Exercise-1

Marked Questions may have for Revision Questions.

Ε

OBJECTIVE QUESTIONS

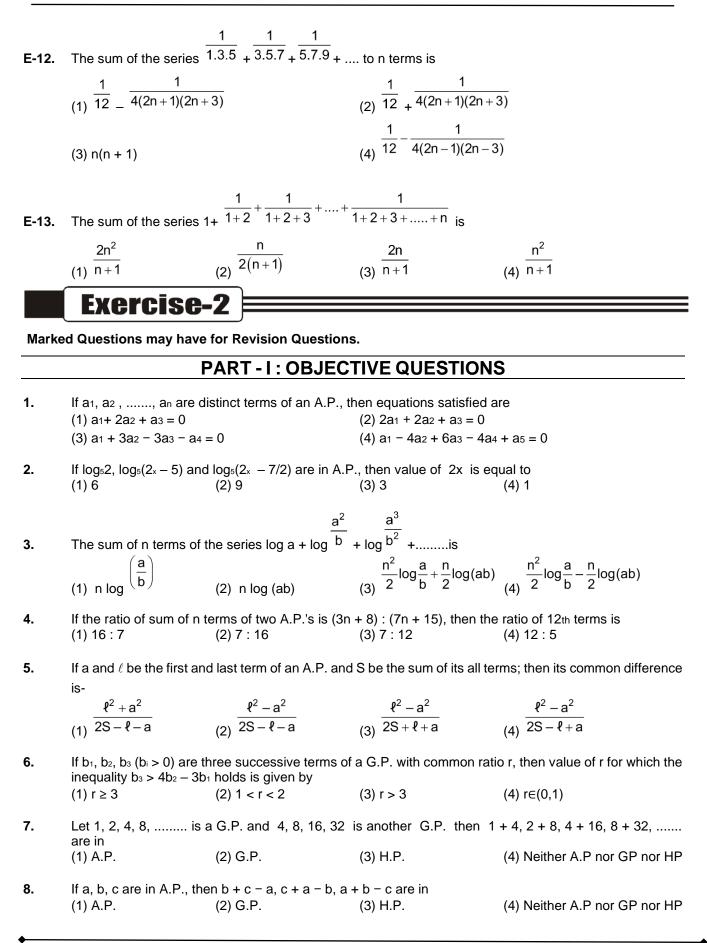
Secti	on (A) : Arithmetic	Progression and A	rithmetic Mean	
A-1.	The 15th term of the ser (1) −35	ies 4, 1, –2, –5, is (2) –38	(3) –41	(4) –44
A-2.	The number of the term (1) 18	ns of the sequence 7, 12 (2) 19	2, 17, 22,, 102 is (3) 20	(4) 21
A-3^.	The 19th term of the se (1) 74	eries 2 + 6 + 10 + is (2) 72	(3) 76	(4) 80
A-4.	The middle term of the (1) 44	progression 4,9,14,1((2) 49	04 is (3) 59	(4) 54
A-5.	Sum of first 20 terms of (1) –580	the series –10, –8, –6, (2) 180	is : (3) 200	(4) –600
A-6.	The sum of numbers ly (1) 2800	ing between 10 and 200 (2) 2835	which are divisible by 7 (3) 2870	will be (4) 2849
A-7.	The sum of all the even (1) 6535	positive integers less th (2) 6539	an 200 which are not div (3) 6534	visible by 6 is (4) 6532
A-8.	The value of x satisfyin (1) 5		$\frac{-2}{x} + \frac{x-3}{x} + \dots + \frac{1}{x} =$ (3) 7	3 is (4) 8
A-9.	If $S_n = n_2 a + \frac{n}{4} (n-1)d$ (1) $2a + \frac{d}{2}$	is the sum of first n term (2) 2a - $\frac{d}{2}$	s of A.P., then common (3) a $-\frac{d}{2}$	difference is (4) a + $\frac{d}{2}$
A-10.		d, e form an A.P., then th (2) 2	ne value of a – 4b + 6c – (3) 0	
A-11.	If a ₁ , a ₂ , a ₃ , are in <i>i</i> a ₁ + a ₂ + a ₃ + + a ₂₃ - (1) 909		$a_{10} + a_{15} + a_{20} + a_{24} = 225,$ (3) 750	then (4) 900
A-12.	(1) 555 1/(q + r), 1/(r + p),1/(p + (1) p, q, r are in A.P (3) 1/p, 1/q, 1/r are in A	- q) are in A.P., then	(2) p ₂ , q ₂ , r ₂ are in A.P. (4) p,q/2, r in A.P.	(.,

A-13.	•	P.'s how many terms are ms and 3, 5, 7, 50 te		
	(1) 15	(2) 16	(3) 17	(4) 18
A-14.		ear in both the arithmetic p Indred terms appearing ir	-	and 16, 21, 26 The
	(1) 4022	(2) 402200	(3) 201100	(4) 398000
A-15.	If the sum of four nun means is 27 to 35 the		that the product of the e	extremes is to the product of the
	(1) 3,9,15,21	(2) 9,5,7,3	(3) 6,10,14,18	(4) 18, 13, 8, 3
A-16.	11 AM's are inserted b	petween 28 and 10 then	6th AM is	
	(1) 19	(2) $17\frac{1}{2}$	(3) $20\frac{1}{2}$	(4) 22
A-17.	The sum of 6 AM's betw	veen 3 and 97 is :		
	(1) 500	(2) 600	(3) 400	(4) 300
A-18.		n sum of its first 51 terms		
	(1) 2500	(2) 2601	(3) 2551	(4) 2401
				m
A-19.	There are m A.M. bet to	ween 1 and 31. If the rat	io of the 7_{th} and $(m - 1)_{th}$	means is $5:9$, then 7 is equal
	(1) 2	(2) 1	(3) 3	(4) 4
Secti	on (B) : Geometric	progression and G	eometric mean	
B-1.	t ₆ of the series $\sqrt{3}, \frac{1}{\sqrt{3}}$	$\frac{1}{3\sqrt{3}}, \dots$ is		
	$\sqrt{3}$	1	_1	$\sqrt{3}$
	(1) 729	(2) 243	(3) 81	(4) 243
		of GP $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$		
B-2.	The sum of 10 terms of 10		is	09 1
	(1) $\frac{2^{10}-1}{2^{10}}$	(2) $\frac{2^9-1}{2^9}$	(3) $\frac{2^{19}-1}{2^{9}}$	(4) $\frac{2^9-1}{2^{10}}$
B-3.	The fifth term of a GP (1) 3	is 81 and its 8th term is 2 (2) 9	2187, then its third term i (3) 27	s : (4) 18
			512	
B-4.		gression 18, –12, 8,	_{is} 729 _?	
	(1) 9th	(2) 10th	(3) 8th	(4) 7th
B-5.	4th term of the geomet (1) 0	ric progression x, $x_2 + 2$, (2) 6	x₃ + 10 is (3) 54	(4) 27
	(1)0	(2) 0		(7) 41

