Exercise-1

 $\mathbf{\hat{z}}$ Marked Questions may have for Revision Questions.

ONLY ONE OPTION CORRECT TYPE

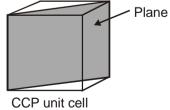
Section (A) : Basics of Solid State

1.	•	are not properties of soli mass, volume and shape ances are short.		
2.	(3) Do not undergo cle	ting points avage when cut with knife an cleavage when cut wi rangement over long dist	th knife	
3.	When molten form of a (1) crystalline solid	crystalline solid is rapidly (2) amorphous solid	cooled, it changes into - (3) insulator	(4) superconductor
4.	Amorphous solids is - (1) Solid substances ir (3) Supercooled liquids		(2) Liquid in real sense (4) Substances with de	
5.	Which of the following (1) Common salt	is not a crystalline solid ' (2) Sugar	? (3) Iron	(4) Rubber
6.	Solid CO ₂ is an examp (1) Ionic crystal	le of (2) Covalent crystal	(3) Metallic crystal	(4) Molecular crystal.
7.≿	Tetraagonal crystal sys (1) $a = b = c$, $\alpha = \beta = \gamma$ (3) $a \neq b \neq c$, $\alpha = \beta = \beta$		hit cell dimensions : (2) $a = b \neq c, \alpha = \beta = -$ (4) $a = b \neq c, \alpha = \beta = -$	•
8.海	Which of the following (1) $a = b = c$, $\alpha = \beta = \gamma$ (3) $a \neq b \neq c$, $\alpha = \beta = \beta$		ance and axial angles fo (2) $a = b \neq c, \alpha = \beta = \gamma$ (4) $a \neq b \neq c, \alpha \neq \beta \neq$	$\gamma = 90^{\circ}$
9.	Number of Bravais latt (1) 2	ice in 2 dimensions are : (2) 3	(3) 4	(4) 5
10.๖		he weakest intermolecula (2) Phosphorus		(4) Sodium fluoride
11.	Which of the following I. KCI III. Rubber (1) I,III	II. Ba	rium chloride dihydrate Iid cake left after distillat (3) III, IV	ion of coal tar (4) only III
12.๖		of a compound with u $\beta = 90^{\circ}$ and $\gamma = 120^{\circ}$ is : (2) Hexagonal	nit cell dimensions, a (3) Orthorhombic	= 0.387 and b = 0.387 and (4) Rhombohedral

Section (B) : Body Centered Cubic (BCC) & Simple Cubic

1.	In a simple cubic cell, a (1) 1 part	an atom at the corner co (2) 1/2 part	ntributes to the unit cell : (3) 1/4 part	(4) 1/8 part
2.		pound LiAg crystallizes f eight. The crystal class (2) Body centred cubic	is :	h both lithium and silver have (4) None of these
3.>	The number of close no (1) 8	eighbour in a body centre (2) 6	ed cubic lattic of identical (3) 4	sphere is : (4) 2
4.	The vancant space in t (1) 32%	he bcc unit cell is : (2) 23%	(3) 26%	(4) None of these
5. 🖎	sodium atom :	·		lge 4.29 Å. What is the radius of $(4) 0.212 \times 10^{-7}$ are
	(1) 1.857 × 10⁻ଃ cm	(2) 2.371 × 10⁻ ⁷ cm	(3) 3.817 × 10⁻ଃ cm	-
6.	Potassium has a bcc density (in kg m ⁻³) will I		neighbour distance 4.52	Å. Its atomic weight is 39. Its
	(1) 454	(2) 804	(3) 852	(4) 908
7.	cm ³ will be :	0 0		A. The volume of the unit cell in
	(1) 1.6 × 10 ²¹ cm ³	(2) 2.81 × 10 ⁻²³ cm ³	(3) 6.02 × 10 ⁻²³ cm ³	(4) 6.6 × 10 ⁻²⁴ cm ³
8.2	theoretical density of P	o.(Atomic wt of Po = 207	′g)	ge length is 3.0 Å, calculate the $(4) 27/2 \text{ are}(1/2)^3$
	(1) 25/3 amu/ Å ³	(2) 23/3 amu/ Å ³	(3) 21/3 amu/ Å ³	(4) 27/3 amu/ Å ³
Secti	on (C) : Hexagonal	Close Packing		
1.	How many number of a (1) 8	atoms are present in an H (2) 2	HCP unit cell : (3) 1	(4) 6
2.	How many number of t (1) 4	etrahedral voids are pres (2) 6	sent in an HCP unit cell : (3) 10	(4) 12
3.>	How many number of c (1) 4	octahedral voids are pres (2) 6	sent in an HCP unit cell : (3) 10	(4) 12
4.	What is the co-ordination (1) 4	on number of an HCP ur (2) 6	nit cell : (3) 10	(4) 12
5.౫	What is the co-ordination (1) 4	on number of an atom in (2) 6	its own layer in closed p (3) 10	ack arrangement : (4) 12
6.	Fraction of empty spac (1) 0.74	e in ABAB type arranger (2) 0.26	ment in 3D : (3) 0.68	(4) 0.32
•	on (D) · Face Cente			

Section (D) : Face Centered Cubic (FCC)


1. In a face centered cubic unit cell, the contribution from the atom at the corner and face centre of the cube are respectively :

