+1}} = \frac{n}{n}$	<u>n + 1</u>	n	<u>n (n – 1)</u>
C-6.ங்	(1) $\overline{2}$ $\frac{{}^{11}C_0}{1} + \frac{{}^{11}C_1}{2} + \frac{{}^{11}C_2}{3} + 2{}^{11}-1$	(2) 2 + $\frac{{}^{11}C_{10}}{11} = 2^{11} - 1$	(3) (n + 1) $\overline{2}$ 3 ¹¹ - 1	(4) $2(n+1)$ $3^{11}-1$
C-7.ऄ	(1) 11 The value of $\frac{C_0}{1.3} = \frac{C_1}{2.3}$	(2) $\overline{}^{6}$ + $\frac{C_2}{3.3} - \frac{C_3}{4.3}$ + + (-	(3) $\overline{11}$ C_n $(n+1) \cdot 3$ is :	(4) 6
	(1) $\frac{3}{n+1}$	(2) $\frac{n+1}{3}$	(3) $\frac{1}{3(n+1)}$	(4) none of these
C-8.⊾	The sum of the coefficie (1) 512	nts of even powers of x (2) - 512 5^{5}	in the expansion of (1 + x (3) 215	x + x ² + x ³) ⁵ is - (4)
C-9.ൔ	The value of the express (1) ${}^{47}C_5$	sion ${}^{47}C_4 + {}^{j=1} {}^{52-j}C_3$ is (2) ${}^{52}C_5$	s equal to: (3) ${}^{52}C_4$	(4) ⁴⁹ C ₄
C-10.ൔ	The value of the express (1) 2 ¹⁰	$ \lim_{r=0} \left(\sum_{r=0}^{10} {}^{10}C_r \right) \left(\sum_{K=0}^{10} (-1)^K \right) $ (2) 2 ²⁰	$\frac{{}^{10}C_{\kappa}}{2^{\kappa}}\right)_{is:}$ (3) 1	(4) 2 ⁵
C-11.⊾̀	The value of $\binom{50}{0}\binom{50}{1}$	$ + \begin{pmatrix} 50 \\ 1 \end{pmatrix} \begin{pmatrix} 50 \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} 100 \end{pmatrix} $	$ \begin{pmatrix} 50 \\ 49 \end{pmatrix} \begin{pmatrix} 50 \\ 50 \end{pmatrix} $ is, where ⁿ C _r = $ \begin{pmatrix} 50 \end{pmatrix} $	$ \begin{bmatrix} n \\ r \end{bmatrix} $ $ (50)^2 $
C-12.	(1) (50) If $(1 + x)^n = C_0 + C_1 x + C_0$	(2) (51) $C_2x^2 + \dots + C_n \cdot x^n$ then for n	(3) (25) odd, $C_{1^2} + C_{3^2} + C_{5^2} + \dots$	(4) (25) + Cn ² is equal to
	(1) 2 ²ⁿ⁻²	(2) 2 ⁿ	(3) $\frac{(2n)!}{2(n!)^2}$	(4) $\frac{(2n)!}{(n!)^2}$
C-13.	If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, the value $\binom{n}{2}a_n$	e of $\sum_{r=0}^{n} \frac{n-2r}{{}^{n}C_{r}}$ is : (2) $\frac{1}{4}a_{n}$	(3) nan	(4) 0

D-3. If $\Box x \Box < 1$, then the co-efficient of x^n in the expansion of $(1 + x + x^2 + x^3 +)^2$ is (1) n (2) n - 1 (3) n + 2 (4) n + 1

D-4. The coefficient of x^4 in the expression $(1 + 2x + 3x^2 + 4x^3 +up to <math>\infty)^{1/2}$ (where |x| < 1) is (1) 1 (2) 3 (3) 2 (4) 5

- **D-5.** The coefficient of x^4 in $(1 x)^{-3}$ (where |x| < 1) is (1) 10 (2) 15 (3) 9 (4) 6
- **D-6.** If x is so small such that x³ and higher power of x may be neglected, then $\frac{(1+x)^{3/2} (1+\frac{1}{2}x)^3}{(1-x)^{1/2}}$ may be approximated as

(1)
$$\frac{-3}{8}x^2$$
 (2) $\frac{x}{2} - \frac{3}{8}x^2$ (3) $1 - \frac{3}{8}x^2$ (4) $3x + \frac{3}{8}x^2$

Exercise-2

MATHEMATICS

Marked Questions may have for Revision Questions.