B-6.	If 2 + 20 + 200 +	$=\frac{45}{8}$ (a > 0), then a equ		
D-0.	(1) 15/23	(2) 15/7	(3) 7/15	(4) 23/15
B-7.	The value of 91/3 . 91/9. (1) 1	. 91/27upto ∞, is- (2) 3	(3) 9	(4) 27
B-8.				equaring each term is 16/27, then
	(1) 1/2	(2) 1/4	(3) 1/3	(4) 1/5
B-9.	The nth term of a GP is is.	128 and the sum of its n	terms is 255. If its comm	on ratio is 2 then its first term
	(1) 1/2	(2) 1/4	(3) 1/8	(4) 1
B-10.	If a, b, c are in A.P. as (1) a = b ≠ c	well as in G.P. then whice (2) $a \neq b \neq c$	•	(4) none of these
5.44		· · /		
B-11.	(1) S ₂	sing infinite G.P. is 1 and (2) 1/S2	$(3) S_2/(2S - 1)$	•
B-12.	Three distinct real num (1) 0 < x< 1	nbers a,b,c are in G.P. su (2) –1< x< 3	uch that a+b+c = xb, ther (3) x < -1 or x > 3	
B-13.				sum of the first n terms is
	(1) S $\left(1-\frac{a}{S}\right)^n$	(2) S $\left[1 - \left(1 - \frac{a}{S}\right)^n\right]$	$(3) a \left[1 - \left(1 - \frac{a}{S}\right)^n \right]$	$(4) \frac{\left[1 - \left(1 - \frac{a}{S}\right)^n\right]}{S}$
B-14.	The rational number, w	which equals the number	$2 \overline{357}$. with recurring de	ecimal is
	(1) $\frac{2355}{1001}$	(2) $\frac{2379}{997}$	(3) ²³⁵⁵ 999	(4) ²³⁵⁵ 990
B-15.		f the series 0.7 + .77 + .7		
	(1) $\frac{7}{9}\left(89+\frac{1}{10^{10}}\right)$	(2) $\frac{7}{81}\left(89 + \frac{1}{10^{10}}\right)$	(3) $\frac{7}{81}\left(89+\frac{1}{10^9}\right)$	$\frac{7}{9}\left(89+\frac{1}{10^9}\right)$
B-16.) is S2, then the common	ratio will be-	d the sum of the next ten terms
	(1) $\frac{\pm 10\sqrt{S_1}}{\sqrt{S_2}}$	$(2) \pm \sqrt{\frac{S_2}{S_1}}$	(3) $\pm 10 \sqrt{\frac{S_2}{S_1}}$	$(4) \sqrt{\frac{S_1}{S_2}}$

B-17. If a, b, c, d are in G.P., then the value of $(a - c)^2 + (b - c)^2 + (b - d)^2 - (a - d)^2$ is-

B-18.	(1) 0 4 GM are insested bet	(2) 1 ween 3 and 729 then the	(3) a + d e 3rd GM is	(4) a – d
	(1) 27√3	(2) 27	(3) 81	(4) 243
B-19.	The A.M. of two numb (1) 2 and 64	ers is 34 and GM is 16, t (2) 64 and 3	he numbers are- (3) 64 and 4	(4) 32 and 36
B-20.	The product of 6 geor	netric means between 8 a	$\frac{1}{16}$ will be	
D-20.				
	(1) $\frac{1}{16}$	(2) ¹ / ₈	$(3)\frac{1}{2}$	(4) $\frac{1}{4}$
B-21.	If A.M. between positiv	ve numbers p and q (p \ge	q) is two times the GM, t	
	(1) 1:1	(2) 2:1	$(3) \left(2+\sqrt{3}\right):\left(2-\sqrt{3}\right)$	(4) 3:1
B-22.		-	A is the arithmetic mear	n inserted between two positive
	numbers, then the val	$\frac{O_1}{O_2} + \frac{O_2}{O_2}$		
	(1) 2A	(2) 3A	(3) 4A	(4) A
Secti	on (C) : Harmonic	and Arithmetic Geo	metric Progression	
C-1.	If the mth term of a H.F	P. be n and nth term be n	then the rth term will be	-
	<u>r</u>		<u>mn</u>	
	(1) r (1) mn	(2) $\frac{mn}{r+1}$		$(4) \frac{mn}{r-1}$
C-2.	(1) mn		(3) mn r	
C-2.	(1) mn If first and second term ab	(2) $\frac{mn}{r+1}$	(3) mn r	
C-2.	(1) mn If first and second term	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t ab	(3) $\frac{mn}{r}$	(4) mn (4) r-1 ab
C-2.	(1) $\frac{r}{mn}$ If first and second term (1) $\frac{ab}{a + (n-1)ab}$	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$	(4) mn (4) r-1 ab
	(1) $\frac{r}{mn}$ If first and second term (1) $\frac{ab}{a + (n-1)ab}$	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$	(4) mn (4) r-1 ab
C-2. C-3.	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{(1)} \frac{a}{a + (n-1)ab}$ If a, b, c are in H.P. the	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ en the value of $\frac{b+a}{b-a} + \frac{b}{b}$	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is :	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$
	(1) $\frac{r}{mn}$ If first and second term (1) $\frac{ab}{a + (n-1)ab}$	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$	(4) mn (4) r-1 ab
	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{(1)} \frac{a}{a + (n - 1)ab}$ If a, b, c are in H.P. the (1) 1	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ en the value of $\frac{b+a}{b-a} + \frac{b}{b}$ (2) 2	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is :	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$ (4) 1/2
C-3.	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{(1)} \frac{a}{a + (n - 1)ab}$ If a, b, c are in H.P. the (1) 1	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ en the value of $\frac{b+a}{b-a} + \frac{b}{b}$ (2) 2	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is : (3) 3	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$ (4) 1/2
C-3.	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{a + (n - 1)ab}$ If a, b, c are in H.P. the (1) 1 If first two terms of a H	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ en the value of $\frac{b+a}{b-a} + \frac{b}{b}$ (2) 2 H.P. are 2/5 and 12/13 rs (2) 12/13	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is : (3) 3 pectively then the largest (3) 13/12	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$ (4) 1/2 term is : (4) 3/14
C-3.	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{a + (n - 1)ab}$ If a, b, c are in H.P. the (1) 1 If first two terms of a H (1) 14/3	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ en the value of $\frac{b+a}{b-a} + \frac{b}{b}$ (2) 2 H.P. are 2/5 and 12/13 rs (2) 12/13	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is : (3) 3 protectively then the largest	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$ (4) 1/2 term is : (4) 3/14
C-3. C-4.	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{a + (n - 1)ab}$ If a, b, c are in H.P. the (1) 1 If first two terms of a H	(2) $\frac{mn}{r+1}$ ns of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ en the value of $\frac{b+a}{b-a} + \frac{b}{b}$ (2) 2 H.P. are 2/5 and 12/13 rs (2) 12/13	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is : (3) 3 pectively then the largest (3) 13/12	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$ (4) 1/2 term is : (4) 3/14
C-3. C-4. C-5.	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{a + (n - 1)ab}$ If a, b, c are in H.P. the (1) 1 If first two terms of a H (1) 14/3 If a, b, c are in G.P. wit (1) A.P.	(2) $\frac{mn}{r+1}$ Ins of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ (2) $\frac{b+a}{b-a} + \frac{b}{b}$ (2) 2 H.P. are 2/5 and 12/13 rs (2) 12/13 here a, b, c > 0 then $\frac{1+b}{1+b}$ (2) G.P.	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is : (3) 3 Dectively then the largest (3) 13/12 $\frac{1}{\log_{10} a}, \frac{1}{1+\log_{10} b}, \frac{1}{1+\log_{10} b}$ (3) H.P.	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$ (4) 1/2 term is : (4) 3/14 $\frac{10}{r}^{C}$ are in : (4) None of these
C-3. C-4.	$\frac{r}{(1)} \frac{r}{mn}$ If first and second term $\frac{ab}{a + (n - 1)ab}$ If a, b, c are in H.P. the (1) 1 If first two terms of a H (1) 14/3 If a, b, c are in G.P. wit (1) A.P.	(2) $\frac{mn}{r+1}$ Ins of a HP are a and b, t (2) $\frac{ab}{b+(n-1)(a+b)}$ (2) $\frac{b+a}{b-a} + \frac{b}{b}$ (2) 2 H.P. are 2/5 and 12/13 rs (2) 12/13 here a, b, c > 0 then $\frac{1+b}{1+b}$ (2) G.P.	(3) $\frac{mn}{r}$ then its nth term will be- (3) $\frac{ab}{b+(n-1)(a-b)}$ $\frac{+c}{-c}$ is : (3) 3 Dectively then the largest (3) 13/12 $\frac{1}{\log_{10} a}, \frac{1}{1+\log_{10} b}, \frac{1}{1+\log_{10} b}$	(4) $\frac{mn}{r-1}$ (4) $\frac{ab}{a+(n-1)(a-b)}$ (4) 1/2 term is : (4) 3/14 $\frac{10}{r}^{C}$ are in : (4) None of these