(₁) 1 1	(2) 1 1	(₂₎ 1 1	(₁) 1 1
(1) $\frac{1}{4}$, $\frac{1}{2}$	(2) $\frac{1}{8}$, $\frac{1}{4}$	(3) $\frac{1}{4}, \frac{1}{2}$	(4) $\frac{1}{8}, \frac{1}{2}$

2.	The edge length of fac (1) 360 pm	ce centred cubic unit cell (2) 288 pm	is 508 pm. The nearest (3) 618 pm	distance between two atoms is : (4) 398 pm
3.≿	(1) at edge centres an	in a face-centred cubic (f Id 8 along diagonals onal and 6 at edge centre	(2) 12 at edge centres	s and one at a body centre
4.	In a face centred lattic	e of X atoms, Y atoms c	occupy $\frac{1}{2}$ of tetrahedral	holes and $\frac{1}{4}$ of octahedral holes.
	What is the possible for (1) X_4Y_6	ormula of compound? (2) X_4Y_5	(3) X ₄ Y ₈	(4) $X_4 Y_9$
5.		X atoms. Y atoms occupy ed by Z, then the formul (2) X ₃ YZ ₂	a of compound will be -	s. If one Y atom and X atom from (4) $X_{3}Y_{3}Z$
6.		ice of X and Y, X atom nula of the compound is		rners while Y atoms are at face
	(1) XY_3	(2) X_2Y_3	(3) X ₃ Y	(4) XY
7.>	sites. Formula of com	pound is :		ent while P occupy all tetrahedral
	(1) PQ	(2) PQ ₂	(3) P ₂ Q	(4) P ₃ Q
8.	(2) 4 tetrahedral voids	each of the which is sha within the unit cells. each of the which is sha		
9.		atoms in the unit cell that etrahedral voids in the ur (2) 2Z	•	packing sequence A B C A B
10.	The number of octahe	dral voids in a unit cell o	f cubic closest packed s	tructure is :0
	(1) 1	(2) 2	(3) 4	(4) 8
11.	The number of atoms is equal to :	in 100 g of an fcc crysta	with density d = 10 g/cr	n ³ and cell edge equal to 100 pm,
	(1) 4×10^{25}	(2) 3 × 10 ²⁵	(3) 2 × 10 ²⁵	(4) 1 × 10 ²⁵
12.a	Which of the following		ce contains arrangemen	t of atoms as shown by circles :
	(1)	(2)	(3)	(4)

13.			rd cubic unit cell. The at	omic radius of copper is 1.28 Å.
	What is axial length on (1) 2.16 Å	an edge of copper. (2) 3.62 Å	(3) 3.94 Å	(4) 4.15 Å
14.	Which one of the follov generate close packed (1) ABCABC	•	g closed packed sheets (3) ABBAABBA	of equal sized spheres does not (4) ABCBCABCBC
Secti	on (E) : Void			
1.>	The void present in sim (1) cubic	nple cubic crystal is : (2) tetrahedral	(3) octahedral	(4) triangular
2.	The coordination numb (1) 8	er of octahedral void is : (2) 6	(3) 4	(4) 12
3.	(2) there are as many t(3) there are twice as n	-packed structure nany tetrahedral holes as etrahedral holes as there nany octahedral holes as etrahedral holes as there	e are closed packed ator there are close-packed	ns
4.æ	A tetrahedral void in a ((1) Shape of the void is (3) the void is surround	tetrahedral	(2) Molecules forming (4) the void is surround	the void are tetrahedral in shape led by six spheres
5.	A double triangular void (1) triangular void	d surrounded by three sp (2) tetrahedral void	heres above and three s (3) octahedral void	spheres below is called (4) trigonal bipyramidal void
6.>	In a closest packed latt (1) Equal	ice, the number of octah (2) Half	edral sites as compared (3) Double	to tetrahedral ones will be : (4) None of these
7.	The correct order of the (1) fcc < bcc < simple c (3) fcc < bcc > simple c		ferent types of unit cells (2) fcc > bcc > simple ((4) bcc < fcc > simple (cubic
8.	The arrangment of the (1) Exactly same in bot (3) Diffrent from each c		ve the other, in hcp and ((2) partly same and pa (4) Nothing definite	
9.				ng all the Tetrahedral Voids and

9. In a hypothetical solid C atoms form CCP lattice with A atoms occupying all the Tetrahedral Voids and B atoms occupying all the octahedral voids. A and B atoms are of the appropriate size such that there is no distortion in the CCP lattice.Now if a plane is cut(as shown) then type of voids and their numbers whic are present at the cross section would be.

