Exercise-1

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

OBJECTIVE QUESTIONS

Section (A) : Basic Problems (Definition based, Substitution, By parts)

A-1. $\int_{0}^{1} \frac{dx}{\sqrt{x+1} + \sqrt{x}} dx =$ $(1) \frac{4}{3} (\sqrt{2} + 1) \qquad (2) \frac{4}{3} (\sqrt{2} - 1) \qquad (3) \frac{3}{4} (\sqrt{2} - 1) \qquad (4) \frac{3}{4} (\sqrt{2} - 2)$ **A-2.** $\int_{0}^{1} xe^{x} dx = (1) 1$ (2) 2 (3) 3 (4) 4 **A-3.** $\int_{0}^{1} \frac{dx}{(x^{2}+1)(x^{2}+2)}$ (1) $\frac{\pi}{4} + \frac{1}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}}$ (2) $\frac{\pi}{2} - \frac{1}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}}$ (3) $\frac{\pi}{4} - \frac{1}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}}$ $\frac{\pi}{3} - \frac{1}{\sqrt{2}} \tan^{-1} \frac{1}{\sqrt{2}}$ **A-4.** $\int_{0}^{\pi/4} \tan^2 x dx \text{ equals } -$ (1) π/4 (2) 1 + (π / 4) (3) 1 – (π / 4) (4) 1 – (π / 2) A-5. $\int_{0}^{2} \frac{3^{\sqrt{x}}}{\sqrt{x}} dx$, equals-(4) $\frac{3^{\sqrt{2}}}{\sqrt{2}}$ $\frac{2}{(1)} \frac{2}{\sqrt[4]{n3}} (3^{\sqrt{2}} - 1)$ 2√2 (3) ln3 (2) 0 **A-6.** $\int_{0}^{\pi/2} \sqrt{1 + \sin 2x} dx \text{ equals -}$ $(4) \frac{3}{2}$ (1) 1/2 (2) 1 (3) 2 $\int_{0}^{\pi/4} \frac{x \cdot \sin x}{\cos^3 x} dx \text{ equals to :}$ A-7. (4) $\frac{\pi}{4} + 1$ (1) $\frac{\pi}{4} + \frac{1}{2}$ (2) $\frac{\pi}{4} - \frac{1}{2}$ (3) 4

 $\int_{\ell n\pi - \ell n2}^{\ell n\pi} \frac{e^{x}}{1 - \cos\left(\frac{2}{3}e^{x}\right)} dx \text{ is equal to}$ A-8. (3) $\frac{1}{\sqrt{3}}$ $(4) = \frac{1}{\sqrt{3}}$ (1) √3 $(2) - \sqrt{3}$ A-9. $\int_{1}^{2} e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}} \right) dx \text{ equals}$ (1) $e\left(\frac{e}{2}-1\right)$ (4) 2 (3) e (e – 1) (2) 1 **A-10.** If $\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$, then $\int_{0}^{\infty} e^{-ax^{2}} dx$ where a > 0 is : (1) $\frac{\sqrt{\pi}}{2}$ (2) $\frac{\sqrt{\pi}}{2a}$ (3) $2\frac{\sqrt{\pi}}{a}$ (4) $\frac{1}{2}\sqrt{\frac{\pi}{a}}$ **A-11.**If $I_{1=} = \int_{e}^{e^2} \frac{dx}{\ell n - x}$ and $I_2 = \int_{1}^{2} \frac{e^x}{x} dx$, then (3) $I_1 = 2 I_2$ (4) $2I_1 = 3I_2$ (1) $I_1 = I_2$ (2) $2 I_1 = I_2$ **A-12.** If $\frac{d}{dx} f(x) = g(x)$ for $a \le x \le b$, then $\int_{a}^{b} f(x)g(x)dx$ equals to : (1) f(2) - f(1) (2) g(2) - g(1) (3) $\frac{[f(b)]^2 - [f(a)]^2}{2}$ (4) $\frac{[g(b)]^2 - [g(a)]^2}{2}$ The value of $\int_{5}^{10} \left[\frac{x-5}{5}\right] dx$, where [.] represents greatest integer function is A-13 (1) 1(3) 3(4) 0 (2) 2**A-14.** The value of $\begin{bmatrix} -\tan^{-1}x \end{bmatrix}$ dx, where [.] represents greatest integer function is (1) 1 (2) 2 (3) 3 (2) 2 (1) 1(3) 3 (4) 0**A-15.**The value of $\frac{6}{\pi} \int_{\pi/6}^{\pi/3} [2\sin x]$ dx, where [.] represents greatest integer function is (2) 2 (3) 3 (4) 0 (3) 3 (1) 1(2) 2 (4) 0 Section (B) : Properties of definite integration If $f(x) = \begin{cases} x & x < 1 \\ x - 1 & x \ge 1 \\ x = 1 \end{cases}$, then $\int_{0}^{2} x^{2} f(x) dx$ is equal to : B-1. 5 (2) 3 (4) 2 (3) 3 (1) 1

 $\int_{0}^{\pi} \frac{|1 + 2\cos x|}{dx \text{ is equal to :}}$ B-2. (4) $\frac{\pi}{3} + 2\sqrt{3}$ 2π (1) 3 (2) π (3) 2 ∫|3x−1| dx equals B-3. (1) 5/6 (2) 5/3 (3) 10/3 (4) 5 ∫^e_{1/e}| ℓnx | dx equals B-4. (1) e^{−1} −1 (2) 2 (1 –1/e) (3) 1 – 1/e (4) e - 1 $\int_{-1.5}^{1.5} [x^2] dx$, where [.] denotes the greatest integer function, is equal to B-5. (4) $\sqrt{2}$ (1) $\sqrt{2}$ - 2 (2) 2 - $\sqrt{2}$ (3) 2 + $\sqrt{2}$ The value of $\int_{-1}^{3} (|x-2|+[x]) dx$ is ([x] stands for greatest integer less than or equal to x) (1) 7 (3) 4 (4) 3 B-6. (2) 5 (1) 7 (3) 4 (4) 3 ∫log_e [x] dx equals ([.] denotes greatest integer function) B-7. 1 (2) log_e 3 (3) log_e 2 (4) loge 4 (1) log_e 6 Suppose for every integer n, . $\int_{n}^{n+1} f(x) dx = n^{2} \int_{-2}^{4} f(x) dx$ The value of $\int_{-2}^{4} f(x) dx$ is : B-8. (1) 16(2) 14 (3) 19 (4) 21 ∬|cosx| dx The value of 0 B-9. is -(1) 2 (2) 0 (3) 3 (4) 1 $\int_{1}^{\frac{1}{2}} \tan x^3 dx$ $-\frac{\pi}{2}$ B-10. 1 (2) 2 (1) 1 (3) 2 (4) 0 $\int^{2} x^{4} dx$ -2 B-11. (1) ³²/₅ 64 16 8 (4) 5 (2) 5 (3) 5 $\int \mathbf{x}^{17}$ _1 cos⁴ x dx is equals to B-12.

 $\int_{0}^{a} f(x)$ If f(x) and g(x) are continuous functions satisfying f(x) = f(a - x) and g(x) + g(a - x) = 2, then $\int_{0}^{1} dx$ B-22. g(x)dx is equal to : (2) $\int_{0}^{0} f(x) dx$ ∫g(x)dx (1)⁰ (3) 0 (4) f(a)g(a) π/2 dx $1 + \tan^3 x$ equals B-23. π (3) 2 (4) 4 (1) 0 (2) 1 $\int_{0}^{\infty} |\sin x| dx$ B-24. (1) 1(2) 2 (3) 3(4) 4 ∬x {nsinx The value of the integral B-25. dx is (1) $-\frac{\pi^2}{2} \ln 2$ (2) $\frac{\pi^2}{2}$ ln2 (3) π²ℓn2 (4) – π²ℓn2 ∫^{π/2} {n | tan x + cot x | The value of B-26. dx is equal to : (4) $\frac{\pi}{2} - \ell n2$ (3) $\frac{\pi}{2} \ell_{n 2}$ (2) –π *l*n 2 (1) π *l*n 2 $(2\ln \sin x - \ln \sin 2x)$ dx equals $\int_{0}^{\pi/2}$ B-27. $(4) - \frac{\pi}{2} \ln \frac{1}{2}$ (3) $\frac{\pi}{2} \ln \frac{1}{2}$ (1) π *l*n 2 (2) – π ln 2 Section (C) : Integration of periodic functions $\int_{0}^{2\pi} |\sin 3x| dx =$ C-1. (1) 1(2) 2 (3) 3 (4) 4 If $\int_{0}^{11} \frac{11^{x}}{11^{[x]}} dx = \frac{k}{\log 11}$, (where []] denotes greatest integer function) then value of k is (2) 101 (3) 110 (4) 111 C-2. $\int_{-2}^{10} sgn\left(\frac{x}{2} - \left[\frac{x}{2}\right]\right) dx \text{ equals ([.] denotes greatest integer function)}$ (2) 11 (1) 10(3)9(4) 12 $\int_{0}^{[x]} (x - [x])$ The value of dx is ([.] denotes greatest integer function) C-4. [X] (3) 2 (1) [x] (2) 2 [x] (4) 3 [x]

C-5. The value of
$$\int_{0}^{10\pi} (|\sin x| + |\cos x|) dx$$

(1) 10 (2) 20 (3) 40 (4) 50
C-6. $\int_{0}^{2n\pi} \left(|\sin x| - \left[\left| \frac{\sin x}{2} \right| \right] \right) dx$ (where [] denotes the greatest integer function and $n \in I$) is equal to :
(1) 0 (2) 2n (3) $2n\pi$ (4) 4n
C-7. If $I = \int_{0}^{2\pi} \sin^{2} x dx$, then
(1) $I = 2 \int_{0}^{2\pi} \sin^{2} x dx$ (2) $I = 4 \int_{0}^{\pi/2} \sin^{2} x dx$ (3) $I = 2 \int_{0}^{\pi/2} \cos^{2} x dx$ (4) $I = 8 \int_{0}^{\pi/4} \sin^{2} x dx$

Section (D) : Leibinitz theorem, Estimation of definite integrals, Definite integral as limit of sum

