Exercise-1

Marked Questions may have for Revision Questions.

OBJECTIVE QUESTIONS

Section (A): Reagents (Electrophiles, Nucleophiles, Carbene), Solvents, leaving group

- **A-1.** Which of the following is aprotic solvent?
 - (1*) C₆H₆
- (2) NH₃
- (3) H₂O
- (4) CH₃COOH

A-2. Which of the following is polar protic solvent?

CH₃—C—N
Me

- (1) CH₃COCH₃
- (2*) C₂H₅–OH
- (3) CH₃SOCH₃
- (4)

A-3. Electrophiles are

(1) Electron deficient species

(2) having vacant p or d-orbital

(3) Electron rich species

(4*) (1) & (2) both

A-4. Which of the following is an electrophile?

- (i) H₂O
- (ii) OH-
- (iii) NO₂+
- (iv) SO₃
- (v) PCI₅

- (1) i, ii
- (2) i, iii
- (3*) iii, iv, v
- (4) i, ii, iv, v

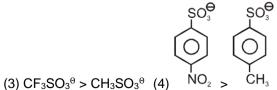
A-5. Which of the following is not an electrophile?

- (1*) CN-
- (2) H+
- (3) Br+
- (4) AICI₃

A-6. Which of the following statement is correct for nucleophile?

- (1) Electron rich species are called nucleophile.
- (2) Nucleophiles are Lewis bases.
- (3) Nucleophile donates lone pair of electrons to vacant orbital of carbon atom.
- (4*) All are correct.
- **A-7.** Which one of the following has maximum nucleophilicity:

CH₃-C-O


- (1*) ČH₃
- (2) NH
- (3) CH₃C
- (4) CH

A-8. Which among the following species is an ambident nucleophile?

- (1) Ethene
- (2) Benzene
- (3*) Cyanide ion
- (4) Acetone

A-9. According to Lewis concept of acids and bases, ethers are :

- (1) Acidic
- (2*) Basic
- (3) Neutral
- (4) Amphoteric
- **A-10.** Which of the following is **incorrect** order for leaving group ability in S_N reaction?

- Which of the following is not a lewis base? A-11.
 - (1*) SO₃
- (2) (CH₃)₂ NH
- (3) C₂H₅OH
- (4) C₂H₅-O-C₂H₅

- A-12. Which of the following is not a nucleophile?
 - (1) CH₃ONa
- (2) PhLi
- (3) PH₃
- Which one of the following has maximum nucleophilicity: A-13.
 - (1*) CH₃S^Θ
- (2) C₆H₅-Ö
- (3) Et₃N
- A-14. For the following the increasing order of nucleophilicity would be:

- (ii) CI-
- (iii) Br-

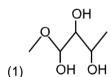
- (1) I < CI < Br
- (2) Br < Cl < l
- (3) I- < Br-< CI-
- (4*) Cl⁻ < Br⁻ < l⁻
- A-15. Correct arrangement of the following nucleophiles in the order of their nucleophilic strength is:
 - (1) $C_6H_5O^- < CH_3O^- < CH_3COO^- < OH^-$
- (2) $CH_3COO^- < C_6H_5O^- < CH_3O^- < OH^-$
- (3) C₆H₅O⁻ < CH₃COO⁻ < CH₃O⁻ < OH⁻
- (4^*) CH₃COO⁻ < C₆H₅O⁻ < OH⁻ < CH₃O⁻
- A-16. The correct order of leaving group ability is/are:
 - (1) Ph-COO- > CH₃SO₃-

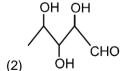
 (2^*) $CF_3SO_3^{\Theta} > CCI_3SO_3^{\Theta}$

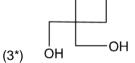
(3) CN > 10

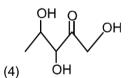
(4) NH₂ > OH

Section (B): Reaction of acidic Hydrogen


- B-1. A five carbon atoms alkyne forms a sodium salt and gives H₂ gas on treatment with sodamide. The alkyne may be
 - (1) $CH_3CH_2C=CH$ (2) $CH_3C=CCH_2CH_3$
- (3) (CH₃)₂CHC≡CH
- (4*) Either (1) or (3).


- B-2. C₆H₅COOH + CH₃MgI —
 - (1) C₆H₅COOMgI
- (2) CH₄
- (3*) Both (1) & (2)
- (4) none


- B-3. (CH₃)₃CMgCl on reaction with D₂O produces:
 - (1*) (CH₃)₃CD
- (2) (CH₃)₃COD
- (3) (CD₃)₃CD


HO-

- (4) (CD₃)₃COD
- B-4. A compound X (C₅H₁₂O₄) upon treatment with CH₃MgX gives 4 mole of methane. Identify the structure of (X).

B-5. How many functional group produced CH₄ gas by the reaction of compound (I) with CH₃MgBr.

> OH HO ·CH₂ HOOC **(I)**

(1) 3

- (2*)4
- (3)5

- (4)6
- Which of the following does not liberate hydrogen gas with NaH. B-6.

B-7. In which of the following reaction CH₄ will be obtained.

