Exercise-1

Marked Questions may have for Revision Questions.

* Marked Questions may have more than one correct option.

OBJECTIVE QUESTIONS

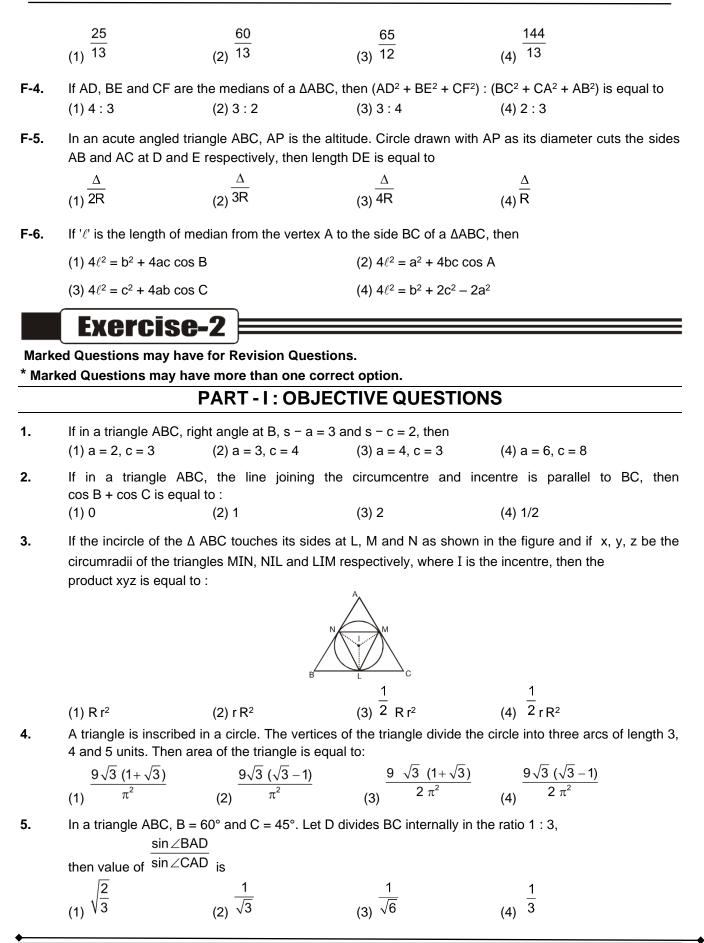
Section (A) : Sine Rule

A-1	In a $\triangle ABC$, a sin(B - C) + b sin (C - A) + c sin (A - B) =			
	(1) 0	(2) a + b + c	(3) a	(4) b
	a² sin(B –	$\frac{C}{D} = \frac{b^2 \sin(C - A)}{c^2} = c^2$	$\sin(A-B)$	
A-2	In a ∆ABC, sin A	$\frac{C}{+} \frac{b^2 \sin(C-A)}{\sin B} + \frac{c^2}{+}$	sinC =	
	(1) abc	(2) a + b + c	(3) $a^2 + b^2 + c^2$	(4) 0
A-3	The angles of a ΔABC ∠A is equal to	C are in A.P. (order beinç	g A, B, C) and it is being	given that b : c = $\sqrt{3}$: $\sqrt{2}$, then
	(1) 45°	(2) 75°	(3) 60°	(4) 30°
		$\left(\underline{C}\right)$	b of the triangle ABC are	
A-4.		$\ln^{2(2)}$, then sides a, c,	b of the triangle ABC are	in
	(1) G.P.	(2) A.P.	(3) H.P.	(4) A.G.P.
	sinA	sin(A – B)		
A-5.	If in a AABC $\frac{\sin x}{\sin C} =$	$\frac{\sin(A-B)}{\sin(B-C)}$, then a ² , b ² , c	2 ² are in	
	(1) G.P.	(2) H.P.	(3) A.P.	(4) A.G.P.
			—	
A-6.		= 3 : 5 : 4. Then a + b + c		
	(1) 2b	(2) 2c	(3) 3b	(4) 3a
	cosA	$\frac{\cos B}{\cos B} = \frac{\cos C}{\cos C}$		
A-7.	If in a ∆ ABC, a		ne triangle is :	
	(1) right angled	(2) isosceles	(3) equilateral	(4) obtuse angled
	bc sin ²	² A		
A-8.	In a $\triangle ABC \cos A + \cos A$	BcosC is equal to		
	(1) b ² + c ²	(2) bc	(3) a ²	(4) a ² + bc
Secti	Section (B) : Cosine Rule, projection formula			
B-1		A + ca cos B + ab cos C)	is equal to	
	(1) $a^2 + b^2 + c^2$	(2) a + b + c	(3) abc	(4) sinA sinB sinC
		C C		
B-2		$\frac{C}{2} + (a + b)^2 \sin^2 \frac{C}{2}$ is		
	(1) b ²	(2) a ²	(3) c ²	(4) abc