PART - I : OBJECTIVE QUESTIONS

1.🖎 Number of elements in set of value of r for which, ${}^{18}C_{r-2} + 2$. ${}^{18}C_{r-1} + {}^{18}C_{r} \ge {}^{20}C_{13}$ is satisfied : (2) 5 elements (1) 4 elements (3) 7 elements (4) 10 elements The number of values of 'r' satisfying the equation, ${}^{39}C_{3r-1} - {}^{39}C_{r^2} = {}^{39}C_{r^2-1} - {}^{39}C_{3r}$ is : 2.🖎 (3) 3(1) 1(2) 2In the expansion of $\left(x^3 - \frac{1}{x^2}\right)^n$, $n \in N$, if the sum of the coefficients of x^5 and x^{10} is 0, then n is : 3. (2) 20 (1) 25(4) None of these (3) 15

	(3/2	$\frac{1}{1} + \frac{1}{1}$		
4.🖻	In the expansion of	∜6)		
	(3) the number of ration	al terms is 2	(4) All of these	nai
			(x+1	$(x-1)^{10}$
5	The coefficient of the to	rm independent of x in th	$\frac{1}{x^3 - x^3}$	$\left \frac{1}{x-x^{\frac{1}{2}}} \right $ is the
5.	(1) 70	(2) 112	(3) 105	(4) 210
6.≧	The term in the expansi (1) T_3	on of $(2x - 5)^6$ which has (2) T ₄	s greatest binomial coeffi (3) T ₅	cient is (4) T ₆
7.№	7 ⁹ + 9 ⁷ is divisible by : (1) 7	(2) 24	(3) 64	(4) 72
▲.8	The last three digits of t	he number (27) ²⁷ is		
	(1) 805	(2) 301	(3) 503	(4) 803
9.	Let $f(n) = 10^n + 3.4^{n+2} + (1) 27$	5, $n \in N$. The greatest v (2) 9	alue of the integer which (3) 3	divides f(n) for all n is : (4) None of these
	$\frac{1}{1+1+1} + \frac{1}{2}$	<u>1</u> + <u>1</u>	-	
10.	The sum ^{1! (n-1)!} 2 1	! (n-2) ! 1! (n-1) ! 2	[!] is equal to : 2	
	(1) $\overline{n!}$ (2 ⁿ⁻¹ - 1)	(2) $\overline{n!}$ (2 ⁿ - 1)	(3) $\overline{n!}$ (2 ⁿ⁻¹ - 1)	(4) none
11.🖻	The sum ${}^{10}C_3 + {}^{11}C_3 + {}^{12}$ (1) ${}^{21}C_4$	C_3 +	ual to (3) ²¹ C4 – ¹¹ C4	(4) ²¹ C ₁₇
		$\sum_{r=1}^{n} (-1)^{r-1} \cdot C_r(a-r)$		
12.	The sum of the series (1) n . 2^{n-1} + a	(2) 0	qual to : (3) a	(4) None of these
13.	The sum of series 3. ⁿ C ₀ (1) zero	- 8. ⁿ C ₁ + 13. ⁿ C ₂ - 18. ⁿ C (2) 1	C ₃ + upto (n+1) terms v (3) 2	where n > 1, is : (4) none of these
14.	If $(1 + x + x^2)^n = a_0 + a_1$	$(+a_2 x^2 + \dots + a_{2n} x^{2n})$	then $a_0 + a_2 + a_4 + \dots + a_4$	► a _{2n}
	$3^{n} - 1$	$\frac{3^{n}+1}{2}$	$\frac{3^{n}-2}{2}$	$\underline{3^n-5}$
	(1) 2	(2) 2	(3) 2	(4) 2
15.🖎	The sum of the coefficie	ents of all the integral pov	vers of x in the expansio	n of $\frac{\left(1+2\sqrt{x}\right)^{40}}{1}$ is :
	(1) 3 ⁴⁰ + 1	(2) 3 ⁴⁰ – 1	(3) $\frac{1}{2}$ (3 ⁴⁰ - 1)	(4) $\frac{1}{2}$ (3 ⁴⁰ + 1)
16.	Coefficient of sum of od (1) 512	d powers of x in expansi (2) 64	on of (9x² + x – 8) ⁶ is (3) 0	(4) 32
	$\sum_{i=1}^{n}$			
17.	The sum $\sum_{r=0}^{2}$ (r + 1) C ₁ (n + 2) (2n - 1) !	² is equal to :	(n + 2)(2n + 1)!	
	(1) n ! (n - 1) !		(2) n ! (n - 1) !	

	(3) $\frac{(n+2)(2n+1)!}{n!(n+1)!}$		(4) $\frac{(n + 2)(2n - 1)!}{n!(n + 1)!}$			
18.⊾	The number of terms ir (1) 2n	the expansion of $(x^2 + 1)$ (2) 3n	$(3) 2n + 1$, $n \in N$, is :	(4) 3n + 1		
19.🖻	$(1 + x + x^2 + x^3)^5 = a_0 + (1) 99$	a ₁ x + a ₂ x ² + (2) 101	+ a ₁₅ x ¹⁵ , then a ₁₀ equa (3) 100	als to : (4) 110		
20.🖎	Coefficient of x^{n-1} in th	he expansion of, $(x + 3)^n$ ·	$(x + 3)^{n-1} (x + 2) + (x + 3)^{n-1} $	$(x + 2)^{n-2} (x + 2)^2 + \dots + (x + 2)^n$ is		
	(1) ⁿ⁺¹ C ₂ (3)	(2) ⁿ⁻¹ C ₂ (5)	(3) ⁿ⁺¹ C ₂ (5)	(4) ⁿ C ₂ (5)		
21.	The coefficient of x^4 in (1) 4	$\left(\frac{1+x}{1-x}\right)^2$, $ x < 1$, is (2) -4	(3) 10 – ⁴ C ₂	(4) 16		

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING

DIRECTIONS:

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

Column-II

- A-1. Statement 1 : The term independent of x in the expansion of $\left(x + \frac{1}{x} + 2\right)^m \frac{(2m)!}{(m!)^2}$. Statement 2 : The coefficient of the statement 2 : The coeff Statement - 2 : The coefficient of x^b in the expansion of $(1 + x)^n$ is nC_b .
- **A-2.** A **Statement 1**: If n is even, then ${}^{2n}C_1 + {}^{2n}C_3 + {}^{2n}C_5 + \dots + {}^{2n}C_{n-1} = 2^{2n-1}$. **Statement - 2 :** ${}^{2n}C_1 + {}^{2n}C_3 + {}^{2n}C_5 + \dots + {}^{2n}C_{2n-1} = 2^{2n-1}$.