(ii)
$$CH_3 - MgBr + CH_2 < COOH$$

$$CH_3 - MgBr + CH_2 < \begin{cases} O \\ || \\ C - CH_3 \\ || \\ O \end{cases}$$

B-8. The product X formed in the following reaction is

C₆H₅MgBr + CH₃OH □ X

(1*) benzene

(2) methoxybenzene

(3) phenol

(4) toluene

Section (C): Nucleophilic addition reaction of Aldehydes and Ketones

C-1. The typical reaction of aldehydes and ketones is:

(1) Nucleophilic substitution

(2*) Nucleophilic addition

(3) Electrophilic substitution

(4) Electrophilic addition

- C-2. Ketones are less reactive than aldehydes because
 - (1) the + I-effect of the alkyl groups increases the electron deficiency of the carbonyl carbon.
 - (2) the + I-effect of the alkyl groups decreases the electron deficiency of the carbonyl carbon.
 - (3) steric hindrance to the attacking nucleophile.
 - (4*) both (2) and (3) are correct.
- C-3. Which can give nucleophilic addition most easily?

(1) CH₃CHO

(2) CH₃CH₂CHO

(4*) HCHO

- HCN reacts fastest with: C-4.
 - (1) Acetone
- (2*) Ethanal
- (3) Benzophenone
- (4) cyclohexanone
- C-5. The correct order of reactivity of PhMgBr with given compounds is :
 - (i) $(C_6H_5)_2CO$
- (ii) PhCHO
- (iii) Ph-COCH₃

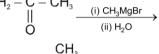
- (1) i > ii > iii
- $(2^*) ii > iii > i$
- (3) iii > ii > i
- (4) i > iii > ii

- C-6. Which of the following can form stable hydrate?
 - (1) CH₃COCH₃
- (2) CH₃CHO
- (3*) Cl₃CCHO
- (4) HCHO
- C-7. The structure of the addition product formed when acetone reacts with a concentrated aqueous solution of sodium bisulphite is:

Aldehydes react with alcohols in presence of dry HCl gas to form C-8.

CHEMISTRY FOR JEE

ORGANIC REACTION MECHANISMS - I


- (1) Aldols
- (2*) Acetals
- (3) Ketals

is

(4) None of these.

- C-9.
- The product of the reaction Ph₂C=O
 - (1*) Ph₂CD(OH)
- (2) Ph₂CH(OD)
- (3) Ph₂CD(OD)
- (4) None (dksbZ ugha)

- C-10. (1*) (CH₃)₃COH
- Hydrolysis product which is formed by reaction between ketone and Grignard reagent will be : (2) C₂H₅OH
 - (3) PhCH₂CH₂OH
- (4) (CH₃)₂CHOH

Product is:

LiAID₄ H_3O^{\oplus}

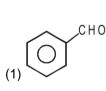
$$CH_3$$
 $CH_3 - CH_2 - CH - CH_2$
 $CH_3 - CH_2 - CH - CH_3$
 $CH_3 - CH_3$
 CH_3

P can be:

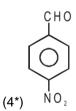
- (1) CH₃COOH
- (2) H-COOCH₃
- (3) CH₃-COCI
- (4*) CH3-CH=O
- C-13. Butan-2-ol is obtained by using carbonyl compound and Grignard reagent as:

$$CH_3-CH=O \xrightarrow{\text{(i) } CH_3-CH_2-MgBr}$$

$$(1^*) \qquad \qquad \text{(ii) } H_2O / H^{\oplus}$$


(2)
$$CH_3-(CH_2)_2-CH=O \xrightarrow{\text{(i) } CH_3-MgBr}$$

(3)
$$H_3C > C = 0$$
 (i) $C H_3 - M g B r$ (ii) H_2O / H^{\oplus}


(2)
$$CH_3-(CH_2)_2-CH=O \xrightarrow{\text{(i) } CH_3-MgBr} (ii) H_2O / H^{\oplus}$$

$$CH_3 = O \xrightarrow{\text{(ii) } CH_3-CH-MgBr} (ii) H_2O / H^{\oplus}$$

- C-14. The general order of reactivities of given carbonyl compounds towards nucleophilic addition reaction is:
 - (1) $H_2C=O > (CH_3)_2C=O > Ar_2C=O > CH_3CHO > ArCHO$.
 - $(2^*) H_2C=O > CH_3CHO > ArCHO > (CH_3)_2C=O > Ar_2C=O.$
 - (3) ArCHO > Ar₂C=O > CH₃CHO > (CH₃)₂C=O > H₂C=O.
 - (4) $Ar_2C=O > (CH_3)_2C=O > ArCHO > CH_3CHO > H_2C=O$.
- Which one is most reactive towards nucleophilic addition reaction? C-15.