Solution of Triangle

B-3	In a ΔABC, b² sin 2C + (1) 2bc cos A	c² sin 2B is equal to (2) bc sin A	(3) bc cos A	(4) 2bc sin A
B-4	In a $\triangle ABC$, $\left(\frac{c - a \cos \theta}{b - a \cos \theta}\right)$ (1) cosA	$\left(\frac{B}{C}\right)\sin C$ is equal to (2) cosB	(3) sinB	(4) acosA
B-5.	In a triangle ABC, for a (1) b sinθ	any angle θ, b cos (A − θ (2) c sinθ	θ) + a cos (Β + θ) is equa (3) a cosθ	l to (4) c cos θ.
B-6.	If in a triangle ABC, th $(b^2 - c^2)$ is equal to	e altitude AM be the bise	ector of $\angle BAD$, where D	is the mid point of side BC, then
	(1) a ²	(2) a ² /2	(3) ab	(4) bc
B-7.	In a $\triangle ABC$, 2 $\left[a \sin^2 \frac{C}{2} \right]$	$\left[+ c \sin^2 \frac{A}{2} \right]_{= c + a - b.}$ (2) $c - a - b$		
	(1) c+a+b	(2) c - a - b	(3) c+a-b	(4) c-a+b
B-8.	If in a triangle ABC, (a (1) k < 0	(2) k > 6	o c, then : (3) 0 < k < 4	(4) k > 4
B-9.	In a triangle ABC, a: b: (1) 4C	: c = 4: 5: 6. Then 3A + B (2) 2π	equals to : (3) π − C	(4) π
B-10. ⁻		e middle point of BC and	I the foot of the perpendi	cular from A is :
	(1) $\frac{-a^2 + b^2 + c^2}{2a}$	$\frac{b^2-c^2}{2c}$	$(3) \frac{b^2 + c^2}{\sqrt{bc}}$	$\frac{b^2 + c^2}{2a}$
Saati			(0)	(4) ^{2 a}
Secu	on (C) : Naplar for	nulae, Area of Triar	igie	
C-1.	•	$\cot A + \cot B + \cot C$) is ((2) $a^2 + b^2 + c^2$	•	(3) abc
C-2	If in a Δ ABC, a = 6, b	= 3 and cos(A - B) = 4/5	, then its area is equal to)
	(1) 6 sq. unit	(2) 12 sq. unit	(3) 9 sq. unit	(4) 18 sq. unit
			$\sqrt{3} a^2$	
C-3.		A = 30 ^o and the area of tr (2) C = B.	iangle is 4 , then (2) C = 2B.	(4) C = 3B.
	2π		9√3	
C-4.	In a $\triangle ABC$, A = $\overline{3}$, b -	- c = $3\sqrt{3}$ cm and area ($\Delta ABC) = 2$ cm ² . The	n 'a' is
	(1) $6^{\sqrt{3}}$ cm	(2) 9 cm	(3) 18 cm	(4) 7 cm
Secti	on (D) : Half Angle	formulae		
	² A	$\cos^2 \frac{B}{a} = \cos^2 \frac{C}{a}$		
	cos —	$\cos - \cos -$		

D-1 In a $\triangle ABC$, $\frac{\cos^2 \frac{A}{2}}{a} + \frac{\cos^2 \frac{D}{2}}{b} + \frac{\cos^2 \frac{C}{2}}{c}$ is equal to


Solution of Triangle

	(1) s abc	(2) $\frac{2s^2}{abc}$	$(3) \frac{3s^2}{abc}$	(4) $\frac{s^2}{abc}$	
D-2.	In a $\triangle ABC,4$ (bc.cos ² $\frac{4}{2}$ (1) a + b + c	$\frac{A}{2} + ca.cos^2 \frac{B}{2} + ab.cos^2 \frac{C}{2}$ (2) $a^2 + b^2 + c^2$	(3) $(a + b + c)^2$	(4) abc(a + b + c)	
D-3.	In a $\triangle ABC_{,.}$ $\left(\frac{2abc}{a+b+c}\right)$ (1) 2 \triangle	$ \begin{pmatrix} A \\ cos \\ 2 \end{pmatrix}_{cos} \begin{pmatrix} B \\ 2 \\ cos \\ 2 \end{pmatrix}_{cos} \begin{pmatrix} C \\ 2 \\ cos \\ 2 \end{pmatrix}_{is} $ $ (2) \Delta $	equal to (3) Δ/2	(4) Δ/abc	
D-4.			the value of $\tan \frac{A}{2} + \tan \frac{A}{(3)^3} + \tan \frac{B}{2}$.		
D-5.	If in a triangle ABC, b o (1) in A.P.	$\frac{A}{2} + a \cos^2 \frac{B}{2} = \frac{3}{2}$ (2) in G.P.	c, then a, c, b are : (3) in H.P.	(4) None	
D-6.	In a ∆ ABC if b + c = 3a (1) 4	a, then $\cot \frac{B}{2} \cdot \cot \frac{C}{2}$ has (2) 3	s the value equal to: (3) 2	(4) 1	
D-7.	If in a ΔABC, Δ = a² – ((1) 15/16	b – c)², then tan A is equ (2) 8/15	ual to (3) 8/17	(4) 1/2	
D-8.	If in a $\triangle ABC$, $\angle A = \frac{\pi}{2}$, (1) $\frac{a-c}{2b}$	then $\tan \frac{C}{2}$ is equal to (2) $\frac{a-b}{2c}$	(3) $\frac{a-c}{b}$	(4) $\frac{a-b}{c}$	
D-9.	In $\triangle ABC$, $\frac{2ab}{(a+b+c)\Delta}$ (1) $\frac{s-a}{\Delta}$	$\cos^{2}\frac{C}{2}$ is equal to (2) $\frac{s-b}{\Delta}$	(2) $\frac{a+b+c}{\Delta}$	$(4) \frac{s-c}{\Delta}$	
Secti	Section (E) : Circumradius and Inradius				
E-1.	In ΔABC, R r (sin A + s (1) Δ	in B + sin C) is equal to (2) 2Δ	(3) 3Δ	(4) Δ/2	
E-2.	In $\triangle ABC$, a cos B cos C (1) $\frac{\Delta}{2R}$	C + b cos C cos A + c cos (2) $\frac{2\Delta}{R}$	A cos B is equal to (3) $\frac{R}{\Delta}$	(4) $\frac{\Delta}{R}$	