Section (B) : MATCH THE COLUMN

Column-I B-1.

(P)	If sum of the coefficients of the first, second and third						(1)	8
	terms i							
						$\left(5^{\frac{1}{2}}+7^{\frac{1}{8}}\right)^{1024}$		
(Q)	The nu is abc v	mber of where at	integral oc is a th	terms in ree digit	the expansion on number then (a	of (a + b + c – 10) is	(2)	9
(R)	coeffici	ent of x1	⁰³ in (1	+ x + x ²	+ x ³ + x ⁴) ¹⁹⁹ (x -	-1) ²⁰¹ is	(3)	2
(S)	The las Codes	t digit of	the nun	nber 2 ⁹⁹⁹	is		(4)	0
		Р	Q	R	S			
	(1)	2	3	4	1			
	(2)	2	1	4	3			
	(3)	1	3	2	4			

2 (4)1 3 4 **B-2.** If $(1 + x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + \dots + C_nx^n$ then Column-I Column-II $\frac{1}{2} \left(2^n + C_{n/2} \right)$ (P) The value of $C_0 + 2C_1 + 3C_2 + \dots + (n + 1)C_n$ is (1) (Q) The value of $C_0 + C_1 + C_2 + \dots + C_{n/2}$ is (where n is even) (2) $2^{n}C_{n-2}$ $2C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{3}C_2 + \dots + \frac{2^{n+1}}{n+1}C_n$ is The value of (R) (3) $2^{n-1}(n+2)$ (S) The value of ${}^{n}C_{n} {}^{n}C_{2} + {}^{n}C_{n-1} {}^{n}C_{3} + {}^{n}C_{n-2} {}^{n}C_{4} + \dots + {}^{n}C_{2} {}^{n}C_{n}$ is (4)Codes : Ρ R S Q 1 3 4 2 (1) 2 (2) 3 1 4 3 (3) 1 2 4 3 2 (4)Δ Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT 1000ⁿ for $n \in N$, then a_n is greatest, when C-1. Let (2) n = 998(3) n = 999(4) n = 1000(1) n = 997C-2. The coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is 1.3.5.....(2n – 1) n ! (2) 2ⁿ (1) ²ⁿC_n (3) 2.6....(4n - 2)(4) none of the above C-3.🖎 Which of the following is/are correct? (1) $101^{50} - 99^{50} > 100^{50}$ (2) $101^{50} - 100^{50} > 99^{50}$ $(3) (1000)^{1000} > (1001)^{999}$ $(4) (1001)^{999} > (1000)^{1000}$ $\left(4^{\frac{1}{3}}+6^{-\frac{1}{4}}\right)$ In the expension of C-4.🖎 (1) The number of rational terms is 4 (2) The number of irrational terms is19 (4) The number of irrational terms is 17 (3) The middle term is irrational C-5.è The numbers 101¹⁰⁰–1 is divisible by (1) 100 (2) 1000 (3) 10,000 (4) 100000 Exercise-3 Marked Questions may have for Revision Questions. * Marked Questions may have more than one correct option. PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS) 1. The coefficient of x^5 in $(1 + 2x + 3x^2 +)^{-3/2}$ is : [AIEEE-2002, (3,1), 225] (2) 25 (3) 26 (1) 21 (4) none of these The number of integral terms in the expansion of $\left(\sqrt{3} + \sqrt[8]{5}\right)^{256}$ is : [AIEEE-2003, (3,1), 225] 2.🖎

