Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section A-1.		: General int ne diamine is an			•		d definiti	ons to be us	ed:
A-1.	•	nodentate	(2) bide		iiga	(3) tridentate		(4) hexadentate)
A-2.	Which (1) Car	of the following r bonato	epresen (2) Amı		monodent	ate monoanion (3) Nitrito	n ligand ?	(4) Oxalato	
A-3.	be:				on numbe		following o	compound [X(SO	4)(NH3)5]CI will
	(1) 10	& 3	(2) 2 8	ኔ 6		(3) 6 & 3		(4) 6 & 4	
A-4.	The ox (1) + 1	idation state of F	e in brov (2) + 2	_	complex	[Fe (H ₂ O) ₅ NO (3) + 3	O] SO ₄ is :	(4) + 4	
A-5.	_	nds are : is acids	(2) lewi	s base	S	(3) neutral		(4) none	
A-6.	(a) Dim	Which of the following are bidentate monoanion (a) Dimethylglyoximato (b) Oxalato ion Select the correct answer using the codes given (1) a only (2) a and c only			n des giver	(c) Bis(ethan	e-1,2-diam	ine) (4) b and c only	
A-7.	An ambidentate ligand is one which: (1) is linked to the metal atom at two points. (2) has two donor atoms but only one of them has the capacity to form a coordinate bond. (3) has two donor atoms but either of the two can form a coordinate bond. (4) forms chelate rings.								
A-8.	(1) NO:	₂ - – Bidentate lig	the following is not correctly matched ? - Bidentate ligand - Monodentate ligand (4) (CO) - Monodentate ligand						
A-9.	What is (1) +3	s the charge on t	he comp (2) 0	olex [Co	o(NH3)Cl(gly) ₂] formed b (3) +2	oy Co(III) :	(4) –1	
A-10.	(A) (B) (C) (D) Proper (1) A(i)	er the following Complex [CuCl ₂] ⁻ Ni(CO) ₄ [PtCl ₆] ⁴⁻ [Ni(NH ₃) ₆] ²⁺ matching is: , B(ii), C(iii), D(iv	·)	Coord (i) (ii) (iii) (iv)	dination (6 5 4 2	(2) A(iii), B(iv			
A-11	Which	of the following I	igands fo		chelate	(4) A(i), B(iii),	, C(II), D(IV)		
	(1) Ace		(2) Oxa			(3) Cyanide		(4) Ammonia	
A-12	(1) [Co (2) NH ₂	H ₅) ₂ SO ₄	gen is ind Oxidat			or			

Section (B): Nomenclature of coordination compounds

B-1.	What is the chemical fo (1) [Cr(en) ₂ (ox)]	rmula of bis(ethane-1,2- (2) [Cr(ox) ₂ (en)] ⁻	diamine)oxalatochromiur (3) [Cr(en) ₂ (ox)]+	m(III) ? (4) [Cr(en) ₂ (ox)] ⁻	
B-2.	` ,	and tetrafluoroborate(III) (2) [Al(C ₂ O ₄) ₃] ³⁺ , [BF ₄] ³⁺		(4) [Al(C ₂ O ₄) ₃] ²⁻ , [BF ₄] ²	
B-3.	The IUPAC name for the (1) Barium tetrafluorobre (3) Barium bis (tetrafluorobre reference)		d Ba[BrF ₄] ₂ is: (2) Barium tetrafluorobi (4) none of these	romate (III)	
B-4.	(1) Triamminebromidoc(2) Triamminebromidoc(3) Triamminebromidoc	o(NH ₃) ₃ Br Cl(NO ₂)] will b hloridonitrito-N-cobaltate hloridonitrito-N-cobalt(III hloridonitrito-O-cobaltate promidochloridocobaltate	e(III)) e(III)		
B-5.	(1) diethane-1,2-diamin(2) bis(ethane-1,2-diam(3) bis(ethane-1,2-diam	ne of complex, [Rh(en) ₂ (0e nitrito-O-thiocyanato-Sine) nitrito-O-thiocyanatoine) nitrito-O-thiocyanatoine) nitrito-N-thiocyanato	-rhodium (III) nitrate o-S-rhodium(III) nitrate o-S-rhodate(III) nitrate		
B-6.	The IUPAC name of the (1) amminetetracyanido (3) amminetetracyanido	` ,	NH ₃)(CN) ₄] ²⁻ is : (2) amminetetracyanido (4) amminetetracyanido		
B-7	(2) Triamminebromonitr (3) Triamminebromochl	3)3(Br)(NO ₂)Cl]Cl is: monitroplatinum (IV) chlo ochloroplatinum (IV) chlo oronitroplatinum (IV) chlo obromoplatinum (IV) chlo	oride oride		
B-8	IUPAC name of K ₃ [Al(C) (1) Potassium alumino (3) Potassium trioxalato	oxalato	(2) Potassium aluminiu (4) Potassium trioxalato	` '	
B-9	The complex chlorocompound diaquatriammine cobalt (III) chloride is represented as (1) [Co(NH ₃) ₃ (H ₂ O) ₃]Cl ₂ (2) [Co(NH ₃) ₃ (H ₂ O) ₂]Cl ₂ (3) [CoCl(NH ₃) ₃ (H ₂ O) ₂]Cl ₃ (4) [CoCl(NH ₃) ₃ (H ₂ O) ₂]Cl ₂				
	The complex compound) Chlorocyanonitrotriam (3) Cyanonitrochlorotria	mine cobalt (III)(2) Nitrod			
B-11	The oxidation number of (1) +1	of Pt in $[Pt(C_2H_4)CI_3]^-$ is (2) +2	(3) +3	(4) +4	
B-12	What is the structural for (1) Al[LiH ₄]	rmula of lithium tetrahyd (2) Al ₂ [LiH ₄] ₃	ridoaluminate (3) Li[AlH ₄]	(4) Li[AIH ₄] ₂	

Section (C): Bonding in coordination compounds: (Initial bonding theories and EAN rule, Valence bond theory)

(1) primary valency is ic	nisable	(2) primary valency is non-ionisable(4) All of these		
(1) oxidation state		encies of a central metal (2) co-ordination number (4) neither of the two	•	
EAN of the central meta (1) 36, 35, 86	al in the complexes – $K_2[1]$ (2) 34, 35, 84	Ni(CN ₄)], [Cu(NH ₃) ₄]SO ₄ and K ₂ [PtCl ₆] are respect (3) 34, 35, 86 (4) 34, 36, 86		
number ? (1) [Cr(CO) ₆] and [Fe(C	O) ₅]	e central metals/ions do not have same effective atomic (2) [Cu(CN) ₄] ³⁻ and [Ni(CO) ₄] (4) [V(CO) ₆] ⁻ and [Co(NO ₂) ₆] ³⁻		
In which of the followin configuration? (1) [Fe(H ₂ O) ₆] ²⁺	g complexes the valence (2) [Mn(H ₂ O) ₆] ²⁺	e shell of central metal i (3) [Co(H ₂ O) ₆] ³⁺	on does not have d ⁶ electronic (4) [Ni(H ₂ O) ₆] ⁴⁺	
A complex compound which is formed by nitrate and bromide ligands, gives 2 mol precipitate of AgB when reacts with AgNO ₃ , the formula of complex is : (1) [Co(NH ₃) ₅ (NO ₃)]Br ₂ (2) [Co(NH ₃) ₅ Br]Br(NO ₃)				
Pick out the complex co (1) K ₄ [Fe(CN) ₆]	empound in which the certification $(2) K_3[Fe(CN)_6]$	ntral metal atom obeys E (3) [Cr(H ₂ O) ₆]Cl ₃	AN rule strictly (4) [Cu(NH ₃) ₄]SO ₄	
		•	omplex is : (4) Square	
The type of hybridizatio (1) d ³ sp ²	n involved in the metal ic (2) sp³d²	on of $[Ni(H_2O)_6]^{2+}$ completed (3) sp ³	x is (4) dsp²	
The shape of [Cu(NH ₃) ₄ (1) sp ³ hybridised	.] ²⁺ is square planar, Cu ² (2) dsp ² hybridised	tin this complex is (3) sp³d hybridized	(4) sp ³ d ² hybridized	
[Pt(NH ₃) ₄]Cl ₂ is (1) Square planar	(2) Tetrahedral	(3) Pyramidal	(4) Pentagonal	
molecules, one nitro gr produces three mole ion ionic formula for this con (1) [Co(NH ₃) ₅ (NO ₂)]Cl ₂	roup and two chlorine at us in an aqueous solution mplex would be:	atoms for one cobalt atom. One mole of this compound		
	(1) primary valency is ic (3) secondary valency is (3) secondary valency is (3) secondary valency is (4) secondary valency is (5) secondary valency is (6) secondary valency is (7) oxidation state (8) any of the two (1) are EAN of the central metal (1) 36, 35, 86. In which of the following number? (1) [Cr(CO) ₆] and [Fe(C) ₃ (3) [Co(NH ₃) ₆] ²⁺ and [Ni In which of the following configuration? (1) [Fe(H ₂ O) ₆] ²⁺ A complex compound when reacts with AgNO (1) [Co(NH ₃) ₅ (NO ₃)]Br ₂ (3) [Co(NH ₃) ₄ Br ₂]NO ₃ Pick out the complex configuration (1) K ₄ [Fe(CN) ₆] In the complex [SbF ₅] ²⁻² (1) Square pyramidal The type of hybridization (1) d ³ sp ² The shape of [Cu(NH ₃) ₄ (1) sp ³ hybridised [Pt(NH ₃) ₄]Cl ₂ is (1) Square planar A co-ordination complemolecules, one nitro grapoduces three mole ionionic formula for this confidency in the confidency of the confidency in the c	(1) oxidation state (3) any of the two (1) and (2) EAN of the central metal in the complexes – K ₂ [I(1) 36, 35, 86 (2) 34, 35, 84 In which of the following pairs of complexes, the number? (1) [Cr(CO) ₆] and [Fe(CO) ₅] (3) [Co(NH ₃) ₆] ²⁺ and [Ni(NH ₃) ₆] ²⁺ In which of the following complexes the valence configuration? (1) [Fe(H ₂ O) ₆] ²⁺ (2) [Mn(H ₂ O) ₆] ²⁺ A complex compound which is formed by nitrate when reacts with AgNO ₃ , the formula of complex (1) [Co(NH ₃) ₅ (NO ₃)]Br ₂ (3) [Co(NH ₃) ₄ Br ₂]NO ₃ Pick out the complex compound in which the cert (1) K ₄ [Fe(CN) ₆] (2) K ₃ [Fe(CN) ₆] In the complex [SbF ₅] ²⁻ , sp ³ d hydridisation is present the special produced in the metal ice (1) d ³ sp ² (2) sp ³ d ² The shape of [Cu(NH ₃) ₄] ²⁺ is square planar, Cu ² (1) sp ³ hybridised (2) dsp ² hybridised [Pt(NH ₃) ₄]Cl ₂ is (1) Square planar (2) Tetrahedral A co-ordination complex compound of cobalt molecules, one nitro group and two chlorine at produces three mole ions in an aqueous solution ionic formula for this complex would be:	(1) primary valency is ionisable (2) primary valency is no (3) secondary valency is ionisable (4) All of these According to Werner's theory, the secondary valencies of a central metal (1) oxidation state (2) co-ordination number (3) any of the two (1) and (2) (4) neither of the two (1) 36, 35, 86 (2) 34, 35, 84 (3) 34, 35, 86 (1) 36, 35, 86 (2) 34, 35, 84 (3) 34, 35, 86 (2) 34, 35, 84 (3) 34, 35, 86 (3) 34, 35, 86 (2) 34, 35, 84 (3) 34, 35, 86 (3) 34, 35, 86 (3) 34, 35, 86 (3) 34, 35, 86 (3) 34, 35, 86 (3) 34, 35, 86 (3) 34, 35, 86 (4) 36, 35, 36 (2) 36, 36, 36 (2) 36, 36, 36 (2) 37, 36, 36 (3) 37, 36, 36 (2) 38, 36 (3	