C-7.	Equal numbers are alw (1) A.P.	(2) G.P.	(3) H.P.	(4) not in AP, GP or HP
C-8.	If x > 1 and $\left(\frac{1}{x}\right)^a$, $\left(\frac{1}{x}\right)^a$ (1) A.P.	, $\left(\frac{1}{x}\right)^{c}$ are in G.P., then (2) G.P.	a, b, c are in (3) H.P.	(4) not in AP, GP or HP
	11	1		
C-9.	$\frac{1}{\int b + \sqrt{c}}, \frac{1}{\sqrt{c} + \sqrt{a}}$ (1) A.P.	$\sqrt{a} + \sqrt{b}$ are in A.P., th (2) G.P.	nen 9 _{ax+1} , 9 _{bx+1} ,9 _{cx+1} , x ≠ (3) H.P.	0 are in (4) not in AP, GP or HP
C-10.	The Sum of three cons	ecutive number in HP is	37 and the sum of the re	ciprocals is 1/4 then number are
	(1) 9, 10, 12	(2) 9, 10, 13	(3) 15, 12, 10	(4) 14, 11, 9
C-11.	f H, H₂, H₃, H₄ are 4 HM' (1) 27	s between 1/3 and 1/13 t (2) 32	$\frac{1}{H_1} + \frac{1}{H_2} + \frac{1}{H_3} + \frac{1}{H_4}$ (3) 35	is equal to : (4) 48
C-12.	If A,G, H be respective	ly the AM, GM, and H.M	1 between two positive r	numbers if x A = yG = zH where
	x, y, z are non-zero po	sitive real number then >	k,y,z are in	
	(1) A.P.	(2) G.P.	(3) H.P.	(4) Data insufficient
C-13.	If 18 HM's are interted $\frac{1}{9}$	between $\frac{1}{3}$ and $\frac{1}{41}$ then (2) $\frac{1}{11}$	th value of 4th HM is (3) $\frac{1}{13}$	(4) 11
• • • •	1⊣ The sum of n terms of	$+\frac{2}{3}+\frac{3}{3^2}+\dots$		
C-14.	The sum of n terms of $3(1)$ n	IS IS	$(3)^{2}(1)$ 3n	
	(1) $\frac{3}{2}\left(1-\frac{1}{3^{n}}\right)-\frac{n}{3^{n}}$		(2) $\left(\frac{3}{2}\right)^2 \left(1 - \frac{1}{3^n}\right) - \frac{3n}{2.3}$	n
	(3) $\left(\frac{3}{2}\right)^2 \left(1 - \frac{1}{3^n}\right) - \frac{n}{2.3^n}$	n	(4) $\left(\frac{3}{2}\right)^2 \left(1 - \frac{1}{3^n}\right) - \frac{n}{3^n}$	
C-15.	The n _{th} terms of the ser $\frac{3n-2}{5^{n-1}}$ (1)	ties 1 + $\frac{\frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3}}{\frac{3n-2}{5^n}}$ +	is (3) $\frac{3n+2}{5^n}$	(4) $\frac{4n-3}{5^{n-1}}$
C-16 .⊺	he sum of infinite terms	of the series $5 - \frac{7}{3} + \frac{9}{3^2}$	$-\frac{11}{3^3} + \dots \infty$ is	

Sequence & Series

	(1) 27/2	(2) 9/2	(3) 27/8	(4) 27/16
C-17.	(1) 3	$4 + \frac{8}{3} + \frac{12}{3^2} + \frac{16}{3^3} + \cdots$ (2) 9	- is (3) 6	(4) 8
C-18.	The value of $2^{\frac{1}{4}} \cdot 4^{\frac{1}{8}} \cdot 8$ (1) 3	(2) 2	(3) 6	(4) 8
Secti	on (D) : Relation b	etween A.M. , G.M. a	and H.M.	
D-1.	AM of first 15 positive (1) 15	odd natural numbers is (2) 225	(3) 250	(4) 196
D-2.	$a_{r} = \frac{1}{r+1}$ then HM c (1) $\frac{1}{25}$	of a ₁ , a ₂ , a ₃ a ₅₀ is (2) ² / ₅₁	(3) ² / ₅₃	(4) $\frac{1}{26}$
D-3.	If positive numbers a,			
	(1) ab \geq cd	(2) ac \geq bd	(3) ad \geq bc	(4) a + d < b + c
D-4.	If the product of n posi (1) a positive integer (3) divisible by n	itive numbers is 1, then the	neir sum will be (2) equivalent to n + 1/ (4) not less than n	'n
		.,100		
		ession $\frac{x^{1}}{1+x+x^2+x^3+}$		
D-5.			-	
	(1) $\frac{1}{201}$	(2) $\frac{1}{200}$	(3) $\frac{100}{201}$	(4) $\frac{201}{100}$
D-6.	If a, b, c are three pos	itive numbers then		
2 0.	$(1) \frac{a}{b} + \frac{b}{c} + \frac{c}{a} < 3$		(2) (a+b+c) $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$	$\left \frac{1}{2} \right \ge 9$
	(3) a + b +c > 3(abc)		(4) $a_2b + b_2c + c_2a \ge 9$	abc
D-7.	the numbers are-		-	GM exceeds the H.M. by 4. Then
	(1) 10, 40	(2) 10, 20	(3) 20, 40	(4) 10, 50
D-8.	If ratio of AM to GM of (1) 4 : 1	two positive numbers a a (2) 2 : 1	and b is 5 :3 then a : b is (3) 3 : 2	(where a >b) (4) 9:1