E-3.	In ΔABC , $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{bc}$	$\frac{1}{Ca}$ is equal to		
L-0.	1		2	3
	(1) $\frac{1}{Rr}$	$\frac{1}{(2)}$ 2Rr	(3) ² / _{Rr}	$(4) \frac{3}{2Rr}$
E-4.	In $\triangle ABC$, $\cos^2 \frac{A}{2} + \cos^2 \frac{A}{2}$			
	(1) 2 + $\frac{r}{2R}$	(2) 1+ 2R	(3) 1+ R	(4) 2+ $\frac{r}{R}$
E-5.	In ∆ABC, acot A + b	cot B + c cot C		
	(1) R + r	(2) 2R + r	(3) R + 2r	(4) 2(R + r)
			$-c^2$	
E-6.	If R denotes circumra	adius, then in ΔABC , ^{2a}	R is equal to	
	(1) cos (B – C)	(2) sin (B – C)	(3) cos B – cos C	(4) sin(B + C)
		$a\cos A + b\cos B + c\cos B$	cosC	
E-7.	In a Δ ABC, the value		is equal to:	
	(1) ^r R	(2) R/2r	(3) R r	$(4) \frac{2r}{R}$
	(1) R	(2) ² r	(3) r	(4) R
E-8.	In a triangle ABC, if a (1) 2 : 7	a : b : c = 3 : 7 : 8, then R (2) 7 : 2	: r is equal to (3) 3 : 7	(4) 7 : 3
E-9.	In a $\triangle ABC$, a = 1 ar measure of $\angle A$ is	d the perimeter is six tir	mes the arithmetic mean	of the sines of the angles. Then
	$\frac{\pi}{2}$	<u>π</u>	$(3)^{\frac{\pi}{6}}$	<u>π</u>
	(1) 3	(2) 2	(3) 6	(4) 4
Secti	ion (F) : Length of	Median, angle bis	ector, altitude	
F-1.	If α , β , γ are the resp	pective altitudes of a triar	gle ABC, $\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}\right)$	is equal to
			(3) $\frac{a^2 + b^2 + c^2}{2\Delta^2}$	
	(1) Δ^2	(2) $4 \Delta^2$	$(3) 2\Delta^2$	$(4) 4\Delta^2$
F-2.	If α , β , γ are the resp	ective altitudes of a trian	gle ABC, $\frac{1}{\alpha} + \frac{1}{\beta} - \frac{1}{\gamma}$ is e	equal to
	$\underline{S-C}$	<u>s-a</u>	$\underline{a+b-c}$	a+b-c
	(1) Δ	(2) Δ	(3) Δ	(4) 2∆

F-3. In a ΔABC, if AB = 5 cm, BC = 13 cm and CA = 12 cm, then the distance of vertex 'A' from the side BC is (in cm)