 $\lim_{h \to 0} \frac{\int_{a}^{x+h} \ln^{2} t \, dt - \int_{a}^{x} \ln^{2} t \, dt}{h}$ equals to : D-1. $(3) \frac{2\ln x}{x}$ (1) 0(4) does not exist (2) ℓn² x If $\int_{a}^{y} \cos t^{2} dt = \int_{a}^{x^{2}} \frac{\sin t}{t} dt$, then the value of $\frac{dy}{dx}$ is D-2. (1) $\frac{2\sin^2 x}{x\cos^2 y}$ (2) $\frac{2\sin x^2}{x\cos y^2}$ (3) $\frac{2\sin x^2}{x\left(1-2\sin \frac{y^2}{2}\right)}$ (4) $\frac{2\cos x^2}{x\sin y^2}$ $-\frac{d}{dx} = \left(\int_{f(x)}^{g(x)} \phi(t) dt\right)$ is equal to D-3. (2) $\frac{1}{2}[\phi(g(x))]^2 - \frac{1}{2}[\phi(f(x))]^2$ (1) ϕ (g(x)) – ϕ (f(x)) (3) g' (x) ϕ (g(x)) – f' (x) ϕ (f(x)) (4) $\phi'(g(x)) g'(x) - \phi'(f(x) f'(x))$ The value of the function $f(x) = 1 + x + \frac{1}{1}$ (ln²t + 2 lnt) dt, where f'(x) vanishes is: D-4. (1) e⁻¹ (3) 2 e⁻¹ (4) $1 + 2e^{-1}$ (2) 0 $x = \int_{2}^{sint} sin^{-1}z \, dz$ $y = \int_{n}^{\sqrt{t}} \frac{sinz^2}{z} \, dz$ dz $\frac{dy}{dx}$ is equal to D-5. (4) $\frac{t^2}{\tan t}$ (2) $\frac{2t^2}{\tan t}$ (3) $\frac{\tan t}{t^2}$ tant (1) $2t^2$ The value of $\lim_{x \to 0} \frac{\frac{d}{dx} \int_{0}^{x^3} \sqrt{\cos t} dt}{1 - \sqrt{\cos x}}$ is D-6.

	(1) 0	(2) 11	(3) 10	(4) 12		
	$I = \int_{0}^{\pi/4} \frac{\tan x}{\tan x} dx$					
D-7.	Let ^J X , the	en				
	(1) $0 < I < \frac{\pi}{4}$	(2) > 1	(3) $\frac{\pi}{4} < l < 1$	(4) None of these		
D-8.	$I = \int_{0}^{1} \frac{\tan x}{\sqrt{x}} dx$ then	2	5	1		
	(1) $ < \frac{2}{3}$	(2) > $\frac{2}{3}$	(3) I < ⁵ / ₉	(4) $ < \frac{1}{3}$		
D-9.	Let $I = \int_{1}^{2} \frac{dx}{\sqrt{1 + x^4}}$ then					
	(1) I > $\frac{1}{\sqrt{2}}$	(2) I < $\frac{1}{\sqrt{17}}$	(3) $\frac{1}{\sqrt{17}} \leq I \leq \frac{1}{\sqrt{2}}$	(4) I < ¹ √19		
D-10.	$\lim_{n \to \infty} \frac{\sqrt{1 + 2\sqrt{2} + 3\sqrt{3} + \dots}}{n^{5/2}}$	$\frac{+n\sqrt{n}}{1}$ is equal to				
	$\int_{0}^{1} x \sqrt{x} dx$	(2) $\frac{5}{2}$	(3) 0	(4) 1		
D-11.	$\lim_{n\to\infty}\ \sum_{r=1}^n \left(\frac{r^3}{r^4+n^4}\right) \ \text{equal}$	ls to :				
	(1) ℓn 2	(2) $\frac{1}{2} \ell n 2$	(3) ¹ / ₃ _{ℓn 2}	(4) $\frac{1}{4} \ell n 2$		
D-12.	$\lim_{n\to\infty}\left(\sin\frac{\pi}{2n}.\sin\frac{2\pi}{2n}.\sin\frac{3\pi}{2n}\right)$	$\left(\frac{n}{n},\ldots,\sin\frac{(n-1)\pi}{n}\right)^{1/n}$ is eq	jual to :			
	(1) $\frac{1}{2}$	(2) $\frac{1}{3}$	(3) $\frac{1}{4}$	$(4) \frac{1}{5}$		
D-13.	If f(x) is integrable over	$\int_{1}^{2} f(x)$ r [1, 2], then 1 dx is	s equal to :			
	$\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} f\left(\frac{r}{n}\right)$		(2) $\lim_{n \to \infty} \frac{1}{n} \sum_{r=n+1}^{2n} f\left(\frac{r}{n}\right)$			
	(3) $\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} f\left(\frac{r+n}{n}\right)$		(4) $\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{2n} f\left(\frac{r}{n}\right)$			
Section (E) : Reduction Formulae, Walli's formula						

E-1. If
$$u_{10} = \int_{0}^{\pi/2} x^{10}$$
 sinx dx, then the value of $u_{10} + 90 u_8$ is :
(1) $9 \left(\frac{\pi}{2}\right)^8$ (2) $\left(\frac{\pi}{2}\right)^9$ (3) $10 \left(\frac{\pi}{2}\right)^9$ (4) $9 \left(\frac{\pi}{2}\right)^9$
E-2. (n is a + ve integer) is equal to

	(1) n !	(2) (n – 1) !	(3) (n − 2) !	(4) (n + 1)!
	^{π/2} sin ⁶	xdx		
E-3.	The value of	is		
	5π	5π	5π	5π
	(1) 16	(2) 64	(3) 8	(4) 32
	π		(-)	
	∫sin ⁷	x cos ⁶ xdx		
E-4.	The value of 0	is		
	32	32	32	32
	(1) 3003	(2) 303	₍₃₎ 3001	(4) 301
	3	<u></u> \3 2 ^a –		
	$\int X^{5/2} ($	$\sqrt{3}-x$) dx $\frac{3\pi}{2^{b}}$		
E-5.	The value of 0	is 2 , a,	b∈N then	
	(1) 3a = 4b	(2) $2a = 3b$	(3) 4a = 3b	(4) a = b
	$\pi/4$			
	$\tan^6 x dx =$			
E-6.	0			
	13 π	11 π	11 π	13 π
	(1) $\overline{15}^+\overline{4}$	(2) $\frac{13}{13} + \frac{1}{4}$	$(3) \frac{13}{13} \frac{13}{4}$	(4) $\frac{15}{15} - \frac{1}{4}$
Sect	ion (F) : Area Und	ler the Curves		
F-1.	The area bounded b	ov curve $v = \ell nx$. $x = 1$.	x = 2 and x-axis is	
		4	e	3
	(1) ℓn4e	(2) ℓn ^e	(3) ℓn 4	(4) ℓn ^e
F-2.	The area bounded b	$v curve v = e^x v = 1 v$	= 3 and v-axis is $\lambda \ln 3 +$	$\mu, \lambda, \mu \in I$ then $\lambda + \mu =$
	(1) 5	(2) – 1	(3) 1	(4) 2
	(1)0	(2)		(1) 2
			π π	
F-3.	The area bounded b	by the curve $v = tanx$, x	$=$ $\frac{1}{4}$, x = $\frac{1}{3}$, and x-axis	s is
	In2		2	2
	$\frac{\langle 1 2}{2}$		$\frac{2}{3}$ ln2	$\frac{3}{2}$ ln2
	(1) 2	(2) ℓn2	(3) 5	(4) 2
- 4	T I	2		
⊦- 4.	The area bounded i	by curve $y = x^3$, $y = -1$,	y = 8 and y-axis is	
	45	4	51	47
	(1) 4	(2) ⁴⁵	(3) 4	(4) 4
F-5.	The area bounded b	by the curves $25x^2 + 9y^2$	$^{2} = 225$ and 5x + 3y = 15	in first quadrant is
	$\frac{15}{\pi}$ $(\frac{\pi}{1}+1)$	$\frac{15}{\pi}$	$\frac{15}{\pi}$	$\frac{15}{\pi}$
	(1) 2 (2)	(2) $2(2^{+-})$	(3) 2 (2)	(4) ² (2 ⁻)
	. ,	、 ,	、 ,	、 ,
F-6.	The area bounded b	by the curve xy = 4 and	the line $x + y = 5$ is	
	$\frac{15}{10} + \ln 4$	$\frac{15}{1} \pm \ln 2$	$\frac{15}{4ln4}$	$\frac{15}{12}$ _ ln2
	(1) 2	(2) 2	(3) 2	(4) 2
F-7.	The area bounded b	by the curve x ² = 4y, x-a	axis and the line $x = 2$ is	

		2	3	
	(1) 1	(2) 3	(3) 2	(4) 2
F-8.	The area bounded	d by the parabola $y = 4x^2$	² , x = 0 and y = 1, y = 4 is	3
		$\frac{7}{2}$	$\frac{7}{2}$	$\frac{7}{4}$
	(1) 7	(2) 2	(3) 3	(4) 4
F-9.	The area bounded	d by the curve $y^2 = 4x$ ar	10 the line 2x - 3y + 4 = 0) is
	$\frac{1}{3}$	$(2) \frac{2}{3}$	$\frac{4}{3}$	$\frac{5}{3}$
	(1) 3	(2) 3	(3) 5	(4) 5
F-10.	The area of the fig	gure bounded by right of	the line $y = x + 1$, $y = \cos \theta$	s x & x−axis is:
	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{5}{6}$	$\frac{3}{2}$
	(1) 2	(2) 3	(3) 0	(4) 2
F-11. T	he area bounded by	y the curves y = sinx, y =	e cosx and y-axis in I qua	idrant is
	(1) $\sqrt{2}$	(2) $\sqrt{2}$ + 1	(3) $\sqrt{2} - 1$	(4) $\sqrt{2}$ + 2
			x^2 y^2	
F-12.	The area bounded	d in the first quadrant be	tween the ellipse $\frac{16}{16} + \frac{5}{9}$	and the line $3x + 4y = 12$ is:
	(1) 6 (π – 1)	(2) 3 (π – 2)	(3) 3 (π – 1)	(4) 2 (π – 2)
	Exercis	e-2 📃 🔤		
Marke	ed Questions may	have for Revision Que	stions.	
* Marl	ked Questions may	have more than one o	correct option.	
		PART - I : OB	JECTIVE QUESTI	ONS
		c dx	π	
1.	The value of the ir	ntegral, $\int_{0}^{1} \frac{1}{x^2 + 2x\cos\alpha + \alpha}$	$\frac{\pi}{2}$, is where $0 < \alpha < \frac{\pi}{2}$, is	equal to:
		0	<u>α</u>	<u>a</u>
	(1) sin a	(2) a sin a	(3) $2\sin\alpha$	(4) $\overline{2}$ sin α
	$\int \mathbf{x} \mathbf{t}$	an ^{−1} x		
2.	The value of ${}^{J}_{0}(1+$	- x ²) ^{3/2} dx is		
	$\frac{4+\pi}{\sqrt{2}}$	$\frac{4-\pi}{1-\pi}$	<u>π</u>	<u>_</u>
	(1) ⁴ √2	(2) 4√2	(3) 2	(4) – 2
	tan x	$\frac{t}{1}$ dt $+\int_{1}^{\cot x} \frac{1}{1}$ dt		
3.	The value of ^J ¹	$+ t^2 \int_{1/e}^{J} t(1+t^2)$, where $x \in (\pi/6,\pi/3),$ is	s equal to :
	(1) 0	(2) 2	(3) 1	(4) cannot be determined
	ſ			
	∫0 , whe	ere $x = \frac{n}{n+4}$, $n = 1, 2, 3$	3 2	
4	$\begin{bmatrix} 0 & , & when \\ \end{bmatrix}$	ere $x = \frac{n}{n+1}$, $n = 1, 2, 3$ se where	$\frac{2}{\int}$	f(x) dx
4.	$\int_{(1)}^{0} f(x) = \begin{cases} 0 & , & \text{when} \\ 1 & , & \text{el} \\ (1) & 1 \end{cases}$	ere $x = \frac{n}{n+1}$, $n = 1, 2, 3$ se where (2) 0	3 \int_{0}^{2} , then the value of $_{0}^{2}$ (3) 2	f(x) dx is - (4) ∞