Section (D): Crystal field theory & applications of crystal field theory: (Theory Magnetic moment of complex, Color of complex, Stability of complex)

D-1.	The outer complexes ar (1) strong ligand	re generally formed by : (2) weak ligands	(3) neutral ligands	(4) none	
D-2.	The most stable complete (1) [NiCl ₄] ²⁻	ex among the following is (2) [Ni(H ₂ O) ₂ Cl ₂]	s : (3) [Ni(NH ₃) ₄] ²⁺	(4) [Ni(CN) ₄] ²⁻	
D-3.	[Sc(H ₂ O) ₆] ³⁺ ion is: (1) coloured and param (3) colourless and diam	_	(2) colourless and para (4) coloured and octahe	_	
D-4.	The geometry and mag (1) tetrahederal, square (3) square planar, tetrah	planar ; 2.83, 0	plexes [NiCl ₄] $^{2-}$ and [Pdota) (2) tetrahedral, tetrahed (4) square planar, squa	Iral ; 2.83, 2.83	
D-5.	Which of the following statements is correct with respect to the crystal field theory? (1) It considers only the metal ion d–orbitals and gives no consideration at all to other metal orbita (2) It cannot account for the π bonding in complexes. (3) The ligands are point charges which are either ions or neutral molecules. (4) All of these				
D-6.	P: [FeF ₆] ³⁻ The correct order of the	x ions are found to be page $Q : [CoF_6]^{3-}$ ir paramagnetic moment (2) $P < Q < R < S$	R: $[V(H_2O)_6]^{3+}$ (spin only) is:	S: $[Ti(H_2O)_6]^{3+}$ (4) P > R > Q > S	
D-7.	In which of the following (1) [FeF ₆] ³⁻	g complex ion, the metal (2) [Fe(CN) ₆] ³⁻	ion will have t_{2g}^{6} , e_{g}^{0} con (3) [Fe(CN) ₆] ⁴⁻	figuration according to CFT: (4) None of these	
D-8.	-	$_{3}[Fe(CN)_{6}]$ and $K_{4}[Fe(CN)_{6}]$ (2) $d^{2}sp^{3}$ and $d^{2}sp^{3}$,	(4) sp ³ d ² and d ² sp ³	
D-9.	$[FeF_6]^{3-}$ has Fe atom (1) d^2sp^3 , 4	hybridised with unpaired (2) d ² sp³, 5	$1 electrons :$ (3) sp^3d^2 , 5	(4) sp ³ d ² , 3	
D-10.	Hybridisation of [Ni(NH ₃) (1) both d ² sp ³ and sp ³ d ² resp	s) ₆] ²⁺ and [Zn(NH ₃) ₆] ²⁺ are pectively	e : (2) both sp³d² (4) sp³d² and d²sp³ resp	pectively	
D-11	The number of unpaired (1) Zero	d electrons in the comple (2) 2	ex ion $[CoF_6]^{3-}$ is (Atomic (3) 3	no. of Co = 27) (4) 4	
D-12	Amongst Ni(CO) ₄ , [Ni(CN) ₄] ²⁻ and [NiCl ₄] ²⁻ (1) Ni(CO) ₄ and [NiCl ₄] ²⁻ are diamagnetic and [Ni(CN) ₄] ²⁻ is paramagnetic (2) [NiCl ₄] ²⁻ and [Ni(CN) ₄] ²⁻ are diamagnetic and Ni(CO) ₄ is paramagnetic (3) Ni(CO) ₄ and [Ni(CN) ₄] ²⁻ are diamagnetic and [NiCl ₄] ²⁻ is paramagnetic (4) Ni(CO) ₄ is diamagnetic and [NiCl ₄] ²⁻ and [Ni(CN) ₄] ²⁻ are paramagnetic				
D-13	The compound which do (1) [Cu(NH ₃) ₄]Cl ₂	oes not show paramagno (2) [Ag(NH₃)₂]Cl	etism is (3) NO	(4) NO ₂	
D-14	The most stable ion is (1) [Fe(OH) ₃] ³⁻	(2) [Fe(Cl) ₆] ³⁻	(3) [Fe(CN) ₆] ³⁻	(4) [Fe(H ₂ O) ₆] ³⁺	
D-15	The most stable comple (1) K ₃ [Al(C ₂ O ₄) ₃]	ex among the following is (2) [Pt(en) ₂]Cl ₂	s (3) Ag(NH₃)₂Cl	(4) K ₂ [Ni(EDTA)]	

Section (E): Isomerism in coordination compounds:

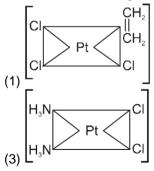
Structural Isomerism,	Stereoisomerism,	Geometrical Is	omerism, O	ptical Isomerism)

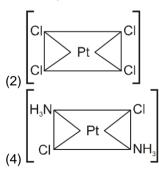
E-1.				owing type of isomerism?		
	(1) Optical	(2) Linkage	(3) Coordination	(4) Ionization		
E-2.	Change in composition	of co-ordination sphere	yields which type of isom	ers?		
	(1) Hydrate	(2) Optical	(3) Geometrical	(4) None of these		
E-3.	Which of the following	cannot show linkage isor	nerism ?			
	(1) H ₂ O	(2) CN ⁻	(3) SCN ⁻	(4) NO ₂ -		
E-4.	The number of geomet	rical isomers of [Pt(NH ₃) ₂	₂ Cl ₂] is :			
	(1) 1	(2) 3	(3) 4	(4) 2		
E-5.	Which of the following	complex ions does not st	now optical activity :			
	(1) [PtBrClI(NO ₂)(H ₂ O)	NH ₃]	(2) cis[Co(en) ₂ Cl ₂] ⁺			
	(3) $cis[Co(en)(NH_3)_2CI_2$]+	(4) $[Co(NH_3)_4CI_2]^+$			
E-6.	Which of the following complex shows ionization isomerism?					
	(1) [Cr(NH ₃) ₆]Cl ₃	(2) [Cr(en) ₂]Cl ₂	(3) [Cr(en) ₃]Cl ₃	(4) [Co(NH ₃) ₅ Br]SO ₄		
E-7.	Which kind of isomerism is shown by the complex [Co(NH ₃) ₅ (ONO)]SO ₄ ?					
	1. Ionisation isomerism		2. Linkage isomerism			
	3. Geometrical isomeris	sm	4. Optical isomerism			
	(1) 1, 2, 3 and 4 are co	rrect	(2) 1, 3 and 4 are corre	ct only		
	(3) 1 and 2 are correct	only	(4) 2, 3 and 4 are corre	ct only		
E-8	Which one of the following octahedral complexes will not show geometric isomerism (A and B are					
	monodentate ligands)					
	(1) [MA ₅ B]	(2) [MA ₂ B ₄]	(3) [MA ₃ B ₃]	(4) $[MA_4B_2]$		
E-9	Which would exhibit co	-ordination isomerism				
	(1) [Cr(NH ₃) ₆][Co(CN) ₆]	(2) [Co(en) ₂ Cl ₂]	(3) [Cr(NH ₃) ₆]Cl ₃	(4) $[Cr(en)_2Cl_2]^+$		
E-10	$[Cr(NH_3)_5NO_2]Cl_2$ and $[Co(NH_3)_5(ONO)]Cl_2$ are related to each other as :					
	(1) Geometrical isomer	s	(2) Optical isomers			
	(3) Linkage isomers		(4) Coordination isomers			
E-11	[Co(NH ₃) ₅ Br]SO ₄ and [6	Co(NO ₃) ₅ SO ₄]Br are exa	mples of which type of iso	omerism		
	(1) Linkage	(2) Geometrical	(3) Ionization	(4) Optical		
E-12	[Co(NH ₃) ₄ Cl ₂]NO ₂ and	[Co(NH3)4Cl.NO2]Cl are .	isomers			
	(1) Geometrical	(2) Optical	(3) Linkage	(4) Ionization		

E-13	Which would exhibit ion	isation isomerism		
	(1) [Cr(NH ₃) ₆]Cl ₃	(2) [Co(NH ₃) ₅ Br]SO ₄	(3) $[Cr(en)_2Cl_2]$	(4) [Cr(en) ₃ Cl ₃]
E-14	[Ti(H ₂ O) ₆] ³⁺ is paramag	netic in nature due to		
	(1) One unpaired e-	(2) Two unpaired e-	(3) Three unpaired e-	(4) No unpaired e-
E-15	Which one of the follow	ing will not show geomet	rical isomerism	
	(1) [Cr(NH ₃) ₄ Cl ₂]Cl	(2) [Co(en) ₂ Cl ₂]Cl	(3) [Co(NH ₃) ₅ NO ₂]Cl ₂	(4) $[Pt(NH_3)_2CI_2]$
E-16	Which of the following is	someric pairs shows ioni	zation isomerism	
(1) [Co(NH ₃) ₆][Cr(CN) ₆] ar	nd [Cr(NH ₃) ₆][Co(CN) ₆]		
	(2) [Cr(H ₂ O) ₆]Cl ₃ and [C	cr(H ₂ O) ₅ Cl]Cl ₂ .H ₂ O		
	(3) [Pt(NH ₃) ₂ Cl ₂] and [P	t(NH ₃) ₄][PtCl ₄]		
	(4) [Co(NH ₃) ₅ Br]SO ₄ an	d [Co(NH ₃) ₅ SO ₄]Br		
E-17	The number of isomers	possible for square plan	ar complex K ₂ [PdClBr ₂ (S	SCN)] is
	(1) 2	(2) 3	(3) 4	(4) 6
Section	on : (F) Organometa	allic Compounds		
F-1.	Which of the following s	statements are wrong?		
	(a) Al ₄ C ₃ is an organom	etallic compounds		
	(b) Metal carbonyls are	organometallic compour	nds	
	(c) TEL is π-bonded org	anometallic compound		
	(d) Frankland reagent is	s π-bonded organometall	ic compound	
	(1) a, b and d	(2) a, c and d	(3) b and c	(4) a, b, c and d
F-2.	Solution of TiCl ₄ and tria	alkylaluminium used as a	a catalyst in polymerisation	on of olefins is called :
	(1) Wilkinson's catalyst		(2) Zeigler Natta catalys	st
	(3) Homogeneous catal	yst	(4) Grignard reagent	
F-3.	Which of the following is	s π-complex?		
	(1) Trimethyl aluminium	t e	(2) Ferrocene	
	(3) Diethyl zinc		(4) Nickel carbonyl	
F-4	Wilkinson's catalyst use	ed as a homogeneous ca	talyst in the hydrogenation	on of alkenes contains
	(1) Iron	(2) Aluminium	(3) Rhodium	(4) Cobalt
F-5	Tollen's reagent is			
r-ɔ	-	(2) A ~ O	(2) [Cu/OH) 12-	(4) Cu O
	(1) [Ag(NH ₃) ₂] ⁺	(2) Ag ₂ O	(3) [Cu(OH) ₄] ²⁻	(4) Cu ₂ O
F-6	Which of the following is	s not considered as an o	rganometallic compound	
_	(1) Cis-platia	(2) Ferrocene	(3) Zeise's salt	(4) Gringard reagent
	-			- -

Exercise-2

Marked Questions may have for Revision Questions.