(1) O.V = 3, T.V. = 4 (2) O.V. = 2, T.V. = 4 (3) O.V. = 1, T.V. = 2 (4) O.V. = 0, T.V. = 4

Section (F) : Radius Ratio & Ionic Structure

1.	MgO exist in NaCl type (1) 12 O⁻² ions	e lattice (rock salt structur (2) 8 O ⁻² ions	re). No. of nearest neight (3) 6 O ^{_2} ions	bour of Mg²+ ion are : (4) 4 O ^{_2} ions
2.海	If the distance betweer (1) 2a pm	n Na⁺ and Cl⁻ ions in NaC (2) a/2 pm	Cl crystal is 'a' pm, what is (3) 4a pm	s the length of the cell edge ? (4) a/4 pm
3.	 (1) It has fcc arrangme (2) Na⁺ and Cl⁻ ions ha (3) A unit cell of NaCl of 	ving statements is incorre ent of CI ⁻ ive a co-ordination numb consists of four NaCI unit metals have rock-salt typ	er of 6 : 6 s	?
4.>	In sodium chloride, Cl⁻ (1) Cubic	ions form ccp arrangeme (2) Tetragonal	ent. Which site a Na⁺ ion (3) Octahedral	s will occupy in this structure ? (4) Trigonal bipyramidal
5.	A solid AB has NaCl ty B, using octarahedral o (1) 241 pm	•	s of the cation A is 100 (3) 225 pm	pm, then the radius of the anion (4) 44.4 pm
6.>	Antifluorite structure is (1) heating fluorite crys (2) Inter changing the p	derived from fluorite stru	cture by : negative ions in the lattic	
7.24	The tetrahedral voids f (1) Occupied by Na⁺ io (3) Occupied by either		ent of Cl [−] ions in rock sal (2) Occupied by Cl [−] ion (4) Vacant	
8.2	In zinc blende structure (1) 2	e the coordination numbe (2) 4	er of Zn²+ ion is (3) 6	(4) 8
9.	strontium chloride ? (1) the strontium ions a (2) the strontium ions a (3) each chloride ion is	a fluorite structure, whi are in a body-centered co are in a face-centered cu at the center of a cube c is at the center of a tetral	ubic arrangement bic arrangement of 8 strontium ions	ment is true for the structure of
10.	 (1) A cation occupies of holes (2) A cation occupies of (3) A cation occupies oc	B_2O_4) consists of an fcc a one-eighth of the tetrahe one-fourth of the tetrahed one-eighth of the octahed one-fourth of the octahed	dral holes and B cation ral holes and the B catio ral hole and the B cation	occupies one-half of octahedral ns the octahedral holes the tetrahedral holes
11.	(1) fcc arrangement alo(2) fcc arrangement alo	diamond, carbon atoms a ong with occupancy of 50 ong with occupancy of 25 ong with occupancy of 25	% tetrahedral holes % tetrahedral holes	

(4) bcc arrangement

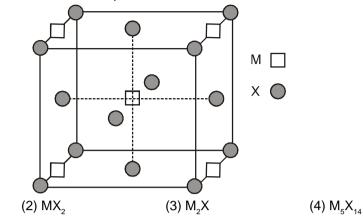
Section (G) : Crystal Defects and Properties of Solid & Thier Magnetic Behaviour

- **1.** In the schottky defect
 - (1) cations are missing from the lattice sites and occupy the interstitial sites
 - (2) equal number of cations and anions are missing
 - (3) anions are missing and electrons are present their place
 - (4) equal number of extra cations and electrons are present in the interstitial sites.
- 2. As a result of schottky defect,
 - (1) there is no effect on the density (2) density of the crystal increases
 - (3) density of the crystal decreases (4) any of the above three can happen.
- **3.** F-centres in an ionic crystal are
 - (1) lattice sites containing electrons

(3) lattice sites that are vacant

- (2) interstitial sites containing electrons
- (4) interstitial sites containing cations
- **4.** Doping of silicon with P or Al increases the conductivity. The difference in the two cases is (1) P is non-metal whereas Al is a metal
 - (2) P is a poor conductor while AI is a conductor
 - (3) P gives rise to extra electrons while Al gives rise to holes
 - (4) P gives rise to holes while Al gives rise to extra electrons.
- **5.** In a solid lattice the cation has left a lattice site and is located at an interstitial position, the lattice defect is
 - (1) Interstitial defect (2) Vacancy defect (3) Frenkel defect (4) Schottky defect
- 6. In NaCl & AgCl, $r_{Na^+} > r_{Aa^+}$, so :
 - (1) NaCl has higher tendency to show Schottky defect than AgCl.
 - (2) NaCl has lower tendency to show Schottky defect than AgCl.
 - (3) NaCl has higher tendency to show Frenkel defect than AgCl.
 - (4) Both have equal tendency to show Frenkel defect and Schottky defect.
- 7.a Which of the following statements are correct in context of point defects in a crystal ?
 - (1) AgCl has anion Frenkel defect and CaF_2 has Schottky defects
 - (2) AgCI has cation Frenkel defects and CaF₂ has anion Frenkel defects
 - (3) AgCI as well as CaF₂ have anion Frenkel defects
 - (4) AgCl as well as CaF₂ has Schottky defects

Exercise-2


> Marked Questions may have for Revision Questions.

1.	An example of a metalli (1) Si	c crystalline solid is (2) C	(3) P	(4) W
2.	lodine crystal are : (1) Metallic solid	(2) Ionic solid	(3) Molecular solid	(4) Covalent solid
3.>	Ionic solids are characte (1) Good conductivity in (3) Low melting point	•	(2) High vapour pressur (4) Solubility in polar so	
4.	Which one of the follow (1) a covalent solid	ing will have a low heat o (2) an ionic solid	of fusion ? (3) a metallic solid	(4) a molecular solid