Section (E) : Σn , Σn_2 , Σn_3 , Method of difference and Vn method

	$\sum_{i=1}^{10} t_{i}$			
E-1.	If $t_r = 2r_2 + 3$ then $r=1$	is		
	(1) 800	(2) 770	(3) 740	(4) 720
E-2.	The sum of the series	1.2 + 2.3 + 3.4 +up	to 20 terms is	
	(1) 3020	(2) 2020	(3) 3080	(4) 2080
	$\sum_{r=1}^{6} t_{r}$			
E-3.	If = $2r + 2_r$ then $r=1$			
	(1) 170	(2) 172	(3) 168	(4) 166
E-4.	The sum of the series	1.32 + 2.52 + 3.72 +to	20 terms is	
	(1) 188090	(2) 94045	(3) 325178	(4) 812715
E-5.	The sum of the series	up to n term 1.3.5 + 3.5.7	7 + 5.7.9 + is	
	(1) 8n3 + 12n2 – 2n –	3	(2) n (8n3 + 11n2 – n –	- 3)
	(3) n (2n3 + 8n2 + 7n -	- 2)	(4) n4 + 6n3 + 7n2 +n	
E-6.	The sum of the infinite	series 12 + 22 x + 32 x2 -	+is (– 1 < x < 1, x =	≠ 0)
	(1) $(1 + x)/(1 - x)^3$	(2) $(1 + x)/(1 - x)$	(3) x/(1 − x)3	(4) 1/(1 − x)3
		1		
E-7.	lf (1 ₂ – t ₁)+ (2 ₂ –t ₂) +	+ $(n_2 - t_n) = \frac{1}{3}n(n_2 - 1), t$	hen t₁ is	
	n			
	(1) ⁿ / ₂	(2) n –1	(3) n +1	(4) n
F 0	The much an of terms :			
E-8.				
		n the sequence 1,3,6,10,		
	(1) 50	n the sequence 1,3,6,10, (2) 100	15,21,5050 is- (3) 101	(4) 105
E-9.	(1) 50	(2) 100	(3) 101	
E-9.	(1) 50	(2) 100 m of the series (2 + 3 + 6		
E-9.	(1) 50 If t_n denotes the n_{th} term	(2) 100 m of the series (2 + 3 + 6	(3) 101 + 11 + 18 +), the	n t₅o is
E-9.	(1) 50 If t_n denotes the n_{th} term (1) $49_2 + 2$	 (2) 100 m of the series (2 + 3 + 6 (2) 49₂-2 	(3) 101 + 11 + 18 +), the	n t₅o is
	(1) 50 If t_n denotes the n_{th} term (1) $49_2 + 2$	 (2) 100 m of the series (2 + 3 + 6 (2) 49₂-2 	(3) 101 + 11 + 18 +), the	n t₅o is
E-9. E-10.	(1) 50 If t_n denotes the n_{th} term	 (2) 100 m of the series (2 + 3 + 6 (2) 49₂-2 	(3) 101 + 11 + 18 +), the	n t₅o is
	(1) 50 If t _n denotes the n _{th} term (1) 49 ₂ + 2 $\sum_{r=2}^{\infty} \frac{1}{r^2 - 1}$ is equal to:	 (2) 100 m of the series (2 + 3 + 6 (2) 49₂ - 2 	 (3) 101 + 11 + 18 +), ther (3) 50₂ − 2 	n t₅₀ is (4) 50₂ + 2
	(1) 50 If t _n denotes the n _{th} term (1) 49 ₂ + 2 $\sum_{r=2}^{\infty} \frac{1}{r^2 - 1}$ is equal to: (1) 1	 (2) 100 m of the series (2 + 3 + 6) (2) 49₂ - 2 (2) 3/4 	 (3) 101 + 11 + 18 +), ther (3) 50₂ - 2 (3) 4/3 	n t₅o is (4) 50₂ + 2 (4) 1/2
	(1) 50 If t _n denotes the n _{th} term (1) 49 ₂ + 2 $\sum_{r=2}^{\infty} \frac{1}{r^2 - 1}$ is equal to: (1) 1	 (2) 100 m of the series (2 + 3 + 6) (2) 49₂ - 2 (2) 3/4 	 (3) 101 + 11 + 18 +), ther (3) 50₂ − 2 	n t₅o is (4) 50₂ + 2 (4) 1/2
E-10.	(1) 50 If t _n denotes the n _{th} term (1) 49 ₂ + 2 $\sum_{r=2}^{\infty} \frac{1}{r^2 - 1}$ is equal to: (1) 1	 (2) 100 m of the series (2 + 3 + 6) (2) 49₂ - 2 (2) 3/4 	 (3) 101 + 11 + 18 +), ther (3) 50₂ - 2 (3) 4/3 	n t₅o is (4) 50₂ + 2 (4) 1/2

9.	If x, y, z are in G.P. the (1) A.P.	n x2 + y2, xy + yz, y2 + z (2) G.P.		(4) Decreasing order
10.	If a, b, c, d are in G.P., (1) A.P.	then (a ₂ – b ₂), (b ₂ – c ₂), (2) G.P.	(c2 – d2) are in (3) H.P.	(4) Neither A.P nor GP nor HP
11.	AP. If the last number is resulting numbers form	s also increased by 64 a a GP again. Then		by 8, the three numbers form an crease in the middle number, the
	(1) common ratio = 3	(2) first number = $\frac{4}{9}$	(3) common ratio = -5	(4) first number = 5
12.	Let S1, S2, S3 ,be	e squares such that for e e length of a side of S1 cm2 ?	is 10 cm then for which c	a side of Sn equals the length of of the following values of n is the (4) 5
	(1) 7	(2) 8 <u>b</u> <u>b</u> <u>b</u> na- ² , ² , c- ² will	(3) 6	(4) 5
13.	If a, b, c be in H.P., the (1) A.P.	n a - 2, 2, _c - 2 wil (2) G.P.		(4) Increasing order
14.	$\int_{\text{If}} \frac{a + be^y}{a - be^y} = \frac{b + ce^y}{b - ce^y} =$ (1) A.P.	$\frac{c + de^{y}}{c - de^{y}}$, then a, b, c, c (2) G.P.	d are in (3) H.P.	(4) Increasing order
15.	If a1, a2, a3,an are (1) 1	e in H.P. and a1a2 + a2a3 (2) 2	+ a3 a4 +an-1an = k (3) n + 1	a1an, then k is equal to- (4) n −1
16.	If in an AP, t1 = log10 a, (1) AP	tn+1 = log10b and t2n+1 = (2) GP	log10c then a, b, c are ir (3) HP	(4) None of these
		$\frac{a_{2n+1}-a_{2n+1}$	$\frac{a_1}{a_1} + \frac{a_{2n} - a_2}{a_{2n} + a_2} + \dots + \frac{a_n}{a_n}$	$a_{n+2} - a_n$
17.	If a1, a2, a3,, a2n+1 (1) $\frac{n(n+1)}{2}$ $\frac{a_2 - a_1}{a_{n+1}}$	are in AP then $a_{2n+1} + b_{2n+1}$ (2) $\frac{n(n+1)}{2}$	^a 1 + ^a _{2n} + ^a 2 ++ ^a r (3) (n + 1) (a2 – a1)	(4) $\frac{n(n-1)}{2} \left(\frac{a_2 - a_1}{a_{n+1}}\right)$
			1	$\frac{1}{x{+}} \frac{1}{y_{+}} \frac{1}{z_{-}} \frac{5}{3}_{ifa, x, y, z, b are}$
18.	The value of $x + y + z$ is in H.P., then a and b ar (1) 1, 9	e-	A.P. while the value of >	$(+ y + z is ^3 if a, x, y, z, b are$ (4) 4, 5
19.				Tht terms are respectively a, b,
	c, then		(3) $ac - b2 = 0$	
20.	Let 1 ₂ + 2 ₂ + 3 ₂ + (1) n ₂	. + n ₂ = g(n), then g(n) – (2) (n – 1) ₂		(4) n ₃
21.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,, 50 and x1 +	$x_2 + + x_{50} = 50,$	then the minimum value of
	$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_{50}}$ (1) 50	equals (2) (50) ₂	(3) (50)₃	(4) (50)4