OBJECTIVE QUESTIONS


1.	Which of the following (1) NO+	species in s not expecte (2) NH ₄ +	ed to be a ligand (3) NH ₂ –NH ₃ +	(4) NO ₂ +		
2.	In K ₄ [Fe(CN) ₆], Fe is in (1) An atom	n the form of (2) Neutral complex	(3) Cationic complex	(4) Anionic complex		
3.	Which one of the follows (1) K ₂ [Ni(CN) ₄]	wing is not a homoleptic (2) [Ni(en) ₃](NO ₂) ₂	complex ? (3) [NiCl ₂ (PPh ₃) ₂]	(4) [Ni(H ₂ O) ₆]Cl ₂		
4	The IUPAC name of [Co(NH ₃) ₆][Cr(C ₂ O ₄) ₃] is (1) Hexaamminecobalt (III) tris (Oxalato) chromate (III) (2) Hexaamminecobalt (III) tris (Oxalato) chromium (III) (3) Hexaamminecobalt (II) tris (Oxalato) chromium (III) (4) Hexaamminecobalt (III) trisoxalatechromium (III)					
5.	Consider the following statements: According the Werner's theory. (1) Ligands are connected to the metal ions by ionic bonds. (2) Secondary valencies have directional properties (3) Secondary valencies are nonionisable Of these statements: (1) 1, 2 and 3 are correct (2) 2 and 3 are correct (3) 1 and 3 are correct (4) 1 and 2 are correct					
6.	The two isomers X ar freezing point. It was	nd Y with the formula Cr found that one mole of X ave depression due to 3 r(H ₂ O) ₄ Br ₂]Cl. H ₂ O	r(H ₂ O) ₅ ClBr ₂ were taken for experiment on depression in X gave depression corresponding to 2 moles of particle 3 moles of particles. The structural formulae of X and Y (2) [Cr(H ₂ O) ₄ Br ₂]Cl.H ₂ O,[Cr(H ₂ O) ₅ Cl]Br ₂ (4) [Cr(H ₂ O) ₅ Cl]Br ₂ , [Cr(H ₂ O) ₃ ClBr ₂].2H ₂ O			
7.	=	e oxidation number, co-ovely [atomic number of A (2) +1, 2, 51		fective atomic number of centra (4) +1, 1, 50		
8.		, ,	mic number of Cr = 24] is (3) 4	, ,		
9.	Chromium hexacarbon (1) sp ³ d ²	nyl is an octahedral comp (2) dsp²	oound invoving (3) d ² sp ³	(4) dsp ³		
10.	Which of the following (1) [Pt(en) ₂] ²⁺	molecules is not tetrahe (2) [Ni(CO) ₄]	dral (3) $[Zn(NH_3)_4]^{2+}$	(4) [NiCl ₄] ²⁻		
11.	Type of isomerism sho (1) linkage and geome (3) linkage and ionisat		s) ₅ NO ₂]Cl is : (2) linkage only (4) ionisation only			

CHEMISTRY FOR JEE

COORDINATION COMPOUNDS

12. [Co(NH₃)₅NO₂]Cl₂ and [Co(NH₃)₅(ONO)]Cl₂ are related to each other as (1) Geometrical isomers (2) Optical isomers (3) Linkage isomers (4) Coordination isomers 13. Which of the following compounds show optical isomerism? 1. cis-[Co(NH₃)₄Cl₂]+ 2. trans-[Co(en)2Cl2]+ 3. cis-[Co(en)2Cl2]+ 4. [Co(en)₃]³⁺ Select the correct answer using the codes given below: (1) 1 and 2 (2) 2 and 3 (3) 3 and 4 (4) 1, 3 and 4 Which of the following isomerisms is/are shown by the complex [CoCl₂(OH₂)₂(NH₃)₂]Br ? 14. (1) Ionization (2) Geometrical (3) optical (4) All of these 15. In which of the following organometallic compound metal carbon bond has partial bond character? (1) $[Fe(\eta^5-C_5H_5)_2]$ (2) K[PtCl₃(η^2 –C₂H₄)] (3) $[Co(CO)_5NH_3]^{2+}$ (4) (2) and (3) both Atomic number of Cr and Fe are respectively 24 and 26, which of the following is paramagnetic with the 16. spin of electron? (3) [Fe(CN)₆]⁴⁻ (4) [Cr(NH₃)₆]³⁺ (2) [Fe(CO)₅] (1) [Cr(CO)₆] 17. The hypothetical complex chloro diaquatriammine cobalt (III) chloride can be represented as: (1) [CoCl(NH₃)₃(H₂O)₂]Cl₂ (2) $[Co(NH_3)_3(H_2O)Cl_3]$ (3) $[Co(NH_2)_3(H_2O)_2CI]$ (4) [Co(NH₃)₃(H₂O)₃]Cl₃ 18. According to IUPAC nomenclature, sodium nitroprusside is named as : (1) Sodium nitroferricyanide (2) Sodium nitroferrocyanide (3) Sodium pentacyanonitrosoniumferrate (II) (4) Sodium pentacyano nitrosylferrate (III) 19. The number of unpaired electrons in the complex ion $[CoF_6]^{3-}$ is : (At number Co = 27) (1) 3(2)2(3)4(4) 020. Among the following which is not the π -bonded organometallic compound? (1) K[PtCl₃($\eta^2 - C_2H_4$)] (2) Fe($\eta^5 - C_5H_5$)₂ (3) $Cr(n^6 - C_6H_6)_2$ (4) (CH₃)₄Sn 21. Which of the following coordination compounds would exhibit optical isomerism? (1) Pentaamminenitrocobalt (III) iodide (2) Diamminedichloroplatinum (II) (3) Trans-dicyanobis (ethylenediamine) chromium (III) chloride (4) Tris-(ethylenediamine) cobalt (III) bromide 22. Which of the following is considered to be an anticancer species?

23. Which of the following does not have a metal-carbon bond?

(1) $AI(OC_2H_5)_3$

(2) C₂H₅MgBr

(3) $K[Pt(C_2H_4)Cl_3]$

(4) Ni(CO)₄

24.	CN ⁻ is strong field ligand. This is due to the fact that						
	(1) it carries negative	charge	(2) it is a pseudohalide				
	(3) it can accept elec	trons from metal species	(4) it forms high spir	n complexes with metal species			
25.	Considering H ₂ O as a (Atomic no. of Mn = 2		mber of unpaired elect	trons in $[Mn(H_2O)_6]^{2+}$ will be :			
	(1) 3	(2) 5	(3) 2	(4) 4			
26.	Among [Ni(CO) ₄], [Ni (At number of Ni = 28		, the hybridisation stat	tes of the Ni atom are, respectively			
	(1) sp^3 , dsp^2 , dsp^2	(2) sp ³ , dsp ² , sp ³	(3) sp^3 , sp^3 , dsp^2	(4) dsp^2 , sp^3 , sp^3			
27.		owing is an inner orbital co Cr = 24, Co = 27, Ni = 28	•	nagnetic in behaviour ?			
	(1) $[Zn(NH_3)_6]^{2+}$	(2) [Ni(NH ₃) ₆] ²⁺	(3) [Cr(NH ₃) ₆] ³⁺	(4) [Co(NH ₃) ₆] ³⁺			
28.	(2) linkage isomerism(3) linkage isomerism	xhibits: sm, gemetrical isomerism n, geometrical isomerism a n, ionization isomerism and n, ionization isomerism and	and optical isomerism				
29.	Copper sulphate diss (1) [Cu(CN) ₄] ²⁻	colves in excess of KCN gi	ve ? (3) CuCN	(4) [Cu(CN) ₄] ^{3–}			
30.	electrons in the Chro	mium of the complex is:		B.M. The correct distribution of 3d sd_{xz}^1 (4) $\mathrm{3d}_{xy}^1$, $\mathrm{3d}_{yz}^1$, $\mathrm{3d}_{yz}^1$			
	(1)	(2) , , , , 2	(3) 30'(x2-y2), 2,	30 (x2-y2), 3-			
31.	Which of the following (1) [Pt(NH ₃) ₄][PtCl ₆]	g will give a pair of enantion (2) [Co(NH ₃) ₄ Cl ₂]NO ₂	•	N) ₆] (4) [Co(en) ₂ Cl ₂]Cl			
32.	Which of the following complexes exhibits the highest paramagnetic behaviour? where, gly = glycine, en = ethylenediamine and bipy = bipyridyl) (At no Ti = 22, V = 23, Fe = 26, Co = 27) (1) $[V(gly)_2(OH)_2(NH_3)_2]^+$ (2) $[Fe(en)(bpy)(NH_3)_2]^{2+}$ (3) $[Co(OX)_2(OH)_2]^-$ (4) $[Ti(NH_3)_6]^{3+}$						
33.	In which of the following coordination entities the magnitude of Δ_0 (Crystal field stabilization energy in octahedral field) will be maximum? (At No Co = 27)						
34.	(1) [Co(H ₂ O) ₆] ³⁺ Which of the following	(2) [Co(NH ₃) ₆] ³⁺ g complex ions is expecte		, , - , , , -			