5.	Wax is an example of - (1) lonic crystal (2)) Covalent crystal	(3) Molecular crystal	(4) Metallic crystal
6.	following categories does it	t belong -	ooor conductor of heat a	and electricity. To which of the (4) Molecular
7.	Quartz is a crystalline varie (1) Silica (2)	•	(3) Silicon carbide	(4) Silicon
8.	Example of unit cell with cry (1) Calcite (2)		•	90°, β≠90° is : (4) Monoclinic sulphur
9.海	of the element is (no. of ato	oms in $BCC(Z) = 2$).		cell edge 400 pm. The density (4) 10.376 g/cm ³
10.	A metal has bcc structure cm ³ will be	and the edge length	of its unit cell is 3.04 Å.	The volume of the unit cell in
	(1) $1.6 \times 10^{-21} \mathrm{cm}^3$ (2)) 2.81 × 10 ^{–23}	(3) $6.02 \times 10^{-23} \text{ cm}^3$	(4) $6.6 \times 10^{-24} \text{ cm}^3$
11.	unit cell will be			centred cubic, the edge of the
	(1) 32.475 pm (2)) 173.2 pm	(3) 37.5 pm	(4) 212.1 pm
12.	Find the difference betweer (1) 8 (2)		r and effective number o (3) 4	f atoms in bcc unit cell : (4) 12
13.≿	occupy the edge centres ar	nd gold present at bod	• • •	the ccp lattice. If silver atoms formula (4) CuAgAu
14.	Hexagonal close packed ar (1) ABC ABA (2)	•	described as : (3) ABABA	(4) ABBAB
15.	The number of octahedral s (1) 8 (2)		cc structure is (3) 2	(4) 1
16.	The face centered cubic lat (1) placing square packed s (2) placing square packed s (3) placing hexagonal close (4) placing hexagonal close	sheets one over other sheets one over the of e packed sheets one o	in AAAA type arrang ther in ABAB type arrang over the other in AAAA	angement type arrangement
17.	void. The line could be :		such that it passes throug	gh no octahedral or tetrahedral (4) none of these
			., _	
18.	octahedral viod. The line is	S :		two tetrahedral voids and one
19.	Number of unit cells in 100	g of fcc crystal with de	 (3) face diagonal ensity 10 g/cm³ and cell (3) 2.5 ×10²⁴ 	 (4) none of these edge as 200 pm are : (4) 1.25 ×10³⁰

20. 🖎	The radius of an atom length of the side of un	-	om. If it crystallises as a	face centred cubic lattice, the
	(1) 176.8 pm	(2) 1154.7 pm	(3) 1414 pm	(4) 1000 pm
21.	In the closest packed s is	tructure of a metallic latti	ce, the number of neares	st neighbours of a metallic atom
	(1) Twelve	(2) Four	(3) Eight	(4) Six
22. 🖎	Find the sum of numbe (1) 8	r of octahedral void and (2) 12	tetrahdral void present in (3) 4	fcc unit cell ? (4) 6
23.			cell that represents th in the unit cell is equal to (3) Z/2	ne closest packing sequence): (4) Z/4
24.	In which pair most effic (1) hcp and bcc	ient packing is present? (2) hcp and ccp	(3) bcc and ccp	(4) bcc and simple cubic cell
25.	The empty space betwe	een the shaded balls and	hollow balls as shown ir	n the diagram is called
		Eig	Jure	
	(1) hexagonal void	(2) octahedral void	(3) tetrahedral void	(4) double triangular void
26.	An ionic solid AB have	anions in ccp lattice an	d 3 cations in octahedra	I voids. r _{B−} = 1 Å, r _{A⁺} = 0.5 Å.
	Then which of the follow	•		
	(1) edge length = $2\sqrt{2}$		(2) edge length = 3 Å	
	(3) edge length = $\frac{4}{\sqrt{3}}$	Å	(4) edge length = 2 Å	
27.≿	In a sodium chloride str (1) 100%	ructure, the percentage c (2) 74%	of the octahedral voids oc (3) 33%	cupied by cations is : (4) 26%
28.	A binary solid (A ⁺ B ⁻) h pm , then the radius of		If the edge length is 40	0 pm and radius of cation is 75
	(1) 100 pm	(2) 125 pm	(3) 250 pm	(4) 325 pm
29.	A solid X ⁺ Y ⁻ has a bcc the edge length of the c		e of closest approach bet	ween the two atoms is 173 pm,
	(1) 200 pm	(2) √3 / √2 pm	(3) 142.2 pm	(4) √2 pm
30.	Which of the following ((1) Frenkel defect (3) Non-stoichiometric (defects is also known as defect	dislocation defect? (2) Schottky defect (4) Simple interstitial de	fect
31.	The flame colours of m (1) Frenkel defect		(2) Schottky defect	
32.	(3) Metal deficiency def		(4) Metal excess defect are present in alternate	
J.	(1) NaCl	(2) ZnS	(3) CaF_2	(4) Na ₂ O

33. A compound M_P X_q has cubic close packing (ccp) arrangement of X. Its unit cell structure is shown below. The empirical formula of the compound is :

(1) MX

Exercise-3

PART - I : NEET / AIPMT QUESTION (PREVIOUS YEARS)

1.	•	by elements A and B crys be and B atoms are prese			•
	(1) A ₂ B ₂	(2) AB ₃	(3) AB	(4) A ₃ B	
2.	When molten zinc is neighbours of zinc ato	cooled to solid state, it om will be :			nber of nearest [AIPMT 2001]
	(1) 4	(2) 8	(3) 12	(4) 6	
3.	•	by elements X and Y cry and the Y atoms are at th			
	(1) XY ₃	(2) X ₃ Y	(3) XY	(4) XY ₂	
4.	In a face centred cubic (1) 4	c lattice, unit cell is share (2) 2	d equally by how many u (3) 6	unit cells ? (4) 8	[AIPMT 2005]
5.	•	body centred cubic lattic I that of Br = 80 amu and	•	•	
	(1) 8.25 g /cm ³	(2) 4.25 g /cm ³	(3) 42.5 g / cm ³	(4) 0.425 g /cr	n ³
6.	The appearance of co (1) F-centres	lour in solid alkali metal l (2) Schottky defect	nalides is generally due t (3) Frenkel defect	o : (4) Interstitial	[AIPMT 2006] positions
7.	The fraction of the tota	al volume occupied by th	e atoms present in a sim	ple cube is :	[AIPMT 2007]
	(1) $\frac{\pi}{4}$	(2) $\frac{\pi}{6}$	(3) $\frac{\pi}{3\sqrt{2}}$	$(4) \ \frac{\pi}{4\sqrt{2}}$	
8.	If NaCI is doped with ²	10^{-4} mol% of SrCl ₂ , the c	oncentration of cation va	cancies will be:	
	$(N_A = 6.02 \times 10^{23} \text{ mol})$	-			[AIPMT 2007]