22.	If 0 < x, y, ab < 1, then the sum of the infinite terms of the series $\sqrt{x}\left(\sqrt{a} + \sqrt{x}\right) + \sqrt{x}\left(\sqrt{ab} + \sqrt{xy}\right) + \sqrt{x}\left(b\sqrt{a} + y\sqrt{x}\right) + \dots is$ -				
	(1) $\frac{\sqrt{ax}}{1+\sqrt{b}} + \frac{x}{1+\sqrt{y}}$	(2) $\frac{\sqrt{x}}{1+\sqrt{b}} + \frac{\sqrt{x}}{1+\sqrt{y}}$	$(3) \frac{\sqrt{x}}{1-\sqrt{b}} + \frac{\sqrt{x}}{1-\sqrt{y}}$	$(4) \frac{\sqrt{ax}}{1-\sqrt{b}} + \frac{x}{1-\sqrt{y}}$	
23.		the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8}$. (2) 2-n + n - 1	+ 15/16 + is equal to (3) 2n + n − 1	(4) 2-n + n - 2	
24.		$1 + \frac{3}{4} + \frac{7}{16} + \frac{15}{64} + \frac{31}{256}$	+ to infinity is		
	(1) $\frac{8}{3}$	(2) $\frac{\frac{7}{3}}{1}$ 2	$(3) \frac{\frac{5}{3}}{\frac{3}{1+3^2+3^4}} + \dots \infty$	(4) $\frac{7}{2}$	
25.	The sum of the series (1) $\frac{1}{3}$		$\frac{4}{4} + \frac{1+3^2+3^4}{4} + \dots \infty$	$\frac{1}{(4)^2}$	
26.	Sum of the series $S = 1_2 - 2_2 + 3_2 - 4_2 + (1) 2007006$		(3) 2000506	(4) 2005006	
27.			$+ x + x_{2} + x_{3} + \dots = x_{n}$ (3) $\frac{n(1-x) - x(1-x^{n})}{(1-x)^{2}}$		
28.			$\frac{3}{2} + \frac{5}{3} + \dots + \frac{2n-1}{n}$ (3) H _n - 2n		

PART - II : MISCELLANEOUS QUESTIONS

Section (A) : ASSERTION/REASONING DIRECTIONS :

- Each question has 4 choices (1), (2), (3) and (4) out of which ONLY ONE is correct.
- (1) Both the statements are true.
- (2) Statement-I is true, but Statement-II is false.
- (3) Statement-I is false, but Statement-II is true.
- (4) Both the statements are false.
- A-1. STATEMENT-1 : The series for which sum to n terms, S_n , is given by $S_n = 5n_2 + 6n$ is an A.P. STATEMENT-2 : The sum to n terms of an A.P. having non-zero common difference is a quadratic in n, i.e., $an_2 + bn$.
- A-2. STATEMENT-1 : 3,6,12 are in G.P., then 9,12,18 are in H.P.

STATEMENT-2: If three consecutive terms of a G.P. are positive and if middle term is added in these terms, then resultant will be in H.P.

- A-3. STATEMENT-1 : The sum of the first 30 terms of the sequence 1,2,4,7,11,16, 22,..... is 4520.
 STATEMENT-2 : If the successive differences of the terms of a sequence form an A.P., then general term of sequence is of the form an₂ + bn + c.
- A-4. Suppose four distinct positive numbers a_1 , a_2 , a_3 , a_4 are in G.P. Let $b_1 = a_1$, $b_2 = b_1 + a_2$, $b_3 = b_2 + a_3$ and $b_4 = b_3 + a_4$

STATEMENT -1 : The numbers b_1 , b_2 , b_3 , b_4 are neither in A.P. nor in G.P.

and

STATEMENT-2 : The numbers b1, b2, b3, b4 are in H.P.

Section (B) : MATCH THE COLUMN

B-1.		Colum	nn-l				Colur	nn-l l
	(P)	$\frac{a-b}{b-c} =$	= <mark>a</mark> a _{then}	a, b, c a	ire in		(1)	AP
	(Q)	$\frac{a-b}{b-c} =$	= a b then	a, b, c a	ire in		(2)	GP
	(R) (S)	$\frac{a-b}{b-c} = \frac{a}{c}$ then a, b, c are in p, q, r in AP then pth, qth and rth term			(3) (4)	HP Neither AP nor GP nor HP		
Codes			P are al				(')	
Codes	(1) (2) (3) (4)	P 2 2 1	Q 1 1 2 2	R 4 3 3 3	S 3 4 2 4			
B-2.		COLU	MN-I			COLU	MN-II	
	(P) (Q)	GM of	the root	s of equa	ation	value of x is	(1)	4
	(R)	x ₃ – 6x ₂ + 11x –6 = 0 is $\lambda^{\frac{1}{3}}$ then value of λ is HM of the roots of the equation 3x ₂ – 5x + 2 = 0 is λ then value of 5λ is			(2) (3)	6 8		
Codes	(S)	AM of	first 10 ı	natural n	umbers	is x then value of 2x is	(4)	11
Codes	(1) (2) (3) (4)	P 4 3 1 3	Q 3 2 2 4	R 2 1 3 1	S 1 4 2 2			

Section (C) : ONE OR MORE THAN ONE OPTIONS CORRECT

C-1. Indicate the correct alternative(s), for $0 < \phi < \pi/2$, if:

		$\sum_{n=0}^{\infty} \sum_{\substack{\sin_{2n}\phi, z = n \\ (2) xyz = xy + z}}^{\infty}$	$\sum_{n=0}^{\infty} \cos_{2n} \varphi \sin_{2n} \varphi \text{ then:}$ (3) xyz = x + y + z	(4) xyz = yz + x
C-2.	111 <u>8</u> 1 <u>8</u> 1 <u>8</u> <u>8</u> 18.1 If a = ^{55 times} , b = 1	+ 10 + 10 ₂ + 10 ₃ +	10_4 and c = 1 + 10_5 + 10_{10} +	+ 1050 then
	(1) b, $\frac{a}{2}$, c are in A.P. (3) a is a prime numb		(2) b, \sqrt{a} , c are in G (4) a is a composite	
C-3.	b & c is 5, then		nd the harmonic mean of a a teger (2) arithmetic mean (4) common ratio of	
C-4.	If the roots of $x_3 + a + b + 6 = 0$, then		()	for ratio r, where a, $b \in R$ and (4) r + b = -4
	(1) $a = 3$	(2) $r = -1$	(3) b = -3	(4) + 0 = -4
	Exercise			
	ed Questions may hav ked Questions may ha			
	PART-I: JEE	(MAIN) / AIEI	EE PROBLEMS (PR	REVIOUS YEARS)
_			$\frac{a_1 + a_2 + \dots + a_p}{a_1 + a_2 + \dots + a_q} = \frac{p^2}{q^2}, p \neq q,$	$\frac{a_6}{a_{04}}$
1.	Let a ₁ , a ₂ , a ₃ , be te	rms of an AP. If	$q = q$, $p \neq q$,	, then ³²¹ equals : [AIEEE 2006 (3, -1), 165]
				[AIEEE 2000 (3, -1), 103]
	(1) ⁷ / ₂	(2) $\frac{2}{7}$	(3) $\frac{11}{41}$	$(4) \frac{41}{11}$
2.	If a_1 , a_2 ,, a_n are in F	HP, then the expres	sion a1a2 + a2a3 ++ an - 1	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (5) (4) (5)
2.		HP, then the expres		(4) $\frac{41}{11}$ a _n is equal to :
	If a_1 , a_2 ,, a_n are in H (1) (n – 1) ($a_1 – a_n$) In a geometric progre Then the common rat	HP, then the expres (2) na₁a₅ ssion consisting of ∣ io of this progressio	sion a₁a₂ + a₂a₃ ++ a₅₋ 1 (3) (n – 1) a₁a₅ positive terms, each term eq	$\begin{array}{c} \frac{41}{11} \\ (4) \ \overline{11} \\ a_n \text{ is equal to :} \\ \textbf{[AIEEE 2006 (3, -1), 165]} \\ (4) n (a_1 - a_n) \\ \end{array}$ uals the sum of the next two terms. [AIEEE 2007 (3, -1), 120]
	If a_1 , a_2 ,, a_n are in H (1) (n – 1) ($a_1 – a_n$) In a geometric progre Then the common rat	HP, then the expres (2) na₁a₅ ssion consisting of ∣	sion a₁a₂ + a₂a₃ ++ a₅₋ 1 (3) (n – 1) a₁a₅ positive terms, each term eq	$\begin{array}{c} \frac{41}{(4)} \\ \hline 11 \\ a_n \text{ is equal to :} \\ \textbf{[AIEEE 2006 (3, -1), 165]} \\ \hline (4) n (a_1 - a_n) \\ \end{array}$ uals the sum of the next two terms.
3.	If a_1 , a_2 ,, a_n are in F (1) (n – 1) ($a_1 – a_n$) In a geometric progre Then the common rat (1) $\frac{1}{2}$ (1– $\sqrt{5}$)	HP, then the expres (2) na ₁ a _n ssion consisting of p io of this progression (2) $\frac{1}{2}\sqrt{5}$	sion $a_1a_2 + a_2a_3 + \dots + a_{n-1}$ (3) (n – 1) a_1a_n positive terms, each term eq on equals (3) $\sqrt{5}$ that $p_2 + q_2 = 1$, then the ma	$\begin{array}{c} \frac{41}{(4)} \\ (4) \\ \frac{41}{11} \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ \frac{1}{2} \end{array}$
3.	If a_1 , a_2 ,, a_n are in F (1) (n – 1) ($a_1 – a_n$) In a geometric progre Then the common rat (1) $\frac{1}{2}$ (1– $\sqrt{5}$)	HP, then the expres (2) na ₁ a _n ssion consisting of p io of this progression (2) $\frac{1}{2}\sqrt{5}$	sion $a_1a_2 + a_2a_3 + \dots + a_{n-1}$ (3) (n – 1) a_1a_n positive terms, each term eq on equals (3) $\sqrt{5}$	$\begin{array}{c} \frac{41}{(4)} \\ (4) \\ \frac{41}{11} \\ (4) \\ (4) \\ (4) \\ (4) \\ (4) \\ (a_1 - a_n) \\ (4) \\ (4) \\ (a_1 - a_n) \\ (4) \\ (4) \\ (2) \\ (3) \\ (3) \\ (3) \\ (4) \\ (4) \\ (2) \\ (4) \\ (2) \\ (3) \\ (4) \\ (2) \\ (3) \\ (3) \\ (4) \\ (3) \\ (4) \\ (2) \\ (3) \\ (4) \\ (4) \\ (2) \\ (4) \\ (4) \\ (2) \\ (4) \\ $
3. 4.	If a_1 , a_2 ,, a_n are in F (1) $(n - 1) (a_1 - a_n)$ In a geometric progree Then the common rat (1) $\frac{1}{2} (1 - \sqrt{5})$ If p and q are positive (1) 2 The sum of first two to	HP, then the express (2) na ₁ a _n ssion consisting of p io of this progression (2) $\frac{1}{2}\sqrt{5}$ real numbers such (2) $\frac{1}{2}$ erms of a geometric	sion $a_1a_2 + a_2a_3 + \dots + a_{n-1}$ (3) $(n - 1) a_1a_n$ positive terms, each term equals (3) $\sqrt{5}$ that $p_2 + q_2 = 1$, then the matrix (3) $\frac{1}{\sqrt{2}}$ progression is 12. The sum	$\begin{array}{c} \frac{41}{11} \\ (4) \ \frac{41}{11} \\ a_n \text{ is equal to :} \\ \textbf{[AIEEE 2006 (3, -1), 165]} \\ (4) n (a_1 - a_n) \\ \text{uals the sum of the next two terms.} \\ \textbf{[AIEEE 2007 (3, -1), 120]} \\ \frac{1}{(4)} \frac{1}{2} \\ aximum value of (p + q) \text{ is} \\ \textbf{[AIEEE 2007 (3, -1), 120]} \end{array}$
2. 3. 4.	If a_1 , a_2 ,, a_n are in F (1) $(n - 1) (a_1 - a_n)$ In a geometric progree Then the common rat (1) $\frac{1}{2} (1 - \sqrt{5})$ If p and q are positive (1) 2 The sum of first two to	HP, then the express (2) na ₁ a _n ssion consisting of p io of this progression (2) $\frac{1}{2}\sqrt{5}$ real numbers such (2) $\frac{1}{2}$ erms of a geometric	sion $a_1a_2 + a_2a_3 + \dots + a_{n-1}$ (3) $(n - 1) a_1a_n$ positive terms, each term equals (3) $\sqrt{5}$ that $p_2 + q_2 = 1$, then the matrix (3) $\frac{1}{\sqrt{2}}$ progression is 12. The sum	$\frac{41}{(4)} \frac{41}{11}$ an is equal to : [AIEEE 2006 (3, -1), 165] (4) n (a ₁ - a _n) uals the sum of the next two terms. [AIEEE 2007 (3, -1), 120] (4) $\frac{1}{2}$ aximum value of (p + q) is [AIEEE 2007 (3, -1), 120] (4) $\sqrt{2}$ of the third and the fourth terms is