	(At. no Zn = 30, Sc = 2 (1) $[Sc(H_2O)_3(NH_3)_3]^{3+}$	•	(3) [Cr(NH ₃) ₆] ³⁺	(4) [Zn(NH ₃) ₆] ²⁺			
35.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ion of [Co(NH ₃) ₄ Cl ₂] ⁺ is due to			
33.	(1) linkage isomerism		(2) geometrical ison (4) ionization isome	nerism			
36.	The d-electron configu	urations of Cr²+, Mn²+, Fe² hibit minimum paramagne	⁺ and Co ²⁺ are d ⁴ , d ⁵ , d ⁶ and d ⁷ respectively. Which one				
	(1) $[Mn(H_2O)_6]^{2+}$ (At, nos. Cr = 24, Mn =	(2) [Fe(H ₂ O) ₆] ²⁺ = 25, Fe = 26, Co = 27)	(3) [Co(H ₂ O) ₆] ²⁺ (4)	[Cr(H ₂ O) ₆] ²⁺			
37.		An excess of AgNO ₃ is added to 100 mL of a 0.01M solution of dichlorotetraaquachromium (III) chloride. The number of moles of AgCI precipitated would be :					
	(1) 0.002	(2) 0.003	(3) 0.01	(4) 0.001			
38.	Among the following condition (1) [Nn(H ₂ O) ₆] ³⁺	omplexes the one which $(2) [Fe(H_2O)_6]^{3+}$	shows Zero crystal fie (3) [Co(H ₂ O) ₆] ²⁺	eld stabilizations energy (CFSE) (4) [Co(H ₂ O) ₆] ³⁺			
39.	, ,	rms several octahedral cons with silver nitrate at 2	•	onia. Which of the following will not			
	(1) CoCl ₃ ·4NH ₃	(2) CoCl ₃ ·5NH ₃	(3) CoCl ₃ ·6NH ₃	(4) CoCl ₃ ·3NH ₃			
40.	Which of these statements about [Co(CN) ₆] ³⁻ is true? (1) [Co(CN) ₆] ³⁻ has four unpaired electrons and will be in a low-spin configuration. (2) [Co(CN) ₆] ³⁻ has four unpaired electrons and will be in a high-spin configuration. (3) [Co(CN) ₆] ³⁻ has no unpaired electrons and will be in a high-spin configuration. (4) [Co(CN ₆)] ³⁻ has no unpaired electrons and will be in a low-spin configuration.						
41.	The geometry of $[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$ ions are :						
	(1) Tetrahedral		(2) Square planar				
	(3) Square planar and	(3) Square planar and tetrahedral respectively (4) Tetrahedral and square planar respectively					
42.	EDTA ⁴⁻ has co-ordinate						
	(1) 3	(2) 4	(3) 5	(4) 6			
43.	In CuSO ₄ .5H ₂ O copper is co-ordinated to :						
	(1) five water molecule	98	(2) four water molecules				
	(3) one sulphate ion		(4) one water molec	cule			
44.	[Co(NH $_3$) $_5$ Br]SO $_4$ and [[Co(NH₃)₅SO₄]Br are exa	mples of which of the	following type of isomerism?			
	(1) Linkage	(2) Geometrical	(3) Ionization	(4) Optical isomerism			
45.	EAN of iron in K ₄ [Fe(C	CN) ₆] is :					
	(1) 36	(2) 34	(3) 38	(4) 40			

Given the molecular formula of the hexacoordinated complexes is :

46.

	(1) CoCl ₃ .6NH ₃	(2) CoCl ₃ .5H ₂ O	(3) CoCl ₃ .4NH ₃					
	If the number of co-	If the number of co-ordinated NH ₃ molecules in (1), (2) and (3) respectively are 6, 5 and 4, the primary						
	valency in (1), (2) and (3) are:							
	(1) 6,5,4	(2) 3,2,1	(3) 0,1,2	(4) 3,3,3				
47.	The IUPAC name o	of K ₂ [Cr(CN) ₂ O ₂ (O) ₂ (NH ₃)]	is:					
	(1) Potassium amm	inedicyanodioxoperoxoch	nromate(VI)					
	(2) Potassium amm	inecyanoperoxodioxochro	omium(IV)					
	(3) Potassium amm	inecyanoperoxodioxochro	omium(V)					
	(4) Potassium amm	inecyanoperoxodioxochro	omatic(IV)					
48.	The IUPAC name o	of the compound [CuCl ₂ (C	:H ₃ NH ₂) ₂] is :					
	(1) dichloro bis (dim	nethyl amine) copper (II)	(2) dichlorobis(methy	rlamine)copper(II)				
	(3) dimethyl amine	copper (II) chloride	(4) bis (dimethy amin	e) copper (II) chloride.				
49.	Which of the followi	ng species represents the	e example of dsp ² hybridi	sation ?				
	(1) $[Fe(CN)_6]^{3-}$	(2) [Ni(CN) ₄] ²⁻	(3) [Ag(CN) ₂]	(4) [Co(CN) ₆] ³⁻				
50.	In the spectrochem	nical series, the magnitude	e of the crystal field splitti	ng is maximum for which ion?				
	(1) Cl⁻	(2) F ⁻	(3) NO ₂ ⁻	(4) CN ⁻				
51.	What is the EAN of	What is the EAN of nickel in Ni(CO) ₄ ?						
	(1) 38	(2) 30	(3) 36	(4) 32				
52.	The increasing orde	The increasing order of the crystal field splitting power of some common ligands is :						
	(1) H ₂ O < OH ⁻ < Cl ⁻	- < F- < CN-	(2) H ₂ O < Cl ⁻ < OH ⁻	(2) H ₂ O < Cl⁻ < OH⁻ < F⁻ < CN⁻				
	(3) $CN^- < H_2O < OH_2$	H⁻ < F⁻ < CI⁻	(4) Cl ⁻ < F ⁻ < OH ⁻ <	$H_2O < CN^-$				
53.	Which of the following can exhibit geometrical isomerism?							
	(1) [MnBr ₄] ^{2–}	(2) [Pt(NH ₃) ₃ Cl] ⁺	(3) $[PtCl_2{P(C_2H_5)_3}_2]$	(4) $[Fe(H_2O)_5NO]^{2+}$				
54.	Assertion : In com	plex, [Co(NH ₃) ₅ (CO ₃)]Cl, 1	the oxidation state of coba	alt is +3.				
	Reason: Carbonate ligand is a monodentate bivalent anion.							
	(1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion							
	(2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion							
	(3) The assertion is incorrect, but the reason is correct							
	(4) Both are asserti	on and reason are incorre	ect					
55.		ecies [CuCl ₄] ²⁻ exists but						
		Ph ₃) ₂] have tetrahedral geo		ct explanation for the assertion				
				rrect explanation for the assertion				
	(3) The assertion is	incorrect, but the reason	is correct					
	(4) Both are asserti	on and reason are incorre	ect					

PART - I : JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

		OFFLIN	E JEE-MAIN		
1.	The most stable ion is (1) [Fe(OH)₅]³-	3 : (2) FeCl ₆] ^{3–}	(3) [Fe(CN) ₆]³-	(4) [[F	[AIEEE 2002, 3/225] Fe(H ₂ O) ₆] ³⁺
2.	The type of isomerism (1) optical	n present in nitropentaal (2) linkage	mminechromium(III) chlo (3) ionization		[AIEEE 2002, 3/225] ymerization
3.	, ,	ve two moles of AgCl. T	ns on dissolution in wate he complex is : (2) [Co(NH ₃) ₄ Cl]Cl ₂ .N (4) [Co(NH ₃) ₃ Cl ₃].2N	NH ₃	le of this reacts with two [AIEEE 2003, 3/225]
4.	The reason for it is: (1) in alkaline solution (2) copper hydroxide (3) in acidic solution h	Cu(OH) ₂ is precipitated is amphoteric. ydration protects Cu ²⁺ i	ith copper ions in alkalind which is soluble in excessors. In ammonia molecule form	ess of alka	[AIEEE 2003, 3/225] li.
5.	In the coordination co	mpound $K_4[Ni(CN)_4]$, th (2) 0	e oxidation state of nicke (3) + 1	el is : (4) + 2	[AIEEE 2004, 3/225]
6.	(1) the number of only(2) the number of liga(3) the number of liga	anionic ligands bonded nds around a metal ion nds around a metal ion		•	: [AIEEE 2004, 3/225]
7.	Which one is an outer (1) [Ni(NH ₃) ₆] ²⁺	orbital complex ? (2) [Mn(CN) ₆] ⁴⁻	(3) [Co(NH ₃) ₆] ³⁺	(4) [Fe	[AIEEE 2004, 3/225] e(CN) ₆] ⁴⁻
8.	Co-ordination compounds have great importance in biological systems. In this context, which statent is incorrect? [AIEEE 2004, 3/22] (1) Carboxypeptidase—A is an enzyme and contains zinc. (2) Haemoglobin is the red pigment of blood and contains iron. (3) Cyanocobalmin is B ₁₂ and contains cobalt. (4) Chlorophylls are green pigments in plants and contain calcium.				
9.	Which one has larges (1) [Co(en) ₂ Cl ₂] ⁺	t number of isomers ? (2) [Co(NH ₃) ₅ Cl] ²⁺	(3) [Ir(PhR ₃) ₂ H(CO)] ²	²⁺ (4) [Rt	[AIEEE 2004, 3/225] J(NH ₃) ₄ Cl ₂] ⁺
10.	The correct order of n (1) $Fe(CN)_6^{4-} > [CoCl$ (3) $[Fe(CN)_6]^{4-} > [MnC]_6^{4-}$	₄] ²⁻ > [MnCl ₄] ²⁻	spin value in BM) amon (2) [MnCl ₄] ²⁻ > [Fe(C (4) [MnCl ₄] ²⁻ > [CoCl	$N)_6]^{4-} > [C$	-
11.	The oxidation state of (1) 0	Cr in $[Cr(NH_3)_4Cl_2]^+$ is : (2) +1	(3) +2	[AIEE (4) +3	E 2005, 1½/225]
12.	The IUPAC name of k (1) Potassium hexacy (3) Potassium hexacy	K ₃ [Fe(CN) ₆] is : ranoferrate(II)	(2) Potassium hexac	yanoferrat	, ,