	_				
	(1) $\frac{1}{2}$ a : $\frac{\sqrt{3}}{4}$ a : $\frac{1}{2\sqrt{2}}$ a	l i	(2) $\frac{1}{2}$ a : $\sqrt{3}$ a : $\frac{1}{\sqrt{2}}$ a		
	(3) $\frac{1}{2}$ a : $\frac{\sqrt{3}}{2}$: $\frac{\sqrt{2}}{2}$ a		(4) 1a : √3 a : √2 a		
11.	A metallic crystal has t space?	he bcc type stacking pat	tern. What percentage o		alattice in empty Gujrat CET 08]
	(1) 68 %	(2) 32 %	(3) 26 %	(4) 74 %	
12.	Copper crystallises in a copper atom in pm ?	a face-centred cubic lattic	ce with a unit cell length o	of 361 pm. Wha	it is the radius of [AIPMT 2009]
	(1) 128	(2) 157	(3) 181	(4) 108	
13.	lithium is 351 pm, the a	ses in a body centred c atomic radius of the lithiu	m will be :		f the unit cell of [AIPMT 2009]
	(1) 240.8 pm	(2) 151.8 pm	(3) 75.5 pm	(4) 300.5 pm	
14.	between two oppositive	ody centred cubic lattice ely charged ions in the la	ttice is:		n. The distance [AIPMT 2010]
	(1) 335 pm	(2) 250 pm	(3) 200 pm	(4) 300 pm	
15.	(Y ⁻) will be :	has NaCl structure. If the		-	lius of the anion [AIPMT 2011]
	(1) 275.1 pm	(2) 322.5 pm	(3) 241.5 pm	(4) 165.7 pm	
16.	A metal crystallizes wit of the metal atom is:	h a face-centered cubic	attice. The edge of the u	nit cell is 408 p	m. The diameter [AIPMT 2012]
	(1) 288 pm	(2) 408 pm	(3) 144 pm	(4) 204 pm	
17.	The number of octahed	dral void(s) per atom pres	sent in a cubic close-pacl	ked structure is	: [AIPMT 2012]
	(1) 1	(2) 3	(3) 2	(4) 4	
18.	composed of oxide ior	oxide is cubic close - is. One fourth of the tetr ccupied by a monovalent (2) A ₂ BO ₂	ahedral voids are occup	ied by divalent	
19.	A metal has a fcc lattic	e. The edge length of th	e unit cell is 404 pm. Th	e density of the	e metal is 2.72 g
	cm-3. The molar mass	of the metal is : (N _A Avog	adro's constant = 6.02 $ imes$	10 ²³ mol ⁻¹)	[NEET 2013]

- (1) The fraction of the total volume occupied by the atoms in a primitive cell is 0.48.(2) Molecular solids are generally volatile
 - (3) The number of carbon atoms in a unit cell of Diamond is 8

Which of the following statements is not correct ?

(4) The number of Bravais lattices in which a crystal can be categorized is 14

centred cubic, then ratio of the radii of the spheres in these systems will be respectively :

If 'a' stands for the edge length of the cubic systems : simple cubic, body centred cubic and face

9.

10.

[AIPMT 2008]

[AIPMT 2008]