C-16.

$$\begin{array}{c|c}
Ph-C-CH_3 & (i) CH_3MgBr \\
| & \\
O & (ii) H_3O^+
\end{array}$$

The product is:

$$\begin{array}{c}
\text{Ph-C-CH}_{3} & \text{(i) CH}_{3}\text{MgBr} \\
\text{II} & \\
\text{O} & \text{(ii) H}_{3}\text{O}^{+}
\end{array}$$

$$\begin{array}{c} CH_3\\ I\\ Ph-C-CH\\ I\\ \end{array}$$
 (1) Ph-CH₂-CH₃ (2) CH_3

- C-17. Give the decreasing order of nucleophilic addition reaction of the following:
 - (i) HCHO
- (ii) PhCHO
- (iii) Chloral (Cl₃C-CH=O)(iv) Acetophenone

- $(1^*) iii > i > ii > iv$
- (2) iv > ii > i > iii
- (3) i > iii > ii > iv
- (4) iii > i > iv > ii

Section (D): Addition Elimination reactions of aldehydes & ketones

- **D-1.** Oximes are formed by the reaction of aldehydes and ketones with :
 - (1) NH₃
- (2) NH₂NH₂
- (3*) NH₂OH
- (4) NH₂CONHNH₂

- **D-2.** The structure for acetaldehyde semicarbazone is
 - (1) CH₃CH=NCONHNH₂

(2*) CH₃CH=NNHCONH₂

(3) CH₃CH=NOH

- (4) CH₃CH=NNH₂
- **D-3.** Which gives only addition reaction with aldehyde and ketone :
 - (1) NH₂-NH₂
- (2) NH₂NHCONH₂
- (3) C₆H₅NHNH₂
- (4*) HCN

- **D-4.** Aldehyde with NH₂–NH₂ forms :
 - (1*) hydrazones
- (2) aniline
- (3) oxime
- (4) imine
- **D-5.** Which functional group is formed by the reaction of primary amine with aldehyde?
 - (1) Amino
- (2*) Imine
- (3) hydrazone
- (4) Nitrito

$$CH_3 \longrightarrow C = N \longrightarrow OH \longrightarrow H_2SO_4 \longrightarrow H_2O \longrightarrow (X) + (Y)$$

Product (X) and (Y) are:

(1) NH₃ + HCOOH

(2) CH₃ NH₂ + CH₃COOH

(3*) CH₃NH₂ + HCOOH

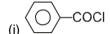
(4) CH₃CH₂NH₂+ CH₃COOH

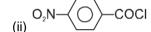
$$D-7. \quad [X] \xrightarrow{H_2SO_4} \xrightarrow{(i) \text{ aq.KOH}} Ph - NH_2 + O$$

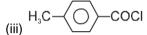
Identify the configuration of compound [X]:

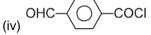
$$C = N$$
 $C = N$
 $C =$

Ph
$$C = N$$
 OH


(2) CH_3 $C = N$ OH


(4) $CH_3 - CH_2$ $C = N$


- D-8. Schiff's reagent is:
 - (1*) Magenta solution of p-Rosaniline hydrochloride decolourised with sulphurous acid
 - (2) Magenta solution of p-Rosaniline hydrochloride decolourised with chlorine
 - (3) Ammonical cobalt chloride solution
 - (4) Ammonical manganese sulphate solution.
- **D-9.** When C₆H₅NH₂ heated with C₆H₅CHO the product is :
 - (1*) Schiff's base
- (2) Amide
- (3) Azoxy benzene
- (4) Unsaturated acid


Section (E): S_N2Th reaction of acid and acid derivatives (with nucleophiles PCI₅, SOCI₂, R-MaX, ROH, Amines, OH₋, H₊/H₂O)

- E-1. The relative reactivity of acyl compounds towards nucleophilic substitution are in the order of:
 - (1) Acid anhydride > Amide > Ester > Acyl chloride
 - (2) Acyl chloride > Ester > Acid anhydride > Amide
 - (3*) Acyl chloride > Acid anhydride > Ester > Amide
 - (4) Ester > Acyl chloride > Amide > Acid anhydride
- E-2. Consider the following compounds:

The correct order of reactivity towards hydrolysis is:

(2) (iv)
$$>$$
 (ii) $>$ (i) $>$ (iii)

$$(1) \ (i) > (ii) > (iii) > (iv) \quad (2) \ (iv) > (ii) > (ii) > (iii) \quad (3^*) \ (ii) > (iv) > (i) > (iii) \quad (4) \ (ii) > (iv) > (iii) > (i)$$

$$(4) (ii) > (iv) > (iii) > (iii) > (iii)$$

- E-3. Which of the following method is not used for the conversion of carboxylic acid into acid halide?
 - (1) RCOOH + SOCI₂ →

(3*) RCOOH + $Cl_2 \longrightarrow$

- E-4. The decreasing order of reactivity towards nucleophilic acyl substitution is
 - (i) CH₃COCI
- (ii) CH₃COOC₂H₅,
- (iii) CH₃CONH₂
- (iv) (CH₃CO)₂O

Predict the major product in the following reaction: E-5.

$$C_6H_5CH_2CO_2CH_3 \xrightarrow{\text{1. CH}_3MgBr (excess)} \rightarrow$$

- E-6. CH₃CH₂CONH₂ is boiled with aqueous NaOH, then the reaction mixture is acidified with HCI. The products obtained are
 - (1) $CH_3CH_2CH_2COO_- + NH_3$

- (2) CH₃CH₂CH₂COONa + NH₃
- (3*) CH₃CH₂CH₂COOH + NH₄Cl
- (4) $CH_3CH_2CH_2COO_- + NH_4CI$.
- E-7. Acetamide and ethyl acetate can be distinguished by reacting with
 - (1) Aqueous HCl and heat

(2*) Aqueous NaOH and heat

(3) Acidified KMnO₄

- (4) Bromine water.
- E-8. A compound with molecular formula C₄H₁₀O₄ on acylation with acetic anhydride gives a compound with molecular formula C₁₂H₁₈O₈. How many hydroxyl groups are present in the compound?
 - (1) one
- (2) Two
- (3) Three
- (4*) Four

Exercise-2

Marked Questions may have for Revision Questions.