	(1) 2	(2) 3	(3) 4	(4) 6
7.		50 and a10, a11,are in a	an AP with common diff [AIEEE 2010]	notes he counts in the nth minute. erence –2, then the time taken by) (8, −2), 144] (4) 24 minutes
8.		y Rs. 40 more than the sa		n each of the subsequent months vious month. His total saving from [AIEEE 2011, I, (4, –1), 120] (4) 21 months
9.	Let an be the nth term of is :		[AIEI	e common difference of the A.P. ΞΕ 2011, ΙΙ, (4, –1), 120] α-β
10.	is 8000.		+ 4) + (4 + 6 + 9) + (9 +	(4) 200 12 + 16) + + (361 + 380 + 400) [AIEEE-2012, (4, -1)/120]
	(2) Statement-1 is true	, statement-2 is true; sta , statement-2 is true; sta	tement-2 is a correct ex	planation for Statement-1. ct explanation for Statement-1.
11.	If 100 times the 100th t then the 150th term of t (1) – 150 (3) 150		ero common difference (2) 150 times its 50th t (4) zero	equals the 50 times its 50th term, [AIEEE-2012, (4, –1)/120] term
12.		ms of the sequence 0.7, (2) $\frac{7}{9}$ (99 - 10 ₋₂₀)		[AIEEE - 2013, (4, - 1) 120] $(4) \frac{7}{9} (99 + 10_{-20})$
13.		3(11) ₂ (10) ₇ +	+ 10 (11) ₉ = k(10) ₉ , ther	
	(1) 100	(2) 110	(3) ¹²¹ / ₁₀	(4) $\frac{441}{100}$
14.		rs form an increasing G hen the common ratio of		in this G.P. is doubled, the new [JEE(Main) 2014, (4, - 1), 120]
	(1) 2 − ^{√3}	(2) 2 + $\sqrt{3}$	(3) $\sqrt{2} + \sqrt{3}$	(4) 3 + $\sqrt{3}$
15.		distinct real numbers l an $G_{1+2}^{4}G_{2}^{4} + G_{3}^{4}$ equals (2) 4 lm_2 n		and G ₃ are three geometric means ain) 2015, (4, – 1), 120] (4) 4 /₂m₂n₂

		1 ³ 1 ³	$\frac{3^{3}+2^{3}}{1+3}$ + $\frac{1^{3}+2^{3}+3^{3}}{1+3+5}$							
16.	The sum of first 9 ter	ms of the series $\frac{1}{1}$ +	1+3 + 1+3+5	+ is : [JEE(Main) 2015, (4, – 1), 120]						
	(1) 71	(2) 96	(3) 142	(4) 192						
17.	If the 2_{nd} , 5_{th} and 9_{th} te	rms of a non-constant	A.P. are in G.P., then	the common ratio of this G.P. is:						
	4		7	[JEE(Main) 2016, (4, – 1), 120] <u>8</u>						
	(1) $\frac{4}{3}$	(2) 1	(3) $\frac{7}{4}$	(4) $\frac{8}{5}$						
40				$+\left(4\frac{4}{5}\right)^{2}$ +, is $\frac{16}{5}$ m, then m is equal						
18.	to :		[JE	E(Main) 2016, (4, – 1), 120]						
	(1) 101	(2) 100	(3) 99	(4) 102						
19.	For any three positive	e real numbers a, b and	l c, 9(25a² + b²) + 25(c ² – 3ac) = 15b(3a + c), Then [JEE(Main) 2017, (4, – 1), 120]						
	(1) b , c and a are in G.P.(2) b, c and a are in A.P.(3) a, b and c are in A.P.(4) a, b and c are in G.P.									
20.	Let a,b,c \in R. If f(x) =			$(x + y) = f(x) + f(y) + xy, \forall x, y \in \mathbb{R}$, then						
	$\sum_{n=1}^{10} f(n)$									
	ⁿ⁼¹ is equal to (1) 330	(2) 165	[JE (3) 190	E(Main) 2017, (4, – 1), 120] (4) 225						
21.	If. for a positive integ	er n. the quadratic equ	ation. x(x + 1) + (x + ⁻	1)(x + 2) ++ (x + $n-1$)(x + n) = 10n						
	has two consecutive	integral solutions, then	If, for a positive integer n, the quadratic equation, $x(x + 1) + (x + 1)(x + 2) + \dots + (x + n - 1)(x + n) = has two consecutive integral solutions, then n is equal to [JEE(Main) 2017, (4, - 1), 1]$							
	(1) 12	(2) 9	(3) 10	(4) 11						
	. ,	. ,								
 1.	PART - II : JEE (,	ADVANCED) / IIT	-JEE PROBLEM	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum						
1.	PART - II : JEE (ADVANCED) / IIT	-JEE PROBLEM	(4) 11 IS (PREVIOUS YEARS)						
1.	PART - II : JEE (A If a1, a2, a3,, a value of a1 + a2 + a3 (A) n(2c)1/n	ADVANCED) / IIT are positive real numl + + an – 1 + 2an is (B) (n + 1) c1/n	-JEE PROBLEM bers whose product i (C) 2nc1/n	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n						
<u> </u>	PART - II : JEE (A If a1, a2, a3,, a value of a1 + a2 + a3 (A) n(2c)1/n	ADVANCED) / IIT are positive real numl + + an – 1 + 2an is (B) (n + 1) c1/n	-JEE PROBLEM bers whose product i (C) 2nc1/n	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n and $a + b + c = \frac{3}{2}$, then the value of a						
	PART - II : JEE (A If a1, a2, a3,, a value of a1 + a2 + a3 - (A) n(2c)1/n Suppose a, b, c are in is	ADVANCED) / IIT n are positive real numl + + an – 1 + 2an is (B) (n + 1) c1/n n A.P. and a2, b2, c2 are	-JEE PROBLEM bers whose product i (C) 2nc1/n • in G.P. if a < b < c ar	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n and a + b + c = $\frac{3}{2}$, then the value of a [IIT-JEE-2002, Scr. , (3, -1), 90]						
	PART - II : JEE (<i>A</i> If a1, a2, a3,, at value of a1 + a2 + a3 + (A) n(2c)1/n Suppose a, b, c are in is $\frac{1}{2\sqrt{2}}$	ADVANCED) / IIT an are positive real numbers that the number of the numbers of the numbers that the number of the numbers of the numbers that the numbers of the numbe	-JEE PROBLEM bers whose product i (C) 2nc1/n in G.P. if a < b < c ar (C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n at a + b + c = $\frac{3}{2}$, then the value of a [IIT-JEE-2002, Scr. , (3, -1), 90] $\frac{1}{2} - \frac{1}{\sqrt{2}}$						
	PART - II : JEE (<i>A</i> If a1, a2, a3,, at value of a1 + a2 + a3 + (A) n(2c)1/n Suppose a, b, c are in is $\frac{1}{2\sqrt{2}}$	ADVANCED) / IIT an are positive real numbers that the number of the numbers of the numbers that the number of the numbers of the numbers that the numbers of the numbe	-JEE PROBLEM bers whose product i (C) 2nc1/n in G.P. if a < b < c ar (C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n at a + b + c = $\frac{3}{2}$, then the value of a [IIT-JEE-2002, Scr. , (3, -1), 90] $\frac{1}{2} - \frac{1}{\sqrt{2}}$						
	PART - II : JEE (<i>A</i> If a1, a2, a3,, at value of a1 + a2 + a3 + (A) n(2c)1/n Suppose a, b, c are in is $\frac{1}{2\sqrt{2}}$	ADVANCED) / IIT n are positive real numl + + an – 1 + 2an is (B) (n + 1) c1/n n A.P. and a2, b2, c2 are	-JEE PROBLEM bers whose product i (C) 2nc1/n in G.P. if a < b < c ar (C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n at the the second sec						
2.	PART - II : JEE (<i>A</i> If a1, a2, a3,, at value of a1 + a2 + a3 + (A) n(2c)1/n Suppose a, b, c are in is $\frac{1}{2\sqrt{2}}$	ADVANCED) / IIT an are positive real numbers that the number of the numbers of the numbers that the number of the numbers of the numbers that the numbers of the numbe	-JEE PROBLEM bers whose product i (C) 2nc1/n in G.P. if a < b < c ar (C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n at a + b + c = $\frac{3}{2}$, then the value of a [IIT-JEE-2002, Scr. , (3, -1), 90] $\frac{1}{2} - \frac{1}{\sqrt{2}}$						
2.	PART - II : JEE (If a1, a2, a3,, a value of a1 + a2 + a3 + (A) n(2c)1/n Suppose a, b, c are in is (A) $\frac{1}{2\sqrt{2}}$ If $\alpha \in \left(0, \frac{\pi}{2}\right)$, then $\sqrt{2}$ (A) 2 tan α	ADVANCED) / IIT are positive real numbers + + an - 1 + 2an is (B) (n + 1) c1/n A.P. and a2, b2, c2 are (B) $\frac{1}{2\sqrt{3}}$ $\overline{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$ is alw (B) 1	-JEE PROBLEM bers whose product if (C) 2nc1/n in G.P. if a < b < c ar (C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$ ways greater than or (C) 2	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n at the the tension of the second se						
2.	PART - II : JEE (If a1, a2, a3,, a value of a1 + a2 + a3 + (A) n(2c)1/n Suppose a, b, c are in is (A) $\frac{1}{2\sqrt{2}}$ If $\alpha \in \left(0, \frac{\pi}{2}\right)$, then $\sqrt{2}$ (A) 2 tan α	ADVANCED) / IIT are positive real numbers + + an - 1 + 2an is (B) (n + 1) c1/n A.P. and a2, b2, c2 are (B) $\frac{1}{2\sqrt{3}}$ $\overline{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$ is alw (B) 1	-JEE PROBLEM bers whose product if (C) 2nc1/n in G.P. if a < b < c ar (C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$ ways greater than or (C) 2	(4) 11 IS (PREVIOUS YEARS) s a fixed number c, then the minimum [IIT-JEE-2002, Scr. , (3, -1), 90] (D) (n + 1)(2c)1/n at the set of t						