	(1) 32	(2) 33	(3) 34	(4) 35.
3.	If x is positive, the first r (1) 7th term	negative term in the expa (2) 5th term	nsion of $(1+x)^{\frac{27}{5}}$ is : (3) 8th term	[AIEEE-2003, (3,1), 225] (4) 6th term.
4.	The coefficient of the mitthe same, if α equals : (1) $-\frac{5}{3}$	iddle term in the binomia $\frac{10}{3}$	l expansion in powers of [AIEEE (3) $-\frac{3}{10}$	x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is -2004, (3,1), 225] $\frac{3}{5}$
5.	The coefficient of x^n in the (1) (n - 1)	he expansion of (1 + x) ((2) (–1) ⁿ (1 – n)	1 – x) ⁿ is- (3) (–1) ^{n–1} (n – 1) ²	[AIEEE-2004, (3,1), 225] (4) (-1) ⁿ⁻¹ n
6.ൔ	If $s_n = \sum_{r=0}^{n} \frac{1}{nC_r}$ and t_n (1) $\frac{n}{2}$	$=\sum_{r=0}^{n} \frac{\frac{r}{nC_{r}}}{\frac{1}{2}-1}, \text{ then } \frac{\frac{t_{n}}{s_{n}}}{\frac{1}{2}-1}$	is equal to- (3) n – 1	[AIEEE-2004, (3,1), 225] (4) $\frac{2n-1}{2}$
7.	If the coefficients of r^{th} , and r satisfy the equation (1) $m^2 - m(4r - 1) + 4r^2$ (3) $m^2 - m(4r+1) + 4r^2 + \frac{6}{6}$	$(r + 1)^{th}$ and $(r + 2)^{th}$ terms on : + 2 = 0. - 2 = 0.	s in the binomial expansi (2) m ² - m(4r +1) + 4r ² (4) m ² - m(4r -1) + 4r ²	fon of $(1 + y)^m$ are in AP, then m [AIEEE 2005, (3, 1), 225] -2 = 0. -2 = 0.
8.	The value of ${}^{50}C_4$ + ${}^{r=1}$ (1) ${}^{56}C_4$	$^{56-r}C_3$ is : (2) $^{56}C_3$	(3) ⁵⁵ C ₃	[AIEEE 2005, (3, 1), 225] (4) ${}^{55}C_4$
9.ൔ	If x is so small that x^3 approximated as : $\frac{x}{2} - \frac{3}{8}x^2$ (1)	and higher powers of x (2) $-\frac{3}{8}x^2$	may be neglected, then (3) $3x + \frac{3}{8}x^2$	$\frac{(1+x)^{3/2} - \left(1 + \frac{1}{2}x\right)}{(1-x)^{1/2}}$ may be [AIEEE 2005, (3, 1), 225] (4) $1 - \frac{3}{8}x^{2}$
10.ဲ	If the expansion in power is : $\frac{a^{n} - b^{n}}{b - a}$	ers of x of the function $\overline{(}$ (2) $\frac{a^{n+1}-b^{n+1}}{b-a}$	$\frac{1-ax}{(1-bx)} is a_0 + a_0$	$a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \dots, \text{ then } a_{n}$ [AIEEE-2006, (3,1), 225] $\frac{b^{n} - a^{n}}{b - a}$
11.⊾	For natural numbers m, (1) (35, 20)	n if (1 – y) ^m (1 + y) ⁿ = 1 + (2) (45, 35)	- a ₁ y + a ₂ y ² + and a ₁ (3) (35, 45)	= a ₂ = 10, then (m, n) is : [AIEEE-2006, (3,1), 225] (4) (20, 45)
12.ൔ	The sum of the series ²⁰	${}^{0}C_{0} - {}^{20}C_{1} + {}^{20}C_{2} - {}^{20}C_{3} + {}^{1}$	+ ²⁰ C ₁₀ is	[AIEEE 2007 (3, –1), 120]
	$(1) - {}^{20}C_{10}$	(2) 2 ²⁰ C ₁₀	(3) 0	(4) ²⁰ C ₁₀
13.ൔ	In the binomial expansion $n - 4$	on of $(a - b)^n$, n ≥ 5, the	sum of 5th and 6th term	is zero, then ^b equals [AIEEE 2008 (3, –1), 105]
	(1) $\frac{11-4}{5}$	(2) $\frac{3}{n-4}$	(3) $\frac{5}{n-5}$	(4) $\frac{\pi - 3}{6}$