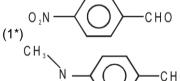
PART-I: OBJECTIVE QUESTIONS

Section (A): Reagents (Electrophiles, Nucleophiles, Carbene), Solvents, leaving group:

- Which of the following statement is not true? 1.
 - (1) Nucleophiles possess unshared pairs of electron which are utillized in forming bonds with electrophilic substrate.
 - (2) The cyanide ion is an ambident nucleophile and causes nucleophilic substitution of alkyl halide by either of its carbon atom or nitrogen atom.
 - (3) The nitrite ion is an ambident nucleophile and causes nucleophilic substitution of alkyl halide by either of its oxygen atom or nitrogen atom.
 - (4*) Strength of nucleophile generally decreases on going down a group in the periodic table.
- 2. Which of the following is not a nucleophile?
 - (1*):CCI2
- (2) (CH₃)₂ NH
- (3) C₂H₅OH
- (4) H₂O

- Out of the followings best leaving group is : 3.
 - $(1) F^{-}$
- (2) CI-
- (3) Br-
- (4*) I-

- 4. Which of the following reactions is not feasible?
 - (1) PhSO₃H + NaHCO₃ →
- (2) $Ph-OH + NaNH_2$


(3*) $CH_3-NH_2 + NaOH \longrightarrow$

- (4) $Ph-C=CH + NaH \longrightarrow$
- HCN X-5. C₆H₅CHO

In the above sequence, Y is

- (1) Lactic acid
- (2*) Mandelic acid
- (3) Malic acid
- (4) Cinnamic acid

6. Cyanohydrin formation constant will be highest for ?

CHD₂MgI 7. CH₂O

In the above reaction compound X will be:

CHD - CH2 - OH

- (1) CH₃-CHD-OH
- (2) CH₂D-CH₂-OH
- (3*) CHD2-CH2-OH
- 8. Carbonyl compounds undergo nucleophilic addition because of
 - (1) electronegativity difference of carbon and oxygen atoms
 - (2) electromeric effect
 - (3) more stable anion with negative charge on oxygen atom and less stable carbonium ion.

(4*) All

10.

9. The reagent used for the separation of acetaldehyde from acetophenone is:

(1*) NaHSO₃

(2) C₆H₅NHNH₂

(3) NH₂OH

(4) NaOH + I_2

Above compound contains four different functional group the rate of reaction with RMg-X will be:

(1) |I| > |I| > |I| > |V|

 $(2^*) | > | > | | > | | > | | |$

(3) IV > I > II > III

(4) |I| > |V| > |II| > |I|

11. Which of the following is correct order of esterification of following acids with CH₃OH:

HCOOH, CH₃ COOH, CH₃ - CH₂ - COOH,

II

(1) I = II = III = IV

Ш

 $(2^*) I > II > III > IV$

IV (3) I < II < III < IV

(4) I > IV > III > II

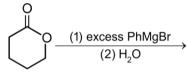
12. The cyanohydrin of a carbonyl compound on hydrolysis gives lactic acid. The carbonyl compound is

(1) HCHO

(2*) CH₃CHO

(3) CH₃COCH₃

(4) CH₃COCH₂CH₃


13. Reaction of acetaldehyde with HCN followed by hydrolysis gives a compound which shows.

(1*) Optical isomerism

(2) Geometrical isomerism

(3) Metamerism

(4) Tautomerism

14.

X, X is

15. Which of the following compounds would react with PhMgBr subsequently yield Ph₃COH?

(1) a ketone

(2) an ester other than formate ester

(3) diethyl carbonate

(4*) all of these.

16. The relative reactivity of following compounds towards nucleophile:

(1*) CH₃CHO > CH₃COCH₃ > CH₃COOCH₃ > CH₃CONH₂

(2) CH₃COOCH₃ > CH₃CONH₂> CH₃CHO > CH₃COCH₃

(3) CH₃CONH₂ > CH₃CHO > CH₃COCH₃ > CH₃COOCH₃

(4) CH₃CHO > CH₃COOCH₃ > CH₃CONH₂ > CH₃COCH₃.

17. In the reactions CH₃CHO + HCN — → CH₃CH(OH)CN = the acid obtained is:

(1) D-isomer

(2) L-isomer

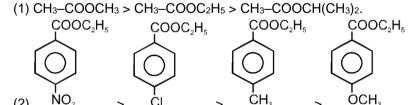
(3) 80% D + 20% L mixture

(4*) 50% D + 50% L mixture.