Solid State

	The number of carbo	on atoms per unit cell o	of diamond unit cell is :	[NEET 20)13]
	(1) 8	(2) 6	(3) 1	(4) 4	
1.	•	allizes out with a cubi unit cell, what is the rad		e length of 361 pm. If there are [AIPMT 20]	
	(1) 127 pm	(2) 80 pm	(3) 108 pm	(4) 40 pm	
2.		•	30 kg m ⁻³ and its atomic $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$	c mass is 6.94 g mol⁻¹. Calculat [NEET-1 20]	
	(1) 264 pm	(2) 154 pm	(3) 352 pm	(4) 527 pm	
3.	The ionic radii of A+ a ion in AB is	and B ⁻ ions are 0.98 ×	10 ⁻¹⁰ m and 1.81 × 10 ⁻¹⁰	⁹ m. The coordination number of [NEET-1 20	
	(1) 2	(2) 6	(3) 4	(4) 8	
4.	In calcium fluoride, h fluoride ion (F⁻) are	aving the fluorite struc	cture, the coordination n	umbers for calcium ion (Ca²+) and [NEET-2 2	
	(1) 4 and 8	(2) 4 and 2	(3) 6 and 6	(4) 8 and 4	
5.	(2) Density decrease	stoichiometric metal de	vith Schottky's defect.	[NEET- 2	:017]
				r, quartz is piezo electric crystal. sizes of cation and anions are al	most
:6.	(4) Frenkel defect is equal.Iron exhibits bcc strudensity of iron at roremains constant with	favoured in those ion acture at room temperators to the temperature temperatu	ic compounds in which s ature. Above 900°C, it tra		tio of f iron
6.	(4) Frenkel defect is equal.Iron exhibits bcc strudensity of iron at ro remains constant with	favoured in those ion acture at room temperator om temperature to th th temperature) is :	ic compounds in which s ature. Above 900°C, it tra	sizes of cation and anions are al ansforms to fcc structure. The ra molar mass and atomic radii of	tio of f iron
	(4) Frenkel defect is equal. Iron exhibits bcc stru density of iron at ro remains constant wit (1) $\frac{\sqrt{3}}{\sqrt{2}}$ A compound is form	favoured in those ion acture at room temperator om temperature to th th temperature) is : (2) $\frac{1}{2}$ ed by cation C and ar	ic compounds in which s ature. Above 900°C, it tra at at 900°C (assuming (3) $\frac{3\sqrt{3}}{4\sqrt{2}}$	sizes of cation and anions are all ansforms to fcc structure. The ra- molar mass and atomic radii of [NEET- 2 (4) $\frac{4\sqrt{3}}{3\sqrt{2}}$ hexagonal close packed (hcp) la	tio of f iron 2018] attice
26. 27. 28.	(4) Frenkel defect is equal. Iron exhibits bcc stru- density of iron at ro remains constant with (1) $\frac{\sqrt{3}}{\sqrt{2}}$ A compound is form and the cations occu (1) C ₄ A ₃ Formula of nickel or	favoured in those ion acture at room temperators om temperature to the th temperature) is : (2) $\frac{1}{2}$ ed by cation C and ar upy 75% of octahedral (2) C ₂ A ₃ kide with metal deficie	ic compounds in which s ature. Above 900°C, it tra at at 900°C (assuming (3) $\frac{3\sqrt{3}}{4\sqrt{2}}$ nion A. The anions form voids. The formula of the (3) C ₃ A ₂	sizes of cation and anions are all ansforms to fcc structure. The ra- molar mass and atomic radii of [NEET- 2 (4) $\frac{4\sqrt{3}}{3\sqrt{2}}$ hexagonal close packed (hcp) la e compound is : [NEET-1- 2 (4) C ₃ A ₄ is Ni _{0.98} O. The crystal contains	tio of f iron 2018] attice 019]

PART - II : AIIMS QUESTION (PREVIOUS YEARS)

1.	An AB ₂ type of structure is present in :						
	(1) NaCl	(2) N ₂ O	(3) Al ₂ O ₃	(4) CaF ₂			

[AIIMS 2002]

2.	Schottky defect define (1) gas	s imperfection in the lattic (2) plasma	ce structure of a : (3) liquid	(4) solid	[AIIMS 2002]
3.	The crystal system of $\alpha = \beta = 90^{\circ}$ and $\gamma = 12$ (1) cubic	a compound with unit cel 0° is : (2) hexagonal	l dimensions a = 0.387, (3) orthorhombic	b = 0.387 and c = (4) rhombohed	[AIIMS 2004]
4.	ABC, the number o (1) Z	f atoms in the unit cell f tetrahedral voids in the (2) 2 Z	unit cell is equal to (3) Z/2	(4) Z/4	[AIIMS 2005]
5.	in : (1) tetrahedral voids (3) octahedral voids	are located in CaF ₂ crys	 (2) half of tetrahedral v (4) half of octahedral v 	voids	ttice points and [AIIMS 2006]
6.	If AgI crystallises in z voids is occupied by A (1) 25 %	inc blende structure wit g ⁺ ions ? (2) 50 %	h I [–] ions at lattice point (3) 100 %	s. What fractions (4) 75 %	s of tetrahedral [AIIMS 2007]
7.	Reason : Both defects (1) If both assertion an	d reason are false.	ne solid. ason is a correct explana		
8.	Sodium crystallises in 53 pm. The density of (1) 1.23 g/cc	bcc arrangements with the solid is : (2) 485 g/cc	the interfacial sepration (3) 4.85 g/cc	between the ato (4) 123 g/cc	ms at the edge [AIIMS 2009]
9.	Cl⁻ ion is 1.82 Å. Reason : Anion-anion (1) If both assertion an	d reason are false.	Cl structure because anic ason is a correct explana	ons constitute the ation of assertion	[AIIMS 2010] lattice.
10.	In a face centred cubic (1) 8	a unit cell is shar (2) 4	red equally by how many (3) 2	vunit cells ? (4) 6	[AIIMS 2012]
11.	10 ⁻⁶ –10 ⁴ ohm ⁻¹ m ⁻¹ . Reason : Intermediate (1) If both assertion an	d reason are false.	ductor is due to partially ason is a correct explana	filled valence bar ation of assertion.	[AIIMS 2013] nd.