14.函	Statement-1 : $\sum_{r=0}^{n} (r+1)$	${}^{n}C_{r} = (n + 2) 2^{n-1}$		[AIEEE 2008 (3, –1), 105]
	Statement-2 : $r=0$ (r + (1) Statement-1 is True (2) Statement-1 is True (3) Statement-1 is True (4) Statement-1 is False	- 1) ${}^{n}C_{r}x^{r} = (1 + x)^{n} + nx$ - Statement-2 is True; S - Statement-2 is True; S - Statement-2 is False - Statement-2 is True	(1 + x) ^{n - 1} tatement-2 is a correct ex tatement-2 is NOT a corr	xplanation for Statement-1. ect explanation for Statement-1
15.¤	$\sum_{j=1}^{10} j (j-1)$ Let S ₁ = $j = 1$ ¹⁰ (Statement -1 : S ₃ = 55 Statement -2 : S ₁ = 90 (1) Statement -1 is true 1. (2) Statement-1 is true	$\sum_{j=1}^{10} j$ $\sum_{j=1}^{10} \sum_{j=1}^{10} C_j \text{ and } S_2 = 5 \times 2^9.$ $\sum_{j=1}^{10} \sum_{j=1}^{10} C_j and S_2 = 10 \times 2^8.$ e, Statement-2 is true ; Statement-2 is false	$S_{3} = \sum_{j=1}^{10} j^{2} I^{0}C_{j}.$ Statement -2 is not a corr	[AIEEE 2009 (4, –1), 144] ect explanation for Statement -
	(3) Statement -1 is fall(4) Statement -1 is tru	se, Statement -2 is true; Statement -2 is tr	Statement-2 is a correct e	explanation for Statement-1.
16. ₪	The coefficient of x ⁷ in t (1) 144	the expansion of (1 – x – (2) – 132	- x ² + x ³) ⁶ is : (3) – 144	[AIEEE 2011 (4, -1), 120] (4) 132
17. ≱	If n is a positive integer (1) an irrational number (3) an even positive inte	then $\left(\sqrt{3}+1\right)^{2n} - \left(\sqrt{3}-1\right)^{2n}$ eger	 -1)²ⁿ is : (2) an odd positive integ (4) a rational number of 	[AIEEE-2012, (4, –1)/120] ger ther than positive integers
18.¤	The term independent ((1) 4	of x in expansion of $\left(\frac{1}{x^2}\right)$ (2) 120	$\frac{x+1}{\sqrt{3}-x^{1/3}+1} - \frac{x-1}{x-x^{1/2}} \bigg)^{10}$ is (3) 210	: [AIEEE - 2013, (4, – 1) 120] (4) 310
19.¤	The sum of coefficients	s of integral powers of x	in the binomial expansior	n of (1 – 2 √x) ⁵⁰ is : [JEE(Main)2015,(4,–1), 120]
	(1) $\frac{1}{2}$ (3 ⁵⁰ + 1)	(2) $\frac{1}{2}$ (3 ⁵⁰)	(3) $\frac{1}{2}$ (3 ⁵⁰ - 1)	(4) $\frac{1}{2}$ (2 ⁵⁰ + 1)
20.	If the number of terms all the terms in this exp (1) 2187	in the expansion of (1- ansion, is (2) 243	$\frac{2}{x} + \frac{4}{x^2} \Big)^n$, $x \neq 0$, is 28, the (3) 729	en the sum of the coefficients of [JEE(Main)2016,(4, – 1), 120] (4) 64
21.	The value of $(^{21}C_1 - {}^{10}C_2)$	C_1) + ($^{21}C_2 - {}^{10}C_2$) + ($^{21}C_3$	$(10^{-10}C_3) + (2^{-10}C_4) + (2^$	+ $({}^{21}C_{10} - {}^{10}C_{10})$ is
	(1) 2 ²¹ – 2 ¹¹	(2) 2 ²¹ - 2 ¹⁰	(3) 2 ²⁰ – 2 ⁹	$\begin{array}{c} [3 2 2 0 - 2^{10}] \\ (4) \ 2^{20} - 2^{10} \end{array}$
22.	The sum of the co-effic (x > 1) is : (1) 1	ients of all odd degree te (2) 2	erms in the expansion of [JEE(N (3) –1	$\left(x + \sqrt{x^{3} - 1}\right)^{5} + \left(x - \sqrt{x^{3} - 1}\right)^{5}$, Main) 2018, (4, - 1), 120] (4) 0
	PART - II : JEE (ADVANCED) / IIT-JI	EE PROBLEMS (PRI	EVIOUS YEARS)
1.	$\sum_{i=0}^{m} \binom{10}{i} \binom{m}{i}$	$\begin{pmatrix} 20 \\ q \end{pmatrix}_{, (where)} \begin{pmatrix} p \\ q \end{pmatrix}_{, (where)} = 0,$	if p < q) is maximum whe [IIITIF	n ' m ' is: E 2003. Scr. (3. – 1). 901
•	(A) 5	(B) 10	(C) 15	(D) 20

-

2.ൔ	Coefficient of t^{24} in (1 + (A) ${}^{12}C_6$ + 3	t ²) ¹² (1 + t ¹²) (1 + t ²⁴) is: (B) ${}^{12}C_6 + 1$	(C) ¹² C ₆	[IIT-JEE 2003, Scr, (3, – 1), 84] (D) ¹² C ₆ + 2
3.ւ̀⊾	If ${}^{(n-1)}C_r = (k^2 - 3) {}^{n}C_{r+1}$	then an interval in which	n k lies is	[IIT-JEE 2004, Scr, (3, − 1), 84]
	(A) (2, ∞)	(B) (– ∞, – 2)	(C) $\begin{bmatrix} -\sqrt{3}, \sqrt{3} \end{bmatrix}$	(D) $\left[\sqrt{3,2}\right]$
4.函	The value of			[IIT-JEE 2005, Scr, (3, – 1), 84]
	$ \begin{pmatrix} 30 \\ 0 \end{pmatrix} \begin{pmatrix} 30 \\ 10 \end{pmatrix} _ \begin{pmatrix} 30 \\ 1 \end{pmatrix} \begin{pmatrix} 30 \\ 11 \end{pmatrix} $	$\begin{pmatrix} 30\\ 2 \end{pmatrix} \begin{pmatrix} 30\\ 12 \end{pmatrix}_{-\dots++}$	$\binom{30}{20}\binom{30}{30}_{is}$:	
	(A) $\binom{60}{20}$	(B) $\binom{30}{10}$	(C) ⁽³⁰⁾ (15)	(D) None of these
5.ເ≥	For r = 0, 1,, 10, le	et Ar, Br and Cr denote,	respectively, the	e coefficient of xr in the expansions of
		$\sum_{r=1}^{10} A_r(B_r)$	$_{10}B_{r} - C_{10}A_{r}$)	
	$(1 + x)^{10}$, $(1 + x)^{20}$ and ($(1 + x)^{30}$. Then r^{-1}	is e	equal to
	(A) B ₁₀ - C ₁₀	(B) A_{10} ($B^2_{10} - C_{10} A_{10}$)	(C) 0	(D) $C_{10} - B_{10}$