The product in this reaction will be

$$(1) \bigcirc OH \qquad (2) \bigcirc CHO \qquad (3^*) \bigcirc COOH \qquad (4) \bigcirc OH$$

19. The K_{eq} values in HCN addition to following aldehydes are in the order:


- 20. Identify the ester which upon addition of excess Grignard's reagent will provide a secondary alcohol:
 - (1) CH₃CO₂Et
- (2) (CH₃)₂CHCO₂Et
- (3*) HCO₂Et
- (4) C₆H₅CO₂Et

PART - II: MISCELLANEOUS QUESTIONS

Section (A): ASSERTION/REASONING

DIRECTIONS: Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.

- (1) Both assertion and reason are correct, and the reason is the correct explanation for the assertion
- (2) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion
- (3) The assertion is incorrect, but the reason is correct
- (4) Both are assertion and reason are incorrect
- **A-1. Assertion**: Carbonyl compounds take part in nucleophilic addition reactions generally. **Reason**: These reactions are initiated by nucleophilic attack at the electron deficient carbon atom.
- **A-2. Assertion :** Cyclopropanone undergoes addition with HCN more easily in comparision to acetone **Reason :** Cyclopropanone contains strained ring and also has less steric crowding.
- **A-3. Assertion :** The order of base catalysed hydrolysis of ester is

Reason: S_N2 Th reaction is sterically as well as electronically controlled reaction.

A-4. Assertion: CH₃MgBr is prepared in cold aqueous solution.

Reason: Water molecule stablise Grignard reagent by H-bonding.

Section (B): MATCH THE COLUMN

Note: Only one answer type (1 x 1)

B-1. Match List I (Reaction) with List II (Product) and select the correct answer using the code given below the lists:

List-I

(A)
$$CH_3COCH_3 + CH_3MgBr \xrightarrow{Ether}$$

 $CH_3-C-CH_3+ NaBH_4$
(B) O \xrightarrow{EtOH}

$$\begin{array}{ccc} CH_3-C-CH_2CH_3+ & CH_3MgBr \\ II \\ (C) & O \end{array} \xrightarrow{Ether} \xrightarrow{H_2O}$$

$$\begin{array}{ccc} CH_3-CH_2-C-OCH_3+\ LiAIH_4 \\ (D) & O & \xrightarrow{Ether} & \xrightarrow{H_2O} \end{array}$$

List-II

(r)

Section (C): ONE OR MORE THAN ONE OPTIONS CORRECT

- **C-1.** Which of the following reactions yield benzene?
 - (1) PhMgBr + CH₃–Br (2*) PhMgBr + H₂O
- (3) PhBr + H₂O
- (4*) PhMgBr + CH₃–C≡CH
- C-2. $\xrightarrow{\text{I. MeMgBr (1 eq.)}}$ acetone as the sole organic product.

Which is/are correctly matched with R and R'.

(4*) R is CH₃

C-3. 2-Phenylbutan-2-ol can be prepared by :

(1*) PhMgBr +
$$\xrightarrow{O}$$
 $\xrightarrow{\text{ether}}$ $\xrightarrow{H^{\oplus}}$

(2*) CH₃MgBr + Ph – C – C₂H₅
$$\xrightarrow{\text{ether}}$$
 $\xrightarrow{\text{H}^{\oplus}}$

(3*)
$$C_2H_5MgBr + Ph - C - CH_3 \xrightarrow{ether} \xrightarrow{H^{\oplus}}$$

(4)
$$CH_3CH_2CH_2MgBr + PhCHO \xrightarrow{\text{ether}} \xrightarrow{H^{\oplus}}$$

(2*) CH₃MgBr + Ph – C – C₂H₅
$$\xrightarrow{\text{bill}}$$
 $\xrightarrow{\text{H}^{\oplus}}$

(4)
$$CH_3CH_2CH_2MqBr + PhCHO \xrightarrow{bBj} \xrightarrow{H^{\oplus}}$$

- **C-4.** The correct decreasing reactivity order of the given compound(s) towards hydrolysis under identical condition is/are:
 - (1*) CH₃COCI > CH₃CONH₂

 (2^*) CH₃COCI > $(CH_3CO)_2O$

(3) CH₃COOCH₃ > CH₃COCI

 $(4*) (CH_3CO)_2O > CH_3CONH_2$

(i)Grignard's reagent (Y) (execess)

C-5. X (an ethyl ester)

(ii)H₃O[⊕] product

The product(s) may be:

$$C_{2}H_{5}$$
 $CH_{3}-C-C_{2}H_{5}$
(2*) OH

Exercise-3

PART-I: JEE (MAIN) / AIEEE PROBLEMS (PREVIOUS YEARS)

1. Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of NH₄Cl gives

[AIEEE-2004, 3/225]

- (1) Acetone
- (2) Acetamide
- (3*) 2-Methyl-2-propanol
- (4) Acetyl iodide

2. Rate of the reaction is fastest when Z is :

[AIEEE-2004, 3/225]

- (1*) CI
- (2) OCOCH₃
- (3) OC₂H₅
- (4) NH₂
- 3. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is :
 - (1*) CH₃COOC₂H₅ + NaCl