Sequence & Series

5.	where α , β are the root	e quadratic equation $ax_2 + bx + c = 0$, $a \neq 0$, $\Delta = b_2 - 4ac$ and $\alpha + \beta$, $\alpha_2 + \beta_2$, $\alpha_3 + \beta_3$ are in G.P. re α , β are the root of $ax_2 + bx + c = 0$, then [IIT-JEE-2005, Scr., (3, -1), 84]						
	(A) ∆ ≠ 0	(B) b∆ = 0	(C) c∆ = 0	(D) $\Delta = 0$				
6.	Let a₁, a₂, a₃, be in h a₁ < 0 is	narmonic progression wit		e least positive integer n for which 12, Paper-2, (3, –1), 66]				
	(A) 22	(B) 23	(C) 24	(D) 25				
		1						
7.	The least value of $\alpha \in \mathbb{R}$ for which $4\alpha x_2 + x \ge 1$, for all x > 0, is							
			[JEE (Adva	nced) 2016, Paper-1, (3, –1)/62]				
	1	1	1	1				
	(A) 64	(B) 32	(C) 27	(D) 25				
	(7)		(0)	(\mathcal{D})				
8.	Let $b_i > 1$ for $i = 1, 2,, 101$. Suppose $log_e b_1, log_e b_2,, log_e b_{101}$ are in Arithmetic progression (A.P.) with the common difference log_e 2. Suppose $a_1, a_2,, a_{101}$ are in A.P. such that $a_1 = b_1$ and $a_{51} = b_{51}$. If $t = b_1 + b_2 + + b_{51}$ and $s = a_1 + a_2 + + a_{51}$, then							
	[JEE (Advanced) 2016, Paper-2, (3, –1)/62]							

(B) s > t and $a_{101} < b_{101}$

(D) s < t and a₁₀₁ < b_{101]}

(A) s > t and $a_{101} > b_{101}$ (C) s < t and $a_{101} > b_{101}$

Answers

EXERCISE #1 Section (A) A-1. (2) A-2. (3)A-3. (1)A-4. (4) A-5. (2) A-6. (2) A-7. (3) A-8. (3)A-9. (1)A-10. (3) A-11. (4) A-12. (2) A-13. (3) A-14. (2) A-15. (3) A-16. (1) A-17. (4) A-18. (2) A-19. (1) Section (B) B-1. (4) B-2. (1)B-3. (2) B-4. (1) B-5. (3) B-6. (3) B-7. (2) B-8. (1) B-9. (4) B-10. (3) B-11. (3) B-12. (3) B-13. (2) B-14. (3) (2) B-15. (2) B-16. B-17. B-18. B-19. B-20. B-21. (3) (1) (1) (3) (3) B-22. (1) Section (C) C-1. (3) C-2. (3)C-3. (2) C-4. (2) C-5. (3) C-6. (3) C-7. (1) C-8. (1) C-9. (2) C-10. (3) C-12. C-11. (2) (2) C-13. (2) C-14. (2) **C-15.** (1) C-16. (3) C-17. (2) C-18. (2) Section (D) D-1. (1) D-2. (3) D-3. (3) D-4. (4) D-5. (1) D-6. (2) D-7. (1) D-8. (4) Section (E) E-1. E-2. E-3. E-4. E-7. (4) (1) (3) (3) (1) E-5. (3) E-6. (1) (2) E-10. (2) **E-11.** (2) E-12. E-8. E-9. (1) (1) E-13. (3) EXERCISE # 2 PART-I 1. (4) 2. (1) 3. (3) 4. (2) 5. (2) 6. (3) 7. (1)

M A	THE	MATI	ĊS		Seau	ienc	e &	Ser	ries				
8. 15. 22.	(1) (4) (4)	9. 16. 23.	(2) (2) (2)	10. 17. 24.	(2) (1) (1)	11. 18. 25.	(1) (1) (4)	12. 19. 26.	(2) (3) (1)	13. 20. 27.	(2) (1) (3)	14. 21. 28.	(2) (1) (1)
						PA	RT - II						
	ion (A) (1)		(1)	A-3.	(3)	A-4.	(2)						
Sect	ion (B)												
B-1.	(3)	B-2.	(2)										
	ion (C) (2, 3)	C-2.	(2, 4)	C-3.	(1, 2)	C-4.	(1, 2)						
						EXER	CISE #	3					
						РА	RT - I						
1. 8. 15.	(3) (4) (2)	2. 9. 16.	(3) (2) (2)	3. 10. 17.	(4) (2) (1)	4. 11. 18.	(4) (4) (1)	5. 12. 19.	(2) (3) (2)	6. 13. 20.	(2) (1) (1)	7. 14. 21.	(1) (2) (4)
						PA	RT - II						
1. 8.	(A) (B)	2.	(D)	3.	(A)	4.	(C)	5.	(C)	6.	(D)	7.	(C)

37/ A /TIT