12.	vacant is 10 ⁻³ . Reason : Each SrCl ₂ ur (1) If both assertion and	reason are false.	vacancy. son is a correct explana	tion of assertion.	[AIIMS 2014]
13.	Reason : Both defects of (1) If both assertion and	reason are false.	e crystalline solid. son is a correct explana	tion of assertion.	[AIIMS 2015] on.
14.	In a gas lighter, mecha titanate. Barium titanate (1) piezoelectric but not (3) ferroelectric		ted into electrical energ (2) both piezoelectric as (4) neither ferroelectric	s well as ferroele	[AIIMS 2016] ctric
15.	Which of the following substance ? (1) $\textcircled{1}$ $\rule{1}{1}$	arrangement correctly	(2) \bigoplus	moment of ant	i-ferromagnetic [AIIMS 2017]
16.	 f-centre is (1) anion vacancy occup (2) anion vacancy occup (3) cation vacancy occup (4) anion present in inter 	pied by electron	1		[AIIMS 2018]
17.	What is impact on benze (1) Strong attract	ene in magnetic field : (2) Weakly attract	(3) Strongly repel	(4) weak repel	[AIIMS 2018]
18.	Atom 'A' crystallised in formula for compound: (1) A ₂ B ₃	HCP crystal structure a (2) A ₃ B ₂	and $\frac{1}{3}$ of tetrahedral a (3) AB ₃	re occupied by I (4) A ₂ B	B. What is the [AIIMS 2018]

PART - III : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1.	Na and Mg crystalliz Mg present in the un	atoms of Na and [AIEEE-2002]			
	(1) 4 and 2	(2) 9 and 14	(3) 14 and 9	(4) 2 and 4	
2.	How many unit cells [Atomic masses : Na (1) 2.57 × 10 ²¹	•	haped ideal crystal of Na (3) 1.28 × 10 ²¹	aCl of mass 1.00g? (4) 1.71 × 10 ²¹	[AIEEE-2003]

Solid State

3.	What type of crystal defect is indicated in the d Na ⁺ CI ⁻ Na ⁺ CI ⁻ Na ⁺ CI ⁻ CI ⁻ Na ⁺ CI ⁻ Na ⁺ Na ⁺ CI ⁻ CI ⁻ Na ⁺	iagram below? [AIEEE-2004] CI ⁻ Na⁺ CI ⁻ Na⁺
	(1) Frenkel defect(3) interstitial defect	(2) Schottky defect(4) Frenkel and Schottky defects
4.	An ionic compound has a unit cell consisting centers of the faces of the cube. The empirical (1) AB (2) A ₂ B	of A ions at the corners of a cube and B ions on the formula for this compound would be $[AIEEE-2005]$ (3) AB ₃ (4) A ₃ B
5.	Total volume of atoms present in a face-center	cubic unit cell of a metals (r is atomic radius) [AIEEE-2006]
	(1) $\frac{20}{3}\pi r^3$ (2) $\frac{24}{3}\pi r^3$	(3) $\frac{12}{3} \pi r^3$ (4) $\frac{16}{3} \pi r^3$
6.	In a compound, atoms of element Y form ccp voids. The formula of the compound will be (1) X_2Y_3 (2) X_2Y	attice and those of element X occupy $2/3^{rd}$ of tetrahedral [AIEEE - 2008, 3/105] (3) X_3Y_4 (4) X_4Y_3
7.		of 361 pm. What is the radius of copper atom ?
	(1) 127 pm (2) 157 pm	[AIEEE - 2009, 8/144] (3) 181 pm (4) 108 pm
8.		(d) for pin ked structure and in body centered packed structure are [AIEEE - 2010, 4/144] (3) 32% and 48% (4) 48% and 26%
9.		ies the corner positions and atom B occupies the face from one of the face centred points, the formula of the [AIEEE-2011, 4/120] (3) A_2B_3 (4) A_2B_5
10.		The length of the side of its unit cell is 351 pm. Atomic [AIEEE-2012, 4/120] (3) 240 pm (4) 152 pm
11.	Experimentally it was found that a metal oxide its oxide. Fraction of the metal which exists as (1) 7.01% (2) 4.08%	a has formula M _{0.98} O. Metal M, present as M ²⁺ and M ³⁺ in M ³⁺ would be : [JEE(Main) 2013, 4/120] (3) 6.05% (4) 5.08%
12.	CsCl crystallises in body centred cubic latti expressions is correct ?	ce. If 'a' its edge length then which of the following [JEE Mains 2014]
	(1) $r_{Cs^+} + r_{Cl^-} = 3a$ (2) $r_{Cs^+} + r_{Cl^-} = \frac{3a}{2}$	(3) $r_{CS^+} + r_{CI^-} = \frac{\sqrt{3}}{2}a$ (4) $r_{CS^+} + r_{CI^-} = \sqrt{3}a$
13.	Sodium metal crystallizes in a body centred c sodium atom is approximately: (1) 1.86Å (2) 3.22Å	ubic lattice with a unit cell edge of 4.29Å. The radius of [JEE Mains 2015] (3) 5.72Å (4) 0.93Å
14.	Which of the following compounds is metallic a (1) CrO_2 (2) VO_2	
		Pagel 36