- (2) CH₃CI + C₂H₅COONa
- (3) CH₃COCI + C₂H₅OH + NaOH
- (4) CH₃COONa + C₂H₅OH
- 4. The decreasing order of nucleophilicity among the following nucleophiles : [AIEEE-2005, 3/225]

- (b) CH₃O
- (c) CN^Θ

н₃С-**(__**)— s - о́ || ||

- (1) (c), (b), (a), (d)
- (2*) (b), (c), (a), (d)
- (3) (d), (c), (b), (a)
- (4) (a), (b), (c), (d)
- 5. Phenyl magnesium bromide reacts with methanol to give -

[AIEEE-2006, 3/165]

- (1) a mixture of anisole and Mg(OH)Br
- (2*) a mixture of benzene and Mg(OMe)Br

(d)

- (3) a mixture of toluene and Mg(OMe)Br
- (4) a mixture of phenol and Mg(Me)Br
- 6. $CH_3Br + Nu^- \rightarrow CH_3 Nu + Br^-$

The decreasing order of the rate of the above reaction with nucleophiles (Nu-) A to D is:

[AIEEE-2006, 3/165]

$$[Nu^{-} = (A) PhO^{-}, (B) AcO^{-}, (C) HO^{-}, (D) CH_{3}O^{-}]$$

$$CH_3Br + Nu^- \rightarrow CH_3 - Nu + Br^-$$

7. The decreasing order of the ratio of HCN addition to compounds A to D is

[AIEEE-2006, 3/165]

- (a) HCHO
- (b) CH₃COCH₃
- (c) PhCOCH₃
- (d) PhCOPh

CHEMISTRY FOR JEE

ORGANIC REACTION MECHANISMS - I

- (1) d > b > c > a
- (2) d > c > b > a
- (3) c > d > b > a
- (4^*) a > b > c > d

8. The treatment of CH₃MgX with CH₃C≡C−H produces

[AIEEE-2008, 3/105]

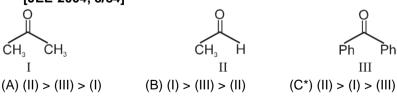
- (1) CH₃C≡C–CH₃
- (2) CH₃-C=C-CH
- (3*) CH₄
- (4) CH₃-CH=CH₂
- 9. A liquid was mixed with ethanol and a drop of concentrated H₂SO₄ was added. A compound with a fruity smell was formed. The liquid was : [AIEEE-2009, 4/144]
 - (1) HCHO
- (2) CH₃COCH₃
- (3*) CH₃COOH
- (4) CH₃OH
- **10.** Consider thiol anion (RS^θ) and alkoxy anion (RO^θ). Which of the following statement is correct?
 - (1*) RS^{θ} is less basic but more nucleophilic than RO^{θ} .

[AIEEE-2011, 4/120]

- (2) RS^{θ} is more basic and more nucleophilic than RO^{θ} .
- (3) RS^{θ} is more basic but less nucleophilic than RO^{θ} .
- (4) RS^{θ} is less basic and less nucleophilic than RO^{θ} .
- 11. Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction is:

 [AIEEE-2011, 4/120]
 - (1) Diethyl ether
- (2) 2-Butanone
- (3) Ethyl chloride
- (4*) Ethyl ethanoate
- **12.** A compound with molecular mass 180 is acylated with CH₃COCl to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is:
 - (1)2

- (2*)5
- (3) 4


(4)6

PART - II: JEE (ADVANCED) / IIT-JEE PROBLEMS (PREVIOUS YEARS)

* Marked Questions may have more than one correct option.

2. The order or reactivity of phenyl magnesium bromide with the following compounds is:[JEE-2004, 3/84] [JEE-2004, 3/84]

3. Phenyl magnesium bromide reacting with t-Butyl alcohol gives

- (A) Ph–OH
- (B*) Ph-H

(D)all react with the same rate

4. In the reaction shown below, the major product(s) formed is/are : [JEE(Adv.)-2014, 3/120]

Additional Problems For Self Practice (APSP)

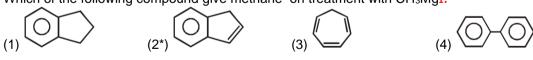
Marked Questions may have for Revision Questions.

PART - I : PRACTICE TEST-1 (IIT-JEE (MAIN Pattern))

This Section is not meant for classroom discussion. It is being given to promote self-study and self testing amongst the Resonance students.

Max. Marks: 120 Max. Time: 1 Hr.

Important Instructions


- 1. The test is of 1 hour duration.
- 2. The Test Booklet consists of 30 questions. The maximum marks are 120.
- 3. Each question is allotted 4 (four) marks for correct response.
- **4.** Candidates will be awarded marks as stated above in Instructions No. 3 for correct response of each question.

1/4 (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.

5. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 4 above.