5. If
$$\int_{0}^{10} f(x) \, dx = a$$
, then $\sum_{n=1}^{\infty} \left(\int_{0}^{1} f(r-1+x) \, dx \right) =$
(1) 100 a (2) a (3) 0 (4) 10 a
6. $\int_{0}^{\frac{1}{2}} \left[2e^{-x} \right] \, dx \, \text{where, } \left[. \right] \text{ denotes the greatest integer function, is equal to :}$
(1) 0 (2) $\ln 2$ (3) e^{2} (4) $2e^{-1}$
7. $\int_{-\pi/2}^{\pi/2} \frac{|x| \, dx}{6\cos^{2} 2x+1} \, \text{has the value :}$
(1) $\frac{\pi^{2}}{6}$ (2) $\frac{\pi^{2}}{12}$ (3) $\frac{\pi^{2}}{24}$ (4) $\frac{\pi}{12}$
8. If $[x]$ stands for the greatest integer function, the value of $\int_{0}^{\frac{\pi}{2}} \frac{|x|^{2}}{(x^{2}-28x+196]+[x^{2}]} \, dx$ is :
(1) 0 (2) 1 (3) 3 (4) $\frac{3}{2}$
9. $\int_{0}^{\frac{\pi}{2}} \frac{\ln(1+x^{2})}{1+x^{2}} \, dx$ equals
(1) π (n 2 (2) $-\pi$ (n 2 (3) $\frac{\pi}{2} \ln 2$ (4) $-\frac{\pi}{2} \ln 2$
10. $\int_{1}^{\frac{1}{2}e^{x}-1} \, dx$ equals -
(1) $\ln (e^{x}+1)$ (2) $\ln (e^{x}-1)$ (3) 1 (4) 0
11. If $I_{1} = \int_{0}^{\pi} x \quad f(\sin^{3} x + \cos^{2} x) \, dx \, \text{and } I_{2} = \pi \int_{0}^{\pi/2} f(\sin^{3} x + \cos^{2} x) \, dx \, \text{then}$
(1) $I_{1} = I_{2}$ (2) $I_{1} + I_{2} = 0$ (3) $I_{1} = 2I_{2}$ (4) $2I_{1} = I_{2}$
12. The value of $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin^{2} x} \, dx \, \text{is }$
(1) $\frac{\pi^{2}}{4} \quad (2) \frac{\pi^{2}}{8} \quad (3) \frac{\pi^{2}}{16} \quad (4) \frac{3\pi^{2}}{16}$
13. If $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{2\pi x - \pi^{2}} \, dx = \frac{\pi}{2} \frac{1}{2} \ln b, a, b \in \mathbb{N}$
(1) $a+b = 4$ (2) $a-b = 4$ (3) $a+b = 6$ (4) $a-b = 6$
14. $\int_{0}^{\frac{\pi}{2}} \frac{x^{2} \cos^{4} x \sin x}{5} \quad (4) \frac{\pi}{5}$

 $\label{eq:cosx} \text{The value of } \int\limits_{0}^{\pi} \ \frac{e^{\text{cosx}}}{e^{\text{cosx}} + e^{-\text{cosx}}} \ dx$ 15. (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) 2 (1) π $\int_{-1}^{2} \{2x\} dx$ The value of -1 is (where function {.} denotes fractional part function) 16. $(2)\frac{3}{2}$ (3) $\frac{5}{2}$ (4) $\frac{1}{2}$ (1) 3 The value of $\int_{0}^{400\pi} \sqrt{1-\cos 2x} \, dx$ 17. is (2) 200 $\sqrt{2}$ (1) 400 $\sqrt{2}$ (3) 600 √2 (4) 800 √2 $\int_{0}^{0} (2\cos^2 3t + 3\sin^2 3t)$ If f(x) = 0 dt, f(x + π) is equal to : 18. (1) $f(x) + 2f(\pi)$ (2) $f(x) + 2f\left(\frac{\pi}{2}\right)$ (3) $f(x) + 4f\left(\frac{\pi}{4}\right)$ (4) $f(x) + 2f\left(\frac{\pi}{4}\right)$ $\int_{0}^{1} (\tan^{-1} x)^{2} dx$ Let I = 0 then 19. (1) I > $\frac{\pi^2}{4}$ (2) I > $\frac{\pi^2}{8}$ (3) 0 < I < $\frac{\pi^2}{16}$ (4) I > $\frac{\pi^2}{16}$ $\int_{-1}^{1} e^{\cos^{-1}x} dx$ Let $I = \frac{1}{\sqrt{2}}$ then 20. (1) I < 1 - $\frac{1}{\sqrt{2}}$ (2) I > (1 - $\frac{1}{\sqrt{2}}$)e^{$\pi/4$} (3) I < (1 - $\frac{1}{\sqrt{2}}$)e^{$\pi/4$} (4) I > 2 $\underset{n \rightarrow \infty}{\text{lim}} \left(\frac{n!}{n^n} \right)^{1/n} \text{ equals}$ 21. (2) e (1) e (3) 2e (4) – e If $f(x) = \int_{x^2}^{x^3} \frac{dt}{\ell nt}$. x > 0 then 22.. (1) f' (x) = - 6ℓnx (2) f is an increasing function on $(0, \infty)$ (3) f has minimum at x = 1(4) f is a decreasing function on $[0, \infty)$ Value of $\int_{0}^{1} x^{5} (1-x^{2})^{4} dx$ is 23. (1) $\frac{1}{210}$ (4) 310 (3) 210 (2) 211 Let $I_n = \int_0^1 x^n \tan^{-1} x dx$ then (n+1) $I_n + (n-1) I_{n-2} =$ 24.

	(1) $\frac{\pi}{2} + \frac{1}{n}$	(2) $\frac{\pi}{2} - \frac{2}{n}$	(3) $\frac{\pi}{2} + \frac{2}{n}$	(4) $\frac{\pi}{2} - \frac{1}{n}$
25.	$\int_{0}^{1} a^{x} x^{n} dx, a >$ Let I _n = 0	1 then		
	(1) $I_5 = \frac{a}{l_{na}} + \frac{5}{l_{na}}$	4 (2) $I_5 = \frac{a}{\ln a} - \frac{5}{\ln a} I_4$	(3) $I_3 = \frac{a}{\ln a} + \frac{3}{\ln a} I_2$	(4) $I_2 = \frac{a}{l_n a} + \frac{2}{l_n a}$ I_1
26.	The area of the close (3, 2) is:	ed figure bounded by y = x	, $y = -x \&$ the tangent to	the curve $y = \sqrt{x^2 - 5}$ at the poin
	(1) 5	(2) $\frac{15}{2}$	(3) 10	(4) $\frac{35}{2}$
27.	The area bounded b $\in \mathbb{R}$, then f(x) =	y the curve y = f(x), x-axis	and the ordinates x = 1	and x = b is (b – 1) sin (3b + 4), b
	(1) $(x - 1) \cos (3x + (3) \sin (3x + 4) + 3(x + (3) \sin (3x + 4)))$	4) (- 1) cos (3x + 4)	(2) sin (3x + 4) (4) cos (3x + 4)	
28.	Find the area of the 21	region bounded by the cu	ves $y = x^2 + 2$, $y = x$, $x =$	= 0 and x = 3. 23
	(1) $\overline{2}$ sq. unit	(2) 22 sq. unit	(3) 21 sq. unit	(4) $\overline{2}$ sq. unit
29.	The line y = mx bise Then the value of m	ects the area enclosed by t is:	the curve $y = 1 + 4x - x_2$	& the lines $x = \frac{3}{2}$, $x = 0$ & $y = 0$
	(1) $\frac{13}{6}$	(2) ⁶ / ₁₃	(3) $\frac{3}{2}$	(4) 4
30.	The area of the close	ed figure bounded by y =	$\frac{1}{\cos^2 x}$; x = 0; y = 0 & x =	$\frac{\pi}{4}$ is:
	(1) $\frac{\pi}{4}$	(2) $\frac{\pi}{4}$ + 1	(3) 1	(4) 2
31.	The area bounded b	$x^{2} + y^{2} - 2x = 0 \& y = \sin \theta$	$\frac{\pi x}{2}$ in the upper half of	the circle is:
	(1) $\frac{\pi}{2} - \frac{4}{\pi}$	(2) $\frac{\pi}{4} - \frac{2}{\pi}$	(3) $\pi - \frac{8}{\pi}$	(4) $\frac{\pi}{2} + \frac{4}{\pi}$
32	The area of the regio	on for which $0 < y < 3 - 2x$	$-x^2$ and x > 0 is	3
	$\int_{1}^{3} (3 - 2x - x^2) dx$	(2) $\int_{0}^{3} (3-2x-x^{2}) dx$	$\int_{0}^{1} (3-2x-x^{2}) dx$	$\int_{-1}^{3} (3 - 2x - x^2) dx$
33.	Area of the region R	$\equiv \{(x, y) \ ; x^2 \le y \le x\} \text{ is }$		
	(1) $\frac{1}{12}$	(2) $\frac{1}{6}$	(3) $\frac{1}{2}$	(4) $\frac{1}{3}$
34	The area bounded b	w the curve v - sin av with	v-axis in between any t	NO SUCCESSIVE DOINTS OF inflection