13.	Which of the following (1) [Cu(NH ₃) ₄] ²⁺	g will show optical isomeri (2) [ZnCl ₄] ²⁻	sm ? (3) [Cr(C ₂ O ₄) ₃] ³⁻	[AIEEE 2005, 3/225] (4) [Co(CN) ₆] ³⁻
14.	Which one of the follo	wing complexes would ex	khibit the lowest value of	paramagnetic behaviour ?
	(1) [Co(CN) ₆] ³⁻	(2) [Fe(CN) ₆] ³⁻	(3) [Mn(CN) ₆] ³⁻	[AIEEE 2005, 3/225] (4) [Cr(CN) ₆] ³⁻
15.	The value of 'spin onlone is:	y' magnetic moment for o	ne of the following config	urations is 2.84 BM. The correct [AIEEE 2005, 4½/225]
	(1) d ⁴ (in strong field I (3) d ³ (in weak as we	igand) I as strong field ligand)	(2) d ⁴ (in weak field ligate) (4) d ⁵ (in strong field light)	•
16.	, ,		in the nickel and geor	o form a paramagnetic complex metry of this complex ion are, [AIEEE 2006, 3/165] (4) two, square planar
17.	(1) Nitrito-N-pentaam	the complex [Co(NO ₂)(NH minecobalt(III) chloride co-N-cobalt(II) chloride	H ₃₎₅]Cl ₂ is : (2) Nitrito-N-pentaamm (4) Pentaamminenitrito	
18.	In Fe(CO) ₅ , the Fe–C (1) π -character only (3) ionic character on	•	(2) both σ and π character only	[AIEEE 2006, 3/165] cters
19.	How many EDTA (e complex with a Ca ²⁺ i (1) Six	•	c acid) molecules are re	equired to make an octahedral [AIEEE 2006, 3/165] (4) Two
20.	The 'spin only' magnetic (atomic number Ni = 2)	,	Bohr magneton, μ _B) of Ni	²⁺ in aqueous solution would be [AIEEE 2006, 3/165] (4) 1.73
21.	• •	owing has a square planar (2) [PtCl ₄] ²⁻		[AIEEE 2007, 2/120] (4) [FeCl ₄] ²⁻
22.		nber and the oxidation standard diamine) are, respectivel (2) 4 and 3		the complex [E(en) ₂ (C ₂ O ₄)] NO ₂ [AIEEE 2008, 3/105] (4) 6 and 2
23.	In which of the followi	ng octahedral complexes	of Co (at no. 27), will the	magnitude of Δ_0 be the highest?
	(1) [Co(C ₂ O ₄) ₃] ³⁻	(2) [Co(H ₂ O) ₆] ³⁺	(3) [Co(NH ₃) ₆] ³⁺	[AIEEE 2008, 3/105] (4) [Co(CN) ₆] ³⁻
24.	Which of the following (1) [Co (en) (NH ₃) ₂] ²⁺	g has an optical isomer ? (2) [Co(H ₂ O) ₄ (en)] ³⁺	(3) [Co (en) ₂ (NH ₃) ₂] ³⁺	[AIEEE 2009, 4/144] (4) [Co (NH ₃) ₃ Cl] ⁺
25.		g pairs represents linkage] and [Pd(PPh ₃) ₂ (SCN) ₂] nd [Pt Br ₂ (NH ₃) ₄]Cl ₂		[AIEEE 2009, 4/144] and [Co(NH ₃) ₅ (SO ₄)]NO ₃ and [Pt(NH ₃) ₄ [CuCl ₄]
26.	exchanger. The chlor	-	ion were treated with ex	$_{10}$ ol ⁻¹) is passed through a cation cess of AgNO ₃ to give 4.78 g of nass of Ag = 108 u)

1.

 $(1) sp^3d^2$

		ONLINE	JEE-MAIN	
36.	On treatment of 100 r precipitated. The compl (1) [Co(H ₂ O) ₃ Cl ₃].3H ₂ O (3) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ₂ C	lex is :	f CoCl ₃ .6H ₂ O with exce (2) [Co(H ₂ O) ₆]Cl ₃ (4) [Co(H ₂ O) ₄ Cl ₂]Cl.2H ₂	ss AgNO ₃ ; 1.2 × 10 ²² ions are [JEE(Main) 2017, 4/120] ₂ O
35.	(1) <i>cis</i> [Co(en) ₂ Cl ₂]Cl (3) [Co(NH ₃) ₄ Cl ₂]Cl (en = ethylenediamine)	ing complexes shows o	(2) trans[Co(en) ₂ Cl ₂]Cl (4) [Co(NH ₃) ₃ Cl ₃]	[JEE(Main) 2016, 4/120]
25	(1) [Cr(H ₂ O) ₆] ²⁺ and [Fe (3) [CoCl ₄] ²⁻ and [Fe(H ₂	(O)6] ²⁺	(2) $[Mn(H_2O)_6]^{2+}$ and $[C(4) [Cr(H_2O)_6]^{2+}$ and $[C(4) [Cr(H_2O)_6]^{2+}$	Cr(H ₂ O) ₆] ²⁺ oCl ₄] ²⁻
34.	The pair having the san	ne magnetic moment is	: [At. No.: Cr = 24, Mn = :	25, Fe = 26, Co = 27] Main) 2016, 4/120]
33.	The number of geometropyridine): (1) 2	tric isomers that can ex	ist for square planar [Pto	(Cl)(py)(NH ₃)(NH ₂ OH)] ⁺ is (py = [JEE(Main) 2015, 4/120] (4) 6
32.	wavelengths in the reg strength of the four ligar (1) $L_4 < L_3 < L_2 < L_1$	ion of red, green, yellownds is: (2) $L_1 < L_3 < L_2 < L_4$	w and blue, respectively. (3) $L_3 < L_2 < L_4 < L_1$	gands L ₁ , L ₂ , L ₃ and L ₄ absorb . The increasing order of ligand [JEE(Main) 2014, 4/120] (4) L ₁ < L ₂ < L ₄ < L ₃
	(1) [Co(en) ₃] ³⁺	(2) [Co(en) ₂ Cl ₂] ⁺	(3) [Co(NH ₃) ₃ Cl ₃]	[JEE(Main) 2013, 4/120] (4) [Co(en) (NH ₃) ₂ Cl ₂] ⁺
31.	Which of the following of	complex species is not e	expected to exhibit optical	l isomerism ?
30.	Which among the follow (1) [Cr(en) ₃]Br ₃	wing will be named as d (2) [Cr(en) ₂ Br ₂]Br	ibromidobis (ethylene dia (3) [Cr(en)Br ₄]-	(4) [Cr(en)Br ₂]Br
29.	(1) 1.82 BM	(spin only) of [NiCl ₄] ^{2–} is (2) 5.46 BM	(3) 2.82 BM	[AIEEE 2011, 4/144] (4) 1.41 BM
28.	(1) The complex involve(2) The complex is para(3) The complex is an of(4) The complex gives of	es d ² sp ³ hybridisation ar amagnetic. outer orbital complex. white precipitate with silv		
27.	Which one of the follow (1) [Zn(en)(NH ₃) ₂] ²⁺ (en = ethylenediamine)	ing has an optical isome (2) [Co(en) ₃] ³⁺	er ? (3) [Co(H ₂ O) ₄ (en)] ³⁺	[AIEEE 2010, 4/144] (4) [Zn(en) ₂] ²⁺
	(1) [Co(NH ₃) ₆] Cl ₃	(2) [CoCl ₂ (NH ₃) ₄] Cl	(3) [CoCl ₃ (NH ₃) ₃]	[AIEEE 2010, 8/144] (4) [CoCl(NH ₃) ₅] Cl ₂

An octahedral complex of Co³⁺ is diamagnetic. The hybridisation involved in the formation of the comlex

(3) d^2sp^3

(2) dsp²

[JEE(Main) 2014 Online (09-04-14), 4/120]

 $(4) sp^3d$

2.	The corr	rect statement about o	of the magnetic pr	perties of							
	(1) h o th				[JEE(Main) 20	14 Onlin	e (09-04-14), 4/120]				
	` '	are paramagnetic are diamagnetic									
	` ,	are diamagnetic CN) ₆] ^{3–} is diamagnetic	[FeFe]3- is param	nagnetic							
		CN) ₆] ^{3–} is diamagnetic		-							
	(+) [1 0(0	ortioj io paramagnet	o, [i oi oj lo didii	nagnotio.							
3.	Which o	f the following name f	ormula combination	ons is no							
			T		[JEE(Main) 20	14 Onlin	e (11-04-14), 4/120]				
		ormula	Name		(/11)						
		[2[Pt(CN) ₄]	Potasium tetrac		, ,						
	· · · · -	Mn(CN) ₅] ²⁻	Pentacyanomag			- (111)					
	_ ` <i>'</i>	[Cr(NH ₃) ₂ Cl ₄]	Potassium diam			, ,					
	(4) [0	Co(NH ₃) ₄ (H ₂ O)I]SO ₄	Tetraammine ad	quaiodo d	cobait (III) suiph	ate					
4.	Conside	r the coordination cor	npound, [Co(NH ₃)) ₆]Cl₃. In	the formation of	the com	plex, the species whi				
	acts as t	the Lewis acid is:			[JEE(Main) 20	14 Onlin	e (11-04-14), 4/120]				
	(1) [Co(l	$NH_3)_6]^{3+}$ (2) C	-	(3) Co ³	+	(4) NH ₃	}				
5.	Amona 1	the following species	he one which cau	ises the l	nighest CESE /	o as a lin	and is ·				
J.	7 tillolig	and removing openios	and one willon odd	1000 1110 1	•	_	e (12-04-14), 4/120]				
	(1) CN-		(2) NH ₃		(3) F ⁻	714 0111111	(4) CO				
	. ,		. ,								
6.		ne of the following co	-	likely ab	sorb visible ligh	t ?					
	(At nos.	Sc = 21, Ti = 22, V =	23, Zn = 30)				(40.04.44) 4(400)				
	(4) [0~(1	I O) 13+	(2) [T:/NILL) 14±		- ' '		e (12-04-14), 4/120]				
	(1) [Sc(H	H2O)6] ³⁺	(2) [Ti(NH ₃) ₆] ⁴⁺		(3) $[V(NH_3)_6]^{3+}$		(4) [Zn(NH ₃) ₆] ²⁺				
7.	An octa	hedral complex with	molecular compo	sition M	.5NH3.CI.SO4 h	as two is	somers, A and B. Tl				
	solution	of A gives a white pre	ecipitate with AgN	IO₃ solut	ion and the solu	ution of B	gives white precipita				
	with Ba0	Cl_2 solution. The type	of isomerism exhi	bited by t	•						
							e (19-04-14), 4/120]				
		age isomerism		. ,	sation isomerisi						
	(3) Coor	dinate isomerism		(4) Geo	metrical isome	rism					
8.	Nickel (2	Z = 28) combines with	a uninegative mo	onodenat	e ligand to form	a diama	gnetic complex [NiL4]				
	The hyb	ridisation involved and	the number of ur	npaired e	lectrons present	in the co	mplex are respective				
				[JEE(N	lain) 2014 Onli	ne (19-04	l-14), 4/120]				
	$(1) sp^3, 1$	two (2) ds	sp², zero	(3) dsp	² , one	$(4) sp^3$,	zero				
9.	The corr	rect statement on the	isomerism associa	ated with	the following co	omplex io	ns				
.	1110 0011			atou min			e (10-04-15), 4/120]				
		$H_2O)_5NH_3]^{2+}$, (b) [Ni(H ₂			O) $_3(NH_3)_3]^{2+}$ is:						
		nd (b) show only geor									
		(2) (b) and (c) show geometrical and optical isomerism (3) (b) and (c) show only geometrical isomerism									
	(4) (a) and (b) show geometrical and optical isomerism										
10.	Which m	nolecule/ion among th	e following canno	t act as a	•	•					
	[JEE(Main) 2015 Online (10-04-15), 4/120]										
	(1) CH ₄	(2) C	N-	(3) Br-		(4) CO					

11. Which of the following complex ions has electrons that are symmetrically filled in both t_{2g} and e_g orbitals?

[JEE(Main) 2015 Online (11-04-15), 4/120]