Solution of Triangle

 $\frac{c + a}{12} = \frac{a + b}{13}$, then which of the following is false 11 With usual notations, if in a Δ ABC, 6. 1 19 19 (1) $\cos A = 5$ (2) $\cos B = 35$ (3) $\cos C = 7$ (4) $\sin C = \frac{35}{2}$ 7. Let a, b and c be the sides of a \triangle ABC. If a^2 , b^2 and c^2 are the roots of the equation cos A cosB cosC b $x^3 - Px^2 + Qx - R = 0$, where P, Q & R are constants, then find the value of а in terms of P, Q and R. Р (2) $\overline{2\sqrt{Q}}$ (3) $\overline{\sqrt{R}}$ (1) $2\sqrt{R}$ In a $\triangle ABC$, (b - c) cot $\frac{A}{2}$ + (c - a) cot $\frac{B}{2}$ + (a - b) cot $\frac{C}{2}$ is equal to 8. (4) (a+b+c)² (1) 0(3) a + b + c(2) abc A regular hexagon & a regular dodecagon are inscribed in the same circle. If the side of the dodecagon 9.. is $(\sqrt{3} - 1)$, if the side of the hexagon is $\sqrt[4]{k}$, then find value of k. $(2) 2\sqrt{2}$ (3) $\sqrt{2} + 1$ (4) $\sqrt{2}$ -1 (1) √2 10. If H is the orthocentre of a triangle ABC, then the radii of the circle circumscribing the triangles BHC, CHA and AHB are respectively equal to : (2) $\sqrt{2}$ R $\sqrt{2}$ R $\sqrt{2}$ R (1) R, R, R $(4) \frac{R}{2} \frac{R}{2} \frac{R}{2}$ (3) 2R, 2R, 2R Let f, g, h be the lengths of the perpendiculars from the circumcentre of the Δ ABC on the sides BC, CA 11 abc and AB respectively. If $\overline{f}^{+}\overline{g}^{+}\overline{h} = \lambda \overline{f} \overline{g} \overline{h}$, then the value of ' λ ' is: (4) 2(1) 1/4(2) 1/2 (3)1AA1, BB1 and CC1 are the medians of triangle ABC whose centroid is G. If points A, C1, G and B1 are 12. concyclic, then (1) $2b^2 = a^2 + c^2$ (2) $2c^2 = a^2 + b^2$ (3) $2a^2 = b^2 + c^2$ (4) $3a^2 = b^2 + c^2$ **PART - II : MISCELLANEOUS QUESTIONS**

Section (A) : ASSERTION/REASONING

DIRECTIONS :

- Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.
- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- A-1. Statement-1 : In a triangle ABC, the harmonic mean of the three exradii is three times the inradius. Statement-2 : In any triangle ABC, $r_1 + r_2 + r_3 = 4R$.

A-2.	Statement-1 : If R be the circumradius of a Δ ABC, then circumradius of its excentral $\Delta I_1 I_2 I_3$ is 2R. R				
	Statement-2 : If circumradius of a triangle be R, then circumradius of its pedal triangle is $\frac{1}{2}$.				
Secti	on (B)	: MATCH THE COLUMN			
B-1.	Match	the column			
	(•)			Column–II	
	(A)	In a $\triangle ABC$, $2B = A + C$ and $b^2 = ac$.	(p)	8	
		Then the value of $\frac{a^2(a+b+c)}{3abc}$ is equal to			
		Then the value of $\frac{3abc}{a^2 + b^2 + c^2}$ is equal to			
	(B)	In any right angled triangle ABC, the value of $\frac{a + b + b}{R^2}$	(q)	1	
	(-)	is always equal to (where R is the circumradius of $\triangle ABC$)	(1)		
	(C)	In a $\triangle ABC$ if a = 2, bc = 9, then the value of $2R\Delta$ is equal to	(r)	5	
	(D)	In a $\triangle ABC$, a = 5, b = 3 and c = 7, then the value of	(s)	9	
		3 cos C + 7 cos B is equal to			
B-2	Matcr	n the column Column – I		Column – II	
	(A)	In a \triangle ABC, a = 4, b = 3 and the medians AA ₁ and BB ₁ are	(p)	27	
	(A)			21	
	mutually perpendicular, then square of area of the ΔABC is equal to				
	(B)	In any ΔABC , minimum value of $\frac{r_1 r_2 r_3}{r^3}$ is equal to	(q)	7	
	(8)		(4)		
		In a $\triangle ABC$, a = 5, b = 4 and tan $\frac{C}{2} = \sqrt{\frac{7}{9}}$, then side 'c'			
	(C)		(r)	6	
	is equal to				
	(D) In a $\triangle ABC$, $2a^2 + 4b^2 + c^2 = 4ab + 2ac$, then value of (8 cos B)			11	
	is equal to				
Secti	on (C)	: ONE OR MORE THAN ONE OPTIONS CORRECT			
		31			
C-1.	If in a	ΔABC , a = 5, b = 4 and cos (A – B) = $\frac{32}{32}$, then			
	(1) c =		(4) c =	8	
C-2.	Which	of the following holds good for any triangle ABC?			
			nC ;	3	
	(1)	\overline{a} + \overline{b} + \overline{c} = $\overline{2abc}$ (2) \overline{a} + \overline{b} + \overline{c}		R	
	C		sin 2C		
	(3)	$a = b = c$ (4) $a^2 = b^2 = c$	C ²		