34. The area bounded by the curve $y = \sin ax$ with x-axis in between any two successive points of inflection is(a > 0)

	PART - II : MISCELLANEOUS QUESTIONS							
	(1) e	(2) 1 - e	(3) e	(4) 1 - e				
	2	2	<u>1</u>	<u>1</u>				
42.	The area bounded by th	ne curves y = x e ^x , y = x e	e^{-x} and the line $x = 1$, is					
	(1) 120	(2) 120	(3) 20	(4) 120				
	3	5	1	7				
41.	the function is	$\frac{1}{2} \frac{1}{2} \frac{1}$						
41	The area bounded by th	$y = 2y^4 - y^2 - y^2$	ris and the two ordinates	corresponding to the minime of				
	(1) 24	(2) 12	(3) 24	(4) 23				
	37	37	11	37				
40.	Area bounded by $y = x^3$	$^{3} - x$ and y = x ² + x is-						
00.	(1) 2	(2) 4	(3) 8	(4) 16				
39	The area between two	arms of the curve $ v = x_3$	from $x = 0$ to $x = 2$ is					
38.	The area of the figure b (1) 4/3	bounded by $ y = 1 - x^2$ is (2) 8/3	in square units, (3) 16/3	(4) 1				
37.	The area of the region b (1) 2	bounded by the curves y (2) 3	x - 1 and $y = 3 - x (3) 4$	s (4) 1				
	(1) ∠ Sq. unit	(<i>2)</i> 2 Sq. unit	(3) 4 Sq. unit	(4) - Sq. uinit				
	(1) 0 0	(2) $\frac{3}{2}$ (2π) (2π)	$(2) \frac{1}{2} Or write$	$\frac{5}{2}$ On which				
36.	Area enclosed by the c	urve $ x - 2 + y + 1 = 1$ is	s equal to					
	(1) $\frac{4+3 \ \ln \ 3}{2}$	(2) $\frac{4-3 \ln 3}{2}$	(3) $\frac{3}{2} + \ln 3$	(4) $\frac{1}{2} + \ln 3$				
35.	The area bounded by y	x = 2 - 02 - x0 and $y = x $	is:					
		3	1					
	₍₁₎ a	(2) a	(3) a	(4) 2a				
	4	2	<u>1</u>					

Section (A) : ASSERTION/REASONING DIRECTIONS :

Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.

- , ∫f(t) dt
- A-1. Statement-1 : Let f(x) be an even function which is periodic, then g(x) = a is also periodic. Statement-2 : If $\alpha(x)$ is a differentiable and periodic function, then $\alpha'(x)$ is also periodic.

A-2. Statement-1 : If {.} represents fractional part function, then $\int_{0}^{5.5} \{x\} dx = \frac{21}{8}$ Statement-2 : If [.] and {.} represent greatest integer and frational part functions respectively, then $\int_{0}^{1} \{x\} dx = \frac{[t]}{2} + \frac{\{t\}^{2}}{2}$ A-3. Statement-1 : $\int_{0}^{10\pi} |\cos x| dx = 20$ Statement-2 : $\int_{a}^{b} f(x) dx = 0, \text{ then } f(x) \ge 0, \forall x \in (a, b)$ A-4. Statement-1 : $\int_{0}^{2\pi} \tan^{2} x dx = 4 \int_{0}^{\pi/2} \tan^{2} x dx$ A-4. Statement-1 : $\int_{0}^{\pi} f(x) dx = n \int_{0}^{T} f(x) dx \text{ where n is an integer and T is a period of } f(x)$

Section (B) : MATCH THE COLUMN

B-1.	Match the column		
	Column – I	Col	umn – II
	(A) $\int_{-1}^{1} \frac{dx}{1+x^2} =$	(p)	$\frac{1}{2} \begin{pmatrix} 2 \\ ln \end{pmatrix}$
	(B) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} =$	(q)	$2 \ln \left(\frac{2}{3}\right)$
	(C) $\int_{2}^{3} \frac{dx}{1-x^{2}} =$	(r)	$\frac{\pi}{3}$
	(D) $\int_{1}^{2} \frac{dx}{x \sqrt{x^{2}-1}} =$	(s)	$\frac{\pi}{2}$
B-2.	Column – I	Col	umn – II
	(A) Area bounded by region $0 \le y \le 4$	$x - x^2 - 3$ is (p)	32/3
	(B) Area of the region enclosed by y ²	= 8x and y = 2x is (q)	1/2
	(C) The area bounded by $ x + y \le 1$	and $ \mathbf{x} \ge 1/2$ is (r)	8/3
	(D) Area bounded by $x \le 4 - y^2$ and x	\geq 0 is (s)	4/3
Secti	ion (C) : ONE OR MORE THAN ONE	OPTIONS CORRECT	

If a curve y = a \sqrt{x} + bx passes through the point (4, 2) and the area bounded by the curve, line x = 4 C-1. and x-axis is 16 square units, then : (1) a = -9(2) b = 4(3) a = 9(4) b = -4 $\int_{0}^{x} \left((3t+4) \int_{t}^{3} f(u) du \right) dt \quad \text{and} \quad \int_{0}^{3} f(x) dx = 3, \text{ then :}$ If f is a continuous function and $\varphi(x) =$ C-2. (3) φ''(3) = 13 f(3) (4) $\phi''(3) = -13 f(3)$ (1) $\phi'(0) = 0$ (2) $\phi'(0) = 12$ $\label{eq:linear} \text{Let } f(x) = \int\limits_{1/x}^{\sqrt{x}} (\sin(t^2)) \ dt,$ C-3. then

(1)
$$f(1) = 3/2$$
 (2) $f(1) = 3/2 \sin 1$ (3) $\frac{\lim_{x \to 2} f(x) = 0}{2}$ (4) $\frac{\lim_{x \to \infty} f(x) = 0}{2}$
C.4. The equation of the tangent of slope 1 to the curve $f(x) = 1$ (3) $y = x + 1$ (4) $y = x + 2$
(1) $y = x$ (2) $y = x - 1$ (3) $y = x + 1$ (4) $y = x + 2$
C.5. If $1 = \frac{1}{2} \frac{1 + x^2}{1 + x^2}$ dx and $L = \frac{1}{2} \frac{1 + x^2}{1 + x^2}$ dx, then :
(1) $L < L$ (2) $L > L$ (3) $L > L > 1$ (4) $L < 1 < 1$
C.6. If $L = \frac{1}{-x} \frac{\sin x}{(1 + \pi^2) \sin x}$ dx, $n = 0, 1, 2, ...,$ then
(1) $L = L_{n,2}$ (2) $\sum_{n=1}^{10} I_{2n+1} = 10\pi$ (3) $\sum_{n=1}^{\infty} I_{2n} = 0$ (4) $L = L_{n+1}$
EXERCISEC-3
Marked Questions may have for Revision Questions.
* Marked Questions may have more than one correct option.
PART -1 : JEE (MAIN) / ALEEE PROBLEMS (PREVIOUS YEARS)
1. The value of the integral $\int_{0}^{x} \frac{\sqrt{x}}{\sqrt{9 - x} + \sqrt{x}} dx$ is. [AIEEE 2006, (3, -1), 120]
(1) $\frac{3}{2}$ (2) 2 (3) 1 (4) $\frac{1}{2}$
2. $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\pi^2}{(2)}$ (2) $\frac{\pi}{2}$ (3) $(\frac{\pi}{4}) - 1$ (4) $\frac{\pi^4}{32}$
3. $\int_{0}^{\frac{1}{x}} t(\sin x) dx$ is equal to. [AIEEE 2006, (3, -1), 120]
(1) $\pi^{\int_{0}^{\frac{1}{2}} t(\sin x) dx$ (2) $\frac{\pi}{2} \int_{1}^{\frac{\pi^2}{2}} t(\sin x) dx$ (3) $\pi^{\int_{0}^{\frac{\pi^2}{2}} t(\cos x) dx$ (4) $\pi^{\int_{0}^{\frac{1}{2}} t(\cos x) dx$
4. The value of $\frac{1}{1}$ $x \to 1$, where [x] denotes the greatest integer not exceeding x is
[AIEEE 2006, (3, -1), 120]
(1) $\pi^{\int_{0}^{\frac{1}{2}} t(\sin x) dx$ is equal to. [AIEEE 2006, (3, -1), 120]
(1) $\pi^{\int_{0}^{\frac{1}{2}} t(x) dx$, $x \to 1$, where [x] denotes the greatest integer not exceeding x is
[AIEEE 2007, (3, -1), 120]
(1) $\pi^{(1)} f(x) = (1) + t(\frac{1}{x}) + \dots + t(n)$ (2) $\pi^{\frac{1}{2}} t(1) + t(2) + \dots + t(n)$
5. Let $F(x) = f(x) + f(\frac{1}{x}) + t(x) = \int_{1}^{\frac{1}{1}} \frac{1}{\sqrt{t^2 - 1}} = \frac{\pi}{2}$
6. The solution for x of the equation $\frac{1}{3} \frac{1}{11 + \sqrt{t^2 - 1}} = \frac{\pi}{2}$ is [AIEEE 2007, (3, -1), 120]
(1) $2\sqrt{2}$ (2) $-\sqrt{2}$ (3) π (4) $\frac{\sqrt{3}}{2}$