	(1) [FeF ₆] ³⁻	(2) [Mn(CN) ₆] ^{4–}	(3) [CoF ₆	5] ³⁻	(4) [Co(NH ₃) ₆] ²⁺
12.	Identify the correct tr	end given below: (Atomic				e (09-04-16), 4/120]
	(2) Δ_0 of $[Cr(H_2O)_6]^{2+}$ (3) Δ_0 of $[Cr(H_2O)_6]^{2+}$	< $[Mo(H_2O)_6]^{2+}$ and Δ_0 of > $[Mo(H_2O)_6]^{2+}$ and Δ_0 of > $[Mo(H_2O)_6]^{2+}$ and Δ_0 of < $[Mo(H_2O)_6]^{2+}$ and Δ_0 of	[Ti(H ₂ O) ₆] ³⁺ [Ti(H ₂ O) ₆] ³⁺ [Ti(H ₂ O) ₆] ³⁺	< [Ti(H2O)6]2+ > $[Ti(H2O)6]2+$ < $[Ti(H2O)6]2+$. "
13.	Which one of the follo	owing complexes will cor		•	•	s solution of Ag(NO ₃) ? e (09-04-16), 4/120]
	(1) Na ₃ [CrCl ₆]	(2) [Cr(H2O)5Cl]Cl2	(3) [Cr(H	2 O) 6]Cl3	(4) Na ₂ [$[CrCl_5(H_2O)]$
14.	Which of the followin	g is an example of homo				
	(1) [Co(NH ₃) ₄ Cl ₂]	(2) [Co(NH ₃)	_	JEE(Main) 20 3) [Co(NH₃)₅C		e (09-04-16), 4/120] (4) [Pt(NH ₃) ₂ Cl ₂]
15.	sp 3 d 2 hybridization is (1) PF $_5$ (2) S		[CrF ₆] ³⁻	JEE(Main) 20 (4) BrF		e (08-04-17), 4/120]
16.	(2) one Co–Co bond, (3) no Co–Co bond, (3)	, four terminal CO and fo , six terminal CO and two four terminal CO and fou six terminal CO and two	ur bridging Cobridging CCorbridging CC	o D	17 Onlin	e (09-04-17), 4/120]
P	ART - II : JEE (A	DVANCED)/IIT-、	JEE PRO	BLEMS (F	PREVI	OUS YEARS)
1.	The species having t (A) [PdCl ₄] ²⁻	etrahedral shape is : (B) [Ni(CN) ₄] ²⁻	(C) [Pd(C	CN)4] ^{2–}	(D) [NiC	[JEE 2004(S), 3/84] Cl ₄] ²⁻
2.	The spin magnetic m	oment of cobalt in the co	mpound, Hg	[Co(SCN)4] is	s :	[JEE 2004(S), 3/84]
	(A) $\sqrt{3}$	(B) ^{√8}	(C) $\sqrt{15}$		(D) $\sqrt{24}$	4
3.	Which kind of isomer (A) Geometrical and (C) Optical and ionization		(B) Geon	H ₃) ₄ Br ₂]CI ? netrical and op netrical only	tical	[JEE-2005(S), 3/84]
4.	The bond length in C (A) 1.158 Å	O is 1.128 Å. What will b (B) 1.128 Å	e the bond lo (C) 1.178	_	Fe(CO) ₅ (D) 1.11	
5.	Among the following (A) $[Mn(CO)_6]^+$	metal carbonyls, the C–(B) [V(CO) ₆] ⁻	O bond order (C) [Cr(C		(D) [Fe([JEE-2007, 3/162] (CO) ₅]
6.	, ,	[Ni(NH ₃) ₄][NiCl ₄] is : (II) tetraamminenickel (II sel(II) tetrachloronickelate			` '	[JEE-2008, 3/163] achloronickel (II) chloronickelate (0)
7.	Both [Ni(CO) ₄] and respectively, are: (A) sp ³ , sp ³	[Ni(CN) ₄] ²⁻ are diamag (B) sp ³ , dsp ²	gnetic. The $(C) dsp^2$,	·	of nickel (D) dsp	[JEE-2008, 3/163]
	1/1/3P , 3P	(D) 3D , U3D	TOTUOD.	UU	uou uou	

[JEE(Advanced) 2013, 2/120]

8.	The spin only magnetic (A) 0	moment value (in Bohr (B) 2.84	magneton units) of Cr(CC (C) 4.90	D) ₆ is : [JEE–2009, 3/16 6 (D) 5.92	0]
9.	The correct structure of HOOC — CH ₂ N -	ethylenediaminetetraacci CH_2 - CH_2 - CH_2 - $COOH$ - CH_2 - $CH_$	etic acid (EDTA) is : — COOH — COOH	[JEE–2010, 3/16	3]
	N — CH ₂ —	COOH - CH ₂ — N			
	(B) HOOC HOOC — CH ₂	COOH CH – CH _s — CH _s — N	I ₂ — COOH		
	(C) HOOC — CH ₂	СООН	I ₂ — COOH		
	HOOC — CH ₂ N -	CH, H - CH — CH — N CH ₂ -	— СООН		
	(D)	HOOC/			
10.	The ionization isomer o (A) $[Cr(H_2O)_4(O_2N)]Cl_2$	f [Cr(H ₂ O) ₄ Cl (NO ₂)]Cl is	: (B) [Cr(H ₂ O) ₄ Cl ₂](NO ₂)	[JEE-2010, 3/16	3]
	(C) [Cr(H ₂ O) ₄ Cl(ONO)](JI	(D) $[Cr(H_2O)_4Cl_2(NO_2)].$	П2О	
11.	The complex showing a (A) Ni(CO) ₄	a spin-only magnetic mor (B) [NiCl ₄] ^{2–}	ment of 2.82 B.M. is : (C) Ni(PPh ₃) ₄	[JEE-2010, 5/16 (D) [Ni(CN) ₄] ²⁻	3]
12.	Geometrical shapes of are	the complexes formed by		Cl⁻, CN⁻ and H₂O, respect 2011, 3/160]	ively,
	(A) octahedral, tetrahed(C) square planar, tetra	·	(B) tetrahedral, square(D) octahedral, square	•	
13.	[Ni(H ₂ O) ₆]Cl ₂ (N), K ₂ [Pt	(CN) ₄] (O) and [Zn(H ₂ O) ₆	N)6] (K), [Co(NH3)6]Cl3 (L 5](NO3)2 (P)		
	the diamagnetic complete (A) K, L, M, N	exes are : (B) K, M, O, P	(C) L, M, O, P	[JEE-2011, 3/16 (D) L, M, N, O	0]
14.	As per IUPAC nomencl (A) Tetraaquadiaminec (C) Diaminetetraaquac	obalt (III) chloride	omplex [Co(H ₂ O) ₄ (NH ₃) ₂] (B) Tetraaquadiammine (D) Diamminetetraaqua	,	3]
15.	• , , ,	,	•	etic behaviour (paramagi tic and diamagnetic states [JEE-2012, 3/14]	s are
	(A) tetrahedral and tetra		(B) square planar and s	square planar	
	(C) tetrahedral and squ	are planar	(D) square planar and t	etrahedral	

Consider the following complex ions, P, Q and R.

 $P = [FeF_6]^{3-}$, $Q = [V(H_2O)_6]^{2+}$ and $R = [Fe(H_2O)_6]^{2+}$.

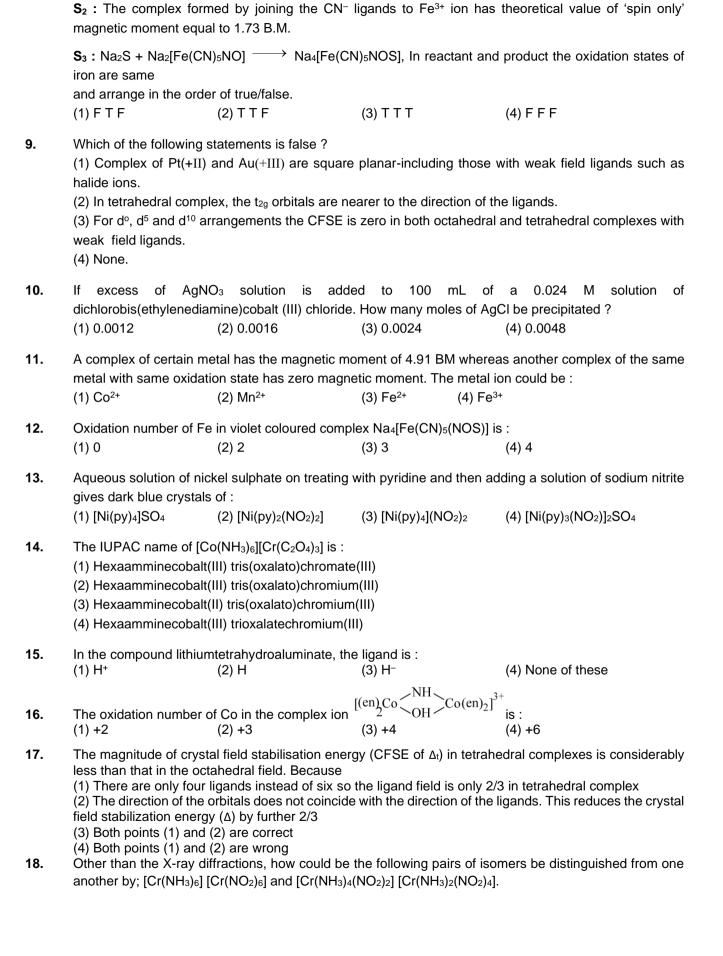
16.