	Λn	lew	ere										
			013			EVEDO		1					
						EAERU	/JOE #	1					
Section	on (A)	:											
A-1.	(1)	A-2.	(1)	A-3.	(1)	A-4.	(2)	A-5.	(2)	A-6.	(3)	A-7.	(3)
A-0. A-15.	(1)	A-5. A-16.	(2)	A-10. A-17.	(2)	A-11. A-18.	(3)	A-12. A-19.	(3)	A-13. A-20.	(2)	A-14. A-21.	(1)
A-22.	(4)	A-23.	(3)	A-24.	(1)	A-25.	(2)	A-26.	(3)	A-27. (2)	A-28.	(3)
Section	on (B)	:											
B-1.	(4)	B-2.	(1)	B-3.	(3)	B-4.	(3)	B-5.	(1)	B-6.	(4)	B-7.	(1)
B-8.	(1)												
Section	on (C)	:											
C-1.	(4)	C-2.	(4)	C-3.	(1)	C-4.	(2)	C-5.	(1)	C-6.	(2)	C-7.	(3)
C-8.	(1)	C-9.	(3)	C-10.	(3)	C-11.	(2)	C-12.	(3)	C-13.	(4)	C-14.	(3)
Section D-1	on (D)	: 2	(A)	D-3	(4)	D-4	(1)	D-5	(2)	D-6	(1)		
D-1.	(3)	D-2.	(4)	D-3.	(+)	<i>D</i> -4.	(1)	D-J.	(2)	D-0.	(1)		
						EXERC	SISE #	2					
						PAF	RT - I						
1.	(3)	2.	(2)	3.	(3)	4.	(4)	5.	(4)	6.	(2)	7.	(3)
8. 15.	(4) (4)	9. 16.	(2) (4)	10. 17.	(3) (1)	11.	(2) (3)	12. 19.	(3) (2)	13. 20.	(1) (3)	14. 21.	(2) (4)
						PAR	2T - II						
Section	on (A)	:											
A-1.	(1)		A-2.	(3)									
Section	on (B)	:											
B-1.	(1)		B-2.	(4)									
Section	on (C)	:											
C-1.	(3,4)		C-2.	(1,2)		C-3.	(1,2,3)		C-4.	(2,3)		C-5. (1	,2,3)
						EXERC	SISE #	3					
						PAF	RT - I						
1.	(4)	2.	(2)	3.	(3)	4.	(3)	5.	(2)	6.	(1)	7.	(2)
8.	(1)	9.	(2)	10.	(3)	11.	(3)	12.	(2)	13.	(1)	14.	(1)
15.	(2)	16.	(3)	17.	(1)	18.	(3)	19.🖎	(1)	20.	(3) or	Bonus	
21.	(4)	22.	(2)										
						PAR	RT - II						
1.	(C)	2.	(D)	3.	(D)	4.	(B)	5.	(D)				

Additional Problems For Self Practice (APSP)

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Max. Time : 1 Hr.

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- 3. Only one choice is correct 1 mark will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1.	If the 6 th term in expans	sion of $\left(2x^2+\frac{1}{3x^2}\right)^{10}$ is	<u>a</u> ^b where a & b are copri	me natural numbers then a +b
=	(1) 896	(2) 27	(3) 923	(4) 869
2.	If the 25 th and 26 th term	ns in the expansion of (1-	-x) ⁴⁴ are same then value	e of x is
	(1) $\frac{5}{3}$	$(2)^{-\frac{5}{3}}$	$-\frac{3}{5}$	$(4) - \frac{5}{4}$
3.	If the sum of the coeffic	cient of 1 st .2 nd & 3 rd terms	s in the expansion of (x)	$\left(\frac{1}{x}\right)^{m}$ is 46 then constant
	(1) 80	(2) 82	(3) 78	(4) 84
4.	In the expansion of $\begin{pmatrix} \sqrt{3} \\ 1 \\ 6 \end{pmatrix}$ then value of n is	$\overline{2} + \frac{1}{\sqrt[3]{3}} \int_{0}^{n}$, if the ratio of 7	th term from begining to	the 7 th term from the end is
_	(1) 9	(2) 8	(3) 5	(4) 6
5.	If the coefficient of (2r - possible value of r is	$(r + 3)^{m} \& (r + 3)^{m}$ terms in th	ne expansion of (1+x) ¹⁵ a	are equal then sum of all
	(1) 8	(2) 9	(3) 10	(4)12
6.	The coefficient of a ³ b ⁴ (1) 80	c ⁵ in the expansion of (al (2) 50	b + bc + ca) ⁶ is (3) 60	(4) 70
7.	The value of $\frac{1}{1!(n-1)!}$ (1) $\frac{2^{n}}{(n-1)!}$	$+\frac{1}{3!(n-3)}+\frac{1}{5!(n-5)!}+.$ (2) $\frac{2^{n}}{n!}$	is (3) $\frac{2^{n-1}}{(n-1)!}$	(4) $\frac{2^{n-1}}{n!}$
8.	If the sum of the coeffic	cients in expansion of (a ³	x ² –2a ² x+1) ⁵¹ vanishes, t	hen possible value of a can be