7. The area enclosed between the curves $y_2 = x$ and y = |x| is [AIEEE 2007 (3, -1), 120] (3) $\overline{6}$ sq unit (1) $\overline{3}$ sq unit (4) 3 sq unit (2) 1 sq unit cosx sinx dx and J = $\int_{0}^{J} \sqrt{x}$ dx. Then, which one of the following is true ? √x 8. [AIEEE 2008 (3, -1), 105] (2) I < $\frac{1}{3}$ and J < 2 (3) I < $\frac{3}{3}$ and J > 2 (4) I > 3 and J < 2 (1) I > 3 and J > 2 The area of the plane region bounded by the curves $x + 2y_2 = 0$ and $x + 3y_2 = 1$ is equal to 9. [AIEEE 2008 (3, -1), 105] 2 (2) $\overline{3}$ sa unit (3) $\overline{3}$ sq unit (4) $\overline{3}$ sa unit (1) 3 sq unit [cot x]dx , where [·] denotes the greatest integer function, is equal to : [AIEEE 2009 (4, -1), 144] 10. $(3) - \overline{2}$ (4) 2 (1) 1 (2) - 1The area of the region bounded by the parabola $(y - 2)^2 = x - 1$, the tangent to the parabola at the point 11. (2, 3) and the x-axis is [AIEEE 2009 (8, -2), 144] (1) 6 sq unit (2) 9 sq unit (3) 12 sq unit (4) 3 sq unit 12. Let p(x) be a function defined on **R** such that p'(x) = p'(1 - x), for all $x \in [0, 1]$, p(0) = 1 and p(1) = 41. p(x)dx Then equals [AIEEE 2010 (8, -2), 144] (4) $\sqrt{41}$ (1) 21 (2) 41 (3) 42 The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinates x = 0 and x = 2 is 13. [AIEEE 2010 (4, -1), 144] (2) $4\sqrt{2}-1$ (1) $4\sqrt{2} + 2$ (3) $4\sqrt{2} + 1$ (4) $4\sqrt{2} - 2$ For $x \in \left(0, \frac{5\pi}{2}\right)$, define $f(x) = \int_{0}^{2} \sqrt{t}$ sin t dt. Then f has : 14. [AIEEE 2011, I, (4, -1), 120] (2) local minimum at π and 2π (1) local maximum at π and 2π . (3) local minimum at π and local maximum at 2π (4) local maximum at π and local minimum at 2π . $\frac{8\ell n(1+x)}{1+x^2} dx \text{ is :} \\$ The value of 0 15. [AIEEE 2011, I, (4, -1), 120] (3) $\frac{\pi}{2} \ell_{n 2}$ (2) ⁸ ln 2 (1) π *l*n 2 (4) *l*n 2 $\int x [x^2]$ Let [.] denote the greatest integer function then the value of 16. dx is : [AIEEE 2011, II, (4, -1), 120] 3 3 (2) 2 (3) 4 (4) 4 (1) 0

The area of the region enclosed by the curves y = x, x = e, $y = \frac{x}{x}$ and the positive x-axis is 17. [AIEEE 2011, I, (4, -1), 120] 3 (3) $\overline{2}$ square units (4) $\overline{2}$ square units (1) 2 square units (2) 1 square units The area bounded by the curves $y_2 = 4x$ and $x_2 = 4y$ is : 18. [AIEEE 2011, II, (4, -1), 120] 32 16 (1) 3 (2) 3 (3) 3 (4) 0 ∫ cos4t dt , then $g(x + \pi)$ equals If q(x) = 019*. [AIEEE-2012, (4, -1)/120] g(x)(1) $g(\pi)$ (2) $g(x) + g(\pi)$ (3) $g(x) - g(\pi)$ (4) $q(x) \cdot q(\pi)$ The area bounded between the parabolas $x^2 = 4$ and $x^2 = 9y$ and the straight line y = 2 is : 20. [AIEEE-2012, (4, -1)/120] (3) $\frac{20\sqrt{2}}{3}$ (1) $20\sqrt{2}$ (<u>4</u>) 10√2 (2)Ĵ|t| dt, The intercepts on x-axis made by tangents to the curve, $y = \frac{1}{2}$ $x \in R$, which are parallel to the line 21. [AIEEE - 2013, (4, - 1) 120] y = 2x, are equal to : (1) ±1 (2) ±2 (3) ±3 (4) ±4 Statement-I : The value of the integral $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\tan x}}$ is equal to $\pi/6$. [AIEEE - 2013, (4, -1),360] 22. $\int f(x)dx = \int f(a+b-x) dx$ Statement-II: [AIEEE - 2013, (4, -1),360] (1) Statement-I is true; Statement-II is true; Statement-II is a correct explanation for Statement-I. (2) Statement-I is true; Statement-II is true; Statement-II is not a correct explanation for Statement-I. (3) Statement-I is true; Statement-II is false. (4) Statement-I is false; Statement-II is true. The area (in square units) bounded by the curves $y = \sqrt{x}$, 2y - x + 3 = 0, x-axis, and lying in the first 23. quadrant is : [AIEEE - 2013, (4, -1),360] (4) 4 (1) 9 (3) 18 $\int_{0}^{\pi} \sqrt{1+4\sin^2\frac{x}{2}-4\sin\frac{x}{2}} dx$ equals : The integral o [JEE(Main) 2014, (4, - 1), 120] 24. $4\sqrt{3} - 4 - \frac{\pi}{3}$ (3) $\pi - 4$ (4) $\frac{2\pi}{3} - 4 - 4\sqrt{3}$ (1) $4\sqrt{3}-4$ The area of the region described by A = {(x, y) : $x^2 + y^2 \le 1$ and $y^2 \le 1 - x$ } is : 25.

[JEE(Main) 2014, (4, -1), 120]

-				
	(1) $\frac{\pi}{2} - \frac{2}{3}$	(2) $\frac{\pi}{2} + \frac{2}{3}$	(3) $\frac{\pi}{2} + \frac{4}{3}$	(4) $\frac{\pi}{2} - \frac{4}{3}$
26.	The integral $\int_{2}^{4} \frac{1}{\log x^{2} + \log x^{2}}$ (1) 2	$\frac{\log x^2}{\log(36 - 12x + x^2)} dx$ is e (2) 4	qual to (3) 1	[JEE(Main) 2015, (4, – 1), 120] (4) 6
27.	The area (in sq. units) o	of the region described b	$y \{(x, y); y^2 \le 2x \}$	and $y \ge 4x - 1$ is
	(1) $\frac{7}{32}$	(2) $\frac{5}{64}$	(3) $\frac{15}{64}$	$\begin{bmatrix} 322 \\ (4) \end{bmatrix} \begin{bmatrix} 9 \\ 32 \end{bmatrix}$
28.	$\lim_{n \to \infty} \left(\frac{(n+1)(n+2)3}{n^{2n}} \right)^{2n}$ (1) $\frac{27}{e^2}$	$\frac{(n)}{(2)}^{1/n}$ is equal to : $\frac{9}{e^2}$	(3) 3 log3 – 2	[JEE(Main) 2016, (4, – 1), 120] (4) ¹⁸ / _{e⁴}
29.	The area (in sq.units) o	f the region $\{(x,y) : y^2 \ge 2\}$	$2x \text{ and } x^2 + y^2 \le 4$	x, x ≥ 0, y ≥ 0} is [JEE(Main) 2016, (4, – 1), 120]
	(1) $\pi - \frac{8}{3}$	(2) $\pi - \frac{4\sqrt{2}}{3}$	(3) $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$	(4) $\pi - \frac{4}{3}$
30.	The integral $\int \frac{2x^{12} + \xi}{(x^5 + x^3)^2}$ $\frac{x^{10}}{2(x^5 + x^3 + 1)^2} + C$	$\frac{5x^{9}}{(2)} dx$ is equal to $\frac{x^{5}}{2(x^{5} + x^{3} + 1)^{2}} + C$	(3) $\frac{-x^{10}}{2(x^5+x^3+x^3)}$	[JEE(Main) 2016, (4, - 1), 120] $\frac{-x^5}{(x^5 + x^3 + 1)^2} + C$
	where C is an arbitrary	constant		
31.	The area (in sq. units) o	of the region $\{(x, y) : x \ge 0\}$	0 , x + y ≤ 3 , x² ≤	≤ 4y and y ≤ 1 + √x } is : [JEE(Main) 2017, (4, – 1), 120]
	(1) ⁵⁹ / ₁₂	(2) $\frac{3}{2}$	(3) $\frac{7}{3}$	(4) $\frac{5}{2}$
32.	The integral $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1+\cos x}$ $(1) -2$ $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{\cos^2 x} dx$	is equal to (2) 2	(3) 4	[JEE(Main) 2017, (4, – 1), 120] (4) –1
33.	The value of $\frac{J}{2}$ 1+2 ^x	is :		[JEE(Main) 2018, (4, – 1), 120]
	(1) 4π	(2) $\frac{\pi}{4}$	(3) $\frac{\pi}{8}$	(4) $\frac{\pi}{2}$

 $\int_{-1}^{\overline{\int}} xf(x)dx$, and R₂ be the area of the region bounded by y = f(x), x = -1, x = 2, and the x-axis. [IIT-JEE 2011, Paper-2, (3, -1), 80] Then (C) $2R_1 = R_2$ (A) $R_1 = 2R_2$ (B) $R_1 = 3R_2$ (D) $3R_1 = R_2$ The value of the integral $\int_{-\pi/2}^{\pi/2} \left(x^2 + \ln \frac{\pi + x}{\pi - x} \right) \cos x \, dx$ is (A) 0 (B) $\frac{\pi^2}{2} - 4$ (C) $\frac{\pi^2}{2} + 4$ [IIT-JEE 2012, Paper-2, (3, -1), 66] 9. (D) $\frac{\pi^2}{2}$ 0, $\frac{\pi}{2}$ is The area enclosed by the curves y = sinx + cosx and y = |cosx - sinx| over the interval 10. [JEE (Advanced) 2013, Paper-1, (2, 0)/60] (A) $4(\sqrt{2}-1)$ (B) $2\sqrt{2}(\sqrt{2}-1)$ (C) $2(\sqrt{2}+1)$ (D) $2\sqrt{2}(\sqrt{2}+1)$ Let f : $\begin{bmatrix} \frac{1}{2}, & 1 \end{bmatrix} \rightarrow R$ (the set of all real numbers) be a positive, non-constant and differentiable function 11. such that f'(x) < 2 f(x) and $f^{\left(\frac{1}{2}\right)} = 1$. Then the value of $\int_{1/2}^{1} f(x) dx$ lies in the interval [JEE (Advanced) 2013, Paper-1, (2, 0)/60] (C) $\left(\frac{e-1}{2}, e-1\right)$ (D) $\left(0, \frac{e-1}{2}\right)$ (B) (e – 1, 2e – 1) (A) (2e - 1, 2e)For $a \in R$ (the set of all real numbers), $a \neq -1$, $\lim_{n \to \infty} \frac{(1^a + 2^a + + n^a)}{(n+1)^{a-1}[(na+1) + (na+2) + ... + (na+n)]} = \frac{1}{60}$ 12.* Then a = [JEE (Advanced) 2013, Paper-2, (3, -1)/60] (D) $\frac{-17}{2}$ (C) $\frac{-15}{2}$ (A) 5 (B) 7 $\int_{1}^{\frac{\pi}{2}} (2 \operatorname{cosecx})^{17} dx$ 13. [JEE (Advanced) 2014, Paper-2, (3, -1)/60] The following integral ⁴ is equal to $\int_{0}^{\log(1+\sqrt{2})} 2(e^{u} + e^{-u})^{16} du$ (B) $\int_{0}^{\log(1+\sqrt{2})} (e^{u} + e^{-u})^{17} du$ (A) $\int^{\log(1+\sqrt{2})} 2(e^u - e^{-u})^{16} du$ $\int^{\log(1+\sqrt{2})} (e^{u} - e^{-u})^{17} du$ 14. Let f : $[0, 2] \rightarrow R$ be a function which is continuous on [0, 2] and is differentiable on (0, 2) with f(0) = 1. $F(x) = \int_{0}^{x} f(\sqrt{t}) dt$ for $x \in [0, 2]$. If F'(x) = f'(x) for all $x \in (0, 2)$, then F(2) equals **IFF (Advanced) 2014** Let [JEE (Advanced) 2014, Paper-2, (3, -1)/60]