MATHEMATICS

C-3.	In a triangle ABC, righ	-		
	(1) r = $\frac{AB + BC - AC}{2}$	(2) r = $\frac{AB + AC - BC}{2}$	$(3) r = \frac{AB + BC + A}{2}$	$\frac{RC}{(4)} R = \frac{S-1}{2}$
C-4.	If in a triangle ABC, c (1) isosceles	os A cos B + sin A sin B s (2) right angled	in C = 1, then the triang (3) equilateral	le is (4) None of these
C-5.	The product of the dis	stances of the incentre fro	m the angular points of	
	(1) 4 R ² r	(2) 4 Rr ²	$\frac{(abc)R}{s}$	$\frac{(abc)r}{s}$
C-6.	ζ,		(0)	ircle touching all the three circles
	is :			
	(1) $\frac{2-\sqrt{3}}{\sqrt{3}}$	(2) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}}$	(3) $\frac{2+\sqrt{3}}{\sqrt{3}}$	(4) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{2}}$
C-7		h usual notations the leng		
	$2bc \cos \frac{A}{2}$	2bc sin $\frac{A}{2}$	abc cos ec $\frac{A}{2}$	2Δ Δ
	$(1) \qquad b+c$	(2) $\frac{2bc \sin \frac{A}{2}}{b+c}$	(3) 2R (b+c)	(4) $\frac{b+c}{b+c} \cdot \csc \frac{A}{2}$
	Exercise	-3		
Marko	d Questiens may have	for Deviation Original		
	•	e for Revision Question ve more than one corre		
	ked Questions may ha		ct option.	EVIOUS YEARS)
	ed Questions may ha	ve more than one corre (MAIN) / AIEEE P	ct option. PROBLEMS (PRE ribed circles for an n sid	EVIOUS YEARS) ed regular polygon of side 'a', is : E - 2002 (3, –1), 225]
* Mark	ed Questions may ha PART - I : JEE The sum of the radii c	ve more than one corre (MAIN) / AIEEE P	ct option. PROBLEMS (PRE ribed circles for an n sid [AIEE	ed regular polygon of side 'a', is : E - 2002 (3, –1), 225]
* Mark 	ted Questions may have part - I : JEE The sum of the radii of (1) a $\cot\left(\frac{\pi}{n}\right)$	the more than one correct (MAIN) / AIEEE P of inscribed and circumsc (2) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$	ct option. PROBLEMS (PRE ribed circles for an n sid [AIEE (3) a $\cot^{\left(\frac{\pi}{2n}\right)}$	ed regular polygon of side 'a', is : E - 2002 (3, -1), 225] (4) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$
* Mark	ted Questions may have part - I : JEE The sum of the radii of (1) a $\cot\left(\frac{\pi}{n}\right)$	ve more than one corre (MAIN) / AIEEE P of inscribed and circumsc	ct option. PROBLEMS (PRE ribed circles for an n sid [AIEE (3) a cot $\left(\frac{\pi}{2n}\right)$ $\frac{3b}{2}$, then the sides a, b	ed regular polygon of side 'a', is : E - 2002 (3, -1), 225] (4) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$
* Mark 	ted Questions may have part - I : JEE The sum of the radii of (1) a $\cot\left(\frac{\pi}{n}\right)$	the more than one correct (MAIN) / AIEEE P of inscribed and circumsc (2) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$	ct option. PROBLEMS (PRE ribed circles for an n sid [AIEE (3) a cot $\left(\frac{\pi}{2n}\right)$ $\frac{3b}{2}$, then the sides a, b	ed regular polygon of side 'a', is : E - 2002 (3, -1), 225] (4) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$ e and c :
* Mark 	ted Questions may have a part of the sum of the radii of the sum of the radii of the radii of the contract $\left(\frac{\pi}{n}\right)$ of the sum of the radii of the sum of the sum of the radii of the sum of the radii of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the sum of the radii of the sum of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the sum of the radii of the sum of the radii of the sum of the sum of the radii of the sum of the s	ve more than one correct (MAIN) / AIEEE P of inscribed and circumso (2) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$ $\cos^2\left(\frac{C}{2}\right) + \cos^2\left(\frac{A}{2}\right) =$ (2) are in G.P.	ct option. PROBLEMS (PRE ribed circles for an n sid [AIEE (3) a cot $\left(\frac{\pi}{2n}\right)$ $\frac{3b}{2}$, then the sides a, b [AIEE (3) are in H.P.	ed regular polygon of side 'a', is : E - 2002 (3, -1), 225] (4) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$ e and c : E - 2003 (3, -1), 225] (4) satisfy a + b = c. $\frac{\pi}{2}$ and $\angle ABE = \frac{\pi}{3}$, then the area
* Mark 1. 2.	ted Questions may has PART - I : JEE The sum of the radii of (1) a cot $\left(\frac{\pi}{n}\right)$ If in a triangle ABC, a (1) are in A.P. In a triangle ABC, me of the ΔABC is :	the more than one correct (MAIN) / AIEEE P of inscribed and circumso (2) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$ (2) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$ (2) $are in G.P.$	tet option. PROBLEMS (PRE ribed circles for an n side [AIEE (3) a cot $\left(\frac{\pi}{2n}\right)$ $\frac{3b}{2}$, then the sides a, be [AIEE (3) are in H.P. where the sides a set of the side set of the s	ed regular polygon of side 'a', is : E - 2002 (3, -1), 225] (4) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$ and c : E - 2003 (3, -1), 225] (4) satisfy a + b = c. $\frac{\pi}{2}$ and $\angle ABE = \frac{\pi}{3}$, then the area E - 2003 (3, -1), 225]
* Mark 1. 2.	ted Questions may have a part of the sum of the radii of the sum of the radii of the radii of the contract $\left(\frac{\pi}{n}\right)$ of the sum of the radii of the sum of the sum of the radii of the sum of the radii of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the sum of the radii of the sum of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the sum of the sum of the radii of the sum of the sum of the radii of the sum of the sum of the sum of the radii of the sum of the radii of the sum of the sum of the radii of the sum of the s	ve more than one correct (MAIN) / AIEEE P of inscribed and circumso (2) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$ $\cos^2\left(\frac{C}{2}\right) + \cos^2\left(\frac{A}{2}\right) =$ (2) are in G.P.	ct option. PROBLEMS (PRE ribed circles for an n sid [AIEE (3) a cot $\left(\frac{\pi}{2n}\right)$ $\frac{3b}{2}$, then the sides a, b [AIEE (3) are in H.P.	ed regular polygon of side 'a', is : E - 2002 (3, -1), 225] (4) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$ e and c : E - 2003 (3, -1), 225] (4) satisfy a + b = c. $\frac{\pi}{2}$ and $\angle ABE = \frac{\pi}{3}$, then the area