	4 above.	porise and marks for wic	ong response will be di	educted accordingly as per matructions						
1.	Which solvent is nor (1) CH ₃ –CO–CH ₃	n-polar solvent? (2) CH ₃ –SO –CH ₃	(3) CH₃COOH	(4*) Cyclohexane						
2.	Which one of the fol (1) (CH ₃) ₃ CLi	lowing has minimum nu (2) NaNH ₂		(4*) NaOH						
3.	Which of the following (1) Ph–CHO	ng compound gives faste (2) Ph–COPh	est nucleophilic addition (3*) CH ₃ –CHO							
4.	Benzoyl chloride on (1*) Benzamide	treatment with ammonia (2) Acetamide	a gives (3) Benzylamine	(4) Benzoic acid						
5.	Which of the following (1) $\overset{\bullet}{C}H_3$	ng is a nucleophile?	(3) CH ₃ -N	(4*) CH ₃ -NH ₂						
6.		Which of the following reactants will give only one organic product when reacted with NaCN / H ₂ SO (small amounts) (No other isomer is obtained)								
	(1) CH₃CHO	(2*) HCHO	(3) PhCHO	$_{(4)}^{O} CH_3 - C - CH_2 - CH_3$						

7. Which of the following compound give methane on treatment with CH₃MgI.

8. The correct order of leaving ability is :

9. Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is :

(3)
$$(CH_3)_2C \stackrel{OH}{\searrow} (CH_3)_2C \stackrel{OC_2H_5}{\searrow} (CH_3$$

Which of the following is the most reactive towards nucleophilic acyl substitution? 10.

12. Identify the structure of the product formed in the following reaction.

$$CH_3$$
 C_2H_5
 C_2

13. PhMgBr
$$H^+$$
 (A). Main Product (A) is

14.
$$O \xrightarrow{CH_3MgBr} \xrightarrow{CH_3MgBr} \xrightarrow{CH_3MgBr} \xrightarrow{H_2O} Product$$

$$CH_3 \xrightarrow{CH_3 - C - CH_3} \xrightarrow{CH_3 - CH - CH_3} \xrightarrow{CH_3 - CH - CH_3} \xrightarrow{CH_3 - C - CH_3} \xrightarrow{CH_3 - C - CH_3} \xrightarrow{CH_3 - C - CH_3} \xrightarrow{CH_3 - CH_3 - CH_3} \xrightarrow{CH_3 - CH_3} \xrightarrow{CH_3 - CH_3 - CH_3} \xrightarrow{CH_3 - CH_3} \xrightarrow{CH$$

$$(3mol)$$
 CH_3
 $CH_3 - C - CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3$

(1मोल)

(2 मोल)

(1)

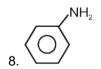
$$\begin{array}{cccc} & \text{CH}_3 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$\begin{array}{c|cccc} & CH_3 & & & & \\ & & & & & \\ CH_3-C-CH_3 & & CH_3-C-CH_3 & & \\ & & & & & \\ OH & & & O \\ \end{array}$$

15. A sweet smelling compound(x) with molecular formula C₈H₁₆O₂ on reaction with excess of CH₃MgBr followed by acidification gives a single organic product(y), the structure of (y) can be:

$$CH_3 - C_2H_5$$
(2)

$$C_{2}H_{5} \longrightarrow \begin{matrix} I \\ C \\ I \end{matrix}$$


$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

16. Give the structure of X.

17. Which of the following compound give benzene on reaction with PhMgBr.

6. CH₃NH₂ COO

(4*) All

- **18.** When a nucleophile attacks on a carbonyl group to form an intermediate, the hybridisation of the carbon atom changes from
 - (1) sp³ to sp²
- (2) sp^2 to sp
- (3) sp to sp²
- (4*) sp² to sp³
- 19. Which of these statements is incorrect about nucleophiles?
 - (1) Nucleophiles have an unshared electron pair and can make use of this to react with an electron deficient species.
 - (2) The nucleophilicity of an element (as electron donor) generally increases on going down a group in the periodic table.
 - (3*) A nucleophile is electron-deficient species
 - (4) All good nucleophiles are good bases when we deal across the period.
- **20.** Which of the following reaction is substitution reaction?

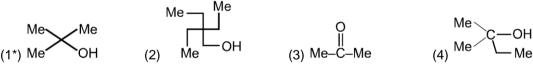
(1) CH₃-CHO
$$\xrightarrow{\text{KCN}}$$
 $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{C}}$ $\xrightarrow{\text{C}}$ OH

(2)
$$CH_3-CH=CH_2 \xrightarrow{HCl} CH_3 - CH_3 - CH_3$$

$$\begin{array}{ccc}
CH_3 - CH - CH_3 \\
 & & & & \\
(3) & & & & \\
\end{array}$$

$$\begin{array}{c}
Alc.KOH \\
CH_3-CH=CH
\end{array}$$

$$CH_3 - C - OH \xrightarrow{CH_3OH} CH_3 - C - OCH_3$$


$$O$$

$$O$$

$$O$$

21. Which of the following combination of reactants can not be used to prepare the following compound?

22. When ethyl ethanoate is treated with excess of MeMgBr followed by hydrolysis, the product is :

- 23. What product is formed when acetic acid heated with PCl₅.
 - (1) Acetic anhydride
- (2) Acetate ester
- (3*) Acetyl chloride
- (4) Ethylchloride
- 24. Which species will not be considered as an electrophile?
 - (1) $CH_3 CH_2^{\oplus}$
- (2) AICI₃
- (3*) NH₃
- (4) SO₃
- 25. When grignard reagent is treated with isopropyl formate followed by acid hydrolysis we get:
 - (1) Aldehyde
- (2*) 2º alcohol
- (3) 3º alcohol
- (4) 1º alcohol

$$\mathsf{CH_3} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{CH_3}$$

26. Compound Ph - CH - OH can be prepared by :

$$(3) Ph - COCH3
(i) CH3CH2 - CH - MgBr
(ii) H3O⊕
(4*) PhCHO
(ii) H3O⊕
(4*) PhCHO$$