(A) $e^2 - 1$ (B) $e^4 - 1$ (C) e - 1 (D) e^4

15.	If $\alpha = \int_{0}^{1} \left(e^{9x+3\tan^{-1}x} \right) dx$	$\left(\frac{12+9x^2}{1+x^2}\right)dx$ where ta	an ^{_1} x takes only princ	ipal values, then the value of
	$\left(\log_{e} 1+\alpha -\frac{3\pi}{4}\right)_{is}$ (A) 7	(B) 8	[JEE (Advanc (C) 9	e d) 2015, P-2 (4, 0) / 80] (D) 10
16.	Let f: $R \rightarrow R$ be a fun	ction defined by $f(x) =$	$ \begin{cases} [x], & x \leq 2 \\ 0, & x > 2 \\ \end{cases} \ \text{where } [x] \text{ is } \end{cases} $	the greatest integer less than or
	equal to x. If I = $\int_{-1}^{1} \frac{x_i}{2+1}$	$\frac{(x^2)}{f(x+1)}$ dx , then the value	alue of (4I–1) is	
	(A) –1	(B) 1	(C) 0	(D) 4
	$\int_{\pi}^{\frac{\pi}{2}} \frac{x^2 \cos}{1+e^x}$	x dx		
17.	The value of $-\frac{1}{2}$	is equal to	[JEE (Advanc	ed) 2016, Paper-2, (3, −1)/62]
	(A) $\frac{\pi^2}{4} - 2$	(B) $\frac{\pi^2}{4} + 2$	(C) $\pi^2 - e^{\pi/2}$	(D) π ² + e ^{π/2}
18.	Area of the region $\left\{ x, y \right\}$	$(y) \in \mathbb{R}^2$: $y \ge \sqrt{ x+3 }$, 5y	$\leq x + 9 \leq 15$ is equal to	ed) 2016 Paper-2 (3 -1)/62]
	1	4	3	5
	(A) 6	(B) 3	(C) 2	(D) <u>3</u>

	Δn	ISW	ers										
					E	XERC	ISE # 1						
Sectio	on (A)												
A-1. A-8. A-15.	(2) (1) (1)	A-2. A-9.	(1) (1)	A-3. A-10.	(3) (4)	A-4. A-11.	(3) (1)	A-5. A-12.	(1) (3)	A-6. A-13	(3) (4)	A-7. A-14.	(2) (4)
Sectio	on (B)												
B-1. B-8. B-15. B-22.	(3) (3) (3) (2)	B-2. B-9. B-16. B-23.	(4) (1) (1) (4)	B-3. B-10. B.17. B-24.	(1) (4) (2) (4)	B-4. B-11. B-18. B-25.	(2) (2) (2) (1)	B-5. B-12. B-19. B-26.	(2) (3) (4) (1)	B-6. B-13. B-20. B-27.	(1) (3) (4) (3)	B-7. B-14. B-21.	(1) (3) (2)
Sectio	on (C)	• •	(0)	• •		• •		o -	(0)	• •		~ -	
C-1. Section	(4) on (D)	C-2.	(3)	C-3.	(4)	C-4.	(3)	C-5.	(3)	C-6.	(4)	C-7.	(2)
D-1. D-8.	(2) (2)	D-2. D-9.	(2) (3)	D-3. D-10.	(3) (1)	D-4. D-11.	(4) (4)	D-5. D-12.	(1) (3)	D-6. D-13.	(4) (2)	D-7.	(3)
Section E-1.	on (E)	E-2.	(1)	E-3.	(4)	E-4.	(1)	E-5.	(3)	E-6.	(4)		
Sectio	on (F)		1.1	- ••	\ ·/	_ ••	()	- ••	(-)	_ ••	1.1		
F-1. F-8.	(2) (3)	F-2. F-9.	(3) (1)	F-3. F-10.	(4) (4)	F-4. F-11.	(3) (3)	F-5. F-12.	(3) (2)	F-6.	(3)	F-7.	(2)
					E	XERC	ISE # 2	2					
1	(3)	2	(2)	3	(3)	PAR ₄	T - I (3)	5	(2)	6	(2)	7	(2)
8. 15	(3)	9. 16	(1)	10.	(4)	11. 18	(1)	12.	(3)	13.	(3)	14. 21	(2)
22.	(4)	23.	(2) (1)	24.	(4)	25.	(2)	26.	(1)	27.	(3)	28.	(2) (1)
29. 36.	(1)	30. 37.	(3)	31. 38.	(1) (2)	32. 39.	(3)	33. 40.	(2)	34. 41.	(2) (4)	35. 42.	(2) (1)
						PAR	T - II						
Section A-1	(3)	۸_2	(1)	۸_3	(2)	۸_1	(1)						
Section	on (B)	A-2.	(1)	A-J.	(2)	A-4.	(1)						
B-1.	$(A) \rightarrow (A)$	(s), (B)	→ (s),(C)	\rightarrow (p),	(D) → (r)							
В-2.	(A) → (s), (В) –	→ (S),(C)	→ (q),	(D) → (p)							
Section	on (C)												
C-1.	(3,4)	C-2.	(2,4)	C-3.	(2,4)	C-4.	(1,3)	C-5.	(2,4)	C-6.	(1,2,3)		
EXERCISE # 3													
						PAR	T - I						
1. 8.	(1) (2)	2. 9.	(2) (4)	3. 10.	(3) (3)	4. 11.	(2) (2)	5. 12.	(1) (1)	6. 13.	(2) (4)	7. 14.	(3) (4)
15. 22	(1)	16. 23	(3)	17. 24	(3)	18. 25	(2)	19*. 26	(2,3)	20. 27	(3)	21. 28	(1)
29.	(1)	30.	(1)	31.	(4)	32.	(2)	33.	(2)	£1.	(ד)	20.	(')
1	(A)	2	(D)	2	(D)	P	PART - I	۱ ۶	(D)	6	(A)	7	(D)
1. 8.	(A) (C)	2. 9.	(B) (B)	3. 10.	(B) (B)	4. 11.	(A) (D)	5. 12.	(B) (B)	o. 13.	(A) (A)	7. 14.	(B) (B)
15.	(C)	16.	(C)	17.	(A)	18.	(C)						

Additional Problems For Self Practice (APSP)

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

PART - I : PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks : 120

Max. Time : 1 Hr.

Important Instructions :

- 1. The test is of 1 hour duration and max. marks 120.
- 2. The test consists 30 questions, 4 marks each.
- **3.** Only one choice is correct **1 mark** will be deducted for incorrect response. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 4. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 3 above.

1.
$$\int_{0}^{2/3} \frac{dx}{4+9x^{2}} = equal to$$
(1) $\frac{\pi}{6}$ (2) $\frac{\pi}{12}$ (3) $\frac{\pi}{24}$ (4) $\frac{\pi}{48}$
2.
$$\int_{2}^{4} \frac{\sqrt{x^{2}-4}}{x} dx = equal to$$
(1) $2(3\sqrt{3}-\pi)$ (2) $2\sqrt{3}-\pi$ (3) $\frac{2}{3}(3\sqrt{3}-\pi)$ (4) π
3.
$$\int_{0}^{\infty} \frac{x^{3}dx}{(1+x^{2})^{9/2}} = equal to$$
(1) $\frac{2}{35}$ (2) $\frac{4}{35}$ (3) $\frac{6}{35}$ (4) $\frac{3}{35}$
4. The value of the integration $\int_{-4}^{4} (ax^{3}+bx+c) dx = (3) \text{ only } c$ (4) c and b
5. The value of $\int_{-1}^{2} \frac{|x|}{x} dx = equal to$
(1) 3 (2) 2 (3) 1 (4) -1
6.
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{1+e^{x}} = equal to$$

40 |

	(1) log 2, 1	(2) log 2	$(2) \log 4 = 4$	(4) log 2
	(1) 10ge2—1	(2) 10ge2	(3) 10g _e 4–1	(4) –l0g _e z
	1 f , _1 ,			
7		to		
7.	1	1	1	1
	(1) $\overline{2}$ (π + 2)	(2) $\overline{2}$ (π – 2)	(3) $\frac{1}{4}$ (π + 2)	(4) $\overline{4}$ (π – 2)
	$3\pi/4$			
_	$\int \frac{x}{1+\sin x} dx$			
8.	$\pi/4$ is equal	l to		
	$\pi(\sqrt{2}-1)$	$\pi(\sqrt{2}+1)$	$2\pi(\sqrt{2}-1)$	$2\pi(\sqrt{2}+1)$
	(1) (1)	(2) (1)	(3)	(4)
	$\int_{1}^{4} 2\sqrt{x}$			
٥	$\int \frac{1}{\sqrt{5-x} + \sqrt{x}} dx$	nual to		
9.	3	5	1	
	(1) 2	(2) 2	(3) 2	(4) 3
	π/2			
10	$\int_{-1^2} \sin^2 x \cos^2 x \sin^2 x$			
10.	$-\pi/2$ sin-x cos-x(sinx + 2	1	4	1
	(1) 15	(2) 5	(3) 15	(4) 3
	15 -1			
	$\int \frac{\mathrm{d}x}{(x-3)\sqrt{x+1}}$			
11.	⁸ (^A ^O / ^A ⁻ ⁻ ⁻ is equ	al to	5	1 5
	$(1) \frac{\ln \frac{3}{3}}{3}$	(2) 0	$-\ln\frac{3}{3}$	$\frac{1}{(4)^2} \ln \frac{3}{3}$
	(')	(2) 0		
	$\int \frac{\mathbf{x}^3}{\sqrt{\mathbf{x}^3}}$			
12.	$\sqrt[6]{0} \sqrt{1-x^8}$ dx is equal t	to		
	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{8}$
	(1) 2	(2) 4	(3) 0	(4) 0
	2 1			
13.	J -2 1–x² dx equal to			
	(1) 0	(2) 1	(3) 2	(4) 4
	$\frac{1}{1}$ (1)			
1/	$\int_{0}^{1} \ln \left(\frac{1}{x} - 1 \right) dx$	al to		
14.	° 13 Equ		1	
	(1) 0	(2) 1	(3) 2	(4) 2
15.	If [.] denotes the greate	est integer function then		
	∫[2sin x]dx			
	π is equal to)		