	(A) R < Q < P Match each coordinates select the correct and select			(B) Q	(C) R < P < Q			(D) Q ·	< P < R			
17.	select	the corr	ect ans	wer usin	g the code given	below t	ne lists	. [JEE(Advance	teristics fro ed) 2014, 3		ıd
	P. [Cr((NH ₃) ₄ CI	2)CI]		1. Paramagnet	ic and	exhibits	s ionisation	n isomeri	sm		
	Q. [Ti(H ₂ O) ₅ Cl](NO ₃) ₂		2. Diamagentio	and ex	hibits	<i>cis-trans</i> is	somerism	า		
	R. [Pt((en)(NH)CI]NO	3	3. Paramagent	ic and	exhibits	s cis-trans	isomeris	m		
			NO3)2]N	O ₃	4. Diamagentic and exhibits ionisation isomerism							
		Р	Q	R	S		Р	Q	R	S		
	(A)	4	2	3	1	(B)	3	1	4	2		
	(C)	2	1	3	4	(D)	1	3	4	2		
18.	param				[Co(NH ₃) ₄ Cl ₂]Cl,	Na₃[C (C) 4	oF ₆],			, the tota ed) 2016, 3		of
19.	(A) oct	tahedral	, square	e planar :	ia complexes of Nand tetrahedral and octahedral	(B) sc	uare p	[JEE(lanar, octa	Advance ahedral a	are ed) 2016, 3 and tetrahe square pla	dral	
20.	gives a electro colour zero fo Amono (A) Th (B) Ad (C) Wh	an octaholyte. The domplor compling the following the following the following then X ar	nedral cone reaction Z. ex Y. dowing conization silver reaction Z are	omplex 'ion of X The calc options, void the centirate to	mmonia to a pink If in the presence with excess HCI ulated spin only i which statement(s ntral metal ion in If gives only two ibrium at 0°C, the	e of air. at room magnet s) is (are Y is d ² s equival	In aquin temple control control	eous solut perature re nent of X a [JEE(ect ?	ion, com esults in and Z is Advance oride	plex Y beh the format	naves as 1 : tion of a blu whereas it	3 ie

The correct order of the complex ions, according to their spin-only magnetic moment values (in B.M.) is

	Answ	ers							
				EXER	CISE - 1				
A-1.	(2)	A-2.	(3)	A-3.	(3)	A-4.	(1)	A-5.	(2)
A-6.	(1)	A-7.	(3)	A-8.	(1)	A-9.	(2)	A-10.	(3)
A-11.	(2)	A-12.	(1)	B-1.	(3)	B-2.	(3)	B-3.	(2)
B-4.	(2)	B-5.	(2)	B-6.	(2)	B-7.	(3)	B-8.	(3)
B-9.	(4)	B-10.	(1)	B-11.	(2)	B-12.	(3)	C-1.	(1)
C-2.	(2)	C-3.	(3)	C-4.	(3)	C-5.	(2)	C-6.	(1)
C-7.	(1)	C-8.	(1)	C-9.	(2)	C-10.	(2)	C-11.	(1)
C-12.	(1)	D-1.	(2)	D-2.	(4)	D-3.	(3)	D-4.	(1)
D-5.	(4)	D-6.	(1)	D-7.	(3)	D-8.	(2)	D-9.	(3)
D-10.	(2)	D-11.	(4)	D-12.	(3)	D-13.	(2)	D-14.	(4)
D-15.	(4)	E-1.	(4)	E-2.	(1)	E-3.	(1)	E-4.	(4)
E-5.	(4)	E-6.	(4)	E-7.	(3)	E-8.	(1)	E-9.	(1)
E-10.	(3)	E-11.	(3)	E-12.	(4)	E-13.	(2)	E-14.	(1)
E-15.	(3)	E-16.	(4)	E-17.	(3)	F-1.	(2)	F-2.	(2)
F-3.	(2)	F-4.	(3)	F-5.	(1)	F-6.	(1)		
				EXER	CISE 2				
1.	(2)	2.	(4)	3.	(3)	4.	(1)	5.	(2)
6.	(2)	7.	(1)	8.	(2)	9.	(3)	10.	(1)
11.	(3)	12.	(3)	13.	(3)	14.	(4)	15.	(4)
16.	(4)	17.	(1)	18.	(3)	19.	(3)	20.	(4)
21.	(4)	22.	(3)	23.	(1)	24.	(3)	25.	(2)
26.	(2)	27.	(4)	28.	(4)	29.	(4)	30.	(1)
31.	(4)	32.	(3)	33.	(3)	34.	(3)	35.	(2)
36.	(3)	37.	(4)	38.	(2)	39.	(4)	40.	(4)
41.	(3)	42.	(4)	43.	(2)	44.	(3)	45.	(1)
46.	(4)	47.	(1)	48.	(2)	49.	(2)	50.	(4)
51.	(3)	52.	(4)	53.	(3)	54.	(1)	55.	(2)

				EXEF	RCISE - 3	3			
				P	ART - I				
				OFFLIN	E JEE-MA	IN			
1.	(3)	2.	(2)	3.	(3)	4.	(4)	5.	(2)
6.	(4)	7.	(1)	8.	(4)	9.	(1)	10.	(4)
11.	(4)	12.	(2)	13.	(3)	14.	(1)	15.	(1)
16.	(2)	17.	(4)	18.	(2)	19.	(3)	20.	(1)
21.	(2)	22.	(3)	23.	(4)	24.	(3)	25.	(1)
26.	(1)	27.	(2)	28.	(3)	29.	(3)	30.	(2)
31.	(3)	32.	(2)	33.	(2)	34.	(1)	35.	(1)
36.	(3)								
				ONLINE	JEE-MA	IN			
1.	(3)	2.	(1)	3.	(2)	4.	(3)	5.	(4)
6.	(3)	7.	(2)	8.	(2)	9.	(3)	10.	(1)
11.	(1)	12.	(4)	13.	(3)	14.	(2)	15.	(1)
16.	(2)								
				P.A	ART - II				
1.	(D)	2.	(C)	3.	(A)	4.	(A)	5.	(B)
6.	(C)	7.	(B)	8.	(A)	9.	(C)	10.	(B)
11.	(B)	12.	(B)	13.	(C)	14.	(D)	15.	(C)
16.	(B)	17.	(B)	18.	(B)	19.	(A)	20.*	(ACD)


Additional Problems For Self Practice (APSP)

PART - I: PRACTICE TEST PAPER

This Section is not meant for classroom discussion. It is being given to promote self-study and

self te	esting amongst the	e Resonance student	ts.						
Max. N	Marks : 120			Max. Time: 1 Hr.					
Impo	rtant Instructions	5							
1.	The test is of 1 hou	r duration.							
2.		•	The maximum marks are 12	20.					
3.	•	otted 4 (four) marks for	•	0 (0.000)					
4.5.	question. ¼ (one for deduction from the to There is only one co	ourth) marks will be dedicted a score will be made it orrect response for each wrong response and mar	ucted for indicating incorre- if no response is indicated question. Filling up more th	 3 for correct response of each ct response of each question. No for an item in the answer sheet. nan one response in any question be deducted accordingly as per 					
1.	In which of the follow	wing complexes the nick	el metal is in highest oxida	tion state ?					
	(1) Ni(CO) ₄	(2) K ₂ NiF ₆	(3) [Ni(NH ₃) ₆](BF ₄) ₂	(4) K ₄ [Ni(CN) ₆]					
2.	The EAN of platinur (1) 46	m in potassium hexachlo (2) 86	roplatinate (IV) is : (3) 36	(4) 84					
3.	(1) Potassium amm(2) Potassium amm(3) Potassium amm	f K ₂ [Cr(CN) ₂ O ₂ (O) ₂ (NH ₃) inedicyanodioxoperoxoc inecyanoperoxodioxochr inedicyanoperoxooxochr inecyanodiperoxodioxoc	hromate(VI) romium(VI) romium(VI)						
4.	Which one of the fol	llowing high-spin comple	exes has the largest CFSE	(Crystal field stabilization energy)					
	(1) $[Mn(H_2O)_6]^{2+}$	(2) $[Cr(H_2O_6)]^{2+}$	(3) [Mn(H ₂ O) ₆] ³⁺	(4) $[Cr(H_2O)_6]^{3+}$					
5.	Which of the following	ng complex will show op	tical activity?						
	(1) trans[Co(NH ₃) ₄ C	[₂]+	(2) $[Cr(H_2O)_6]^{3+}$						
	(3) cis[Co(NH ₃) ₂ (en)	(3) $cis[Co(NH_3)_2(en)_2]^{3+}$ (4) $trans[Co(NH_3)_2(en)_2]^{3+}$							
 Which kind of isomerism is shown by the complex [Co(NH₃)₅(ONO)]SO₄? 1. Ionisation isomerism 2. Linkage isomerism 3. Geometrical isomerism 4. Optical isomerism 1, 2, 3 and 4 are correct 2. Linkage isomerism 3. Optical isomerism 4. Optical isomerism 1, 3 and 4 are correct only 2, 3 and 4 are correct only 3) 1 and 2 are correct only 4) 2, 3 and 4 are correct only 									
7.	Which of the following	ng statements is correct	for complex [Cr(NH ₃)(CN) ₄	$(NO)]^{2-}$ (given that n = 1)?					

- (1) It is d²sp³ hybridised.
- (2) It is heteroleptic complex and its aqueous solution is coloured
- (3) The chromium is in +I oxidation state
- (4) All of these.
- Consider the following statements: 8.

 S_1 : $[Cr(NH_3)_6]^{3+}$ is a inner orbital complex with crystal field stabilization energy equal to $-1.2 \Delta_0$