15.	A metal crystallises in a face centred cubic structure. If the edge length of its unit cell is 'a', the closest approach between two atoms in metallic crystal will be : [JEE Mains 2017]									
	(1) 2 √2 a	(2) √2 a	(3) $\frac{a}{\sqrt{2}}$	(4) 2a						
16.	Which type of 'defect' l (1) Frenkel defect (3) Schottky defect	nas the presence of catio	ons in the interstitial sites (2) Metal deficiency de (4) Vacancy defect							
17.	The one that is extens (1) tridymite	ively used as a piezoeleo (2) amorphous silica	ctric material is : (3) quartz	[JEE Mains 2019] (4) mica						
18.	•••••		ure with cell edge length Atomic mass of Cu = 63.	of x Å. What is the approximate 55 u] [JEE Mains 2019]						
	(1) $\frac{205}{x^3}$	(2) $\frac{105}{x^3}$	(3) $\frac{422}{x^3}$	(4) $\frac{211}{x^3}$						
19.	Which premitive unit c	ell has unequal edge len	gths (a \neq b \neq c) and all a	xial angles different from 90 ^o ? [JEE Mains 2019]						
	(1) Monoclinic	(2) Triclinic	(3) Hexagonal	(4) Tetragonal						
20.	•	la A₂B₃ has the hcp lattic		e hcp lattice and what fraction of [JEE Mains 2019]						
	(1) hcp lattice –A, $\frac{2}{3}$ T	etrahedral voids-B	(2) hcp lattice –B, $\frac{1}{3}$ T	etrahedral voids-A						
	(3) hcp lattice –B, $\frac{2}{3}$ T	etrahedral voids-A	(4) hcp lattice –A, $\frac{1}{3}$	Tetrahedral voids-B						
21.	•	est sphere which fits pro th is represented by 'a') (2) 0.027 a	operly at the centre of th (3) 0.134 a	ne edge of a body centred cubic [JEE Mains 2019] (4) 0.067 a						
22.	A solid having density	of 9 × 10 ³ kg m ⁻³ form	s face centred cubic cry	stals of edge length $200\sqrt{2}$ pm.						

22. A solid having density of 9×10^3 kg m⁻³ forms face centred cubic crystals of edge length $200\sqrt{2}$ pm What is the molar mass of the solid? [Avogadro constant $\cong 6 \times 10^{23}$ mol⁻¹, $\pi \cong 3$] **[JEE Mains 2019]** (1) 0.0432 kg mol⁻¹ (2) 0.0305 kg mol⁻¹ (3) 0.4320 kg mol⁻¹ (4) 0.0216 kg mol⁻¹

		ISV	ler s										
						EXER	CISE -	1					
SECT	TION (A))											
1.	(2)	2.	(3)	3.	(2)	4.	(3)	5.	(4)	6.	(4)	7.	(2)
8.	(1)	9.	(4)	10.	(1)	11.	(3)	12.	(2)				
	TION (B)		(0)	•	(4)		(4)	~	(4)	6	(4)	-	$\langle 0 \rangle$
1. 8.	(4) (2)	2.	(2)	3.	(1)	4.	(1)	5.	(1)	6.	(4)	7.	(2)
	(2) FION (C)	1											
1.	(4)	2.	(4)	3.	(2)	4.	(4)	5.	(2)	6.	(2)		
	ION (D)				(-)		(')		(-)	•	(-)		
1.	(4)	2.	(1)	3.	(2)	4.	(2)	5.	(2)	6.	(1)	7.	(3)
8.	(4)	9.	(2)	10.	(3)	11.	(1)	12.	(3)	13.	(2)	14.	(3)
	TION (E)												
1.	(1)	2.	(2)	3.	(1)	4.	(3)	5.	(3)	6.	(2)	7.	(2)
8.	(1)	9.	(1)										
	FION (F)		(1)	2	(A)		(2)	F	(1)	c	(2)	7	(4)
1. 8.	(3) (2)	2. 9.	(1) (2)	3. 10.	(4) (1)	4. 11.	(3) (1)	5.	(1)	6.	(2)	7.	(4)
	(2) [ION (G)		(2)	10.	(1)		(1)						
1.	(2)	2.	(3)	3.	(1)	4.	(3)	5.	(3)	6.	(1)	7.	(2)
	(-)		(-)		(1)		CISE -		(-)		(-)		(-)
1.	(4)	2.	(3)	3.	(4)	4.	(4)	<u>-</u> 5.	(3)	6.	(4)	7.	(1)
8.	(4)	9.	(2)	10.	(2)	11.	(2)	12.	(2)	13.	(3)	14.	(3)
15.	(4)	16.	(2)	17.	(3)	18.	(1)	19.	(2)	20.	(3)	21.	(1)
22.	(2)	23.	(1)	24.	(2)	25.	(2)	26.	(2)	27.	(1)	28.	(2)
29.	(1)	30.	(1)	31.	(4)	32.	(2)	33.	(2)				
						EXER	CISE -	3					
						PA	ART-I						
1.	(2)	2.	(3)	3.	(1)	4.	(3)	5.	(2)	6.	(1)	7.	(2)
8.	(4)	9.	(1)	10.	(1)	11.		12.	(1)	13.	(2)	14.	(1)
15.	(3)	16.	(1)	17.	(1)	18.	(4)	19.	(1)	20.	(1)	21.	(1)
22.	(3)	23.	(2)	24.	(4)	25.	(1,4)	26.	(3)	27.	(4)	28.	(1)
						PA	RT-II						
1.	(4)	2.	(4)	3.	(2)	4.	(2)	5.	(1)	6.	(2)	7.	(4)
8.	(1)	9.	(1)	10.	(4)	11.	(3)	12.	(4)	13.	(3)	14.	(2)
15.	(4)	16.	(1)	17.	(4)	18.	(2)						
	. ,		. /		. ,		RT-III						
1.	(4)	2.	(1)	3.	(2)	4.	(3)	5.	(4)	6.	(4)	7.	(1)
8.	(2)	9.	(4)	10.	(4)	11.	(2)	12.	(3)	13.	(1)	14.	(1)
15.	(3)	16.	(1)	17.	(3)	18.	(3)	19.	(2)	20.	(2)	21.	(4)
22.	(2)												