			-5π	5π
	(1) – π	(2) –2 π	(3) 3	(4) 3
	$\int_{-\pi}^{\pi} \sqrt{\frac{1}{-(1+\cos 2x)}}$			
16.	$\int_{0}^{1}\sqrt{2}$ dx is e	equal to		
		1		
	(1) 0	(2) 2	(3) 1	(4) 2
	\int_{1}^{1}			
17.	If \circ f(t)dt = x + × tf(t)	dt, then f(1) is equal to		1
	$\frac{1}{2}$	(2) 0	(2) 4	$-\frac{1}{2}$
	(1) Z	(2) 0	(3) 1	(4) 2
	$\int \ln t dt (x > 0)$			
18.	If $F(x) = x^2$,	then F'(x) is equal to		
	(1) (x³–x²)ℓnx	(2) ^{ℓn} x	(3) (9x²–4x)ℓnx	(4) $(9x^2+4x)x$
19.	Area bounded by the cu	urve y = sinx, y-axis, and	y = 1 is (in first quadram	t)
		$\underline{\pi}$	$\frac{\pi}{-}$ - 1	
	(1) 1	(2) 2	(3) 2	(4) π
20.	Area bounded by the lir	ne x+2y = 5, x = 1, x = 4 a	and x-axis is-	
	$\frac{1}{2}$	$\frac{15}{4}$		
	(1) 2	(2) 4	(3) 6	(4) 4
21.	Area bounded by the lin	ne y = x+5 , coordinate a	ixis and line x = 2 is	
	<u>15</u>	$\frac{9}{2}$		
	(1) 2	(2) 2	(3) 12	(4) 24
22.	Area bounded by the cu	urve y = (x-1) (x-2) (x-3)); x-axis and ordinates x	= 0, x = 3 is
	<u>9</u>	<u>11</u>	<u>11</u>	<u>19</u>
	(1) 4	(2) 4	(3) 2	(4) 4
		$\frac{2}{2^{x}+2^{-x}}$		
23.	The area between curve	es y = ^e + e and x-ax	is is	
	(1) 4-	$\frac{3\pi}{2}$	(2) 2π	<i>(</i> 4) π
	(1) 41((2) -	(3) =	(4) ··
24.	The area between the c	curve x ² =4y and x=4y-2 i	S	
		9	9	9
	(1) 9	(2) 2	(3) 4	(4) 8
25.	The area between the c	curve $y = x$ and $y = x^3$ is		
	<u>1</u>	<u>1</u>	<u>3</u>	
	(1) 4	(2) 2	(3) 4	(4) 1
				$\mathbf{x} \in \left[0, \frac{\pi}{2}\right]$
26.	The area bounded by t	he curve $y = sinx$, $y = co$	sx and x-axis in the 1 st q	uadrant where $\begin{bmatrix} 2 \end{bmatrix}$
	(1) $2 - \sqrt{2}$	(2) $2 + \sqrt{2}$	(3) ^{1+√2}	(4) √2 − 1

27.	The area between curve	es $x^2 + y^2 = \pi^2$ and curve	y = sinx which lies abov	e the x-axis is
	$(1)\left(\frac{\pi^3-8}{2}\right)$	$(2)\left(\frac{\pi^3-4}{2}\right)$	$(3)\left(\frac{\pi^3-2}{2}\right)$	$(4)^{\left(\frac{\pi^3-8}{4}\right)}$
28	$\lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{1}{n^2} \right)$	$\frac{n}{+nr+r^2}$		
20.	(1) $\frac{\pi}{\sqrt{3}}$	(2) $\frac{\pi}{2\sqrt{3}}$	(3) $\frac{\pi}{3\sqrt{3}}$	(4) $\frac{\pi}{3}$
29.	$\lim_{n\to\infty}\frac{1^p+2^p+3^p+\ldots+n^p}{n^{p+1}}$	is equal to	1	1
30.	(1) p+1 $\lim_{n\to\infty}\frac{1}{1^3+n^3}+\frac{4}{2^3+n^3}+\dots$	(2) p $\frac{1}{2n}$ is equal to	(3) p+1	(4) ^p
	(1) ℓn2	(2) $\frac{1}{2} \ell_{n2}$	(3) $\frac{1}{3}_{\ell n2}$	(4) $\frac{1}{4}_{\ell n 2}$

Practice Test (JEE-Main Pattern)

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

PART - II : PRACTICE QUESTIONS

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

$$\frac{\int_{0}^{1} (1-x^{50})^{100} dx}{\int_{0}^{1} (1-x^{50})^{101} dx}$$

 1.
 The value of 5050 0

 (1) 5051
 (2) 5049

2.* Let $S_n = \sum_{k=1}^{n} \frac{n}{n^2 + kn + k^2}$ and $T_n = \sum_{k=0}^{n-1} \frac{n}{n^2 + kn + k^2}$ for n = 1, 2, 3, Then, (1) $S_n < \frac{\pi}{3\sqrt{3}}$ (2) $S_n > \frac{\pi}{3\sqrt{3}}$ (3) $T_n < \frac{\pi}{3\sqrt{3}}$ (4) $T_n > \frac{\pi}{3\sqrt{3}}$

is

3. Let
$$f: R = R$$
 be a continuous function which satisfies $f(x) = 5^{\frac{1}{2}}$ f(1) dt
(1) 0 (2) 1 (3) 3 (4) 4
4. If $f(x)$ is an even function and $\frac{5}{2}^{\frac{1}{2}}$ f(cos 2 x) cos x dx = k $\frac{5}{6}^{\frac{1}{2}}$ f(sin 2 x) cos x d x, then value of k is
(1) 3 (2) $\sqrt{2}$ (3) 2 (4) 4
5. If the value of $5^{\frac{1}{2}}$ f(2sin $(\frac{1}{2}cos x) + 3cos(\frac{1}{2}cos x))_{sinx} dx$ is $k \left[ecos(\frac{1}{2}) + \frac{1}{2}esin(\frac{1}{2}) - 1\right]$ then
 $k = \frac{24}{5}$ (2) $\frac{12}{5}$ (3) $\frac{23}{5}$ (4) $\frac{32}{5}$
6. For any real number, let [x] denote the largest integer less than or equal to x. Let f be a real valued
function defined on the interval [-10, 10] by
 $\left\{ \begin{array}{c} x - [x] : \text{ if } [x] \text{ is odd,} \\ f(x) = \left\{ \begin{array}{c} x - [x] : \text{ or stx dx is } \\ 1 + [x] - x : \text{ if } [x] \text{ is odd,} \\ 1 + [x] - x : \text{ if } [x] \text{ is odd,} \\ 1 + [x] - x : \text{ if } [x] \text{ is oven} \end{array} \right]$
Then the value of $\left\{ \begin{array}{c} x, 0 \le x \le 1 \\ 2 - e^{x+1}, 1 < x \le 2 \\ x - e, 2 < x \le 3 \\ x - e, 2 < x \le 3 \end{array} \right\} \frac{1}{2} f(1) \text{ dt}$, $x \in [1, 3]$ then
(1) g(x) has no local maxima (2) g(x) has no local minima
(3) g(x) has a local maxima at $x = 1 + in2$ (4) g(x) has a local minima
(3) g(x) has a local maxima at $x = 1 + in2$ (3) $m = -11$, $M = 0$ (4) $m = 1$, $M = 12$
9. If $f(x) = \frac{5}{9}e^{x^2}(1-2)$ $(1-3)$ dt
(1) $m = 13$, $M = 24$ (2) $m = \frac{1}{4}$, $M = \frac{1}{2}$ (3) $m = -11$, $M = 0$ (4) $m = 1$, $M = 12$
(1) $m = 13$, $M = 24$ (2) $m = \frac{1}{4}$, $M = \frac{1}{2}$ (3) $m = -11$, $M = 0$ (4) $m = 1$, $M = 12$
(2) f is decreasing on (2, 3)
(3) there exists some $c \in (0, \infty)$, such that $f'(c) = 0$

(4) f has a local minimum at x = 3Let f: R \rightarrow R be a continuous odd function, which vanishes exactly at one point and f(1) = $\frac{1}{2}$. Suppose 10. that $F(x) = \stackrel{\widehat{\int}}{_{-1}} f(t) dt$ for all $x \in [-1, 2]$ and $G(x) = \stackrel{\widehat{\int}}{_{-1}} t | f(f(t)) | dt$ for all $x \in [-1, 2]$. If $\stackrel{k \to 1}{\overset{K \to 1}{\xrightarrow{}} G(x)} = \frac{1}{14}$, then the value of $f\left(\frac{1}{2}\right)$ is. (1) 2(3) 6 (2) 5 (4) 7 The area bounded by the curve $x^2 = y$, $x^2 = -y$ and $y^2 = 4x - 3$ is 11. (1) 2/3 (2) 1/3 (3) 4/3 (4) 1 $\begin{bmatrix} 4a^2 & 4a & 1\\ 4b^2 & 4b & 1\\ 4c^2 & 4c & 1 \end{bmatrix} \begin{bmatrix} f(-1)\\ f(2)\\ f(2)\\ \end{bmatrix} = \begin{bmatrix} 3a^2 + 3a\\ 3b^2 + 3b\\ 3c^2 + 3c\\ \end{bmatrix}, f(x) \text{ is a quadratic function and its maximum value occurs at a for a subtract of the tension and the subtract of the tension of tension o$ 12. point V. A is a point of intersection of y = f(x) with x-axis and point B is such that chord AB subtends a right angle at V. The area enclosed by f(x) and chord AB is (3) $\frac{125}{3}$ 25 24 (2) 3 (1) 3 (4) 3 The area of the region between the curves $y = \sqrt{\frac{1 + \sin x}{\cos x}}$ and $y = \sqrt{\frac{1 - \sin x}{\cos x}}$ bounded by the lines x = 013. and $x = \overline{4}$ is (2) $\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^{2})\sqrt{1-t^{2}}} dt$ (4) $\int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^{2})\sqrt{1-t^{2}}} dt$ (1) $\int_{0}^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$ $\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}}$ Comprehension #1 (Q. No.14 to 16) If $y = \int_{u(x)}^{v(x)} f(t) dt$, let us define $\frac{dy}{dx}$ in a different manner as $\frac{dy}{dx} = v'(x) f^2(v(x)) - u'(x) f^2(u(x))$ and the equation of the tangent at (a, b) as $y - b = \left(\frac{dy}{dx}\right)_{(a,b)} (x - a)$ $\int_{-\infty}^{x^2} t^2 dt$ If y = x, then equation of tangent at x = 1 is
(1) y = x + 1, then equation of tangent at x = 1 is
(2) x + y = 1 (3) y = x - 1 (4) y = x14. If F(x) = $\int_{1}^{x} e^{t^{2}/2}$ (1 - t²) dt, then $\frac{d}{dx}$ F(x) at x = 1 is 15. (1) 0 (2) 1 (3) 2(4) - 1