Binomial Theorem

		$1 + \sqrt{5}$	$1 - \sqrt{5}$							
	(1) 1	(2) 2	(3) 2	(4) all of these						
9.	If the middle term in the (1) 10	expansion of $(x^2 + \frac{1}{2})$ (2) 12	$\left(\frac{1}{x}\right)^{n}$ is 924x ⁶ then value of (3) 14	n is (4) 16						
10.	If the sum of coefficient in the expansion of $(x-2y+3z)^n$ is 128 then the greatest coefficient in the									
	expansion of $(1+x)^{2n}$ is (1) ${}^{14}C_7$	(2) ⁷ C ₄	(3) ⁷ C ₃	(4) ¹⁶ C ₈						
11.	If the coefficient of three	e consecutive terms ir	the expansion of $(1+x)^n$ a	re 165,330 and 462 respectively						
	then value of ⁿ C ₂ can be (1) 55	e (2) 45	(3) 66	(4) 78						
12.	The last two digits of 17 (1) 18	²⁵⁶ is (2) 81	(3) 71	(4) 17						
	$\left\{ \frac{3^{2003}}{3^{2003}} \right\}$									
13.	The value of $\begin{bmatrix} 28 \end{bmatrix}$, w	here {.} denotes the	fractional part, is							
	$\frac{17}{28}$	$\frac{19}{28}$	$\frac{23}{28}$	$\frac{25}{28}$						
	(1) 20	(2) 20	(3) 20	(4) 20						
		$\frac{1}{\sqrt{1-1}} \left\{ \left(\frac{1+1}{1-1} \right) \right\}$	$\frac{\sqrt{4x+1}}{2} = \left(\frac{1-\sqrt{4x+1}}{2} \right)^{2}$							
14.	The degree of the polyr	$\sqrt{4x+1}$		is						
	(1) 1	(2) 2	(3) 3	(4) 4						
15.	For each n∈N, 49 ⁿ +16n (1) 64	– 1 is divible by (2) 32	(3) 16	(4) All of these						
16.	If T ₀ , T ₁ ,T ₂ ,T ₃ , repres	ent the terms in the e	xpansion of (x+a) ⁿ , then the	e value of						
	$(1_0 - 1_2 + 1_4 - 1_6 +)^2 + (1)$ (1) $(x^2 + a^2)^{n/2}$	$(2) (x^2 + a^2)^n$	$(3)(x^2 - a^2)^n$	(4) (a ² x ²) ⁿ						
				1						
17.	If the numerically greate	est term in the expans	sion of $(3-5x)^{15}$ when $x = \frac{4}{5}$	⁵ is 455x3 ⁿ , n∈N then value						
	of $\frac{2}{100}$ is									
	(1) 66	(2) 33	(3) 22	(4) 55						
		$\sum_{r=1}^{n} r^{n} C_{r} x^{r} y^{n-r}$								
18.	If $x+y = 1$ then value of $n(n-1)$	r=0 İS	nx							
	(1) $\frac{1}{2} x^2$	(2) nx	(3) $\frac{1}{2}$	(4) n(n– 1)x ²						
			$\left(1+\frac{1}{2}\right)^{8}$							
19.	The co-efficient of x in t (1) 56	he expansion of (1 – : (2) 65	(3) 154	(4) 62						
	$\sum_{n=1}^{n} \frac{1}{n+r}$									
20.	The value of $r=0$ is (1) $r=1$	(2) ²ⁿ Cn+1	(3) ²ⁿ Cn	(4) ²ⁿ⁺¹ C _{n-1}						
21.	The sum of $1 - \frac{1}{8} + \frac{1.3}{8.16}$	$\frac{1.3.5}{8.16.24}$ +is								