MATHEMATICS

Solution of Triangle

	(1) 60°	(2) 90°	(3) 120º	(4) 150°
5.	-	et $\angle C = \pi/2$, if r is the in	radius and R is th	he circumradius of the triangle ABC, then
	2(r+R) equals :	(0)	(0)	[AIEEE - 2005 (3, 0), 225]
	(1) c + a	(2) a + b + c	(3) a + b	(4) b + c
6.	If in a AABC, the alti	tudes from the vertices A	B C on opposite	sides are in H.P. then sin A. sin B. sin C. are
0.		ludes nom the vehices A	, b, c on opposite	sides are in H.P., then sinA, sinB, sinC are
	in:			[AIEEE - 2005 (3, 0), 225]
	(1) HP		. ,	tico-Geometric Progression
	(3) AP		(4) GP	
7.	For a regular polyg	on. let r and R be the ra	adii of the inscribe	ed and the circumscribed circles. A false
••	statement among th			[AIEEE - 2010 (4, -1), 144]
	_	-		
		$\frac{1}{P} = \frac{1}{\sqrt{2}}$		a regular polygon with $\frac{r}{R} = \frac{2}{3}$.
	(1) There is a regul	ar polygon with $\neg \sqrt{2}$. (2) There is	a regular polygon with R 3.
		$r \sqrt{3}$		r 1
	(3) There is a regul	ar polygon with $\overline{R} = 2$. (4) There is	a regular polygon with $\frac{r}{R} = \frac{1}{2}$.
•				
8.	-		are parallel and BC	C ⊥ CD. If ∠ADB = θ , BC = p and CD = q,
	then AB is equal to			[AIEEE - 2013, (4, –1),360]
	$(p^2 + q^2) \sin \theta$	$p^2 + q^2 \cos \theta$	p ² +	q^2 $(p^2 + q^2)\sin\theta$
	(1) $p\cos\theta + q\sin\theta$	(2) $p\cos\theta + q\sin\theta$	(3) $p^2 \cos \theta +$	$\frac{q^2}{(q^2 \sin \theta)} \qquad \frac{(p^2 + q^2) \sin \theta}{(p \cos \theta + q \sin \theta)^2}$
				EMS (PREVIOUS YEARS)
1.	If I_n is the area of n	sided regular polygon ir	nscribed in a circle	e of unit radius and O_n be the area of the
		ing the given circle, prov		[IIT-JEE-2003, Main.,(4)/60]
				[]
	$I_n = \frac{O_n}{2} \left(1 + \sqrt{1 - \left(\frac{2}{2}\right)^2} \right)$	$\left(\frac{\mathbf{I}_{n}}{\mathbf{I}_{n}}\right)^{2}$		
	$\frac{O_n}{2}$	n /		
	$I_n = -$	· .		
2.	If the engles of a tri	ongle are in the ratio 4 :	1 · 1 then the re-	tio of the longest side to the perimeter is
Ζ.	If the angles of a th			tio of the longest side to the perimeter is-
		<u> </u>	г	[IIT-JEE-2003, Scr., (3, –1)/84]
	(A) $\sqrt{3}$: (2 + $\sqrt{3}$)	(B)1: √3	(C) 1 : 2 + $$	3 (D) 2 : 3
3.	If a.b.c are the sides	s of a triangle such that a	$1: b: c = 1: \sqrt{3}: 2$	2, then ratio A : B : C is equal to –
				[IIT-JEE-2004, Scr., (3, –1)/84]
	(A) 3 : 2 : 1	(B) 3 : 1 : 2	(C) 1 : 2 : 3	(D) 1 : 3 : 2
	(,,) 0 . 2		(0)	(2) 2
4.	In an equilateral tria	ngle, 3 coins of radii 1 ur	nit each are kept s	so that they touch each other and also the
	•	. Area of the triangle is		[IIT-JEE - 2005, Scr- (3, – 1), 84]
			7 6	
	(A) 4 + 2 $\sqrt{3}$	(B) 6 + 4 $\sqrt{3}$	(C) 12 + $\frac{7\sqrt{3}}{4}$	$\frac{3}{(D) 3 + \frac{7\sqrt{3}}{4}}$
	(A) $4 + 2^{\sqrt{3}}$	(B) 6 + 4 V S	(C) 12 + 4	(D) 3 + 4