	. ,				ents		(2) measurement of molar conductance(4) observing their colours						
19.	(1) it is a low spin complex. (3) it shows geometrical isomerism. Which of the following pairs will show the (1) [Cr(H ₂ O) ₆] ³⁺ and [Fe(H ₂ O) ₅ NO] ²⁺ (3) [Ni(CO) ₄] and [Zn(NH ₃) ₄] ²⁺ What will be the theoretical value of 'spin containing F ⁻ ions to yield a colourless of (1) 2.83 B.M. Which of the following statements about (1) It is paramagnetic and high spin complet (3) It is diamagnetic and low spin complet The crystal field-splitting for Cr ³⁺ ion in (1) increasing order is: (1) I ⁻ < H ₂ O < NH ₃ < CN ⁻ (3) CN ⁻ < NH ₃ < H ₂ O < I ⁻ Which of the following complex ion is not (1) [Ni(H ₂ O) ₆] ²⁺ Of the following complex ions, the one the (1) [Co(NH ₃) ₆] ³⁺ (2) [Co(H ₂ O) ₆] ³⁺					The corre	rect statement about the complex (X) is: (2) it is diamagnetic. (4) (1) and (2) both.						
 (3) measuring magnetic moments (4) observing their colours 19. [Fe(en)₂(H₂O)₂]²⁺ + en → complex(X). The correct statement about the complex (X) (1) it is a low spin complex. (2) it is diamagnetic. (3) it shows geometrical isomerism. (4) (1) and (2) both. 20. Which of the following pairs will show the same magnetic moment ('spin only')? (1) [Cr(H₂O)₆]³⁺ and [Fe(H₂O)₅NO]²⁺ (2) [Mn(CN)₆]⁴⁻ and [Fe(CN)₆]³⁻ (3) [Ni(CO)₄] and [Zn(NH₃)₄]²⁺ (4) All of these. 21. What will be the theoretical value of 'spin only' magnetic moment when Fe(SCN)₃ recontaining F⁻ ions to yield a colourless complex? (1) 2.83 B.M. (2) 3.87 B.M. (3) 5.92 B.M. (4) 1.73 B. 22. Which of the following statements about Fe(CO)₅ is correct? (1) It is paramagnetic and high spin complex (2) It is diamagnetic and high spin (3) It is diamagnetic and low spin complex (4) It is paramagnetic and low spin (3) It is diamagnetic and low spin complex (4) It is paramagnetic and low spin (3) CN⁻ (4) CN⁻ (2) CN⁻ (1 + H₂O < NH₃ (3) CN⁻ (NH₃ < CN⁻ (2) CN⁻ (1 + H₂O < NH₃ (3) CN⁻ (NH₃ < H₂O < 1 + CN⁻ 24. Which of the following complex ion is not expected to absorb visible light (1) [Ni(H₂O)₆]²⁺ (2) [Zn (NH₃)₄]²⁺ (3) [Cr(NH₃)₆]³⁺ (4) [Fe(H₂O)₆]²⁺ 25. Of the following complex ions, the one that probably has the largest overall formatio (1) [Co(NH₃)₆]³⁺ (2) [Co(H₂O)₆]³⁺ (3) [Co(NH₃)₂(H₂O)₄]³⁺ (4) [Co(en) (2) CN - CN													
(3) measuring magnetic moments (4) observing their colous 19. [Fe(en)₂(H₂O₂)²²² + en → complex(X). The correct statement about the colous (1) it is a low spin complex. (2) it is diamagnetic. (3) it shows geometrical isomerism. (4) (1) and (2) both. 20. Which of the following pairs will show the same magnetic moment ('spin of (1) [Cr(H₂O)₅]³² + and [Fe(H₂O)₅NO]²² + (2) [Mn(CN)₅]⁴ - and [Fe(I]O] (3) [Ni(CO)₄] and [Zn(NH₃)₄]²² + (4) All of these. 21. What will be the theoretical value of 'spin only' magnetic moment when F containing F⁻ ions to yield a colourless complex? (1) 2.83 B.M. (2) 3.87 B.M. (3) 5.92 B.M. 22. Which of the following statements about Fe(CO)₅ is correct? (1) It is paramagnetic and high spin complex (2) It is diamagnetic and (3) It is diamagnetic and low spin complex (4) It is paramagnetic and (3) It is diamagnetic and low spin complex (4) It is paramagnetic and increasing order is: (1) □ < H₂O < NH₃ < CN⁻ (2) CN⁻ < □ < H₂O < NH (3) CN⁻ < NH₃ < H₂O < □ (4) NH₃ < H₂O < □ < CI 24. Which of the following complex ion is not expected to absorb visible light (1) [Ni(H₂O)₅]³² (2) [Zn (NH₃)₃]²²²(3) [Cr(NH₃)₃]³² (4) [Fe(I²O)h₃]²² (2) [Co(H₂O)ℯ]³² (3) [Co(NH₃)₂(H₂O)₄]³² (4) [Fe(I²O)h₃]²² (2) [Co(H₂O)ℯ]³² (3) [Co(NH₃)₂(H₂O)-I]²² (4) [Fe(I²O)h₃]²² (5) [Fe(CN)ի₃]²² (6) [Fe(CN)ի₃]²² (7) [Fe(CN)ի₃]²² (7) [Fe(H₂O)-I]²² (7) [Fe(H₂O)-I]² (7) [Fe(H₂O)-I]							•	,	s with a solut	ion			
22.	Which (1) It is	of the paran	following nagnetic	statem and hig	ents abo h spin co	mplex)₅ is cor (2) It is	rect? s diam	agnetic a	and high	spin com	•	
23.	increas (1) I ⁻ <	sing or H ₂ O <	der is : < NH ₃ < C	N-	Cr³+ ion i	n octahed	(2) CN	V− < I−	< H ₂ O <	: NH ₃	-, H₂O, N	H₃, CN⁻ and	the
24.	Which	of the	following	comple		•	ted to a	bsorb	visible li	ght	12+		
25.	Of the	follow	ing comp	lex ion	s, the one	e that prob	oably ha	as the	largest o	verall for	mation co	onstant, K _f , is	::
26.				•	•	I	(3) sq	uare p	yramidal	(4) tr	gonal bip	yramidal	
27.	I: [Fe(H ₂ O) ₆] ²	2+	II : [F	e(CN) ₆] ³⁻	•	III : [Fe	e(CN) ₆] ^{4–} IV : [Fe(H ₂ O)	6] ³⁺ III, I, IV		
28.	the cod A B C D	des giv List- Ni(Co [Ni(Co [Fe(Co [MnF	ven below O)4 SN)4] ²⁻ SN)6] ⁴⁻	•	ts : 1. 2. 3.	List-II sp ³ dsp ² sp ³ d ²	tion) of	centra	l atom a	nd select	the corre	ect answer us	ing
	(1) (3)	A 1 3	B 3 1	C 2 2	D 4 4		(2) (4)	A 2 1	B 1 2	C 4 4	D 3 3		
29.	Which	of the	following	comple		ws ionizat I ₂	ion isor		1?		Co(NH3)5E	Br]SO4	
30.								· •		(4) 2	,		
				Pra	ctice T	est (.II	(.IFF-Main Pattern)						

Practice Test (JEE-Main Pattern)

OBJECTIVE RESPONSE SHEET (ORS)

Que.	1	2	3	4	5	6	7	8	9	10

CHEMISTRY FOR JEE

COORDINATION COMPOUNDS

Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

Que.	11	12	13	14	15	16	17	18	19	20		
Ans.												
Que.	21	22	23	24	25	26	27	28	29	30		
Ans.												
		F	PART -	II : PR	ACTIC	E QUE	STION	S				
1.	A co-ordination complex has the formula PtCl ₄ .2KCl. Electrical conductance measurements indicate the presence of three ion in one formula unit. Treatment with AgNO ₃ produces no precipitate of AgCl. What is the co-ordination number of Pt in this complex?											
	(1) 5		(2) 6		(3)	4		(4) 3				
2.	Which of the following complexes produces three moles of silver chloride when its one mole is treated											
	with excess of silver nitrate ? (1) [Cr(H ₂ O) ₃ Cl ₃] (2) [Cr(H ₂ O) ₄ Cl ₂]Cl					[Cr(H ₂ O) ₅ ((4) [Cr(H2O)6]Cl3				
3.		· -	. ,	· -	. ,	- ` ,	_		, <u>-</u>	Cla 4NHa is		
0.	The number of chloride ions which would be precipitated when one mole of the complex PtCl ₄ .4N treated with silver nitrate is:(here coordination number of platinum is 6).								J14. 11 (1 13 10			
	(1) four (2) one					three		(4) two				
4.	From the stability constant (hypothetical values), given below, predict which is the most stable?						le complex					
(1) $Cu^{2+} + 4NH_3$ [$Cu(NH_3)_4$] ²⁺ , $\longrightarrow K = 4.5 \times 10^{11}$ (2) $Cu^{2+} 4CN^-$ [$Cu(CN)_4$] ³⁻ , $\longrightarrow K = 2.0 \times 10^{27}$ (3) $Cu^{2+} + 2en$ [$Cu(en)_2$] ²⁺ , $\longrightarrow K = 3.0 \times 10^{15}$												
	(4) Cu ²⁺ + 4	(4) $Cu^{2+} + 4H_2O$ $[Cu(H_2O)_4]^{2+}, \longrightarrow K = 9.5 \times 10^8$										
5.	What is wrong about the compound $K[Pt(\eta^2-C_2H_4)Cl_3]$?											
	(1) It is called Zeise's salt.					(2) It is π bonded complex.						
	(3) Oxidation number of Pt is +4. (4) Four ligands surround the platinum atom.									•		
6.	Diethyleneti				(2)	tridontata	noutral ma	ologulo.				
	(1) chelating agent(3) tridentatemonoanion					(2) tridentate neutral molecule(4) (1) and (2) both						
7.	In $K_4[Fe(CN)_6]$, Fe is in the form of											
	(1) An atom		(2) Neu	tral compl	ex (3)	Cationic c	omplex	(4) Anioni	c complex			
8.	An ion M ²⁺ , (1) Green, b							(4) Red, E	Blue & Gre	en		
9.	Consider the following statements: According the Werner's theory. (a) Ligands are connected to the metal ions by ionic bonds. (b) Secondary valencies have directional properties											

(c) Secondary valencies are nonionisable

	Of these statements: (1) a, b and c are correct	ct (2) b and c are correct	(3) a and c are correct	(4) a and b are correct
10.	Crystal field stabilization (1) $-0.6 \Delta_0$	n energy for high spin d^4 (2) – 1.8 Δ_0	octahedral complex is : $(3) - 1.6 \Delta_0 + P$	(4) – 1.2 Δ ₀
11.	Which one of the following (1) Ma ₃ b	ng will be able to show on (2) M(AA) ₂	cistrans isomerism ? (3) M(AB)(CD)	(4) Ma ₄
12.	a. cis-[Co(NH ₃) ₄ Cl ₂] ⁺	ompounds show optical b. trans-[Co(en) ₂ Cl ₂] ⁺ er using the codes given (2) b and c	c. cis-[Co(en) ₂ Cl ₂]+	 d. [Co(en)₃]³⁺ (4) a, c and d
13.	(1) Tetramminecopper(I(2) Diamminesilver(I) ch(3) Potassium hexacyar	I) sulphate[Cu(I lloride[Ag(NH nidoferrate (III)	l ₃) ₂]Cl	
14.	Which of the following s (1) Ni(CO) ₄ — Tetrahe (3) Ni(dmg) ₂ — Squar	dral, paramagnetic	(2) Ni(CN) ₄] ²⁻ —— Squa (4) [NiCl ₄] ²⁻ —— Tetrahe	
15.	Which of the following a (1) Ferrocene	re π-bonded organometa (2) Diethyl zinc	allic compounds ? (3) Ethylmagnesium iod	ide (4) None of these
16.		g of AgCl. Ammonia is i	-	H ₃ on treatment with excess of it with concentrated H ₂ SO ₄ . The (4) [CoCl ₃ (NH ₃)]NH ₃
17.	Which of the following s	tatements is not true?		
	(2) [Mn(CN) ₆] ²⁻ ion has (3) [Cu(CN) ₄] ³⁻ has squa	nedral geometry and is poctahedral geometry and are planar geometry and igonal bipyramidal geom	d is paramagnetic.	: .
18.	(1) As M– $C\pi$ bonding in (2) As positive charge o	creases, the C-O bond In the central metal atom	-	<u> </u>
19.	(1) It has a magnetic mo(2) The distribution of 30	oment of 3.83 BM. d electrons is 3dxy ¹ , 3dy:	ct for the complex [Cr(H ₂ 0 z ¹ , 3dzx ¹ condary valencies of chro	
20.	The number of unpaired (1) 0	d electrons present in [Ni (2) 1	F ₆] ²⁻ (3) 2	(4) 3

APSP Answers

PART -	
--------	--

				PA	RT - I				
1.	(2)	2.	(2)	3.	(1)	4.	(4)	5.	(3)
6.	(3)	7.	(4)	8.	(3)	9.	(4)	10.	(3)
11.	(3)	12.	(2)	13.	(3)	14.	(1)	15.	(1,3)
16.	(2)	17.	(3)	18.	(2)	19.	(4)	20.	(4)
21.	(3)	22.	(3)	23.	(1)	24.	(2)	25.	(4)
26.	(4)	27.	(1)	28.	(4)	29.	(4)	30.	(2)
PART - II									
1.	(2)	2.	(4)	3.	(4)	4.	(2)	5.	(C)
6.	(4)	7.	(4)	8.	(3)	9.	(2)	10.	(1)
11.	(3)	12.	(3)	13.	(3)	14.	(1)	15.	(1)
16.	(2)	17.	(3)	18.	(4)	19.	(3)	20.	(1)