- **27.** Identify the correct set of aprotic solvent .
 - (1) Water, DMSO

(2*) DMSO, Acetone

(3) Ethanol, Acetone

- (4) Diethylether, Methyl amine
- 28. Acid hydrolysis of which of the following compounds yields two different organic compounds?
 - (1) CH₃COOH
- (2) CH₃CONH₂
- (3*) CH₃COOC₂H₅
- (4) (CH₃CO)₂O

- 29. Leaving group ability order amongst the following
 - (I) $C_6H_5O^-$ (II) $p-(CH_3)C_6H_4O^-$
- (III) p-(OCH_3) $C_6H_4O^-$
- (IV) p-(NO₂)C₆H₄O⁻

(1) I > II > III > IV

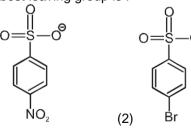
(2) III > II > I > IV

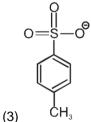
 $(3^*) IV > I > II > III$

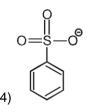
- (4) |V > |I| > |I| > 1
- **30.** Consider the reaction :

$$RCHO + NH_2NH_2 \rightarrow RCH = N-NH_2$$

What sort of reaction is it?


- (1) Electrophilic addition elimination reaction
- (2) Free radical addition elimination reaction
- (3) Electrophilic substitution elimination reaction
- (4*) Nucleophilic addition elimination reaction


Practice Test (JEE-Main Pattern) OBJECTIVE RESPONSE SHEET (ORS)

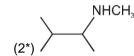

Que.	1	2	3	4	5	6	7	8	9	10
Ans.										
Que.	11	12	13	14	15	16	17	18	19	20
Ans.										
Que.	21	22	23	24	25	26	27	28	29	30
Ans.										

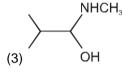
PART - II: PRACTICE QUESTIONS

1. The best leaving group is :

- 2. $CH_3 SNa + CH_3 CH_2 X \longrightarrow$
 - The reaction is fastest when X is

(1) –OH


(1*)


(2) –F

- (3*) 0 C CF
- О || (4) — О— С— СН;

- 3. The weakest nucleophile but best leaving group is
 - (1*) CF₃SO₃ (triflate ion)(2) CH₃SO₃
- (3) CH₃COO[©]
- (4) PhO[⊖]
- 4. The reagent with which both acetaldehyde and acetone react easily is
 - (1) Tollen's reagent
- (2) Schiff's reagent
- (3*) Grignard reagent
- (4) Fehling reagent

- **5.** The best leaving group (nucelofuge) is :
 - (1*) (CH₃)₂S
- (2) (CH₃)₂NH
- (3) (CH₃)₂O
- (4) CH₃OH
- **6.** The major organic product formed from the following reaction is :

- **7.** Which of the following is NOT a nucleophile?
 - (1*) B₂H₆
- (2) CH₃OH
- (3) H₂O
- (4) NH₃
- 8. Absolutely pure hydrogen cyanide fails to react with aldehydes because
 - (1) hydrogen cyanide is not a strong nucleophile
 - (2) hydrogen cyanide is undissociated when pure
 - (3) hydrogen cyanide cannot add to the carbonyl group on its own
 - (4*) all the above are correct.
- **9.** The non-nucleophilic base is
 - (1) CN-
- (2*) -OC(Me)3
- $(3) HO^{-}$
- (4) MeO-
- **10.** Which of the following series contains only nucleophiles?
 - (1*) NH₃, H₂O, CN⁻, I⁻

(2) AICI 3, NH3, H2O, I-

(3) AICI₃, BF₃, H₂O, NH₃

- (4) AICI 3, BF3, NO2+, NH3
- **11.** The product/s of the following reaction is/are

$$(1) \begin{array}{c} OH \\ + CH_3CH_2MgBr \\ \hline \\ OMgBr \\ OMgBr \\ OMgBr \\ (3^*) \\ + CH_3CH_3 \\ \hline \\ (4) \end{array}$$

- 12. A catalyst accelerates a reaction primarily by stabilizing the
 - (1) substrate
- (2) product
- (3) intermediate
- (4*) transition state
- **13.** Which of the following information is not provided by a reaction mechanism?
 - (1) Which bonds are formed and which bonds are broken
 - (2) Which intermediates and transition states are formed
 - (3*) Energy content of the reacting species
 - (4) Which is the slowest step