If a,b,c denote the lengths of the sides of a triangle opposite to angles A,B,C respectively of a ΔABC, then the correct relation among a,b,c, A,B and C is given by – [IIT-JEE-2005, Scr., (3, –1)/ 84]

(A) (b + c) sin $\left(\frac{B+C}{2}\right) = a \cos \frac{A}{2}$	(B) (b - c) cos $\frac{A}{2} = a sin\left(\frac{B-C}{2}\right)$
(C) (b - c) cos $\frac{A}{2} = 2a sin \left(\frac{B-C}{2}\right)$	(D) (b - c) $\sin\left(\frac{B-C}{2}\right) = a\cos\frac{A}{2}$

6. Circles with radii 3, 4 and 5 touch each other externally. If P is the point of intersection of tangents to these circles at their points of contact, find the distance of P from the points of contact.

[IIT-JEE-2005, Main.,(2)/60]

7. Given an isosceles triangle, whose one angle is 120° and radius of its incircle is $\sqrt{3}$ unit. Then the area of the triangle in sq. units is [IIT-JEE-2006, Main.,(3, -1)/184]

(A)
$$7 + 12\sqrt{3}$$
 (B) $12 - 7\sqrt{3}$ (C) $12 + 7\sqrt{3}$ (D) 4π

8.* Internal bisector of ∠A of triangle ABC meets side BC at D. A line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F. If a, b, c represent sides of ΔABC, then

	[IIT-JEE-2006, Main.,(5, –1)/184]
	<u>2bc</u> <u>A</u>
(A) AE is HM of b and c	(B) $AD = b + c \cos 2$
<u>4bc</u> A	
(C) $EF = b + c \sin 2$	(D) the triangle AEF is isosceles

9. Let ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = $2\sqrt{2}$ and angle B= 30°. Find the absolute value of the difference between the areas of these triangles.

[IIT-JEE 2009, Paper-2, (4, -1), 80]

7

10*. In a triangle ABC with fixed base BC, the vertex A moves such that $\cos B + \cos C = 4 \sin^2 2$. If a, b and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then **[IIT-JEE 2009, Paper-2, (4, -1), 80]**

(A) $b + c = 4a$	(B) $b + c = 2a$
(C) locus of points A is an ellipse	(D) locus of point A is a pair of straight lines

11. If the angle A, B and C of a triangle are in arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c} \sin 2C + \frac{c}{a} \sin 2A$ is

[IIT-JEE 2010, Paper-1, (3, -1), 84]

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{3}}{2}$ (C) 1 (D) $\sqrt{3}$

12. Let ABC be a triangle such that $\angle ACB = ^6$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value(s) of x for which $a = x^2 + x + 1$, $b = x^2 - 1$ and c = 2x + 1 is (are) **[IIT-JEE 2010, Paper-1, (3, 0), 84]**

(A) $- \begin{pmatrix} 2 + \sqrt{3} \end{pmatrix}$ (B) $1 + \sqrt{3}$ (C) $2 + \sqrt{3}$ (D) $4\sqrt{3}$