16. If
$$y = \frac{x^{2}}{2}$$
 for df, then $\frac{k_{m}}{k_{m}} \frac{dy}{dx}$ is
(1) 0 (2) 1 (3) 2 (4) - 1
Comprehension # 2 (2.17 to 2.18)
Suppose we define the definite integral using the following formula $\frac{b}{2} \frac{1}{(x)} \frac{b-a}{2}$ (f(a) + f(b)), for more accurate result for $c \in (a, b), F(c) = \frac{c-a}{2}$ (i(a) + f(c)) + $\frac{2}{2}$ (i(b) + f(c)).
When $c = \frac{a+b}{2}$, $\frac{1}{2}$ f(x)dx $\frac{b-a}{4}$ (i(a) + f(b) + 2f(c)).
(i) $\frac{a+b}{2}$, $\frac{1}{2}$ (i) $\frac{x}{4}$ (1 + $\sqrt{2}$) (3) $\frac{\pi}{8\sqrt{2}}$ (4) $\frac{\pi}{4\sqrt{2}}$
(i) $\frac{1}{8}$ (1 + $\sqrt{2}$) (2) $\frac{\pi}{4}$ (1 + $\sqrt{2}$) (3) $\frac{\pi}{8\sqrt{2}}$ (4) (4) (4) (4) (1) 1 (2) 2 (3) a (1-a)^{2} = 0 for all a.
then the degree of f(x) can atmost be (1) 1 (2) 2 (3) 3 (4) 4 (1) (1) 1 (2) 2 (3) (1) (1-a)^{3} = 0 for all a.
then the degree of f(x) can atmost be (1) 1 (2) 2 (3) $\frac{2f(b)-f(a)}{2b-a}$ (4) 0
Consider the functions defined implicitly by the equation $y^{3} - 3y + x = 0$ on various intervals in the real line.
If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real valued differentiable function $y = f(x)$.
If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real valued differentiable function $y = f(x)$.
If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real valued differentiable function $y = f(x)$.
If $x < (-2, 2)$, then $f^{\alpha} (-10\sqrt{2}) = \frac{4\sqrt{2}}{(1) \frac{7\sqrt{2}}{7^{2}}}$ (2) $-\frac{7\sqrt{2}}{7\sqrt{3}}$ (3) $\frac{4\sqrt{2}}{7^{2}}$ (4) $-\frac{4\sqrt{2}}{7^{2}3}$
21. The area of the region bounded by the curve $y = f(x)$, the x-axis, and the lines $x = a$ and $x = b$, where $-\infty < a < b < -2$, is $\frac{1}{3} \frac{x}{(f(x))^{2} - 1}$ d $x - bf(b) + af(a)$ (4) $-\frac{b}{4} \frac{x}{3} \frac{x}{(f(x))^{2} - 1}$ d $x - bf(b) + af(a)$
(3) $\frac{b}{4} \frac{x}{3} \frac{x}{(f(x))^{2} - 1}$ d $x - bf(b) + af(a)$ (4) $-\frac{b}{4} \frac{x}{3} \frac{x}{(f(x))^{2} - 1}$ d $x - bf(b) + af(a)$
(4) $\frac{b}{4} \frac{x}{3} \frac{x}{(f(x))^{2} - 1}$ d $x - bf(b) + af(a)$ (4) $-\frac{b}{4} \frac{x}{3} \frac{x}{(f(x))^{2} - 1}$ d $x - bf(b) + af(a)$
(5) $\frac{b}{4} \frac{x}{3} \frac{x}{(f(x))^{2} - 1}$ d $x - bf(b) + af(a)$ (4) $-\frac{b}{4$

Comprehension # 4 (Q. 23 to 25)

Consider the polynomial $f(x) = 1 + 2x + 3x_2 + 4x_3$ Let s be the sum of all distinct real roots of f(x) and let t = |s|

The real number s lies in the interval. 23.

(1)
$$\left(-\frac{1}{4}, 0\right)$$
 (2) $\left(-11, \frac{3}{4}\right)$ (3) $\left(-\frac{3}{4}, -\frac{1}{2}\right)$ (4) $\left(0, \frac{1}{4}\right)$

The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t, lies in the interval 24.

- (4) ⁽⁰, $\left(\frac{21}{64}, \frac{11}{16}\right)$ $\left(\frac{21}{64}\right)$ 3 (2) (3) (9, 10) (1) 25. The function f'(x) is $\left(-t, \frac{1}{4}\right)_{and decreasing in}$, t) (1) increasing in $\begin{pmatrix} -t & , & -\frac{1}{4} \end{pmatrix}$ and increasing in $\begin{pmatrix} & -\frac{1}{4}, & t \end{pmatrix}$
 - (2) decreasing in
 - (3) increasing in (-t, t)
 - (4) decreasing in (-t, t)

Comprehension # 5 (Q. 26 to 27)

Let F : R \rightarrow R be a thrice differentiable function. Suppose that F(1) = 0, F(3) = -4 and F'(x) < 0 for all $x \in (1/2, 3)$. Let f(x) = xF(x) for all $x \in R$.

26. The correct statement(s) is(are)
(1) f'(1) < 0
(2) f (2) < 0
(3) f'(x) ≠ 0 for any x ∈ (1, 3)
(4) f'(x) = 0 for some x ∈ (1, 3)
27. If
$$\int_{1}^{3} x^{2}$$
 F'(x)dx = -12 and $\int_{1}^{3} x^{3}$ F"(x)dx = 40
(1) 9f'(3) + f'(1) - 32 = 0
(2) f(2) < 0
(4) f'(x) = 0 for some x ∈ (1, 3)
(5) f'(x) = 0 for some x ∈ (1, 3)
(1) 9f'(3) + f'(1) - 32 = 0
(2) f(x) = 0 for some x ∈ (1, 3)
(3) f'(x) = 0 for some x ∈ (1, 3)
(4) f'(x) = 0 for some x ∈ (1, 3)
(5) f'(x) = 0 for some x ∈ (1, 3)
(6) f'(x) = 0 for some x ∈ (1, 3)
(7) f'(x) = 0 for some x ∈ (1, 3)
(8) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(1) f'(x) = 0 for some x ∈ (1, 3)
(2) f'(x) = 0 for some x ∈ (1, 3)
(3) f'(x) = 0 for some x ∈ (1, 3)
(4) f'(x) = 0 for some x ∈ (1, 3)
(5) f'(x) = 0 for some x ∈ (1, 3)
(6) f'(x) = 0 for some x ∈ (1, 3)
(7) f'(x) = 0 for some x ∈ (1, 3)
(8) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(1) f'(x) = 0 for some x ∈ (1, 3)
(2) f'(x) = 0 for some x ∈ (1, 3)
(3) f'(x) = 0 for some x ∈ (1, 3)
(4) f'(x) = 0 for some x ∈ (1, 3)
(5) f'(x) = 0 for some x ∈ (1, 3)
(6) f'(x) = 0 for some x ∈ (1, 3)
(7) f'(x) = 0 for some x ∈ (1, 3)
(8) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(1) f'(x) = 0 for some x ∈ (1, 3)
(2) f'(x) = 0 for some x ∈ (1, 3)
(3) f'(x) = 0 for some x ∈ (1, 3)
(4) f'(x) = 0 for some x ∈ (1, 3)
(5) f'(x) = 0 for some x ∈ (1, 3)
(7) f'(x) = 0 for some x ∈ (1, 3)
(8) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(1) f'(x) = 0 for some x ∈ (1, 3)
(2) f'(x) = 0 for some x ∈ (1, 3)
(3) f'(x) = 0 for some x ∈ (1, 3)
(4) f'(x) = 0 for some x ∈ (1, 3)
(5) f'(x) = 0 for some x ∈ (1, 3)
(6) f'(x) = 0 for some x ∈ (1, 3)
(7) f'(x) = 0 for some x ∈ (1, 3)
(8) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) = 0 for some x ∈ (1, 3)
(9) f'(x) =

(3) 9f'(3) - f'(1) + 32 = 0

$$\int_{1}^{3} f(x)dx = 12$$
(2) 1
$$\int_{1}^{3} f(x)dx = -12$$
(4) 1

47 |

	AP	SP /	Ansv	vers	s)==								
						PA	RT - I						
1.	(3)	2.	(3)	3.	(1)	4.	(3)	5.	(3)	6.	(2)	7.	(2)
8.	(1)	9.	(1)	10.	(3)	11.	(4)	12.	(4)	13.	(4)	14.	(1)
15.	(3)	16.	(4)	17.	(1)	18.	(3)	19.	(3)	20.	(2)	21.	(3)
22.	(2)	23.	(4)	24.	(4)	25.	(2)	26.	(1)	27.	(2)	28.	(3)
29.	(3)	30.	(3)										
						PA	RT - II						
1.	(1)	2.*	(1,4)	3.	(1)	4.	(2)	5.	(1)	6.	(4)	7*.	(3,4)
8.	(4)	9*.	(1,2,3	,4) 10.	(4)	11.	(2)	12.	(3)	13.	(2)	14.	(3)
15.	(1)	16.	(1)	17.	(1)	18.	(1)	19.	(1)	20.	(2)	21.	(1)
22.	(4)	23.	(3)	24.	(1)	25.	(2)	26.	(1,2,3)	27.	(3,4)		