24 |

Binomial Theorem

	2	$\sqrt{5}$	$\sqrt{3}$	2							
	(1) √5	(2) 2	(3) 2	(4) √3							
22.	The coefficient of x^n in the expansion of $(1-9x+20x^2)^{-1}$ is										
	(1) 5 ⁿ - 4 ⁿ	(2) 5 ⁿ⁻¹ - 4 ⁿ⁻¹	(3) 5 ⁿ⁺¹ - 4 ⁿ⁺¹	(4) 0							
			(1 1)100								
			$\left(5^{\frac{1}{6}}+2^{\frac{1}{8}}\right)$								
23.	The number of irrationa	al terms in the expansion	of is								
	(1) 5	(2) 97	(3) 95	(4) 6							
24.	The coefficient of x^{50} in $(1+x)^{101}(1-x+x^2)^{100}$ is										
	(1) 0	(2) 41	(3) 50	(4) 1							
	$\left(-\frac{1}{2}, 1\right)^n$ (1) ^{log_3 8}										
25.	If the last term in the bi	nomial expansion of	$\left(\frac{1}{\sqrt{2}}\right) = \left(\frac{1}{3^{5/3}}\right)$ th	en the 5 th term of expansion is							
	(1) 210	(2) 420	(3) 105	(4) 425							
		, ,									
26.	The sum of ${}^{20}C_0 - {}^{20}C_1 \cdot$	$+ {}^{20}C_2 - {}^{20}C_3 + \dots + {}^{20}C_{10}$	S								
	$\frac{{}^{20}C_{10}}{2}$		²⁰ Cu	²⁰ C.							
	(1) 2	(2) 0	(3) 010	$(4) - 0_{10}$							
			⁶⁹ C ₂ ⁶⁹ C								
27.	The number of values	of r satisfying the equatio	$n^{69}C_{3r-1} - r^{-} = r^{-}_{r^{2}-1}$	$-1 - 69 C_{3r}$ is							
	(1) 1	(2) 2	(3) 3	(4) 7							
20	If D is remainder when	C ⁸³ + C ⁸³ is divided by 40	$\frac{R}{5}$								
20.	(1) 35	(2) 7	(3) 28	(A) A							
	(1) 35	(2) 7	(3) 20	(4) 4							
		$\sum_{k=1}^{4} 3^{4-k}$	(x ^k)_32								
29.	The largest real value	of x such that $\sum_{k=0}^{\infty} \overline{(4-k)!}$	$\left(\frac{k!}{k!}\right)^{=}\frac{3}{3}$ is								
	(1) 1	(2) 2	(3) 3	(4) 4							
	_										
30.	Let R = $(5\sqrt{5} + 11)^{2n+1}$	and $f = R - [R]$ where [.] d	enotes the greatest integ	ger function then value of Rf is							
	(1) 2 ²ⁿ⁺¹	(2) 4 ²ⁿ⁺¹	(3) 2 ⁴ⁿ⁺¹	(4) 4 ²ⁿ							
Practice Test (JEE-Main Pattern)											

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

1. If the sum of the co-efficients in the expansion of $(1 + 2x)^n$ is 6561, then the greatest term in the expansion for x = 1/2 is : (1) 4th (2) 5th (3) 6th (4) none of these $\left(\sqrt{2x^2+1}+\sqrt{2x^2-1}\right)^6+\left(\frac{2}{\sqrt{2x^2+1}+\sqrt{2x^2-1}}\right)^6$ a polynomial of degree 2. The expression, (1) 5 (2) 6 (4) 8(3)7Co-efficient of x^5 in the expansion of $(1 + x^2)^5 (1 + x)^4$ is : 3. (1) 40 (2) 50 (3) 30 (4) 60 Co-efficient of x^{15} in $(1 + x + x^3 + x^4)^n$ is : 4. (3) $\sum_{r=0}^{5} {}^{n}C_{3r}$ (4) $\sum_{r=0}^{3} {}^{n}C_{3-r}{}^{n}C_{5r}$ (1) $\sum_{r=0}^{3} {}^{n}C_{15-3r}{}^{n}C_{r}$ (2) $\sum_{r=0}^{3} {}^{n}C_{5r}$ $\left(3x^2-\frac{1}{3x^2}\right)^{-1}$ is The term independent of x in the expansion of $(1 + x + 2x^2)$ 5. (1) 10 (2) 2(3) 0 (4) 6 $(1+x)^{n}$ If n is even natural and coefficient of x^r in the expansion of 1-x is 2ⁿ, (|x| < 1), then – 6. (2) $r \ge (n-2)/2$ (3) $r \leq (n+2)/2$ (1) $r \le n/2$ (4) r ≥ n The coefficient of x^9 in the expansion of $(1 + x) (1 + x^2) (1 + x^3) \dots (1 + x^{100})$ is 7. (3) 8 (1) 6(2) 7 (4) 9 If the sum of the coefficients in the expansion of $(2 + 3cx + c^2x^2)^{12}$ vanishes, then c equals to 8. (1) -1, 2 (2) 1, 2 (3) 1, -2 (4) - 1, -2The coefficient of x^n in polynomial $(x + {}^{2n+1}C_0) (x + {}^{2n+1}C_1)....(x + {}^{2n+1}C_n)$ is -9.

Binomial Theorem

14. For any positive integer m, n (with $n \ge m$), let $\binom{m}{m} = {}^{n}C_{m}$,

 $\binom{n}{m}_{+2}\binom{n-1}{m}_{+3}\binom{n-2}{m}_{+\dots+(n-m+1)}\binom{m}{m}_{=}$

(1) $^{n+2}C_{m+1}$ (2) $^{n+2}C_{m+2}$ (3) $^{n-1}C_{m-2}$ (4) $^{n+2}C_m$

	APSP Answers												
	•					PA	RT-I						
1.	(3)	2.	(4)	3.	(4)	4.	(1)	5.	(2)	6.	(3)	7.	(4)
8.	(4)	9.	(2)	10.	(1)	11.	(1)	12.	(2)	13.	(2)	14.	(3)
15.	(4)	16.	(2)	17.	(2)	18.	(2)	19.	(3)	20.	(1)	21.	(1)
22.	(3)	23.	(2)	24.	(1)	25.	(1)	26.	(1)	27.	(2)	28.	(2)
29.	(1)	30.	(2)										
						PA	RT - II						
1.	(2)	2.	(2)	3.	(4)	4.	(1)	5.	(4)	6.	(4)	7.	(3)
8.	(4)	9.	(3)	10.	(4)	11.	(3)	12.	(1)				