13.	-		-	e sides opposite to vertices A, B and
	C respectively. Suppose	e a = 6, b = 10 and th	e area of the triangle	is $15\sqrt{3}$. If $\angle ACB$ is obtuse and if r
	denotes the radius of th	e incircle of the triangl	e, then r ² is equal to	[IIT-JEE 2010, Paper-2, (3, 0), 79]
			7 5	
14.	Lat DOD has a triangle of	force A with a - 2 h -	$\frac{1}{2}$ and $a = \frac{1}{2}$ where a	a, b and c are the lengths of the sides
14.	Let PQR be a thangle of	area Δ with a = 2, b =	- and $c = -$, where a	
				$2\sin P - \sin 2P$
	of the triangle opposite	to the angles at P, Q a	and R respectively. Th	$en^{2}sinP + sin2P equals$
			[1]	T-JEE 2012, Paper-2, (3, −1), 66]
	3	45	(C) $\left(\frac{3}{4\Delta}\right)^2$	$(45)^2$
	(A) $\frac{3}{4\Delta}$	(B) $\frac{45}{4\Delta}$	$(C) \left(\frac{\overline{4\Delta}}{4\Delta} \right)$	$(\Box) \left(\frac{\overline{4\Delta}}{4\Delta} \right)$
	(1) -	(b)	(0)	
			- -	
15.*	u	5 5		ne incircle of the triangle touches the
		-		hs of PN, QL and RM are consecutive
	even integers. Then pos	sible length(s) of the		
	(4) 40			/anced) 2013, Paper-2, (3, −1)/60]
	(A) 16	(B) 18	(C) 24	(D) 22
16.				two sides is y. If $x^2 - c^2 = y$, where c
	is the third side of the tr	angle, then the ratio o		circum-radius of the triangle is
	0	0		/anced) 2014, Paper-2, (3, –1)/60]
	(A) $\frac{3y}{2x(x+c)}$	<u>- 3y</u>	<u> </u>	<u> </u>
	(A) $2x(x+c)$	(B) $2c(x+c)$	(C) $4x(x+c)$	(D) $4c(x+c)$
17.	In a triangle XYZ, let x, y	/, z be the lengths of si	ides opposite to the ar	ngles X, Y, Z, respectively, and 2s
	S-X $S-Y$	S – Z		<u>8π</u>
	$= x + y + z$. If $\frac{s - x}{4} = \frac{s - y}{3}$	= 2 and area of inc		
			[JEE (Adv	/anced) 2016, Paper-1, (4, –2)/62]
	(A) area of the triangle 2	XYZ is $6\sqrt{6}$		
	() ()		35	
	(B) the radius of circum	circle of the triangle X	YZ is $\overline{6}\sqrt{6}$	
	(C) $\sin \frac{X}{2} \sin \frac{Y}{2} \sin \frac{Z}{2} = \frac{4}{3}$	<u>+</u>		
	(C) sin $2 \sin 2 \sin 2 \sin 2 = 3$	5		

(D)
$$\sin^2\left(\frac{X+Y}{2}\right) = \frac{3}{5}$$

Answers

E

	EXERCISE # 1													
Section (A)														
A-1 A-8.	(1) (3)	A-2	(4)	A-3	(2)	A-4.	(2)	A-5.	(3)	A-6.	(3)	A-7.	(3)	
B-1	on (B)	B-2	(3)	B-3	(4)	B-4	(3)	B-5.	(4)	B-6.	(2)	B-7.	(3)	
B-8.	(3)	B-9.	(4)	B-10.	(2)									
C-1.		C-2	(3)	C-3.	(1)	C-4.	(2)							
	on (D)	D 0	$\langle \mathbf{O} \rangle$	D 0	$\langle \mathbf{O} \rangle$	D 4	(0)	D C		D 0	(\mathbf{O})	D 7	$\langle \mathbf{O} \rangle$	
D-1	(4)	D-2.	(3)	D-3.	(2)	D-4.	(3)	D-5.	(1)	D-6.	(3)	D-7.	(2)	
D-8.	(4)	D-9.	(4)											
Secti E-1.	on (E) (1)	E-2.	(4)	E-3.	(2)	E-4.	(1)	E-5.	(4)	E-6.	(2)	E-7.	(1)	
E-8.	(2)	E-9.	(3)											
Secti	on (F)													
F-1.	(2)	F-2.	(1)	F-3.	(2)	F-4.	(3)	F-5.	(4)	F-6.	(2)			
								2						
						EVER	CISE #	Z						
						PA	RT-I							
1.	(2)	2.	(2)	3.	(3)	4.	(1)	5.	(3)	6.	(4)	7.	(1)	
8.	(1)	9.	(1)	10.	(1)	11	(1)	12.	(3)					
PART-II														
Secti	on (A)					17	1 1 - 11							
	(3)		(1)											
Section (B) :														
B-1. (A) \rightarrow (q), (B) \rightarrow (p), (C) \rightarrow (s), (D) \rightarrow (r)														
B-2	(A) → ((s), (B)	→ (p), (C	$c) \rightarrow (r),$	$(D) \rightarrow (c$	()								
Secti	on (C)	:												
C-1.			C-2.	(1,2)		C-3.	(1,4)		C-4.	(1,2)		C-5.	(2,4)	
C-6.	(1,3)		C-7	(1,3,4)										
							~ 0 = 4	2						
EXERCISE # 3														
						PA	RT-I							
1.	(2)	2.	(1)	3.	(3)	4.	(3)	5.	(3)	6.	(3)	7.	(2)	
8. (1) PART-II														
2.	(A)	3.	(C)	4.	(B)	5.	(B)	6.	(√5)	7.	(C)			
8.*	(ABCD		(BC)	10*.	(B,C)		(D)	12.	(B)	13.	3	14.	(C)	
15.*	(B, D)	16.	(B)	17.	(A,C,D)								